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ABSTRACT

The typical process for LLM’s development involves pre-training a general founda-
tion model on massive data, followed by fine-tuning on task-specific data to obtain
a series of specialized experts. Serving these experts can pose significant memory
challenges, as loading all experts onto devices is impractical, and frequent switch-
ing between experts in response to user requests can incur substantial I/O costs.
Previous approaches decompose the expert weights as the pre-trained weights plus
delta weights, followed by quantizing the delta weights using output channel-wise
step sizes to reduce the model size. However, these methods overlook the fact that
certain input channels of delta weights can cause significant quantization errors at
extremely low bitwidths. To this end, we introduce ME-Switch, a memory-efficient
expert switching framework tailored for serving multiple LLMs. To condense the
number of bits required for describing the delta weights, we propose a salient-
aware delta compression method that first identifies which input channels of delta
weights are salient based on reconstruction error and then employs mixed-precision
quantization that selectively quantizes non-salient input channels of delta weights
to extremely low bits while keeping the salient ones intact, significantly reducing
storage demand while maintaining performance. Extensive experiments show the
promising memory efficiency and accuracy of ME-Switch. For example, when
serving three models from the Mistral-7B family, ME-Switch reduces the model
size by 2.04× and maintains nearly lossless performance on instruction, mathemat-
ical reasoning, and code generation tasks. Furthermore, our method can efficiently
serve 16 Mistral-7B models on an NVIDIA A100 GPU.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (Achiam et al., 2023) and Gemini (Team et al.,
2023), have achieved significant advancements in natural language processing (NLP). Following a
pretrain-finetune paradigm (Touvron et al., 2023a;b; Dubey et al., 2024), these models are first trained
on large-scale text datasets to develop a broad foundation of language understanding, enabling them
to excel in tasks requiring common-sense knowledge. To acquire task-specific knowledge, these
pre-trained models are further fine-tuned on specialized tasks, enabling their adaptation or alignment
for diverse applications such as interactive agents (Touvron et al., 2023b; Jiang et al., 2023), code
generation (Luo et al., 2023b; Lozhkov et al., 2024), and mathematical problem solving (Luo et al.,
2023a; Lozhkov et al., 2024), demonstrating the remarkable versatility of LLMs. For instance, even
high-capacity LLMs like the MoE model Mixtral-8x22B 1 are fine-tuned on instruction-following
data to create specialized variants such as Mixtral-8x22B-Instruct-v0.1 2, enhancing their ability to
follow human instructions. While LLMs are powerful, fine-tuning for a specific task to enhance
performance is generally more practical and efficient than multitask fine-tuning that often encounters
conflicting objectives, mode collapse, and demands meticulous data mixing along with substantial
training resources (Team et al., 2023; Touvron et al., 2023b). For example, DeepSeek-Coder-V2-
Base (Zhu et al., 2024), a 236B-parameter MoE code model, is fine-tuned from DeepSeek-V2 (Liu
et al., 2024a) to achieve significantly improved performance in the code domain but demonstrating
reduced effectiveness in general question-answering tasks. This highlights the necessity of obtaining
multiple task-specific LLMs.

1https://huggingface.co/mistralai/Mixtral-8x22B-v0.1
2https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
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Figure 1: An illustration of the input channel-wise maximum and minimum values for the delta
weights of Speechless-Code-Mistral-7B. The variability across input channels highlights that certain
salient channels, irrespective of their magnitude, can cause significant quantization errors when
quantized with ultra low-bitwidth, which underscores their critical role in preserving performance.

However, serving multiple models poses several major challenges. First, even with a relatively small
number of models, the storage demands are significant due to the extensive number of parameters each
model contains. For example, three LLaMA-2-70B models would collectively require over 384GB of
storage, calculated as 128GB per model times three. Second, the substantial memory requirements of
these models may make it impractical to load all of them into GPU memory simultaneously. While
dynamically swapping model weights in and out of GPU memory as needed is feasible, the large
size of the models makes this process slow and inefficient, significantly delaying response times and
adversely affecting user experience.

To address the above challenges, existing methods (Liu et al., 2024b; Yao & Klimovic, 2023)
decompose the weights of fine-tuned models into pre-trained weights and delta weights introduced
during fine-tuning. While low-rank approximation (Hu et al., 2022) can compress these delta weights,
it falls short for full fine-tuned models whose delta weights lack low-rank properties (Liu et al., 2024b;
Lialin et al., 2024; Hao et al., 2024). As a result, prior work has adopted per-tensor quantization (Liu
et al., 2024b) as an alternative, significantly reducing storage needs and facilitating efficient sharing
of the base model’s storage across multiple models. Nevertheless, this method ignores the distinction
in delta weight values across different input and output channels, resulting in substantial quantization
error. To mitigate this, output channel-wise quantization (Xiao et al., 2023; Wei et al., 2023; Liu et al.,
2024d) where each output channel is allocated its own learnable step size, still neglects input channel
variations, as shown in Figure 1. To further mitigate information loss, rescaling input channels before
quantization can be employed, but this provides only limited alleviation at extremely low bitwidths.

In this paper, we propose ME-Switch, a memory-efficient expert switching framework tailored for
LLMs. To reduce the quantization error while simultaneously reducing storage needs, we develop a
mixed-precision quantization method that quantizes non-salient input channels of delta weights to
extremely low bits while preserving those salient ones, which could substantially increase quantization
errors when quantized at very low bitwidths, in full precision. Since the number of salient input
channels is relatively small, incorporating a limited amount of high-precision delta weights incurs
negligible memory overhead and inference cost. To identify the important input channels of delta
weights, one may select based on their magnitudes (Dettmers et al., 2022), as shown in Figure 2(a),
which however fails to capture those leading to high quantization error. In contrast, our approach
identifies salient input channels of delta weights based on their impact on reconstruction errors in the
output activations, as illustrated in Figure 2(b).

Our contributions can be summarized as follows. 1) We introduce ME-Switch, a memory-efficient
framework designed for serving multiple LLMs. It only stores a single full-precision pre-trained
model and dynamically loads the appropriate compressed delta model weights in response to user
queries. 2) We develop a mixed-precision quantization method that significantly reduces the storage
demands of serving multiple LLMs while maintaining performance, which is achieved by selectively
quantizing the non-salient input channels of delta weights and leaving the salient ones unchanged. 3)
We conduct extensive experiments demonstrating the promising memory efficiency and accuracy of
ME-Switch. Remarkably, when serving three models from the Mistral-7B family, ME-Switch not
only delivers near-lossless performance on instruction, mathematical reasoning, and code generation
tasks but also reduces the model size by 2.04×. More impressively, our method is able to serves up
to 16 Mistral-7B models on a single NVIDIA A100 GPU without running out of memory.
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2 RELATED WORK

Efficient LLM serving. LLMs can be efficiently deployed on GPUs for high-throughput serving
using several inference frameworks, such as vLLM (Kwon et al., 2023) and Orca (Yu et al., 2022).
Given that a single LLM cannot excel across all domains, it is crucial to serve multiple LLMs
simultaneously to handle diverse user queries effectively. To determine which model to use during
inference, Zooter (Lu et al., 2023) utilizes a task-level router to load different LLMs based on the
incoming task requirements. This approach, however, introduces significant memory challenges, as
hosting all LLMs on a GPU simultaneously can excessively strain the available VRAM. One solution
is to serve multiple Low-Rank Adaptation (LoRA) modules within a multi-tenant serving system,
such as Punica (Chen et al., 2023) and S-LoRA (Sheng et al., 2023a). However, these methods fail
to accommodate full fine-tuned models because such models typically do not display the low-rank
characteristics necessary for LoRA approximation. Another viable strategy to address the above
issue involves dynamically loading different LLMs from CPU memory to GPU memory as needed,
thereby reducing peak GPU memory utilization. Nevertheless, this dynamic loading competes for
GPU memory bandwidth with model-swapping operations, presenting a significant bottleneck. To
mitigate these challenges, techniques like Deltazip (Yao & Klimovic, 2023) and BitDelta (Liu et al.,
2024b) have been developed to compress the delta parameters. These methods allow task-specific
delta parameters to be loaded into GPU memory on-demand, ensuring that only a single pre-trained
model’s parameters reside permanently in GPU memory. This approach aims to achieve low-latency
inference while minimizing the costs associated with maintaining numerous fine-tuned models in
GPU memory. Our approach stands out by serving multiple LLMs with a minimal memory footprint
with nearly lossless performance, which is achieved through an advanced delta weights quantization.

Delta compression. In recent years, numerous approaches have focused on reducing the storage
overhead for maintaining different task-specific models through delta parameter compression. Model
merging strategies often incorporate multiple tasks’ delta parameters (Ding et al., 2023) into the
pretrained parameters to minimize the number of parameters needed for multi-task operations. To
address the parameter conflicts that often arise during model merging, Yu et al. (Yu et al., 2023a)
proposed a method involving massive unstructured random pruning (achieving 90% sparsity) of
delta parameters and subsequent rescaling. This approach ensures that the accuracy of downstream
tasks is not compromised. In a similar vein, Ties-merging (Yadav et al., 2024) developed a pruning
strategy based on the magnitude and sign of delta parameters to further reduce conflicts and storage
needs. Additionally, the LoRA-based PEFT methods (Hu et al., 2021; Valipour et al., 2022; Ping
et al., 2024) introduce a novel approach by learning one or several low-rank matrices to represent the
delta parameters. ZipLoRA (Shah et al., 2023) explores the sparsity within these low-rank matrices,
allowing the fusion of low-rank matrices from different tasks to further reduce the spatial overhead of
multi-task models. However, these methods struggle to accurately approximate delta parameters in
full fine-tuned models, as these models usually lack low-rank properties (Liu et al., 2024b; Lialin
et al., 2024; Hao et al., 2024). Conversely, some studies focus solely on compressing delta parameters
for each task without merging, thereby mitigating performance degradation across multiple tasks.
For example, Ryu et al. (Ryu et al., 2023) and Isik et al. (Isik et al., 2023) combine quantization and
low-rank estimation techniques to reduce the storage size of delta parameters. Liu et al. (Liu et al.,
2024b) push this further by quantizing each task’s delta parameters to 1 bit, achieving more than a
tenfold compression. However, these quantization methods often lack robust handling of outliers,
resulting in performance declines compared to uncompressed delta parameters. Moreover, models
that do not integrate multi-task delta parameters require manual activation of specific delta parameters
for each task, which reduces the model’s applicability in multi-task environments.

3 PRELIMINARIES

For simplicity, we employ uniform quantization (Jacob et al., 2018) to compress the models. Given a
matrix X with floating-point values (e.g., BF16), the quantization process can be expressed as:

X̂ = quant(X) = clamp
(
⌊X

s ⌉,−QN , QP

)
× s, (1)

where the function clamp(V,Vmin,Vmax) clamps all elements in V within the range [Vmin,Vmax],
the operator ⌊·⌉ rounds a given value to the nearest integer, and s is a learnable quantization step
size initialized by max(|X|)/(2b−1 − 1). Here, QN and QP denote the number of negative and
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Figure 2: An illustration comparison between the magnitude-based selection of salient delta weights
and our reconstruction-error-based selection method. Given a delta weight matrix ∆ ∈ Rm×n,
its quantized version ∆̂, and input x ∈ Rm, where m and n denote the number of input and
output channels, respectively, our method measures the importance of each input delta channel by∑n

j=1 ∥xi∆ij − xi∆̂ij∥22.

positive quantization levels, respectively. For b-bit quantized weights, QN and QP are set to 2b−1 and
2b−1 − 1, respectively. Since the rounding function is not differentiable, we use the straight-through
estimator (STE) (Esser et al., 2020) for gradient approximation following (Esser et al., 2020). For
binary quantization, we use the quantization method following (Rastegari et al., 2016).

Recent studies (Liu et al., 2024b; Yao & Klimovic, 2023) have shown that the weights of a fine-tuned
model can be decomposed into the weights of the pre-trained model and the delta weights introduced
during fine-tuning. Let W ∈ Rm×n and WFT ∈ Rm×n be the weight matrices of the pre-trained
model and the fine-tuned model, respectively, where m represents the number of input channels
and n denotes the output number of channels. The delta weight is defined as ∆ = WFT −W. To
reduce storage requirements, one can perform quantization using Eq. (1) to compress ∆. However,
this method often results in significant performance degradation because it assumes all delta weight
channels are equally sensitive to quantization noise.

4 PROPOSED METHOD

In this section, we propose ME-Switch, a memory-efficient expert switching framework designed to
optimize the deployment of multiple LLMs. ME-Switch reduces memory demands while maintaining
performance by using mixed-precision quantization, which quantizes non-salient weights to extremely
low bitwidths while keeping salient weights intact.

4.1 SALIENT-AWARE DELTA COMPRESSION

In this section, we introduce our salient-aware delta compression approach, which specifically targets
the preservation of salient input channels during quantization. While quantization methods with
learnable step sizes for each output channel can handle variations in output channels effectively (Xiao
et al., 2023; Liu et al., 2024d), variations in input channels pose a significant challenge to maintaining
model performance, as shown in Figure 1. Some salient input channels of delta weights, regardless
of their magnitude, can cause substantial information loss and degrade model performance when
quantized to a very low bitwidth. To address this, rescaling the input channels of delta weights before
quantization (Lin et al., 2024) offers a solution to mitigate some of the quantization error, which
however provides only limited alleviation under the context of extremely low-bit quantization.

Salient-aware delta selection. To protect salient input channels of delta weights, we develop a
mixed-precision quantization method, where the majority of input channels of delta weights are
quantized to low-bit precision, while only a small number of critical input channels are represented in
their original precision. This approach achieves significant reductions in storage requirements with
minimal performance loss. The remaining challenge lies in identifying these salient input channels.
A naive approach might involve selecting the input channels with large magnitudes as the salient
delta weights (Dettmers et al., 2022), as shown in Figure 2(a). However, this method neglects the
influence of input activations on the outputs, failing to identify channels that lead to high quantization
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error. To address this, inspired by the pruning metric (Sun et al., 2024), we introduce a salient delta
weights selection metric based on reconstruction errors in the outputs, considering both weights and
input activations, as shown in Figure 2(b). Specifically, given an input x ∈ Rm, the reconstruction
error for the input channel i can be calculated by∑n

j=1 ∥xi∆ij − xi∆̂ij∥22, (2)

where ∆̂ is the quantized delta weights and n denotes the output channel number. With the recon-
struction error defined, we choose those input channels with the top-k largest reconstruction errors as
the salient ones and retain them in 16-bit representation to maintain performance.

Efficient distillation. The quantization step size in Eq. (1) plays an important role in the final
performance. To learn the quantization step size, we employ knowledge distillation to guide the
alignment of the output logits of the quantized model with those of the full-precision fine-tuned
model following (Liu et al., 2024b). To reduce training overhead, we freeze the delta weights and
focus solely on optimizing the quantization step size s using a small calibration dataset X by solving

argmins ∥f(X )− f̂(X ; s)∥22, (3)

where f(·) and f̂(·) denote the output logits of the fine-tuned and quantized models, respectively.
Thanks to the reduced number of trainable parameters, this training process is highly efficient.

On-demand swapping. The extremely low-bit compression for delta weights significantly reduces
the model size, alleviating storage demands. This approach enables us to maintain a single pre-trained
model while storing multiple sets of compressed delta weights, facilitating efficient on-demand
swapping. In this scenario, the pre-trained model remains in GPU memory, and the corresponding
compressed delta weights are loaded dynamically based on the user query. Compared with directly
serving multiple models, our method is more GPU memory-efficient. Since LLM decoding is
memory-bound (Liu et al., 2023; Sheng et al., 2023b) due to the auto-regressive nature, reducing
model size effectively decreases the parameter loading time, thereby improving decoding latency. To
achieve fast inference, we decouple the matrix multiplication during inference into two components:

y = xWFT = x(W +∆) ≈ xW + x∆̃, (4)

where ∆̃ represents the compressed delta weights, including both the quantized unsalient and
the full-precision salient delta weights. For xW, the computation is performed using a BF16
batched GEMM kernel. For x∆̃, we implement an efficient Triton kernel (Tillet et al., 2019) that
fuses dequantization and matrix multiplication for efficient computation, reducing intermediate
memory operations and eliminating unnecessary data transfers. The reduced memory footprint of the
compressed delta weights enables our method to perform batched forward passes across multiple
models simultaneously. This batching at the model level significantly enhances efficiency compared
to the traditional approach, which processes each model individually—especially beneficial when
serving multiple models (See Figure 7). The pseudo codes of our Triton kernel can be found at
Section C of the appendix.

4.2 MODEL SIZE REDUCTION ANALYSIS

Let Ψ be the model size of an BF16 pre-trained model. When storing M BF16 models, the total
model size is MΨ. In contrast, using our method, we store a single base model and M compressed
delta models. The total model size is Ψ+MΨ̃, where Ψ̃ represents the size of the compressed delta
model. Therefore, the compression ratio can be computed by MΨ/(Ψ +MΨ̃). For example, when
serving 9 LLaMA-2-13B models, our method achieves a compression ratio of 3.85×. Empirical
studies on compression ratios for varying model numbers are shown in Figures 5 and 6.

5 EXPERIMENTS

Candidate LLMs. We apply our ME-Switch to three model families, Mistral-7B (Jiang et al., 2023),
LLaMA-2-13B (Touvron et al., 2023b), and LLaMA-3-8B (Dubey et al., 2024). For the Mistral
family, we include Dolphin-2.2.1-Mistral-7B 3 as the instruction expert, Speechless-Code-Mistral-

3https://huggingface.co/cognitivecomputations/dolphin-2.2.1-mistral-7b
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7B 4 as the code expert, and MetaMath-Mistral-7B 5 as the math expert. To show how our method
generalizes, we further include BioMistral-7B 6 as an medical expert and Saul-7B-Base 7 as an legal
expert. Both models are fine-tuned from Mistral-7B-Instruct-v0.1 8. For the LLaMA-2-13B family,
LLaMA-2-13B-Chat (Touvron et al., 2023b) serves as the instruction expert, MetaMath-13B 9 as the
math expert, and LLaMA2-Chinese-13B-Chat 10 as the Chinese expert. For the LLaMA-3-8B family,
we include LLaMA-3-8B-Instruct 11 as the instruction expert and LLaMA-8B-Chinese-Chat 12 as the
Chinese expert. The above models are fine-tuned based on pre-trained backbones. All pre-trained
models used in our experiments are converted to BF16.

Training and testing datasets. We collect a diverse set of instruction samples from various open-
source datasets, including Alpaca (Taori et al., 2023) for the instruction domain, MetaMathQA (Yu
et al., 2023b) for the mathematics domain, Code-74k-ShareGPT 13 for the code domain, BioIn-
structQA 14 for the medical domain, LegalBench-Instruct 15 for the legal domain, and Chinese
Alpaca 16 for the Chinese domain. To measure the performance of the resulting LLMs, we report
accuracy on several benchmarks across different domains: MMLU (Hendrycks et al., 2021a) for the
instruction, GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b) for the mathematics,
HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for the code, and C-Eval (Huang
et al., 2024b) and C-MMLU (Li et al., 2023) for the Chinese. We use the WizardCoder toolbox to
evaluate on HumanEval and MBPP, and the OpenCompass toolbox (Contributors, 2023) to evaluate
on other datasets. For MMLU, we report accuracy based on 5-shot in-context learning. To determine
the answer for each question, we assess the perplexity of various response options and select the
one with the lowest perplexity. For GSM8K and MATH, we adopt a 4-shot Chain of Thought (CoT)
methodology to obtain the final answer following (Wei et al., 2022). For the HumanEval and MBPP
datasets, we employ a 0-shot configuration and generate answers using greedy decoding. We assess
the functional correctness using the pass@1 metric following (Liu et al., 2024c). For the medical and
legal domains, we evaluate model performance using the respective subsets of the MMLU dataset.

Implementation details. For salient-aware delta compression, we construct a calibration set from
each domain-specific dataset and use these sets to compress the delta weights for each respective
domain. Each calibration set consists of 1600 randomly sampled sequences, each with a length of 128
tokens. The bitwidth b and the number of BF16 input channels k are set to 2 and 8, respectively. We
use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 10−5 and a mini-batch
size of 4 for training over 1 epoch. Delta weights compression experiments for the Mistral-7B and
LLaMA-3-8B familes are conducted on two NVIDIA A100 80G GPUs, while for the LLaMA-2-13B
model, we use four NVIDIA A100 80G GPUs.

5.1 MAIN RESULTS

To evaluate the efficacy of our proposed model, we apply ME-Switch to the Mistral-7B, LLaMA-3-
8B and LLaMA-2-13B model families. The experimental results, detailed in Tables 1, 2, 3 and 4,
demonstrate that ME-Switch, even with extremely compressed delta weights, achieves performance
comparable to that of the respective unquantized expert models across various downstream tasks.
For the Mistral-7B family, on MMLU, ME-Switch lags behind the math expert by just 0.22% in
mathematical reasoning tasks. Notably, ME-Switch consistently outperforms the code expert in code
generation tasks. The performance improvements over uncompressed expert models are primarily
attributed to additional training through efficient distillation, which improves the models’ task-specific

4https://huggingface.co/uukuguy/speechless-code-mistral-7b-v1.0
5https://huggingface.co/meta-math/MetaMath-Mistral-7B
6https://huggingface.co/BioMistral/BioMistral-7B
7https://huggingface.co/Equall/Saul-7B-Base
8https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
9https://huggingface.co/meta-math/MetaMath-13B-V1.0

10https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat
11https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
12https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
13https://huggingface.co/datasets/ajibawa-2023/Code-74k-ShareGPT
14https://huggingface.co/datasets/BioMistral/BioInstructQA
15https://huggingface.co/datasets/Equall/legalbench instruct
16https://huggingface.co/datasets/hfl/alpaca zh 51k
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Table 1: Main results for Mistral-7B and LLaMA-2-13B families.

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Code Generation (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. HumanEval MBPP Avg.

Dolphin-2.2.1-Mistral-7B 52.05 68.83 73.42 65.43 63.43 63.68 12.80 38.24 42.70 54.90 48.80
MetaMath-Mistral-7B 50.45 66.82 71.63 64.60 61.87 73.92 20.62 47.27 0.00 21.60 10.80

Speechless-Code-Mistral-7B 51.82 68.35 73.74 65.69 63.36 61.18 13.52 37.35 51.20 60.40 55.80

ME-Switch 53.17 69.09 73.88 65.40 63.95 73.62 20.48 47.05 51.80 60.70 56.25

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Chinese (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. C-Eval C-MMLU Avg.

LLaMA-2-13B-Chat 44.26 59.79 63.20 56.57 54.60 43.75 5.20 24.48 36.13 38.71 37.42
MetaMath-13B 37.81 52.77 56.00 50.05 47.84 69.14 8.48 38.81 33.62 32.70 33.16

LLaMA2-Chinese-13B-Chat 45.24 60.01 62.47 55.92 54.67 38.89 4.54 21.72 40.28 39.16 39.72

ME-Switch 44.57 60.87 64.00 58.04 55.45 70.05 13.20 41.63 40.13 39.91 40.02

Table 2: Main results for LLaMA-3-8B family. “BF16
Baseline” refers to the performance metrics of experts
without compression.

Method
MMLU (%) ↑ Chinese (%) ↑

STEM Hums. Social Other Avg. C-Eval C-MMLU Avg.

BF16 Baseline 57.30 71.64 77.83 71.13 68.05 51.99 52.25 52.12
ME-Switch 57.12 70.89 78.60 70.92 67.93 52.67 52.70 52.69

Table 3: Results on the legal domain
for the Mistral-7B family.

Method BF16 Baseline ME-Switch

International Law 74.38 75.76
Jurisprudence 71.30 67.59

Professional law 43.02 43.68
Avg. 62.90 62.34

Table 4: Results on the medical domain for the Mistral-7B family.

Method Clinical Knowledge Medical Genetics Anatomy Professional Medicine College Biology College Medicine Avg.

BF16 Baseline 64.53 69.00 57.89 57.72 58.33 58.38 60.98
ME-Switch 62.26 68.00 48.89 57.72 63.89 61.27 60.34

Table 5: Comparisons between fixed-precision quanti-
zation and mixed-precision quantization for MetaMath-
Mistral-7B and Speechless-Code-Mistral-7B.

Method Model Size (GB)
Mathematical Reasoning (%) ↑ Code Generation (%) ↑

GSM8K Math Avg. HumanEval MBPP Avg.

BF16 Baseline 13.48 73.92 20.62 47.27 51.20 60.40 55.80
Fixed-precision 2.11 73.31 20.44 46.88 47.00 59.10 53.05
Mixed-precision 2.13 73.62 20.48 47.05 51.80 60.70 56.25

Table 6: Effect of different BF16
input channel numbers k for
Speechless-Code-Mistral-7B.

Model Model Size (GB) HumanEval MBPP Avg.

BF16 13.48 51.20 60.40 55.80
k = 8 2.13 51.80 60.70 56.25
k = 16 2.15 49.40 61.90 55.65
k = 32 2.19 51.20 61.20 56.20
k = 64 2.26 51.20 61.60 56.40

performance by optimizing the quantization step size. Similar phenomena are also observed in many
quantization literature (Esser et al., 2020; Yamamoto, 2021; Liu et al., 2022).

5.2 ABLATION STUDIES

Fixed-precision quantization vs. Mixed-precision quantization. To validate the effect of mixed-
precision quantization, we compress the delta weights of MetaMath-Mistral-7B and Speechless-
Code-Mistral-7B using both fixed-precision quantization and our salient-aware mixed-precision
quantization. We evaluate their performance on mathematical reasoning and code generation tasks,
respectively. The bitwidth b and the number of BF16 input channels k are set to default values as
specified in the implementation details. The results in Table 5 indicate that despite retaining a minimal
number of BF16 channels, the model size of the mixed-precision model (2.13 GB) is nearly identical
compared to fixed-precision model (2.11 GB). However, introducing a small number of BF16 channels
significantly improves performance. For example, our compressed Speechless-Code-Mistral-7B,
with a model size reduced by 6.33×, even outperforms the full-precision counterpart by 0.45% in
the average accuracy on code generation tasks. This underscores the capability of salient-aware
mixed-precision quantization to minimize model size while preserving model performance.
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Low-rank adaptation vs. our salient-aware delta compression. In addition to mixed-precision
quantization, we can also employ low-rank adaptation (LoRA) to compress delta weights. Specifically,
we decompose the delta weights as ∆ = UΣV and approximate delta weights using low-rank
approximation ∆̃ = AB where A = Ũ

√
Σ̃ and B =

√
Σ̃Ṽ. Subsequently, A and B are refined

using our efficient distillation mentioned in Section 4.1. To compare the effectiveness of LoRA against
mixed-precision quantization, we apply both methods to the delta weights of Dolphin-2.2.1-Mistral-
7B and MetaMath-Mistral-7B and evaluate performance on instructional and mathematical reasoning
tasks. For LoRA, we set the rank to 512. The results are detailed in Table 7. Our approach with a
much smaller model size outperforms LoRA, especially on Math. These results reveal that LoRA
cannot accurately approximate delta weights for full fine-tuned models like Dolphin-2.2.1-Mistral-7B
and MetaMath-Mistral-7B. To show the underlying reason, we show the cumulative energy of delta
weights for MetaMath-Mistral-7B in Figure 3, using squared singular values to measure the “energy”
of the projection matrix. The results show that all projection layers consistently exhibit a similar
trend and possess a relatively high rank. Therefore, due to the absence of low-rank properties, LoRA
cannot accurately approximate the delta weights of full fine-tuned models.
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Figure 3: An illustration showing the cumulative energy of delta weights for MetaMath-Mistral-7B
model derived through Singular Value Decomposition (SVD).

Effect of different number of BF16 channels. To assess the impact of varying BF16 input channel
counts k, we compress the delta weights of Speechless-Code-Mistral-7B and evaluate performance on
code generation tasks. The bitwidth b is set at 2. From Table 6, our method already achieves lossless
performance with k = 8. Increasing k further yields no significant performance improvements,
indicating that performance has plateaued. Therefore, we set k to 8 by default.

Effect of different quantization bitwidths. To investigate the impact of varying bitwidths b, we
compress the delta weights of Speechless-Code-Mistral-7B and evaluate the performance on a code
generation task. Table 8 shows that increasing b from 1 to 2 significantly improve performance,
achieving lossless results. Given that further increasing b lead to negligible performance differences
due to saturation, we set b to 2 as the default.

Performance comparisons with other weight-only quantization methods. To demonstrate the
promising performance of our salient-aware delta compression, we include the following weight-only
quantization methods: AWQ: we use AWQ (Lin et al., 2024) to rescale input channels of delta
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Table 7: Performance comparisons between LoRA and our
salient-aware delta compression for Dolphin-2.2.1-Mistral-7B
and MetaMath-Mistral-7B.

Model Model Size (GB)
MMLU (%) ↑ Mathematical Reasoning (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg.

LoRA 2.99 52.16 68.38 73.15 65.52 63.33 73.62 17.30 45.46
Ours 2.11 53.17 69.09 73.88 65.40 63.95 73.62 20.48 47.05

Table 8: Effect of different
bitwidths b for Speechless-
Code-Mistral-7B.

Model HumanEval MBPP Avg.

BF16 51.20 60.40 55.80
b = 1 49.40 49.90 49.65
b = 2 51.80 60.70 56.25
b = 4 51.80 60.20 56.00

Instruction Domain Mathematics Domain Code Domain

Figure 4: Average accuracy vs. delta weights size across different domains. “Baseline” refers to the
fixed-precision quantization baseline. The dashed line indicates the full-precision counterpart.

weights before quantization to mitigate quantization errors. Random: using our salient-aware delta
compression, we randomly select some input channels from the delta weights as important channels.
Wanda: leveraging our salient-aware delta compression, we select important input channels of
delta weights using the pruning metric from Wanda (Sun et al., 2024). Magnitude: within our
salient-aware delta compression framework, we select sensitive input channels of delta weights based
on their weight magnitude, following the method proposed by (Dettmers et al., 2022). Slim-LLM:
using the saliency metric in Slim-LLM (Huang et al., 2024a) to select the important channels. We
also include fixed-precision quantization for comparisons. We applied all methods to compress the
delta weights of Dolphin-2.2.1-Mistral-7B, MetaMath-Mistral-7B, and Speechless-Code-Mistral-7B,
using bitwidths b = 1 and b = 2. The results are shown in Figure 4. The detailed number of
different methods can be found at Section E of the appendix. From the results, we observe that
AWQ achieves comparable performance to the 1-bit baseline on code domain, highlighting the
limitations of rescaling in extremely low-bitwidth quantization. In contrast, keeping the salient delta
input channels performs favourably against the rescaling input channel counterpart. Moreover, our
salient channel selection demonstrates superior performance than Random, Wanda, Slim-LLM and
Magnitude metrics across various bitwidths and tasks. For example, for b = 2, our salient-aware delta
compression outperforms Wanda by 1.0% on the average accuracy on code domain, underscoring the
effectiveness and superiority of our approach in selecting the salient delta weights.
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Figure 5: Model size reduction results in terms of
Mistral-7B family. The model sizes for the a sin-
gle 16-bit floating-point model and a compressed
model are 13.48 GB and 2.13 GB, respectively.
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Figure 6: Model size reduction results in terms
of LLaMA-2-13B family. The model sizes for a
single BF16 model and a compressed model are
24.23 GB and 3.60 GB, respectively.

Model size reduction analysis. To investigate the model size reduction as discussed in Section 4.2,
we compare the total storage requirements of full-precision models with those of our compressed
models for the Mistral-7B and LLaMA-2-13B families across varying model counts, as shown in
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Figure 7: Decoding latency for Mistral-7B.
“Naive” denotes the naive inference with M
fine-tuned models. “Ours” represents batch
inference with our method. Out-of-memory
scenarios are indicated as “OOM”.
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Figure 8: Latency decomposition of our
method for Mistral-7B on a single NVIDIA
A100 80G GPU. We show the latency of xW
and x∆̂ (I/O, dequantization, and multiplica-
tion).

Figures 5 and 6. As the number of models increases, the compression ratios improve substantially.
For instance, with nine models, our method achieves a 3.72× reduction compared to full-precision
models for Mistral-7B family. These savings become even more pronounced with larger model sizes,
reaching up to a 3.85× reduction for LLaMA-2-13B family.

Latency analysis. To assess the latency improvements from delta weights compression, we measured
the end-to-end decoding latency of the Mistral-7B model with an input sequence length of 128
on a single NVIDIA A100. Decoding latency is critical, as it typically dominates processing time
in LLM operations (Lin et al., 2024; Liu et al., 2023). Our efficient Triton kernel, which enables
batched matrix multiplication between multiple compressed weight matrices and high-precision
input activations, is compared against the conventional approach of individually processing multiple
models. Results depicted in Figure 7 illustrate that while our method may perform slightly slower
than the naive approach for a small number of models due to additional dequantization overhead, it
provides lower latency as the number of models is greater than 4. These results show that our method
scales more efficiently than the naive inference method. In the naive method, each xW is computed
independently during the forward pass, requiring a distinct W for each user in the batch. As the
number of models grows (>= 4), this approach results in substantial I/O costs due to loading of large
weight matrices. In contrast, our method leverages shared pre-trained model weights W along with a
set of small deltas ∆̂, significantly reducing the inference I/O burden. More importantly, unlike the
naive approach, our method is able to simultaneously serve 16 models on GPUs without running into
out-of-memory (OOM) issues, demonstrating better scalability and efficiency in high-load scenarios.

We further provide a detailed breakdown of decoding times for Mistral-7B model in Figure 8. We
observe that the dequantization cost is very small across different model numbers. Initially, latency is
dominated by I/O operations because LLM decoding is a memory-bound process when the batch size
is small (Lin et al., 2024; Liu et al., 2023). However, as the number of models grows, compute-related
operations, such as matrix multiplications, begin to dominate the overall latency. Notably, as the
number of models increases, the increased latency attributed to x∆̃ exceeds that of xW, primarily
due to the increased multiplication cost of the more compressed delta weights.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced ME-Switch, a memory-efficient expert switching framework
designed for LLMs. Our method has addressed the critical challenge of balancing model performance
with storage efficiency. The core of our ME-Switch lies in a novel mixed-precision quantization
method that selectively compresses non-salient delta weights to extremely low-bit precision while
preserving salient delta weights. Extensive experiments on Mistral-7B, LLaMA-2-13B, and LLaMA-
3-8B families have demonstrated that ME-Switch achieves performance comparable to unquantized
expert models across various tasks while significantly reducing model size. In terms of limitations,
quantizing the base model itself could further reduce the overall model size. This approach would
require careful consideration of the combined effects of quantizing both the base model and the delta
weights to ensure performance is maintained. Furthermore, reducing the bitwidth of the KV Cache
could accelerate the decoding speed, offering additional efficiency improvements.
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Appendix

A MODEL-LEVEL ROUTING

In public-facing applications or open-ended systems, user inputs may vary widely in content and
intent, often lacking clear contextual information. This makes it particularly challenging to determine
the appropriate model for queries in advance. Therefore, we explore a simple yet effective approach as
a possible solution to determine the appropriate model for a given user query. Consider a set of LLMs
represented as F = {f1, f2, · · · , fM}, where M denotes the number of models. Given a user query
q, we aim to find the most suitable LLM by solving the following problem argmaxf∈F P (q, f(q)),
where P is a function that measures the quality or performance of the LLM response. To simplify the
routing process, we assume that each LLM in F specializes in distinct and non-overlapping domains
such as code generation or mathematical problem solving. This setup allows us to treat the routing
challenge as a multiple-choice question-answering task, where each option corresponds to a specific
domain, thereby transforming the problem into a domain classification problem. For the challenging
problem of overlapping domains, extending the current setup to a multi-label classification framework
would be necessary, and we consider this a promising direction for future work. Note that dialogue
LLMs like Qwen1.5-1.8B-Chat (Bai et al., 2023) exhibit capabilities in following instructions, which
inspires us to utilize a small pre-trained LLM as a model-level router. As illustrated in Figure A,
we first prompt the router with the user’s question using a template designed to elicit domain
classification. Specifically, when a user query is received, it is embedded into the prompt template
to form a structured question, as shown in Table A. This structured question is then processed by
the router to perform domain classification. Based on the router’s response, we then dynamically
load the corresponding compressed delta weights for the selected domain-specific model, such as a
mathematical model, to generate outputs.

RouterPrompt 
TemplateUser

Prompted
QuestionQuestion

Model
Choice

❌❌ Answer✅

Figure A: An illustration of the model-level routing. We first prompt the model-level router with the
user query using a template (See Table A for more details) that presents a list of potential domains.
The router then assesses these options and selects the most relevant domain by answering a multiple-
choice question, effectively classifying the query into the corresponding category.

Table A: Prompt template for model-level routing.
PROMPT TEMPLATE FOR MODEL-LEVEL ROUTING
Classify the query based on the required expertise. Route the query to the appropriate model for a precise
response. Only output the letter corresponding to the best category (A, B, C, . . . , F).
Query: {Insert the user’s query here. }
Options: A) Instruct - For general guidance, explanations, or broad advice. B) Code - For programming-related
queries, like debugging or coding. C) Math - For mathematical inquiries, such as problems or theories. D)
Chinese Language Expert - For inquiries related to the Chinese language, including translation, grammar, and
usage. . . . F) {Specify additional categories and their descriptions here.}
Response should be only ‘A’, ‘B’, ‘C’, . . . or ‘F’, with no additional text.

Since the router is not explicitly trained for query domain classification, its initial routing performance
may be suboptimal. To improve the routing performance, we construct a multiple-choice question-
answering dataset tailored for our routing problem. We collect instruction-following data from
various domains and insert the query into the prompt template as shown in Figure A. The responses
are constructed by considering the correct domain-specific model choice. We then fine-tune the router
with our constructed dataset using supervised fine-tuning to further improve the routing accuracy.

Comparisons with routing in Mixture of Experts (MoE). Besides model-level routing, another
approach to handle diverse user queries efficiently is to construct a MoE using a set of pre-trained
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expert models. This can be achieved by integrating the feedforward layers from all pre-trained
LLMs into a single MoE module at each attention-FFN block, and merging other layers, such as
self-attention layers, by simply averaging their weights (Sukhbaatar et al., 2024). An additional
gate network is introduced for each MoE module to perform token-level routing. However, this
approach requires extensive fine-tuning of the entire network parameters and the gating network, as
there is a significant gap between MoE experts and pre-trained LLMs. For example, training an MoE
using existing Math, Code, and Wikipedia experts requires over 900 GPU days (Sukhbaatar et al.,
2024). Notably, each expert in an MoE tends to become a generalist across all domains due to the
load balancing loss, which encourages an even distribution of the workload among experts (Fedus
et al., 2022; Jiang et al., 2024). This contrasts with pre-trained expert models, which are typically
specialized for specific domains. Compared with MoE, our model-level routing has a significantly
lower training cost, as we only need to train a router while keeping the expert models frozen.

B IMPLEMENTATION DETAILS OF MODEL-LEVEL ROUTING

We use Qwen1.5-1.8B-Chat (Bai et al., 2023) as the model-level router. We construct the training
data using samples from various domains, as mentioned in Section A. To balance the dataset, we
extract an equal number of samples from each domain-specific dataset. This constructed dataset is
used to fine-tune model-level router through supervised fine-tuning for 4 epochs on a machine with 8
× A100 GPUs. We use the AdamW optimizer with β1 = 0.9 and β2 = 0.95, setting the learning rate
to 3× 10−4 and applying a linear learning rate warmup. The weight decay is set to 0.01. We set the
per-device mini-batch size to 8 and use gradient accumulation steps of 2.

C PSEUDO-CODES OF OUR TRITON KERNEL

We show the core PyTorch style pseudo-codes of the Triton kernel in Figure B.

D RESULTS OF MODEL-LEVEL ROUTING

We present the results of model-level routing in Table B. The results indicate that model-level
routing achieves nearly lossless performance when applied to both BF16 models and our ME-Switch
compressed models. For instance, for Mistral-7B family, combining ME-Switch with model-level
routing achieves lossless performance on the Code domain and results in only a 0.2% accuracy drop
in the Mathematical domain. These results demonstrate the effectiveness of model-level routing in
accurately handling user queries.

Table B: Routing results for Mistral-7B and LLaMA-2-13B families.

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Code Generation (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. HumanEval MBPP Avg.

Dolphin-2.2.1-Mistral-7B 52.05 68.83 73.42 65.43 63.43 63.68 12.80 38.24 42.70 54.90 48.80
MetaMath-Mistral-7B 50.45 66.82 71.63 64.60 61.87 73.92 20.62 47.27 0.00 21.60 10.80

Speechless-Code-Mistral-7B 51.82 68.35 73.74 65.69 63.36 61.18 13.52 37.35 51.20 60.40 55.80

BF16 Baseline w/ Router 52.05 68.83 73.42 65.43 63.43 74.15 20.72 47.44 51.20 60.40 55.80

ME-Switch 53.17 69.09 73.88 65.40 63.95 73.62 20.48 47.05 51.80 60.70 56.25
ME-Switch w/ Router 51.49 68.37 73.60 66.08 63.32 73.39 20.30 46.85 51.80 60.70 56.25

Model
MMLU (%) ↑ Mathematical Reasoning (%) ↑ Chinese (%) ↑

STEM Hums. Social Other Avg. GSM8K Math Avg. C-Eval C-MMLU Avg.

LLaMA-2-13B-Chat 44.26 59.79 63.20 56.57 54.60 43.75 5.20 24.48 36.13 38.71 37.42
MetaMath-13B 37.81 52.77 56.00 50.05 47.84 69.14 8.48 38.81 33.62 32.70 33.16

LLaMA2-Chinese-13B-Chat 45.24 60.01 62.47 55.92 54.67 38.89 4.54 21.72 40.28 39.16 39.72

BF16 Baseline w/ Router 44.17 59.73 63.20 56.57 54.55 68.61 8.52 38.57 40.28 39.16 39.72

ME-Switch 44.57 60.87 64.00 58.04 55.45 70.05 13.20 41.63 40.13 39.91 40.02
ME-Switch w/ Router 44.51 60.87 64.00 58.04 55.43 69.90 13.14 41.52 40.13 39.84 39.99
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def twobit dequant bmm scale kernel(a ptr, b ptr, c ptr, scales ptr, M, N, K, stride am, stride ak, stride bk, stride bn,
stride cm, stride cn, stride scales, stride batch a, stride batch b, stride batch c, stride batch scale, BLOCK SIZE M: tl.
constexpr, BLOCK SIZE N: tl.constexpr, BLOCK SIZE K: tl.constexpr, GROUP SIZE M: tl.constexpr, ACTIVATION: tl.constexpr,

):
"""Kernel for computing the matmul C = A x B.
A has shape (B, M, K), float
B has shape (B, K//n bits, N), int, packed boolean
C has shape (B, M, N),
scales is of shape (N) float16
"""
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Map program ids ‘pid‘ to the block of C it should compute. This is done in a grouped ordering to promote L2 data reuse.

See above ‘L2 Cache Optimizations‘ section for details.
pid = tl.program id(axis=0)
pid batch = tl.program id(axis=1)

num pid m = tl.cdiv(M, BLOCK SIZE M)
num pid n = tl.cdiv(N, BLOCK SIZE N)
num pid k = tl.cdiv(K, BLOCK SIZE K)

num pid in group = GROUP SIZE M ∗ num pid n
group id = pid // num pid in group
first pid m = group id ∗ GROUP SIZE M
group size m = min(num pid m − first pid m, GROUP SIZE M)

pid m = first pid m + (pid % group size m)
pid n = (pid % num pid in group) // group size m

offs m = (pid m ∗ BLOCK SIZE M + tl.arange(0, BLOCK SIZE M)) % M
offs n = (pid n ∗ BLOCK SIZE N + tl.arange(0, BLOCK SIZE N)) % N

offs am = tl.max contiguous(tl.multiple of(offs m, BLOCK SIZE M), BLOCK SIZE M)
offs bn = tl.max contiguous(tl.multiple of(offs n, BLOCK SIZE N), BLOCK SIZE N)
offs k = tl.arange(0, BLOCK SIZE K)

a ptrs = a ptr + (offs am[:, None] ∗ stride am + offs k[None, :] ∗ stride ak) + pid batch ∗ stride batch a

# Adapted from GPTQ−Triton (https://github.com/fpgaminer/GPTQ−triton)
# b ptrs is set up such that it repeats elements along the K axis n bits times
b ptrs = b ptr + ((offs k[:, None] // 16) ∗ stride bk + offs bn[None, :] ∗ stride bn) + pid batch ∗ stride batch b
scales ptrs = scales ptr + offs bn ∗ stride scales + pid batch ∗ stride batch scale

# (BLOCK SIZE K, BLOCK SIZE N)
# shifter is used to extract each bit of each element in the int matrix
shifter = (offs k % 16) ∗ 2
scales = tl.load(scales ptrs)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Iterate to compute a block of the C matrix.
# We accumulate into a ‘[BLOCK SIZE M, BLOCK SIZE N]‘ block
# of bf32 values for higher accuracy.
# ‘accumulator‘ will be converted back to bf16 after the loop.
accumulator = tl.zeros((BLOCK SIZE M, BLOCK SIZE N), dtype=tl.float32)
for k in range(0, num pid k):

# Load the next block of A and B, generate a mask by checking the K dimension.
# If it is out of bounds, set it to 0.
a = tl.load(a ptrs)
# b = tl.load(b ptrs, mask=offs k[:, None] < K − k ∗ BLOCK SIZE K, other=0)
b = tl.load(b ptrs) # (BLOCK SIZE N,)

# Convert B from int to a.dtype
# b: (BLOCK SIZE K, BLOCK SIZE N)
b = (b >> shifter[:, None]) & 0x3
b = (b − 2).to(a.dtype)
b = b ∗ scales[None, :] # BF16
# b = b.to(a.dtype)

# We accumulate along the K dimension.
accumulator += tl.dot(a, b)
# Advance the ptrs to the next K block.
a ptrs += BLOCK SIZE K ∗ stride ak
# b ptrs += BLOCK SIZE K ∗ stride bk
b ptrs += (BLOCK SIZE K // 16) ∗ stride bk

# You can fuse arbitrary activation functions here
# while the accumulator is still in BF32!
# if ACTIVATION == "leaky relu":
# accumulator = leaky relu(accumulator)
c = accumulator.to(tl.float16)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Write back the block of the output matrix C with masks.
offs cm = pid m ∗ BLOCK SIZE M + tl.arange(0, BLOCK SIZE M)
offs cn = pid n ∗ BLOCK SIZE N + tl.arange(0, BLOCK SIZE N)
c ptrs = (

c ptr
+ stride cm ∗ offs cm[:, None]
+ stride cn ∗ offs cn[None, :]
+ pid batch ∗ stride batch c

)
c mask = (offs cm[:, None] < M) & (offs cn[None, :] < N)
tl.store(c ptrs, c, mask=c mask)

Figure B: PyTorch style pseudo codes of channel disassembly and assembly during runtime.
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E MORE PERFORMANCE COMPARISONS WITH DIFFERENT WEIGHT-ONLY
QUANTIZATION METHODS

We present the detailed results of Figure 4 in Table C. A comprehensive analysis is available in
Section 5.2.

Table C: Performance comparisons with different weight-only quantization methods.

Domain Dataset BF16 1-bit AWQ Random Wanda Slim-LLM Magnitude Ours

Instruct (%) ↑ MMLU 63.43 63.14 63.32 63.19 63.19 63.26 63.04 63.43

Math (%) ↑
GSM8K 73.92 53.45 53.75 54.66 58.07 57.16 54.89 59.14

Math 20.62 1.50 1.72 1.82 2.14 2.00 1.64 1.74
Avg. 47.27 27.48 27.74 28.24 30.11 29.58 28.27 30.44

Code (%) ↑
HumanEval 51.20 47.00 47.00 46.30 48.20 48.20 48.20 47.60

MBPP 60.40 58.40 58.10 58.60 58.60 58.40 58.90 60.70
Avg. 55.80 52.70 52.55 52.45 53.40 53.30 53.55 54.15

Domain Dataset BF16 2-bit AWQ Random Wanda Slim-LLM Magnitude Ours

Instruct (%) ↑ MMLU 63.43 63.72 63.65 63.71 63.90 63.68 63.94 63.95

Math (%) ↑
GSM8K 73.92 73.31 73.24 73.01 72.71 72.93 73.16 73.62

Math 20.62 20.44 19.98 20.52 20.64 20.16 20.08 20.48
Avg. 47.27 46.88 46.61 46.77 46.68 46.55 46.62 47.05

Code (%) ↑
HumanEval 51.20 47.00 47.00 48.80 50.60 48.20 50.00 51.80

MBPP 60.40 59.10 60.20 59.60 59.90 59.60 60.20 60.70
Avg. 55.80 53.05 53.60 54.20 55.25 53.90 55.10 56.25

F EFFECT OF SUPERVISED FINE-TUNING IN MODEL-LEVEL ROUTING

To investigate the effect of supervised fine-tuning (SFT) on model-level routing, we evaluate the
domain classification performance of the router (i.e., Qwen1.5-1.8B-Chat) across four domains:
instruction, mathematics, code, and Chinese. As shown in Figure C, the pre-trained router performs
poorly in domain classification without fine-tuning, achieving a Top-1 accuracy of only 5.80% on
C-Eval. However, with SFT, the router’s performance improves significantly, reaching nearly 100%
accuracy across all domains. This demonstrates that supervised fine-tuning greatly enhances the
instruction-following capabilities of the router, thereby improving its routing performance.

MMLU
GSM8K

Math

HumanEval
MBPP

C-Eval
C-MMLU
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Figure C: Effect of supervised fine-tuning (SFT) in model-level routing. We assess the performance
of routing by measuring the accuracy on a 4-domain classification task (instruction, mathematics,
code, and Chinese).

G BERT vs. SMALL LLM FOR MODEL-LEVEL ROUTING

In addition to smaller LLMs, we can also use BERT for domain classification given user queries.
Specifically, we employ DistillBERT (Sanh, 2019) as the backbone and fine-tune it on our collected
dataset (described in Section A) with just the queries and corresponding domain labels. We show the
router accuracy in Table D and the latency comparisons in Table E. From the results, DistillBERT
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with a faster response time performs well across most datasets, except for MMLU where its limited
capacity struggles with complex data. In contrast, our method consistently achieves good performance
across all datasets, demonstrating its effectiveness even in complex scenarios. Moreover, our router’s
inference latency is just 17.60ms for sequence lengths of 128, which is less than 7% of the inference
time for expert models. Therefore, we continue to leverage Qwen1.5-1.8B-Chat for its proven
effectiveness in challenging scenarios.

Table D: Router performance comparisons.

Model MMLU GSM8K Math HumanEval MBPP C-Eval C-MMLU

DistillBERT 73.29 100.00 99.80 96.34 100.00 99.97 100.00
Qwen1.5-1.8B-Chat 99.73 99.92 99.70 100.00 100.00 100.00 99.91

Table E: Router latency (ms) comparisons.

Sequence Length 128 256 512

DistillBERT 3.70 3.80 4.90
Qwen1.5-1.8B-Chat 17.60 18.30 19.10
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