
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ME-SWITCH: A MEMORY-EFFICIENT EXPERT SWITCH-
ING FRAMEWORK FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The typical process for LLM’s development involves pre-training a general founda-
tion model on massive data, followed by fine-tuning on task-specific data to obtain
a series of specialized experts. Serving these experts can pose significant memory
challenges, as loading all experts onto devices is impractical, and frequent switch-
ing between experts in response to user requests can incur substantial I/O costs.
Previous approaches decompose the expert weights as the pre-trained weights plus
delta weights, followed by quantizing the delta weights using output channel-wise
step sizes to reduce the model size. However, these methods overlook the fact that
certain input channels of delta weights can cause significant quantization errors at
extremely low bitwidths. To this end, we introduce ME-Switch, a memory-efficient
expert switching framework tailored for serving multiple LLMs. To condense the
number of bits required for describing the delta weights, we propose a salient-
aware delta compression method that first identifies which input channels of delta
weights are salient based on reconstruction error and then employs mixed-precision
quantization that selectively quantizes non-salient input channels of delta weights
to extremely low bits while keeping the salient ones intact, significantly reducing
storage demand while maintaining performance. Extensive experiments show the
promising memory efficiency and accuracy of ME-Switch. For example, when
serving three models from the Mistral-7B family, ME-Switch reduces the model
size by 2.04× and maintains nearly lossless performance on instruction, mathemat-
ical reasoning, and code generation tasks. Furthermore, our method can efficiently
serve 16 Mistral-7B models on an NVIDIA A100 GPU.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (Achiam et al., 2023) and Gemini (Team et al.,
2023), have achieved significant advancements in natural language processing (NLP). Following a
pretrain-finetune paradigm (Touvron et al., 2023a;b; Dubey et al., 2024), these models are first trained
on large-scale text datasets to develop a broad foundation of language understanding, enabling them
to excel in tasks requiring common-sense knowledge. To acquire task-specific knowledge, these
pre-trained models are further fine-tuned on specialized tasks, enabling their adaptation or alignment
for diverse applications such as interactive agents (Touvron et al., 2023b; Jiang et al., 2023), code
generation (Luo et al., 2023b; Lozhkov et al., 2024), and mathematical problem solving (Luo et al.,
2023a; Lozhkov et al., 2024), demonstrating the remarkable versatility of LLMs. For instance, even
high-capacity LLMs like the MoE model Mixtral-8x22B 1 are fine-tuned on instruction-following
data to create specialized variants such as Mixtral-8x22B-Instruct-v0.1 2, enhancing their ability to
follow human instructions. While LLMs are powerful, fine-tuning for a specific task to enhance
performance is generally more practical and efficient than multitask fine-tuning that often encounters
conflicting objectives, mode collapse, and demands meticulous data mixing along with substantial
training resources (Team et al., 2023; Touvron et al., 2023b). For example, DeepSeek-Coder-V2-
Base (Zhu et al., 2024), a 236B-parameter MoE code model, is fine-tuned from DeepSeek-V2 (Liu
et al., 2024a) to achieve significantly improved performance in the code domain but demonstrating
reduced effectiveness in general question-answering tasks. This highlights the necessity of obtaining
multiple task-specific LLMs.

1https://huggingface.co/mistralai/Mixtral-8x22B-v0.1
2https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An illustration of the input channel-wise maximum and minimum values for the delta
weights of Speechless-Code-Mistral-7B. The variability across input channels highlights that certain
salient channels, irrespective of their magnitude, can cause significant quantization errors when
quantized with ultra low-bitwidth, which underscores their critical role in preserving performance.

However, serving multiple models poses several major challenges. First, even with a relatively small
number of models, the storage demands are significant due to the extensive number of parameters each
model contains. For example, three LLaMA-2-70B models would collectively require over 384GB of
storage, calculated as 128GB per model times three. Second, the substantial memory requirements of
these models may make it impractical to load all of them into GPU memory simultaneously. While
dynamically swapping model weights in and out of GPU memory as needed is feasible, the large
size of the models makes this process slow and inefficient, significantly delaying response times and
adversely affecting user experience.

To address the above challenges, existing methods (Liu et al., 2024b; Yao & Klimovic, 2023)
decompose the weights of fine-tuned models into pre-trained weights and delta weights introduced
during fine-tuning. While low-rank approximation (Hu et al., 2022) can compress these delta weights,
it falls short for full fine-tuned models whose delta weights lack low-rank properties (Liu et al., 2024b;
Lialin et al., 2024; Hao et al., 2024). As a result, prior work has adopted per-tensor quantization (Liu
et al., 2024b) as an alternative, significantly reducing storage needs and facilitating efficient sharing
of the base model’s storage across multiple models. Nevertheless, this method ignores the distinction
in delta weight values across different input and output channels, resulting in substantial quantization
error. To mitigate this, output channel-wise quantization (Xiao et al., 2023; Wei et al., 2023; Liu et al.,
2024d) where each output channel is allocated its own learnable step size, still neglects input channel
variations, as shown in Figure 1. To further mitigate information loss, rescaling input channels before
quantization can be employed, but this provides only limited alleviation at extremely low bitwidths.

In this paper, we propose ME-Switch, a memory-efficient expert switching framework tailored for
LLMs. To reduce the quantization error while simultaneously reducing storage needs, we develop a
mixed-precision quantization method that quantizes non-salient input channels of delta weights to
extremely low bits while preserving those salient ones, which could substantially increase quantization
errors when quantized at very low bitwidths, in full precision. Since the number of salient input
channels is relatively small, incorporating a limited amount of high-precision delta weights incurs
negligible memory overhead and inference cost. To identify the important input channels of delta
weights, one may select based on their magnitudes (Dettmers et al., 2022), as shown in Figure 2(a),
which however fails to capture those leading to high quantization error. In contrast, our approach
identifies salient input channels of delta weights based on their impact on reconstruction errors in the
output activations, as illustrated in Figure 2(b).

Our contributions can be summarized as follows. 1) We introduce ME-Switch, a memory-efficient
framework designed for serving multiple LLMs. It only stores a single full-precision pre-trained
model and dynamically loads the appropriate compressed delta model weights in response to user
queries. 2) We develop a mixed-precision quantization method that significantly reduces the storage
demands of serving multiple LLMs while maintaining performance, which is achieved by selectively
quantizing the non-salient input channels of delta weights and leaving the salient ones unchanged. 3)
We conduct extensive experiments demonstrating the promising memory efficiency and accuracy of
ME-Switch. Remarkably, when serving three models from the Mistral-7B family, ME-Switch not
only delivers near-lossless performance on instruction, mathematical reasoning, and code generation
tasks but also reduces the model size by 2.04×. More impressively, our method is able to serves up
to 16 Mistral-7B models on a single NVIDIA A100 GPU without running out of memory.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Efficient LLM serving. LLMs can be efficiently deployed on GPUs for high-throughput serving
using several inference frameworks, such as vLLM (Kwon et al., 2023) and Orca (Yu et al., 2022).
Given that a single LLM cannot excel across all domains, it is crucial to serve multiple LLMs
simultaneously to handle diverse user queries effectively. To determine which model to use during
inference, Zooter (Lu et al., 2023) utilizes a task-level router to load different LLMs based on the
incoming task requirements. This approach, however, introduces significant memory challenges, as
hosting all LLMs on a GPU simultaneously can excessively strain the available VRAM. One solution
is to serve multiple Low-Rank Adaptation (LoRA) modules within a multi-tenant serving system,
such as Punica (Chen et al., 2023) and S-LoRA (Sheng et al., 2023a). However, these methods fail
to accommodate full fine-tuned models because such models typically do not display the low-rank
characteristics necessary for LoRA approximation. Another viable strategy to address the above
issue involves dynamically loading different LLMs from CPU memory to GPU memory as needed,
thereby reducing peak GPU memory utilization. Nevertheless, this dynamic loading competes for
GPU memory bandwidth with model-swapping operations, presenting a significant bottleneck. To
mitigate these challenges, techniques like Deltazip (Yao & Klimovic, 2023) and BitDelta (Liu et al.,
2024b) have been developed to compress the delta parameters. These methods allow task-specific
delta parameters to be loaded into GPU memory on-demand, ensuring that only a single pre-trained
model’s parameters reside permanently in GPU memory. This approach aims to achieve low-latency
inference while minimizing the costs associated with maintaining numerous fine-tuned models in
GPU memory. Our approach stands out by serving multiple LLMs with a minimal memory footprint
with nearly lossless performance, which is achieved through an advanced delta weights quantization.

Delta compression. In recent years, numerous approaches have focused on reducing the storage
overhead for maintaining different task-specific models through delta parameter compression. Model
merging strategies often incorporate multiple tasks’ delta parameters (Ding et al., 2023) into the
pretrained parameters to minimize the number of parameters needed for multi-task operations. To
address the parameter conflicts that often arise during model merging, Yu et al. (Yu et al., 2023a)
proposed a method involving massive unstructured random pruning (achieving 90% sparsity) of
delta parameters and subsequent rescaling. This approach ensures that the accuracy of downstream
tasks is not compromised. In a similar vein, Ties-merging (Yadav et al., 2024) developed a pruning
strategy based on the magnitude and sign of delta parameters to further reduce conflicts and storage
needs. Additionally, the LoRA-based PEFT methods (Hu et al., 2021; Valipour et al., 2022; Ping
et al., 2024) introduce a novel approach by learning one or several low-rank matrices to represent the
delta parameters. ZipLoRA (Shah et al., 2023) explores the sparsity within these low-rank matrices,
allowing the fusion of low-rank matrices from different tasks to further reduce the spatial overhead of
multi-task models. However, these methods struggle to accurately approximate delta parameters in
full fine-tuned models, as these models usually lack low-rank properties (Liu et al., 2024b; Lialin
et al., 2024; Hao et al., 2024). Conversely, some studies focus solely on compressing delta parameters
for each task without merging, thereby mitigating performance degradation across multiple tasks.
For example, Ryu et al. (Ryu et al., 2023) and Isik et al. (Isik et al., 2023) combine quantization and
low-rank estimation techniques to reduce the storage size of delta parameters. Liu et al. (Liu et al.,
2024b) push this further by quantizing each task’s delta parameters to 1 bit, achieving more than a
tenfold compression. However, these quantization methods often lack robust handling of outliers,
resulting in performance declines compared to uncompressed delta parameters. Moreover, models
that do not integrate multi-task delta parameters require manual activation of specific delta parameters
for each task, which reduces the model’s applicability in multi-task environments.

3 PRELIMINARIES

For simplicity, we employ uniform quantization (Jacob et al., 2018) to compress the models. Given a
matrix X with floating-point values (e.g., BF16), the quantization process can be expressed as:

X̂ = quant(X) = clamp
(
⌊X

s ⌉,−QN , QP

)
× s, (1)

where the function clamp(V,Vmin,Vmax) clamps all elements in V within the range [Vmin,Vmax],
the operator ⌊·⌉ rounds a given value to the nearest integer, and s is a learnable quantization step
size initialized by max(|X|)/(2b−1 − 1). Here, QN and QP denote the number of negative and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Delta Weights

0.8

1.4

-2.8

0.1

1.1

-0.4

-1.7

2.2

0.2

-1.6

0.4

-0.9

Delta Weight
Importance

2.1

3.4

4.9

3.2

(a) Magnitude-based selection (b) Our reconstruction-error-based selection

1.0

1.0

-2.8

0.0

1.0

0.0

-1.7

1.0

0.0

-2.0

0.4

-1.0

Compressed
Delta Weights

Salient Weights Non-salient Weights

0.8

1.4

-2.8

0.1

1.1

-0.4

-1.7

2.2

0.2

-1.6

0.4

-0.9

0.5

2.0

2.2

0.1

Inputs Delta Weights

0.003

0.6

0.05

0.02

Delta Weight
Importance

1.0

1.4

-2.0

0.0

1.0

-0.4

-2.0

1.0

0.0

-1.6

0.0

-1.0

Compressed
Delta Weights

Figure 2: An illustration comparison between the magnitude-based selection of salient delta weights
and our reconstruction-error-based selection method. Given a delta weight matrix ∆ ∈ Rm×n,
its quantized version ∆̂, and input x ∈ Rm, where m and n denote the number of input and
output channels, respectively, our method measures the importance of each input delta channel by∑n

j=1 ∥xi∆ij − xi∆̂ij∥22.

positive quantization levels, respectively. For b-bit quantized weights, QN and QP are set to 2b−1 and
2b−1 − 1, respectively. Since the rounding function is not differentiable, we use the straight-through
estimator (STE) (Esser et al., 2020) for gradient approximation following (Esser et al., 2020). For
binary quantization, we use the quantization method following (Rastegari et al., 2016).

Recent studies (Liu et al., 2024b; Yao & Klimovic, 2023) have shown that the weights of a fine-tuned
model can be decomposed into the weights of the pre-trained model and the delta weights introduced
during fine-tuning. Let W ∈ Rm×n and WFT ∈ Rm×n be the weight matrices of the pre-trained
model and the fine-tuned model, respectively, where m represents the number of input channels
and n denotes the output number of channels. The delta weight is defined as ∆ = WFT −W. To
reduce storage requirements, one can perform quantization using Eq. (1) to compress ∆. However,
this method often results in significant performance degradation because it assumes all delta weight
channels are equally sensitive to quantization noise.

4 PROPOSED METHOD

In this section, we propose ME-Switch, a memory-efficient expert switching framework designed to
optimize the deployment of multiple LLMs. ME-Switch reduces memory demands while maintaining
performance by using mixed-precision quantization, which quantizes non-salient weights to extremely
low bitwidths while keeping salient weights intact.

4.1 SALIENT-AWARE DELTA COMPRESSION

In this section, we introduce our salient-aware delta compression approach, which specifically targets
the preservation of salient input channels during quantization. While quantization methods with
learnable step sizes for each output channel can handle variations in output channels effectively (Xiao
et al., 2023; Liu et al., 2024d), variations in input channels pose a significant challenge to maintaining
model performance, as shown in Figure 1. Some salient input channels of delta weights, regardless
of their magnitude, can cause substantial information loss and degrade model performance when
quantized to a very low bitwidth. To address this, rescaling the input channels of delta weights before
quantization (Lin et al., 2024) offers a solution to mitigate some of the quantization error, which
however provides only limited alleviation under the context of extremely low-bit quantization.

Salient-aware delta selection. To protect salient input channels of delta weights, we develop a
mixed-precision quantization method, where the majority of input channels of delta weights are
quantized to low-bit precision, while only a small number of critical input channels are represented in
their original precision. This approach achieves significant reductions in storage requirements with
minimal performance loss. The remaining challenge lies in identifying these salient input channels.
A naive approach might involve selecting the input channels with large magnitudes as the salient
delta weights (Dettmers et al., 2022), as shown in Figure 2(a). However, this method neglects the
influence of input activations on the outputs, failing to identify channels that lead to high quantization

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

error. To address this, inspired by the pruning metric (Sun et al., 2024), we introduce a salient delta
weights selection metric based on reconstruction errors in the outputs, considering both weights and
input activations, as shown in Figure 2(b). Specifically, given an input x ∈ Rm, the reconstruction
error for the input channel i can be calculated by∑n

j=1 ∥xi∆ij − xi∆̂ij∥22, (2)

where ∆̂ is the quantized delta weights and n denotes the output channel number. With the recon-
struction error defined, we choose those input channels with the top-k largest reconstruction errors as
the salient ones and retain them in 16-bit representation to maintain performance.

Efficient distillation. The quantization step size in Eq. (1) plays an important role in the final
performance. To learn the quantization step size, we employ knowledge distillation to guide the
alignment of the output logits of the quantized model with those of the full-precision fine-tuned
model following (Liu et al., 2024b). To reduce training overhead, we freeze the delta weights and
focus solely on optimizing the quantization step size s using a small calibration dataset X by solving

argmins ∥f(X)− f̂(X ; s)∥22, (3)

where f(·) and f̂(·) denote the output logits of the fine-tuned and quantized models, respectively.
Thanks to the reduced number of trainable parameters, this training process is highly efficient.

On-demand swapping. The extremely low-bit compression for delta weights significantly reduces
the model size, alleviating storage demands. This approach enables us to maintain a single pre-trained
model while storing multiple sets of compressed delta weights, facilitating efficient on-demand
swapping. In this scenario, the pre-trained model remains in GPU memory, and the corresponding
compressed delta weights are loaded dynamically based on the user query. Compared with directly
serving multiple models, our method is more GPU memory-efficient. Since LLM decoding is
memory-bound (Liu et al., 2023; Sheng et al., 2023b) due to the auto-regressive nature, reducing
model size effectively decreases the parameter loading time, thereby improving decoding latency. To
achieve fast inference, we decouple the matrix multiplication during inference into two components:

y = xWFT = x(W +∆) ≈ xW + x∆̃, (4)

where ∆̃ represents the compressed delta weights, including both the quantized unsalient and
the full-precision salient delta weights. For xW, the computation is performed using a BF16
batched GEMM kernel. For x∆̃, we implement an efficient Triton kernel (Tillet et al., 2019) that
fuses dequantization and matrix multiplication for efficient computation, reducing intermediate
memory operations and eliminating unnecessary data transfers. The reduced memory footprint of the
compressed delta weights enables our method to perform batched forward passes across multiple
models simultaneously. This batching at the model level significantly enhances efficiency compared
to the traditional approach, which processes each model individually—especially beneficial when
serving multiple models (See Figure 7). The pseudo codes of our Triton kernel can be found at
Section C of the appendix.

4.2 MODEL SIZE REDUCTION ANALYSIS

Let Ψ be the model size of an BF16 pre-trained model. When storing M BF16 models, the total
model size is MΨ. In contrast, using our method, we store a single base model and M compressed
delta models. The total model size is Ψ+MΨ̃, where Ψ̃ represents the size of the compressed delta
model. Therefore, the compression ratio can be computed by MΨ/(Ψ +MΨ̃). For example, when
serving 9 LLaMA-2-13B models, our method achieves a compression ratio of 3.85×. Empirical
studies on compression ratios for varying model numbers are shown in Figures 5 and 6.

5 EXPERIMENTS

Candidate LLMs. We apply our ME-Switch to three model families, Mistral-7B (Jiang et al., 2023),
LLaMA-2-13B (Touvron et al., 2023b), and LLaMA-3-8B (Dubey et al., 2024). For the Mistral
family, we include Dolphin-2.2.1-Mistral-7B 3 as the instruction expert, Speechless-Code-Mistral-

3https://huggingface.co/cognitivecomputations/dolphin-2.2.1-mistral-7b

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

7B 4 as the code expert, and MetaMath-Mistral-7B 5 as the math expert. To show how our method
generalizes, we further include BioMistral-7B 6 as an medical expert and Saul-7B-Base 7 as an legal
expert. Both models are fine-tuned from Mistral-7B-Instruct-v0.1 8. For the LLaMA-2-13B family,
LLaMA-2-13B-Chat (Touvron et al., 2023b) serves as the instruction expert, MetaMath-13B 9 as the
math expert, and LLaMA2-Chinese-13B-Chat 10 as the Chinese expert. For the LLaMA-3-8B family,
we include LLaMA-3-8B-Instruct 11 as the instruction expert and LLaMA-8B-Chinese-Chat 12 as the
Chinese expert. The above models are fine-tuned based on pre-trained backbones. All pre-trained
models used in our experiments are converted to BF16.

Training and testing datasets. We collect a diverse set of instruction samples from various open-
source datasets, including Alpaca (Taori et al., 2023) for the instruction domain, MetaMathQA (Yu
et al., 2023b) for the mathematics domain, Code-74k-ShareGPT 13 for the code domain, BioIn-
structQA 14 for the medical domain, LegalBench-Instruct 15 for the legal domain, and Chinese
Alpaca 16 for the Chinese domain. To measure the performance of the resulting LLMs, we report
accuracy on several benchmarks across different domains: MMLU (Hendrycks et al., 2021a) for the
instruction, GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b) for the mathematics,
HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for the code, and C-Eval (Huang
et al., 2024b) and C-MMLU (Li et al., 2023) for the Chinese. We use the WizardCoder toolbox to
evaluate on HumanEval and MBPP, and the OpenCompass toolbox (Contributors, 2023) to evaluate
on other datasets. For MMLU, we report accuracy based on 5-shot in-context learning. To determine
the answer for each question, we assess the perplexity of various response options and select the
one with the lowest perplexity. For GSM8K and MATH, we adopt a 4-shot Chain of Thought (CoT)
methodology to obtain the final answer following (Wei et al., 2022). For the HumanEval and MBPP
datasets, we employ a 0-shot configuration and generate answers using greedy decoding. We assess
the functional correctness using the pass@1 metric following (Liu et al., 2024c). For the medical and
legal domains, we evaluate model performance using the respective subsets of the MMLU dataset.

Implementation details. For salient-aware delta compression, we construct a calibration set from
each domain-specific dataset and use these sets to compress the delta weights for each respective
domain. Each calibration set consists of 1600 randomly sampled sequences, each with a length of 128
tokens. The bitwidth b and the number of BF16 input channels k are set to 2 and 8, respectively. We
use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 10−5 and a mini-batch
size of 4 for training over 1 epoch. Delta weights compression experiments for the Mistral-7B and
LLaMA-3-8B familes are conducted on two NVIDIA A100 80G GPUs, while for the LLaMA-2-13B
model, we use four NVIDIA A100 80G GPUs.

5.1 MAIN RESULTS

To evaluate the efficacy of our proposed model, we apply ME-Switch to the Mistral-7B, LLaMA-3-
8B and LLaMA-2-13B model families. The experimental results, detailed in Tables 1, 2, 3 and 4,
demonstrate that ME-Switch, even with extremely compressed delta weights, achieves performance
comparable to that of the respective unquantized expert models across various downstream tasks.
For the Mistral-7B family, on MMLU, ME-Switch lags behind the math expert by just 0.22% in
mathematical reasoning tasks. Notably, ME-Switch consistently outperforms the code expert in code
generation tasks. The performance improvements over uncompressed expert models are primarily
attributed to additional training through efficient distillation, which improves the models’ task-specific

4https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0
5https://huggingface.co/meta-math/MetaMath-Mistral-7B
6https://huggingface.co/BioMistral/BioMistral-7B
7https://huggingface.co/Equall/Saul-7B-Base
8https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
9https://huggingface.co/meta-math/MetaMath-13B-V1.0

10https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat
11https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
12https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
13https://huggingface.co/datasets/ajibawa-2023/Code-74k-ShareGPT
14https://huggingface.co/datasets/BioMistral/BioInstructQA
15https://huggingface.co/datasets/Equall/legalbench instruct
16https://huggingface.co/datasets/hfl/alpaca zh 51k

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Main results for Mistral-7B and LLaMA-2-13B families.

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Code Generation (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. HumanEval MBPP Avg.

Dolphin-2.2.1-Mistral-7B 52.05 68.83 73.42 65.43 63.43 63.68 12.80 38.24 42.70 54.90 48.80
MetaMath-Mistral-7B 50.45 66.82 71.63 64.60 61.87 73.92 20.62 47.27 0.00 21.60 10.80

Speechless-Code-Mistral-7B 51.82 68.35 73.74 65.69 63.36 61.18 13.52 37.35 51.20 60.40 55.80

ME-Switch 53.17 69.09 73.88 65.40 63.95 73.62 20.48 47.05 51.80 60.70 56.25

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Chinese (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. C-Eval C-MMLU Avg.

LLaMA-2-13B-Chat 44.26 59.79 63.20 56.57 54.60 43.75 5.20 24.48 36.13 38.71 37.42
MetaMath-13B 37.81 52.77 56.00 50.05 47.84 69.14 8.48 38.81 33.62 32.70 33.16

LLaMA2-Chinese-13B-Chat 45.24 60.01 62.47 55.92 54.67 38.89 4.54 21.72 40.28 39.16 39.72

ME-Switch 44.57 60.87 64.00 58.04 55.45 70.05 13.20 41.63 40.13 39.91 40.02

Table 2: Main results for LLaMA-3-8B family. “BF16
Baseline” refers to the performance metrics of experts
without compression.

Method
MMLU (%) ↑ Chinese (%) ↑

STEM Hums. Social Other Avg. C-Eval C-MMLU Avg.

BF16 Baseline 57.30 71.64 77.83 71.13 68.05 51.99 52.25 52.12
ME-Switch 57.12 70.89 78.60 70.92 67.93 52.67 52.70 52.69

Table 3: Results on the legal domain
for the Mistral-7B family.

Method BF16 Baseline ME-Switch

International Law 74.38 75.76
Jurisprudence 71.30 67.59

Professional law 43.02 43.68
Avg. 62.90 62.34

Table 4: Results on the medical domain for the Mistral-7B family.

Method Clinical Knowledge Medical Genetics Anatomy Professional Medicine College Biology College Medicine Avg.

BF16 Baseline 64.53 69.00 57.89 57.72 58.33 58.38 60.98
ME-Switch 62.26 68.00 48.89 57.72 63.89 61.27 60.34

Table 5: Comparisons between fixed-precision quanti-
zation and mixed-precision quantization for MetaMath-
Mistral-7B and Speechless-Code-Mistral-7B.

Method Model Size (GB)
Mathematical Reasoning (%) ↑ Code Generation (%) ↑

GSM8K Math Avg. HumanEval MBPP Avg.

BF16 Baseline 13.48 73.92 20.62 47.27 51.20 60.40 55.80
Fixed-precision 2.11 73.31 20.44 46.88 47.00 59.10 53.05
Mixed-precision 2.13 73.62 20.48 47.05 51.80 60.70 56.25

Table 6: Effect of different BF16
input channel numbers k for
Speechless-Code-Mistral-7B.

Model Model Size (GB) HumanEval MBPP Avg.

BF16 13.48 51.20 60.40 55.80
k = 8 2.13 51.80 60.70 56.25
k = 16 2.15 49.40 61.90 55.65
k = 32 2.19 51.20 61.20 56.20
k = 64 2.26 51.20 61.60 56.40

performance by optimizing the quantization step size. Similar phenomena are also observed in many
quantization literature (Esser et al., 2020; Yamamoto, 2021; Liu et al., 2022).

5.2 ABLATION STUDIES

Fixed-precision quantization vs. Mixed-precision quantization. To validate the effect of mixed-
precision quantization, we compress the delta weights of MetaMath-Mistral-7B and Speechless-
Code-Mistral-7B using both fixed-precision quantization and our salient-aware mixed-precision
quantization. We evaluate their performance on mathematical reasoning and code generation tasks,
respectively. The bitwidth b and the number of BF16 input channels k are set to default values as
specified in the implementation details. The results in Table 5 indicate that despite retaining a minimal
number of BF16 channels, the model size of the mixed-precision model (2.13 GB) is nearly identical
compared to fixed-precision model (2.11 GB). However, introducing a small number of BF16 channels
significantly improves performance. For example, our compressed Speechless-Code-Mistral-7B,
with a model size reduced by 6.33×, even outperforms the full-precision counterpart by 0.45% in
the average accuracy on code generation tasks. This underscores the capability of salient-aware
mixed-precision quantization to minimize model size while preserving model performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Low-rank adaptation vs. our salient-aware delta compression. In addition to mixed-precision
quantization, we can also employ low-rank adaptation (LoRA) to compress delta weights. Specifically,
we decompose the delta weights as ∆ = UΣV and approximate delta weights using low-rank
approximation ∆̃ = AB where A = Ũ

√
Σ̃ and B =

√
Σ̃Ṽ. Subsequently, A and B are refined

using our efficient distillation mentioned in Section 4.1. To compare the effectiveness of LoRA against
mixed-precision quantization, we apply both methods to the delta weights of Dolphin-2.2.1-Mistral-
7B and MetaMath-Mistral-7B and evaluate performance on instructional and mathematical reasoning
tasks. For LoRA, we set the rank to 512. The results are detailed in Table 7. Our approach with a
much smaller model size outperforms LoRA, especially on Math. These results reveal that LoRA
cannot accurately approximate delta weights for full fine-tuned models like Dolphin-2.2.1-Mistral-7B
and MetaMath-Mistral-7B. To show the underlying reason, we show the cumulative energy of delta
weights for MetaMath-Mistral-7B in Figure 3, using squared singular values to measure the “energy”
of the projection matrix. The results show that all projection layers consistently exhibit a similar
trend and possess a relatively high rank. Therefore, due to the absence of low-rank properties, LoRA
cannot accurately approximate the delta weights of full fine-tuned models.

0 200 400 600 800 1000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 200 400 600 800 1000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 200 400 600 800 1000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 200 400 600 800 1000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

0 1000 2000 3000 4000
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 E
ne

rg
y

Layer 1

FFN.up_proj

Self_attn.v_proj

FFN.down_proj

FFN.gate_proj

Layer 4 Layer 22 Layer 32

Figure 3: An illustration showing the cumulative energy of delta weights for MetaMath-Mistral-7B
model derived through Singular Value Decomposition (SVD).

Effect of different number of BF16 channels. To assess the impact of varying BF16 input channel
counts k, we compress the delta weights of Speechless-Code-Mistral-7B and evaluate performance on
code generation tasks. The bitwidth b is set at 2. From Table 6, our method already achieves lossless
performance with k = 8. Increasing k further yields no significant performance improvements,
indicating that performance has plateaued. Therefore, we set k to 8 by default.

Effect of different quantization bitwidths. To investigate the impact of varying bitwidths b, we
compress the delta weights of Speechless-Code-Mistral-7B and evaluate the performance on a code
generation task. Table 8 shows that increasing b from 1 to 2 significantly improve performance,
achieving lossless results. Given that further increasing b lead to negligible performance differences
due to saturation, we set b to 2 as the default.

Performance comparisons with other weight-only quantization methods. To demonstrate the
promising performance of our salient-aware delta compression, we include the following weight-only
quantization methods: AWQ: we use AWQ (Lin et al., 2024) to rescale input channels of delta

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Performance comparisons between LoRA and our
salient-aware delta compression for Dolphin-2.2.1-Mistral-7B
and MetaMath-Mistral-7B.

Model Model Size (GB)
MMLU (%) ↑ Mathematical Reasoning (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg.

LoRA 2.99 52.16 68.38 73.15 65.52 63.33 73.62 17.30 45.46
Ours 2.11 53.17 69.09 73.88 65.40 63.95 73.62 20.48 47.05

Table 8: Effect of different
bitwidths b for Speechless-
Code-Mistral-7B.

Model HumanEval MBPP Avg.

BF16 51.20 60.40 55.80
b = 1 49.40 49.90 49.65
b = 2 51.80 60.70 56.25
b = 4 51.80 60.20 56.00

Instruction Domain Mathematics Domain Code Domain

Figure 4: Average accuracy vs. delta weights size across different domains. “Baseline” refers to the
fixed-precision quantization baseline. The dashed line indicates the full-precision counterpart.

weights before quantization to mitigate quantization errors. Random: using our salient-aware delta
compression, we randomly select some input channels from the delta weights as important channels.
Wanda: leveraging our salient-aware delta compression, we select important input channels of
delta weights using the pruning metric from Wanda (Sun et al., 2024). Magnitude: within our
salient-aware delta compression framework, we select sensitive input channels of delta weights based
on their weight magnitude, following the method proposed by (Dettmers et al., 2022). Slim-LLM:
using the saliency metric in Slim-LLM (Huang et al., 2024a) to select the important channels. We
also include fixed-precision quantization for comparisons. We applied all methods to compress the
delta weights of Dolphin-2.2.1-Mistral-7B, MetaMath-Mistral-7B, and Speechless-Code-Mistral-7B,
using bitwidths b = 1 and b = 2. The results are shown in Figure 4. The detailed number of
different methods can be found at Section E of the appendix. From the results, we observe that
AWQ achieves comparable performance to the 1-bit baseline on code domain, highlighting the
limitations of rescaling in extremely low-bitwidth quantization. In contrast, keeping the salient delta
input channels performs favourably against the rescaling input channel counterpart. Moreover, our
salient channel selection demonstrates superior performance than Random, Wanda, Slim-LLM and
Magnitude metrics across various bitwidths and tasks. For example, for b = 2, our salient-aware delta
compression outperforms Wanda by 1.0% on the average accuracy on code domain, underscoring the
effectiveness and superiority of our approach in selecting the salient delta weights.

3 5 7 9
Model

0

20

40

60

80

100

120

To
ta

l M
od

el
 S

ize
 (G

B)

2.04x 2.79x 3.32x 3.72x

BF16
Ours

Figure 5: Model size reduction results in terms of
Mistral-7B family. The model sizes for the a sin-
gle 16-bit floating-point model and a compressed
model are 13.48 GB and 2.13 GB, respectively.

3 5 7 9
Model

0

50

100

150

200

To
ta

l M
od

el
 S

ize
 (G

B)

2.08x 2.87x 3.43x 3.85x

BF16
Ours

Figure 6: Model size reduction results in terms
of LLaMA-2-13B family. The model sizes for a
single BF16 model and a compressed model are
24.23 GB and 3.60 GB, respectively.

Model size reduction analysis. To investigate the model size reduction as discussed in Section 4.2,
we compare the total storage requirements of full-precision models with those of our compressed
models for the Mistral-7B and LLaMA-2-13B families across varying model counts, as shown in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 2 4 8 16
Models

0

100

200

300

400

500

600

La
te

nc
y

(m
s)

OOM OOM

Naive
Ours

Figure 7: Decoding latency for Mistral-7B.
“Naive” denotes the naive inference with M
fine-tuned models. “Ours” represents batch
inference with our method. Out-of-memory
scenarios are indicated as “OOM”.

1 2 4 8 16
Models

0

50

100

150

200

250

La
te

nc
y

(m
s) I/O

Dequantization
Multiplication

Figure 8: Latency decomposition of our
method for Mistral-7B on a single NVIDIA
A100 80G GPU. We show the latency of xW
and x∆̂ (I/O, dequantization, and multiplica-
tion).

Figures 5 and 6. As the number of models increases, the compression ratios improve substantially.
For instance, with nine models, our method achieves a 3.72× reduction compared to full-precision
models for Mistral-7B family. These savings become even more pronounced with larger model sizes,
reaching up to a 3.85× reduction for LLaMA-2-13B family.

Latency analysis. To assess the latency improvements from delta weights compression, we measured
the end-to-end decoding latency of the Mistral-7B model with an input sequence length of 128
on a single NVIDIA A100. Decoding latency is critical, as it typically dominates processing time
in LLM operations (Lin et al., 2024; Liu et al., 2023). Our efficient Triton kernel, which enables
batched matrix multiplication between multiple compressed weight matrices and high-precision
input activations, is compared against the conventional approach of individually processing multiple
models. Results depicted in Figure 7 illustrate that while our method may perform slightly slower
than the naive approach for a small number of models due to additional dequantization overhead, it
provides lower latency as the number of models is greater than 4. These results show that our method
scales more efficiently than the naive inference method. In the naive method, each xW is computed
independently during the forward pass, requiring a distinct W for each user in the batch. As the
number of models grows (>= 4), this approach results in substantial I/O costs due to loading of large
weight matrices. In contrast, our method leverages shared pre-trained model weights W along with a
set of small deltas ∆̂, significantly reducing the inference I/O burden. More importantly, unlike the
naive approach, our method is able to simultaneously serve 16 models on GPUs without running into
out-of-memory (OOM) issues, demonstrating better scalability and efficiency in high-load scenarios.

We further provide a detailed breakdown of decoding times for Mistral-7B model in Figure 8. We
observe that the dequantization cost is very small across different model numbers. Initially, latency is
dominated by I/O operations because LLM decoding is a memory-bound process when the batch size
is small (Lin et al., 2024; Liu et al., 2023). However, as the number of models grows, compute-related
operations, such as matrix multiplications, begin to dominate the overall latency. Notably, as the
number of models increases, the increased latency attributed to x∆̃ exceeds that of xW, primarily
due to the increased multiplication cost of the more compressed delta weights.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced ME-Switch, a memory-efficient expert switching framework
designed for LLMs. Our method has addressed the critical challenge of balancing model performance
with storage efficiency. The core of our ME-Switch lies in a novel mixed-precision quantization
method that selectively compresses non-salient delta weights to extremely low-bit precision while
preserving salient delta weights. Extensive experiments on Mistral-7B, LLaMA-2-13B, and LLaMA-
3-8B families have demonstrated that ME-Switch achieves performance comparable to unquantized
expert models across various tasks while significantly reducing model size. In terms of limitations,
quantizing the base model itself could further reduce the overall model size. This approach would
require careful consideration of the combined effects of quantizing both the base model and the delta
weights to ensure performance is maintained. Furthermore, reducing the bitwidth of the KV Cache
could accelerate the decoding speed, offering additional efficiency improvements.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving. arXiv preprint arXiv:2310.18547, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. NeurIPS, 35:30318–30332, 2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. Learned step size quantization. In ICLR, 2020.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. JMLR, 23(120):1–39, 2022.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. In ICML, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
NeurIPS, 2021b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

https://github.com/open-compass/opencompass

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR, 2022.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language
models. arXiv preprint arXiv:2405.14917, 2024a.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese
evaluation suite for foundation models. NeurIPS, 36, 2024b.

Berivan Isik, Hermann Kumbong, Wanyi Ning, Xiaozhe Yao, Sanmi Koyejo, and Ce Zhang. GPT-zip:
Deep compression of finetuned large language models. In ICMLW, 2023.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In CVPR, pp. 2704–2713, 2018.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In SOSP, 2023.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv preprint
arXiv:2306.09212, 2023.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReloRA: High-rank
training through low-rank updates. In ICLR, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration. In MLSys, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024a.

James Liu, Guangxuan Xiao, Kai Li, Jason D Lee, Song Han, Tri Dao, and Tianle Cai. Bitdelta: Your
fine-tune may only be worth one bit. arXiv preprint arXiv:2402.10193, 2024b.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. NeurIPS,
36, 2024c.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. QLLM: Accurate
and efficient low-bitwidth quantization for large language models. In ICLR, 2024d.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P Xing, and Zhiqiang Shen. Nonuniform-to-
uniform quantization: Towards accurate quantization via generalized straight-through estimation.
In CVPR, pp. 4942–4952, 2022.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms at
inference time. In ICML, pp. 22137–22176, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023b.

Bowen Ping, Shuo Wang, Hanqing Wang, Xu Han, Yuzhuang Xu, Yukun Yan, Yun Chen, Baobao
Chang, Zhiyuan Liu, and Maosong Sun. Delta-come: Training-free delta-compression with
mixed-precision for large language models. arXiv preprint arXiv:2406.08903, 2024.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, pp. 525–542, 2016.

Simo Ryu, Seunghyun Seo, and Jaejun Yoo. Efficient storage of fine-tuned models via low-rank
approximation of weight residuals. arXiv preprint arXiv:2305.18425, 2023.

V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, and Varun
Jampani. Ziplora: Any subject in any style by effectively merging loras. arXiv preprint
arXiv:2311.13600, 2023.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al. S-lora: Serving thousands of concurrent lora
adapters. arXiv preprint arXiv:2311.03285, 2023a.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large
language models with a single gpu. In ICML, pp. 31094–31116, 2023b.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing expert llms
into a mixture-of-experts llm. arXiv preprint arXiv:2403.07816, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. In ICLR, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

13

https://github.com/tatsu-lab/stanford_alpaca

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824–24837, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and
Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent
and effective shifting and scaling. In EMNLP, pp. 1648–1665, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, pp. 38087–
38099, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. NeurIPS, 36, 2024.

Kohei Yamamoto. Learnable companding quantization for accurate low-bit neural networks. In
CVPR, pp. 5029–5038, 2021.

Xiaozhe Yao and Ana Klimovic. Deltazip: Multi-tenant language model serving via delta compression.
arXiv preprint arXiv:2312.05215, 2023.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for {Transformer-Based} generative models. In OSDI, pp. 521–538,
2022.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099,
2023a.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023b.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

A MODEL-LEVEL ROUTING

In public-facing applications or open-ended systems, user inputs may vary widely in content and
intent, often lacking clear contextual information. This makes it particularly challenging to determine
the appropriate model for queries in advance. Therefore, we explore a simple yet effective approach as
a possible solution to determine the appropriate model for a given user query. Consider a set of LLMs
represented as F = {f1, f2, · · · , fM}, where M denotes the number of models. Given a user query
q, we aim to find the most suitable LLM by solving the following problem argmaxf∈F P (q, f(q)),
where P is a function that measures the quality or performance of the LLM response. To simplify the
routing process, we assume that each LLM in F specializes in distinct and non-overlapping domains
such as code generation or mathematical problem solving. This setup allows us to treat the routing
challenge as a multiple-choice question-answering task, where each option corresponds to a specific
domain, thereby transforming the problem into a domain classification problem. For the challenging
problem of overlapping domains, extending the current setup to a multi-label classification framework
would be necessary, and we consider this a promising direction for future work. Note that dialogue
LLMs like Qwen1.5-1.8B-Chat (Bai et al., 2023) exhibit capabilities in following instructions, which
inspires us to utilize a small pre-trained LLM as a model-level router. As illustrated in Figure A,
we first prompt the router with the user’s question using a template designed to elicit domain
classification. Specifically, when a user query is received, it is embedded into the prompt template
to form a structured question, as shown in Table A. This structured question is then processed by
the router to perform domain classification. Based on the router’s response, we then dynamically
load the corresponding compressed delta weights for the selected domain-specific model, such as a
mathematical model, to generate outputs.

RouterPrompt
TemplateUser

Prompted
QuestionQuestion

Model
Choice

❌❌ Answer✅

Figure A: An illustration of the model-level routing. We first prompt the model-level router with the
user query using a template (See Table A for more details) that presents a list of potential domains.
The router then assesses these options and selects the most relevant domain by answering a multiple-
choice question, effectively classifying the query into the corresponding category.

Table A: Prompt template for model-level routing.
PROMPT TEMPLATE FOR MODEL-LEVEL ROUTING
Classify the query based on the required expertise. Route the query to the appropriate model for a precise
response. Only output the letter corresponding to the best category (A, B, C, . . . , F).
Query: {Insert the user’s query here. }
Options: A) Instruct - For general guidance, explanations, or broad advice. B) Code - For programming-related
queries, like debugging or coding. C) Math - For mathematical inquiries, such as problems or theories. D)
Chinese Language Expert - For inquiries related to the Chinese language, including translation, grammar, and
usage. . . . F) {Specify additional categories and their descriptions here.}
Response should be only ‘A’, ‘B’, ‘C’, . . . or ‘F’, with no additional text.

Since the router is not explicitly trained for query domain classification, its initial routing performance
may be suboptimal. To improve the routing performance, we construct a multiple-choice question-
answering dataset tailored for our routing problem. We collect instruction-following data from
various domains and insert the query into the prompt template as shown in Figure A. The responses
are constructed by considering the correct domain-specific model choice. We then fine-tune the router
with our constructed dataset using supervised fine-tuning to further improve the routing accuracy.

Comparisons with routing in Mixture of Experts (MoE). Besides model-level routing, another
approach to handle diverse user queries efficiently is to construct a MoE using a set of pre-trained

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

expert models. This can be achieved by integrating the feedforward layers from all pre-trained
LLMs into a single MoE module at each attention-FFN block, and merging other layers, such as
self-attention layers, by simply averaging their weights (Sukhbaatar et al., 2024). An additional
gate network is introduced for each MoE module to perform token-level routing. However, this
approach requires extensive fine-tuning of the entire network parameters and the gating network, as
there is a significant gap between MoE experts and pre-trained LLMs. For example, training an MoE
using existing Math, Code, and Wikipedia experts requires over 900 GPU days (Sukhbaatar et al.,
2024). Notably, each expert in an MoE tends to become a generalist across all domains due to the
load balancing loss, which encourages an even distribution of the workload among experts (Fedus
et al., 2022; Jiang et al., 2024). This contrasts with pre-trained expert models, which are typically
specialized for specific domains. Compared with MoE, our model-level routing has a significantly
lower training cost, as we only need to train a router while keeping the expert models frozen.

B IMPLEMENTATION DETAILS OF MODEL-LEVEL ROUTING

We use Qwen1.5-1.8B-Chat (Bai et al., 2023) as the model-level router. We construct the training
data using samples from various domains, as mentioned in Section A. To balance the dataset, we
extract an equal number of samples from each domain-specific dataset. This constructed dataset is
used to fine-tune model-level router through supervised fine-tuning for 4 epochs on a machine with 8
× A100 GPUs. We use the AdamW optimizer with β1 = 0.9 and β2 = 0.95, setting the learning rate
to 3× 10−4 and applying a linear learning rate warmup. The weight decay is set to 0.01. We set the
per-device mini-batch size to 8 and use gradient accumulation steps of 2.

C PSEUDO-CODES OF OUR TRITON KERNEL

We show the core PyTorch style pseudo-codes of the Triton kernel in Figure B.

D RESULTS OF MODEL-LEVEL ROUTING

We present the results of model-level routing in Table B. The results indicate that model-level
routing achieves nearly lossless performance when applied to both BF16 models and our ME-Switch
compressed models. For instance, for Mistral-7B family, combining ME-Switch with model-level
routing achieves lossless performance on the Code domain and results in only a 0.2% accuracy drop
in the Mathematical domain. These results demonstrate the effectiveness of model-level routing in
accurately handling user queries.

Table B: Routing results for Mistral-7B and LLaMA-2-13B families.

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Code Generation (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. HumanEval MBPP Avg.

Dolphin-2.2.1-Mistral-7B 52.05 68.83 73.42 65.43 63.43 63.68 12.80 38.24 42.70 54.90 48.80
MetaMath-Mistral-7B 50.45 66.82 71.63 64.60 61.87 73.92 20.62 47.27 0.00 21.60 10.80

Speechless-Code-Mistral-7B 51.82 68.35 73.74 65.69 63.36 61.18 13.52 37.35 51.20 60.40 55.80

BF16 Baseline w/ Router 52.05 68.83 73.42 65.43 63.43 74.15 20.72 47.44 51.20 60.40 55.80

ME-Switch 53.17 69.09 73.88 65.40 63.95 73.62 20.48 47.05 51.80 60.70 56.25
ME-Switch w/ Router 51.49 68.37 73.60 66.08 63.32 73.39 20.30 46.85 51.80 60.70 56.25

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Chinese (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. C-Eval C-MMLU Avg.

LLaMA-2-13B-Chat 44.26 59.79 63.20 56.57 54.60 43.75 5.20 24.48 36.13 38.71 37.42
MetaMath-13B 37.81 52.77 56.00 50.05 47.84 69.14 8.48 38.81 33.62 32.70 33.16

LLaMA2-Chinese-13B-Chat 45.24 60.01 62.47 55.92 54.67 38.89 4.54 21.72 40.28 39.16 39.72

BF16 Baseline w/ Router 44.17 59.73 63.20 56.57 54.55 68.61 8.52 38.57 40.28 39.16 39.72

ME-Switch 44.57 60.87 64.00 58.04 55.45 70.05 13.20 41.63 40.13 39.91 40.02
ME-Switch w/ Router 44.51 60.87 64.00 58.04 55.43 69.90 13.14 41.52 40.13 39.84 39.99

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

def twobit dequant bmm scale kernel(a ptr, b ptr, c ptr, scales ptr, M, N, K, stride am, stride ak, stride bk, stride bn,
stride cm, stride cn, stride scales, stride batch a, stride batch b, stride batch c, stride batch scale, BLOCK SIZE M: tl.
constexpr, BLOCK SIZE N: tl.constexpr, BLOCK SIZE K: tl.constexpr, GROUP SIZE M: tl.constexpr, ACTIVATION: tl.constexpr,

):
"""Kernel for computing the matmul C = A x B.
A has shape (B, M, K), float
B has shape (B, K//n bits, N), int, packed boolean
C has shape (B, M, N),
scales is of shape (N) float16
"""
−−−
Map program ids ‘pid‘ to the block of C it should compute. This is done in a grouped ordering to promote L2 data reuse.

See above ‘L2 Cache Optimizations‘ section for details.
pid = tl.program id(axis=0)
pid batch = tl.program id(axis=1)

num pid m = tl.cdiv(M, BLOCK SIZE M)
num pid n = tl.cdiv(N, BLOCK SIZE N)
num pid k = tl.cdiv(K, BLOCK SIZE K)

num pid in group = GROUP SIZE M ∗ num pid n
group id = pid // num pid in group
first pid m = group id ∗ GROUP SIZE M
group size m = min(num pid m − first pid m, GROUP SIZE M)

pid m = first pid m + (pid % group size m)
pid n = (pid % num pid in group) // group size m

offs m = (pid m ∗ BLOCK SIZE M + tl.arange(0, BLOCK SIZE M)) % M
offs n = (pid n ∗ BLOCK SIZE N + tl.arange(0, BLOCK SIZE N)) % N

offs am = tl.max contiguous(tl.multiple of(offs m, BLOCK SIZE M), BLOCK SIZE M)
offs bn = tl.max contiguous(tl.multiple of(offs n, BLOCK SIZE N), BLOCK SIZE N)
offs k = tl.arange(0, BLOCK SIZE K)

a ptrs = a ptr + (offs am[:, None] ∗ stride am + offs k[None, :] ∗ stride ak) + pid batch ∗ stride batch a

Adapted from GPTQ−Triton (https://github.com/fpgaminer/GPTQ−triton)
b ptrs is set up such that it repeats elements along the K axis n bits times
b ptrs = b ptr + ((offs k[:, None] // 16) ∗ stride bk + offs bn[None, :] ∗ stride bn) + pid batch ∗ stride batch b
scales ptrs = scales ptr + offs bn ∗ stride scales + pid batch ∗ stride batch scale

(BLOCK SIZE K, BLOCK SIZE N)
shifter is used to extract each bit of each element in the int matrix
shifter = (offs k % 16) ∗ 2
scales = tl.load(scales ptrs)

−−−
Iterate to compute a block of the C matrix.
We accumulate into a ‘[BLOCK SIZE M, BLOCK SIZE N]‘ block
of bf32 values for higher accuracy.
‘accumulator‘ will be converted back to bf16 after the loop.
accumulator = tl.zeros((BLOCK SIZE M, BLOCK SIZE N), dtype=tl.float32)
for k in range(0, num pid k):

Load the next block of A and B, generate a mask by checking the K dimension.
If it is out of bounds, set it to 0.
a = tl.load(a ptrs)
b = tl.load(b ptrs, mask=offs k[:, None] < K − k ∗ BLOCK SIZE K, other=0)
b = tl.load(b ptrs) # (BLOCK SIZE N,)

Convert B from int to a.dtype
b: (BLOCK SIZE K, BLOCK SIZE N)
b = (b >> shifter[:, None]) & 0x3
b = (b − 2).to(a.dtype)
b = b ∗ scales[None, :] # BF16
b = b.to(a.dtype)

We accumulate along the K dimension.
accumulator += tl.dot(a, b)
Advance the ptrs to the next K block.
a ptrs += BLOCK SIZE K ∗ stride ak
b ptrs += BLOCK SIZE K ∗ stride bk
b ptrs += (BLOCK SIZE K // 16) ∗ stride bk

You can fuse arbitrary activation functions here
while the accumulator is still in BF32!
if ACTIVATION == "leaky relu":
accumulator = leaky relu(accumulator)
c = accumulator.to(tl.float16)

−−−
Write back the block of the output matrix C with masks.
offs cm = pid m ∗ BLOCK SIZE M + tl.arange(0, BLOCK SIZE M)
offs cn = pid n ∗ BLOCK SIZE N + tl.arange(0, BLOCK SIZE N)
c ptrs = (

c ptr
+ stride cm ∗ offs cm[:, None]
+ stride cn ∗ offs cn[None, :]
+ pid batch ∗ stride batch c

)
c mask = (offs cm[:, None] < M) & (offs cn[None, :] < N)
tl.store(c ptrs, c, mask=c mask)

Figure B: PyTorch style pseudo codes of channel disassembly and assembly during runtime.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E MORE PERFORMANCE COMPARISONS WITH DIFFERENT WEIGHT-ONLY
QUANTIZATION METHODS

We present the detailed results of Figure 4 in Table C. A comprehensive analysis is available in
Section 5.2.

Table C: Performance comparisons with different weight-only quantization methods.

Domain Dataset BF16 1-bit AWQ Random Wanda Slim-LLM Magnitude Ours

Instruct (%) ↑ MMLU 63.43 63.14 63.32 63.19 63.19 63.26 63.04 63.43

Math (%) ↑
GSM8K 73.92 53.45 53.75 54.66 58.07 57.16 54.89 59.14

Math 20.62 1.50 1.72 1.82 2.14 2.00 1.64 1.74
Avg. 47.27 27.48 27.74 28.24 30.11 29.58 28.27 30.44

Code (%) ↑
HumanEval 51.20 47.00 47.00 46.30 48.20 48.20 48.20 47.60

MBPP 60.40 58.40 58.10 58.60 58.60 58.40 58.90 60.70
Avg. 55.80 52.70 52.55 52.45 53.40 53.30 53.55 54.15

Domain Dataset BF16 2-bit AWQ Random Wanda Slim-LLM Magnitude Ours

Instruct (%) ↑ MMLU 63.43 63.72 63.65 63.71 63.90 63.68 63.94 63.95

Math (%) ↑
GSM8K 73.92 73.31 73.24 73.01 72.71 72.93 73.16 73.62

Math 20.62 20.44 19.98 20.52 20.64 20.16 20.08 20.48
Avg. 47.27 46.88 46.61 46.77 46.68 46.55 46.62 47.05

Code (%) ↑
HumanEval 51.20 47.00 47.00 48.80 50.60 48.20 50.00 51.80

MBPP 60.40 59.10 60.20 59.60 59.90 59.60 60.20 60.70
Avg. 55.80 53.05 53.60 54.20 55.25 53.90 55.10 56.25

F EFFECT OF SUPERVISED FINE-TUNING IN MODEL-LEVEL ROUTING

To investigate the effect of supervised fine-tuning (SFT) on model-level routing, we evaluate the
domain classification performance of the router (i.e., Qwen1.5-1.8B-Chat) across four domains:
instruction, mathematics, code, and Chinese. As shown in Figure C, the pre-trained router performs
poorly in domain classification without fine-tuning, achieving a Top-1 accuracy of only 5.80% on
C-Eval. However, with SFT, the router’s performance improves significantly, reaching nearly 100%
accuracy across all domains. This demonstrates that supervised fine-tuning greatly enhances the
instruction-following capabilities of the router, thereby improving its routing performance.

MMLU
GSM8K

Math

HumanEval
MBPP

C-Eval
C-MMLU

0

50

100

Ac
cu

ra
cy

 (%
)

15.18
4.09

37.16

62.80

3.70 5.80

45.30

99.73 99.92 99.70 100.00 100.00 100.00 99.91

Without SFT With SFT

Figure C: Effect of supervised fine-tuning (SFT) in model-level routing. We assess the performance
of routing by measuring the accuracy on a 4-domain classification task (instruction, mathematics,
code, and Chinese).

G BERT vs. SMALL LLM FOR MODEL-LEVEL ROUTING

In addition to smaller LLMs, we can also use BERT for domain classification given user queries.
Specifically, we employ DistillBERT (Sanh, 2019) as the backbone and fine-tune it on our collected
dataset (described in Section A) with just the queries and corresponding domain labels. We show the
router accuracy in Table D and the latency comparisons in Table E. From the results, DistillBERT

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

with a faster response time performs well across most datasets, except for MMLU where its limited
capacity struggles with complex data. In contrast, our method consistently achieves good performance
across all datasets, demonstrating its effectiveness even in complex scenarios. Moreover, our router’s
inference latency is just 17.60ms for sequence lengths of 128, which is less than 7% of the inference
time for expert models. Therefore, we continue to leverage Qwen1.5-1.8B-Chat for its proven
effectiveness in challenging scenarios.

Table D: Router performance comparisons.

Model MMLU GSM8K Math HumanEval MBPP C-Eval C-MMLU

DistillBERT 73.29 100.00 99.80 96.34 100.00 99.97 100.00
Qwen1.5-1.8B-Chat 99.73 99.92 99.70 100.00 100.00 100.00 99.91

Table E: Router latency (ms) comparisons.

Sequence Length 128 256 512

DistillBERT 3.70 3.80 4.90
Qwen1.5-1.8B-Chat 17.60 18.30 19.10

19

	Introduction
	Related Work
	Preliminaries
	Proposed Method
	Salient-Aware Delta Compression
	Model size reduction analysis

	Experiments
	Main Results
	Ablation Studies

	Conclusion and Future Work
	Model-level Routing
	Implementation details of model-level routing
	Pseudo-codes of our Triton kernel
	Results of model-level routing
	More performance comparisons with different weight-only quantization methods
	Effect of supervised fine-tuning in model-level routing
	BERT vs. small LLM for model-level routing

