
A Hybrid Quantum-Inspired and Deep Learning

Approach for the Capacitated Vehicle Routing

Problem with Time Windows

Jorin Dornemann1[0000−0003−3518−6039], Salwa Shaglel2[0000−0002−4520−0167],
Martin Kliesch2[0000−0002−8009−0549], and Anusch Taraz1[0000−0003−3646−3683]

1 Institute of Mathematics, Hamburg University of Technology, 21073 Hamburg,
Germany jorin.dornemann@tuhh.de

2 Institute for Quantum Inspired and Quantum Optimization, Hamburg University
of Technology, 21073 Hamburg, Germany

Abstract. This paper introduces a hybrid approach to address the Ca-
pacitated Vehicle Routing Problem with Time Windows by integrating
quadratic unconstrained binary optimization (QUBO) hardware with
deep learning-assisted heuristics. The proposed three-phase heuristic lever-
ages the strengths of QUBO-solving hardware while mitigating its limi-
tations, aiming at o�ering better scalability to larger problem instances.
In the �rst phase, a deep learning-enhanced QUBO formulation is em-
ployed to partition the vertices into clusters. The second phase uses deep
learning-assisted tree searches to generate candidate routes within each
cluster. These candidate routes are combined in the third phase into
a feasible global solution by solving a quadratic unconstrained binary
set partition problem. This framework ensures compliance with capacity
and time window constraints while maintaining computational e�ciency.
Computational results indicate that the hybrid approach is promising to
potentially scale well for larger problem cases while respecting hardware
limitations, o�ering a viable approach for leveraging quantum-inspired
hardware in combination with advanced heuristics for solving complex
combinatorial optimization problems.

Keywords: Vehicle Routing · Deep Learning · Quantum-inspired Com-
puting

1 Introduction

The capacitated vehicle routing problem with time windows (CVRPTW) is an
extension of the travelling salesman problem (TSP), where the goal is to �nd a
set of routes, such that all vertices except for a depot node are visited exactly
once and the capacity and time window constraints are met. The objective is to
�nd routes to minimize the total distance traveled. First introduced by Solomon
[25], the problem has been extensively studied since and has found application
in various practical scenarios. Given a �xed number of vehicles, even �nding a
feasible solution is NP-hard [4]. Therefore, various approaches have been pro-
posed to address the CVRPTW over the years. Recent developments in both



2 J. Dornemann et al.

software and hardware have inspired novel approaches to address this problem.
Advancements in machine learning have provided valuable tools for extracting
essential graph properties in routing problems [27], [13]. Moreover, specialized
hardware is being developed to address combinatorial optimization problems,
including quantum computers. Oftentimes, quantum and quantum-inspired al-
gorithms and devices are designed to solve quadratic unconstrained binary opti-
mization (QUBO) problems. Many combinatorial optimization problems can be
formulated as QUBOs [17], hence, it is increasingly intriguing to explore ways
to utilize specialized hardware for solving combinatorial optimization problems
formulated as QUBOs. However, since these hardware systems can handle only a
limited number of variables so far, it is essential to develop new scalable methods
for integrating this hardware into a solving framework.

In this work, we propose a hybrid approach to approximately solve the
CVRPTW. The proposed 3-phase heuristic combines quadratic unconstrained
binary optimization hardware with a deep learning-assisted heuristic. The goal
is to leverage the strengths of QUBO-solving hardware while ensuring that the
hardware limits are not exceeded. For this purpose, we �rst use a deep learning-
complemented QUBO formulation to cluster the set of vertices into subsets,
generate sets of candidate routes for each cluster using deep learning-assisted
tree searches that are then combined into a complete solution by a quadratic
unconstrained binary set partition problem.

We solve the QUBO problems using Fujitsu's Digital Annealer (DA) [18] in
its third generation (v3). The DA uses classical dedicated hardware with the
purpose to heuristically solve QUBO problems as fast as practically possible.
Ultimately, the goal is to use quantum computers for this task and the DA is
often considered to be an intermediate quantum-inspired solution that allows to
assess some of the potential of quantum computers already today. Technically,
the DAv3 uses an application-speci�c integrated circuit (ASIC) implementing a
Markov Chain Monte Carlo (MCMC) method. This method is then called by a
global tabu search that can handle QUBO instances up to 100,000 bits. A major
advantage of the DA is its massively parallel implementation and an innovative
MCMC sampling technique. In comparison to standard simulated annealing,
its update steps typically have a much smaller rejection rate speeding up the
optimization, and one update step is made within one clock cycle of the ASIC.
The DA also supports parallel tempering, which improves the dynamic properties
of the Monte Carlo method. Moreover, it uses dynamic o�-setting of the objective
function to escape local minima in order to explore the optimization landscape
more comprehensively. This explains why the DA can outperform other known
approaches to solving QUBO problems [15].

2 Related work

For the CVRPTW, there exist only a limited number of approaches that clus-
ter the set of customers while taking into account the time window constraints.
Most methods focus on the spatial characteristics of the customer's features.



A Hybrid Quantum-Inspired and Deep Learning Approach for the CVRPTW 3

The sweep-based heuristic [9], [25] clusters the customers based on their polar
coordinates based on a center of gravity, which in the context of vehicle routing
is the depot. An imaginary ray originating from the depot is swept counter-
clockwise over all vertices. The demand of each swept vertex is accumulated.
Once the accumulated demands reach the capacity for one vehicle, or if includ-
ing the next vertex exceeds the capacity, the current nodes are included in a
cluster. Other spatial approaches include [19], [1] and [5]. Qi et al. [22] use time
geography theory to represent time and space in the same coordination system
de�ning a spatiotemporal distance, which is used to build clusters minimizing
this distance. To our knowledge, the only literature that utilizes machine learn-
ing assistance within a clustering algorithm for the CVRPTW is the one by
Poullet [21]. They develop an optimal classi�cation tree method [2] to predict
the number of vehicles.

The utilization of specialized QUBO hardware for solving vehicle routing
and similar problems is still in its early stages of exploration. Most of these
approaches have a hybrid structure, as the physical limitations of specialized
hardware require dividing the problem into smaller subproblems that can be
handled. Tran et al. [26] propose a hybrid quantum-classical tree search, where
a classical processor maintains a global search tree and enforces constraints on
relaxed sub-problems, and a quantum annealer is applied to obtain strong candi-
date solutions by sampling from the con�guration space of the relaxed problem.
Rie�el et al. [23] investigate the e�ectiveness of a quantum annealer in solving
small instances within families of hard operational planning problems. Feld et al.
[8] follow the Cluster First, Route Second [16] approach to solve the capacitated
vehicle routing problem (CVRP) using D-Waves quantum annealer. In their 2-
Phase heuristic they divide the set of customers into clusters by formulating
this as a QUBO knapsack problem with additional distance minimization. Each
cluster is then mapped to a TSP QUBO formulation and subsequently solved
using the quantum annealer. Irie et al. [12] develop a QUBO formulation for
the CVRP that incorporates constraints with time, state and capacity and con-
duct experiments on D-Waves quantum annealer, but their formulation quickly
exceeds the hardware limits even for smaller instances.

3 Three-Phase Heuristic

Solving the CVRPTW formulated as a QUBO directly using quantum(-inspired)
computing is currently not a feasible option because the number of binary vari-
ables required to represent an instance quickly surpasses the capabilities of ded-
icated hardware like the DA. Therefore, we propose an extended version of the
Cluster First, Route Second method. The three phases are:

1. Split the set of vertices into a number of k clusters by solving a cluster
optimization problem, complemented with edge weights given by a deep
neural network, formulated as a quadratic unconstrained binary optimization
problem on the DA. Repeat this for di�erent values of k to diversify the set
of clusters.



4 J. Dornemann et al.

2. Generate a set of di�erent feasible candidate routes for the CVRPTW on
each of the found clusters by applying a deep learning-assisted tree search
heuristic.

3. Solve a set partition problem (SPP) formulated as a QUBO on the DA to
compose a complete solution by choosing a subset of the set of candidate
routes generated in Step 2 minimizing the total costs.

This approach o�ers the advantage of signi�cantly reducing the size of the QUBO
matrix solved by the DA compared to solving a CVRPTW instance directly on
it. The heuristic applied in step 2 is highly �exible, as it does not attempt
to solve each cluster as a single-route instance but instead �nds the best set
of routes within each cluster and can build di�erent sets of routes for each
cluster in parallel. This �exibility allows us to vary the number of clusters in
step 1 by a parameter λ that we call cluster range, forcing di�erent cluster
assignments and thereby creating a more diverse set of candidate routes for
inclusion in step 3. In this way, we leverage the strengths of the DA, particularly
its ability to handle binary quadratic unconstrained optimization problems with
a manageable number of binary variables and delegate the handling of the hard
capacity and time window constraints to a heuristic for more e�cient processing.

3.1 Problem De�nition

A CVRPTW instance is given as a directed complete graph G = (V ∪ {0} , E)
with n+1 nodes, where node 0 is the special depot node. Additional constraints
are imposed by a demand and time window attached to each node i, given as di
and [ai, bi], respectively, with [a0, b0] representing the planning horizon regarding
the earliest possible departure from and latest possible return to the depot. Each
vehicle has a capacity of Z, which the sum of the demands along the vehicle's
route must not exceed. The provided time window [ai, bi] at each node i ∈ V
represents the time interval in which the service at node i is allowed to start. An
arrival at node i before ai is allowed, the vehicle then has to wait until ai to start
the service. Furthermore, each node i ∈ V requires a speci�c service duration
hi. We assume a homogeneous �eet of vehicles so that the capacity and travel
time are equal for all vehicles. Furthermore, the edge weights cij for each edge
e = (i, j) represent the transit costs from node i to node j and without loss of
generality include the service duration hi of node i. The objective is to minimize
the total distance traveled over all vehicles.

3.2 Graph Convolutional Network

For our approach, we use a Residual Gated Graph Convolutional Neural Network
(GCN) [3], [13], which is adapted for the CVRPTW in [6] by modifying the layers
to account for additional constraints and brie�y described in the following.

The neural network assigns a value to each edge in the graph to predict
which edges are most promising to include in a solution. These associated edge
values can be interpreted as probabilities. In the following, we describe each of
the neural network's layers.



A Hybrid Quantum-Inspired and Deep Learning Approach for the CVRPTW 5

Input Layer The input for the node features is �ve-dimensional. For node i
we have the two-dimensional coordinates xi ∈ [0, 1]2, the time window given as
[ai, bi] and the normalized demand di/Z, where we set d0 = 0 for the depot.
These features are concatenated to the �ve-dimensional input feature vector yi
and are then embedded to an h

2 -dimensional representation, where h denotes the
hidden dimension of our network that represents the number of parameters each
hidden state within the network stores. The depot node gets a separate learned
initial embedding parameter in order to mark the depot node as special for the
network. For that, de�ne ŷ0 ∈ {0, 1}n+1 to be the unit vector with entry one
at the �rst position and zeros otherwise. This is put together as the node input
feature as follows:

αi = A1yi ⊕A2ŷ0, (3.1)

where A1 ∈ Rh
2 ×5, A2 ∈ Rh

2 ×(n+1) are the weight parameters that are learned
during the training procedure and · ⊕ · is the concatenation operator.

For the input edge feature, the edge values cij are embedded as an h
2 -

dimensional feature vector. We use an indicator function δij of an edge which
has the value one for edges connecting nodes i and j, with i ̸= j and i, j not the
depot, and value two for edges connecting nodes with itself. To tag the depot as
a special node, the indicator function δij furthermore has a value of 3 for edges
to and from the depot and a value of 4 for the depot self-loop. Together, the
edge input feature is given as:

βij = A3cij ⊕A4δij , (3.2)

with A3 ∈ Rh
2 ×1 and A4 ∈ Rh

2 ×1as above are weight parameters to be learned.
These h

2 -dimensional edge and node feature representations are then concate-
nated to form the h-dimensional input for the �rst graph convolution layer and
are subsequently passed through all graph convolution layers before producing
our desired output within our classi�er layers.

Graph Convolution Layer In each of the graph convolution layers the model
updates the edge and node embeddings. We leverage the design of the residual
gated graph convolutional network developed in Bresson et al. [3] by adding an
edge feature representation. Let ℓ be the current layer and for node i and edge
(i, j), let xℓ

i be the node features vector and eℓij the edge features vector. We
de�ne the features for layer ℓ+ 1 in the following way:

xℓ+1
i = xℓ

i + ReLU

BN
W ℓ

1x
ℓ
i +

∑
j∈N(i)

ηℓij ⊙W ℓ
2x

ℓ
j

 , (3.3)

eℓ+1
ij = eℓij + ReLU

(
BN

(
W ℓ

3e
ℓ
ij +W ℓ

4x
ℓ
i +W ℓ

5x
ℓ
j

))
, (3.4)

where W ℓ
k ∈ Rh×h for k ∈ [5] again are the weight parameters to learn, with the

notation [n] = {1, . . . , n} for any positive integer n, ReLU being the recti�ed
linear unit, BN stands for batch normalization, N(i) denotes the neighborhood



6 J. Dornemann et al.

of node i, moreover ⊙ denotes the Hadamard product operator and ηℓij being

de�ned as ηℓij =
σ(eℓij)∑

j′∈N(i) σ(e
ℓ
ij′ )+ε

with σ being the sigmoid function and ε a small

value. For the input layer, we set x0
i = αi and e0ij = βij . We implement W ℓ

5 as
a separate parameter to allow the model to distinguish di�erent directions of
edges since in the context of CVRPTW we have directed edges in our solutions.

MLP Classi�er A multi-layer perceptron (MLP), which is a fully connected
feedforward neural network with a number ℓM of hidden layers, is used for gen-
erating the desired output, a �nite measure that represents probabilities over
the edges of our fully connected graph. For each edge embedding eLij of the last
graph convolution layer L, the MLP outputs the probability pij that this edge
is included in the tours of the CVRPTW solution: pij = MLP(eLij). The edge
representations are linked to the ground-truth tour through a softmax output
layer, which allows us to train the model parameters end-to-end by minimizing
the cross-entropy loss via gradient descent.

3.3 Vertex Clustering

In each iteration of step 1, we split the set of vertices into a varying number
of k subsets to vary the assignment of vertices to the clusters and subsequently
obtain a more diverse set of candidate routes in step 2. To achieve this, we bound
k from above by the minimal number of vehicles needed to solve the instance, as
a number of clusters exceeding this bound could potentially exclude the overall
optimal solution to this instance by forcing more routes than necessary. The
bound k̄ is given as the sum over all demands divided by the capacity of a
vehicle. We de�ne our decision variables xvm to be

xvm =

{
1 if vertex v is assigned to cluster m,

0 otherwise.
(3.5)

With this notation, we can formulate the clustering problem as a quadratic
integer program as follows:

min

k∑
m=1

n∑
i=1

n∑
j=1

cijximxjm s.t. (3.6)

k∑
m=1

xim = 1 ∀i ∈ V,

xim ∈ {0, 1} ∀i ∈ V,m ∈ [k],

where we minimize the sum of costs between all vertex pairs in each cluster under
the constraint that each vertex belongs to exactly one cluster. The equivalent



A Hybrid Quantum-Inspired and Deep Learning Approach for the CVRPTW 7

QUBO formulation is given as:

min

k∑
m=1

n∑
i=1

n∑
j=1

cijximxjm + P

 n∑
i=1

(
k∑

m=1

xim − 1

)2
 , (3.7)

where the constraint is added as a penalty term with a penalty factor P ≥ 0.
This QUBO problem is subsequently solved using the DA [18]. In contrast to
other formulations, we do not include inequality constraints ensuring that the
sum of the demands of each cluster does not exceed the capacity of the vehicles
as well as taking into account the time windows within the clusters, as we do
not solve each cluster with one route. This aligns with the strengths of the DA,
as inequalities and integer variables cause di�culties.

By augmenting the objective function with additional terms, we can incor-
porate additional information gained by the deep neural network (cf. Section
3.2) into the cluster decision process instead of relying solely on the costs cij .
For this purpose, let pij be the probability to be included in the correct solution
for each edge (i, j), assigned by the neural network. Note that this associated
probability value is directional, i.e., pij ̸= pji. For the clustering procedure,
however, the directions are not relevant and would even distort the result, as
a large probability for one direction does not mean that the probability for
the other direction is also large. We therefore take the maximum value of the
two directions: pij = max {pij , pji} . A shortcoming of using these probabilities
straightforwardly for clustering is that it may overlook important relationships
between nodes. If we have edges (v1, v2) and (v2, v3) with high probabilities,
but the neural network assigns a low probability to the edge (v1, v3) because it
recognizes the bene�t of visiting v2 between v1 and v3, we want to incorporate
the insight that v1 and v3 should be assigned to the same cluster into the opti-
mization problem. We do this by replacing the probabilities pij in (3.9) by path

probabilities, which we de�ne as:

ppathij := max

 ∏
(v,w)∈P

pvw : P is a path from i to j

 . (3.8)

Then the clustering problem can be formulated as follows:

min αdist

k∑
m=1

n∑
i=1

n∑
j=1

cijximxjm (3.9)

+ αprob

k∑
m=1

n∑
i=1

n∑
j=i+1

(1− ppathij )ximxjm s.t.

k∑
m=1

xim = 1 ∀i ∈ V,

xim ∈ {0, 1} ∀i ∈ V,m ∈ [k],



8 J. Dornemann et al.

where αdist and αprob denote the tuning parameters assigned to each part of the
objective function to weigh the di�erent arguments.

Example 1. Figure 1 shows an example solution of the clustering problem (3.9)
for an instance with 50 nodes. Figure 1(a) shows the path probability heatmap,
where only edges with an associated value greater than 0.25 are displayed, where
a darker red indicates a higher value. Figure 1(b)-(d) show the clusters built by
solving (3.9), where each cluster is depicted as a di�erent node color, for the
di�erent values of k = 3, 4, 5.

(a) Heatmap (b) k = 5 (c) k = 4 (d) k = 3

Fig. 1: Path probability heatmap and solutions for clustering problem (3.7) for
di�erent numbers k of clusters

3.4 Candidate Route Generation

Each cluster Ci, i ∈ [k], is solved as a CVRPTW instance. Note that a CVRPTW
solution can consist of several routes. Since the purpose of this step is to generate
candidate routes to be included in the SPP in step 3, which then selects routes
from the set of generated candidate routes in step 2 to form a feasible solution
to the complete instance, it is bene�cial to not only create one set of candidate
routes per cluster.

For this, we adapt a deep neural network-assisted beam search [6] that utilizes
the GCN presented in Section 3.2. The beam search is designed to build a number
of solutions in parallel. In [6] it is shown that this heuristic works quite well for
smaller instances. In the context of our 3-phase heuristic we use the beam search
to generate a set candidate routes by considering all individual routes of all built
solutions by the beam search, instead of choosing one solution built by the beam
search and disregarding all others, as done in [6]. Furthermore, by applying the
beam search only to the smaller clusters generated in step (1), we mitigate the
inaccuracies of the beam search for larger instances, as shown in [6].

A beam search with beam width b is a limited-width breadth-�rst search, such
that b sets of routes are built simultaneously. It builds a search tree iteratively,
where each tree node represents a partially constructed solution. This heuristic
uses the values pij associated with each edge e = (i, j) of the graph, as described
in Section 3.2, to build solutions that are most promising according to the values
pij .



A Hybrid Quantum-Inspired and Deep Learning Approach for the CVRPTW 9

Starting from the root node that holds the partial solution [0], i.e., being at
the depot, in each layer of the beam search tree, only the bmost promising partial
solutions with respect to a scoring policy S are further explored. The descendants
of each search tree node are those that add a vertex to the partial solution of its
parent that is compliant with the side constraints of the CVRPTW. The scoring
policy S of a (partially) built solution g = [v1 . . . , vm] is given as

S(g) =

m−1∏
i=1

pvivi+1 ,

where a partial solution g can be interpreted as an array starting at the depot
node 0 and then following a trail in the graph where the only node to be included
more than once in g is the depot node.

Let ñ be the number of vertices in one of the clusters including the depot
for which we want to build a set of solutions by applying the beam search. Let
Sℓ ∈ Rb×ñ be the scoring matrix at the ℓ−th iteration of the beam search,
which is subsequently calculated in each iteration of the beam search, and gb′ =
[v1, . . . , vℓ] be one of the b partially built solutions after ℓ iterations. The w−th
entry in the b′−th row of the scoring matrix Sℓ+1 then re�ects the score if the
partial solution gb′ is continued by adding the vertex w. That is, Sℓ+1 is given as
the policy score S(gb′), multiplied by the probability given by the neural network
of getting from vℓ to w in the next step for all nodes w ∈ [ñ]:

Sℓ+1
b′w = S(gb′) · pvℓw.

Then, the invalid expansions, including the already visited nodes, are ex-
cluded within the scoring matrix Sℓ+1 by masking the values that correspond to
infeasible continuations of the partial solutions to be zero. From the b · ñ values
in the masked scoring matrix the b highest scores are chosen, and the b partial
solutions represented by these b search tree nodes are continued while the other
are discarded. The beam search stops when b complete solutions are built.

3.5 Set Partition Problem

As described in [4], the CVRPTW can be formulated as a set partition problem
(SPP), which we will de�ne in the following. The SPP is the basis of the currently
best exact method for the CVRPTW, the branch-cut-and-price algorithm [4]. It
uses the SPP as the master problem, as the solution of the linear relaxations of
the SPP provides better lower bounds than, for example, the linear relaxation
of the mixed integer linear program (MILP) formulation of the CVRPTW.

For this purpose, let R be the set of all feasible routes on subsets of vertices.
For r ∈ R denote with cr the cost of route r, let δvr be a binary coe�cient that
is equal to one if and only if vertex v ∈ V is in route r. De�ne the decision
variable yr to be

yr =

{
1 if route r is used in the solution,

0 otherwise.
(3.10)



10 J. Dornemann et al.

Then the set partition problem can be formulated as an integer program

min
∑
r∈R

cryr s.t. (3.11)∑
r∈R

δvryr = 1, v ∈ V

yr ∈ {0, 1} ∀r ∈ R,

where we minimize the costs of the chosen subsets of routes under the constraint
that each vertex appears in exactly one route. For a given solution y of this
problem we can link together all routes indicated by y to obtain a feasible solution
to the instance with respect to the side constraints such that every node is visited
and every route starts and ends at the depot. This integer program translates
to the following QUBO formulation:

min
∑
r∈R

cryr + P

∑
v∈V

(∑
r∈R

δvryr − 1

)2
 , (3.12)

with P being a penalty factor. This QUBO problem is then solved by the DA.
With R being the set of all feasible routes, this corresponds to the optimal so-
lution of the CVRPTW. But in general, �nding the optimal solution for this
problem is only practically possible for small instances if all feasible routes are
included in R, as the number of routes grows exponentially fast. For our ap-
proach, we do not choose R as the set of all possible routes but only include
the subset of routes generated as described in Section 3.4 in the consideration,
such that the number of routes included in the SPP is easily controllable via the
beam width b.

4 Computational Experiments

This section evaluates the overall performance of our approach by comparing
its results to those of other methods, including state-of-the-art solutions for the
CVRPTW.

All models are implemented in Python 3.10 and run under Windows 10. The
neural network architecture is implemented using PyTorch version 2.0.0 to use
GPU computation with Cuda version 11.8. The network consists of ℓGCN = 30
hidden layers and ℓM = 3 layers in the MLP. We use a hidden dimension h = 300
in each of the layers. For each problem size, an individual neural network is
trained on 1 million randomly sampled instances based on the distribution given
in the R201 instance of [25], which consists of randomly generated geographical
data, a long scheduling horizon and short to medium-sized time windows allow-
ing only a few customers per route. The instances were solved to optimality by
Gurobi [10] for 20 node instances, whereas the instances with 50 and 100 cus-
tomers, respectively, were solved using one run of LKH [11] and are therefore not
necessarily optimal. We apply a supervised learning procedure, where, given as



A Hybrid Quantum-Inspired and Deep Learning Approach for the CVRPTW 11

input a graph with the additional node features time windows and demands, the
model is trained to output a probability matrix by minimizing the cross-entropy
loss via gradient descent with respect to the adjacency matrix corresponding to
the target solution. We utilize the Adam optimizer [14] along with a gradual de-
crease in the learning rate for smoother convergence, starting at a rate of 10−3.
We train the nets using a batch size of 24 for 1500 epochs with 500 randomly
chosen batches and select the point of training with the lowest validation loss.
The training procedure is executed on machines with two CPUs of type Intel
Xeon E5-2680v3 @ 2,50GHz with 12 Cores and four NVidia Tesla K80 GPUs
with 12GB RAM.

The path probabilities ppathij are calculated by applying the Floyd-Warshall
algorithm to the graph (G,ω) with the weight function ω : E 7→ R, ω((i, j)) =
− log(pij) to �nd shortest paths. With the weight function ω de�ned like this, a
shortest path in (G,ω) corresponds to maximizing (3.8).

To �nd the best con�guration of weights αdist and αprob in the objective
function (3.9), each combination of weights in {0.0, 0.1, . . . , 0.9, 1.0} summing
up to one is tested for combinations of the distance c, the edge probabili-
ties p given by the neural network and the path probabilities ppath. The best
weighting of the objective function given by the manual experiments is given
as αdist = 0.2, αprob = 0.8 using the distance and path probabilities. The accu-
racy of determining clusters based solely on distance di�erences is lower because
the time window constraints in CVRPTW signi�cantly impact route feasibility,
making spatial arguments less relevant.

To set the beam width as well as the time limit for calculations using the DA,
we manually conduct experiments on small sets of instances for all problem sizes
to test di�erent impacts. First, given the clusters that correspond to the optimal
routes in the best solution, we test the impact of beam width and time limit
for the SPP optimization problem. Second, given the clusters found by solving
(3.7) with the DA and the routes built by the beam search for each cluster,
we include the routes of the correct solution to �nd the average calculation
time it takes the DA to �nd this solution when solving the SPP (3.12). Based
on these experiments, for the beam width, we choose b = 50, 150 and 300 for
n = 20, 50, 100, respectively. For n = 20, we choose a cluster range λ = 2, for
the other problem sizes λ = 3. Even one to two seconds is enough for the DA
to solve the SPP (3.12) to optimality for 20 node instances. To account for the
increase of variables when solving (3.7) for multiple values of k, we choose a time
limit of 5, 15 and 50 seconds for n = 20, 50, 100, respectively, for the DA to solve
the SPP.

In Table 1, we compare our approach to the commercial exact MILP solver
Gurobi version 10.0.0 [10] as well as to the best known exact solution method for
vehicle routing problems, branch-cut-and-price (BCP) algorithm [24], [7]. We fur-
ther compare results to the heuristic LKH3 [11] and Google's OR-Tools (GORT)
version 9.5.2237 library [20], both of which frequently serve as heuristic baselines
in related literature. The comparison is done by calculating the percentage gap

of the cost of the found solution to the cost of the best known solution for each



12 J. Dornemann et al.

instance. The runtime for our approach is measured as the time for the execution
of all three steps without the communication and idle time with the DA. The
values are averages over 100 instances for each problem size n.

For GORT, one can choose di�erent con�gurations regarding the underlying
local search heuristic. We chose guided local search (GLS) to be best suited for
our needs. As a time limit is needed for the GLS, we have chosen time limits
of 10, 100, and 300 seconds for the di�erent problem sizes. These time limits
are selected to align with the runtime of our method, which allows for a fair
comparison between the approaches. Gurobi is applied to the 2-index Integer
Linear Program formulation of the CVRPTW and is given a time limit of 10,
100 and 300 seconds per instance for the di�erent problem sizes, respectively,
to allow for a comparison with similar running times. We evaluate the baseline
models on machines with two Intel Xeon E5-2680v3 @ 2.50GHz CPUs with 12
cores and 128GB RAM available at the High Performance Computing Cluster of
Hamburg University of Technology, while the execution of our 3-phase heuristic
is done on a local machine with an Intel Core i7-1165G7 CPU @ 2.80GHz and
16GB RAM running on Windows 11. The reason for this is that communication
with Fujitsu's DA is limited to selected local machines, which requires the entire
heuristic, including the beam search, to be run on this machine. This in turn
a�ects the runtime of our approach and complicates the comparison with the
other approaches in terms of execution time. Therefore, we mark our time in
italics in Table 1 and also report results for LKH3, GORT-GLS and BCP on our
local machine used for the 3-phase heuristic to provide some more comparability
regarding the computational time. The evaluation of our approach as well as the
baseline models is done on datasets containing 100 randomly generated instances
following the same data distribution as the training data.

Table 1: Mean cost, gap and time (sec.) per instance for di�erent problem sizes

Model
n = 20 n = 50 n = 100

cost gap (%) time cost gap (%) time cost gap (%) time

3-Phase Heuristic 5.95 0.00 10.18 10.22 0.30 80.08 15.10 1.45 153.53

Gurobi 5.95 0.00 0.60 10.27 1.63 51.61 17.92 18.47 300.00
BCP 5.95 0.00 1.07 10.10 0.00 10.68 14.89 0.00 119.87

GORT-GLS 5.95 0.00 10.00 10.13 0.33 100.00 15.12 1.56 300.00
LKH3 5.95 0.00 6.20 10.13 0.30 11.74 15.08 1.28 19.69

GORT-GLS local 5.95 0.00 20.00 10.16 0.58 100.00 15.68 3.99 300.00
LKH3 local 5.95 0.00 10.41 10.13 0.30 23.75 15.08 1.28 40.96
BCP local 5.95 0.00 3.31 10.10 0.00 19.30 14.89 0.00 227.17

Our 3-phase heuristic demonstrates optimal performance for small instance
sizes. For instances with 50 nodes, the heuristic yields results comparable to
GORT-GLS and LKH executed on a high-performance computer, while out-
performing GORT-GLS on the same local machine in terms of solution quality
given the same computation time. For medium-sized instances, Gurobi already



A Hybrid Quantum-Inspired and Deep Learning Approach for the CVRPTW 13

cannot solve most of the instances to optimality within the given time limit.
The BCP method outperforms all heuristics for medium instances. However,
it shows a larger relative increase in running time for large instances, whereas
LKH and our heuristic exhibit much slower scaling in computation time. For
n = 100 nodes, our heuristic surpasses GORT-GLS in both running time and
quality on both local and high-performance setups, albeit producing slightly in-
ferior results compared to the LKH heuristic. Gurobi is generally unable to solve
large instances within the time limit and has a signi�cantly worse optimality gap
compared to the heuristics. While BCP continues to produce the best results,
the computation time of our heuristic scales noticeably slower with respect to
the increase of the input size, which shows the potential of our approach to o�er
good scalability for larger instances.

5 Discussion

With our proposed 3-phase heuristic, we provide a proof of concept of how to
use specialized quantum-inspired computing hardware such as Fujitsu's Digital
Annealer in combination with deep learning to solve combinatorial optimization
problems with constraints that are di�cult to solve directly with the current
state of quantum(-inspired) computing hardware. Computational results show
that this approach is promising, as it utilizes the strengths of quantum(-inspired)
computing to potentially provide better scalability than state-of-the-art meth-
ods such as GORT and BCP while yielding near-optimal solutions for larger
instances.

Future research could focus on improving our approach in various ways. First,
optimizing the computation time could involve implementing the heuristic more
e�ciently in C++ instead of using Python. However, optimizing the calculation
time on the DA itself remains challenging, as no convenient termination criterion
can be set for the DA. Secondly, the structure of our approach allows each phase
to be approached using di�erent methods. For instance, since the aim of this
approach was to test to what extent the DA can be involved in solving the
CVRPTW, no alternatives for �nding the clusters in step 1 were tested. Future
research could experiment to see how other cluster algorithms perform in this
context as well as employing di�erent hardware and software for solving QUBOs.

Our work demonstrates the potential of leveraging quantum-inspired com-
puting in conjunction with deep learning for complex combinatorial optimization
tasks. As quantum and quantum-inspired technologies continue to evolve, the in-
tegration of diverse computational techniques and hardware has the potential
to provide even more e�cient and versatile solutions for complex combinatorial
optimization problems.

Disclosure of Interests. Shaglel and Kliesch are co-�nanced by the ERDF of the

European Union and by Fonds of the Hamburg Ministry of Science, Research, Equalities

and Districts (BWFGB). Kliesch is also funded by the Fujitsu Germany GmbH as part

of the endowed professorship �Quantum Inspired and Quantum Optimization.�



14 J. Dornemann et al.

References

1. Bent, R., Van Hentenryck, P.: Spatial, temporal, and hybrid decompositions
for large-scale vehicle routing with time windows. In: Cohen, D. (ed.) Prin-
ciples and Practice of Constraint Programming � CP 2010. Lecture Notes In
Computer Science, vol. 6308, pp. 99�113 (2010). https://doi.org/10.1007/

978-3-642-15396-9_11

2. Bertsimas, D., Dunn, J.: Optimal classi�cation trees. Machine Learning 106(7),
1039�1082 (2017). https://doi.org/10.1007/s10994-017-5633-9

3. Bresson, X., Laurent, T.: Residual gated graph convnets. Preprint
arXiv:1711.07553 (2017). https://doi.org/10.48550/arXiv.1711.07553

4. Desaulniers, G., Madsen, O.B., Ropke, S.: The vehicle routing problem with
time windows. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Meth-
ods, and Applications, vol. 2, pp. 119�159 (2014). https://doi.org/10.1137/1.
9781611973594.ch5

5. Dondo, R., Cerdá, J.: A cluster-based optimization approach for the multi-depot
heterogeneous �eet vehicle routing problem with time windows. European Journal
of Operational Research 176(3), 1478�1507 (2007). https://doi.org/https://
doi.org/10.1016/j.ejor.2004.07.077

6. Dornemann, J.: Solving the capacitated vehicle routing problem with time win-
dows via graph convolutional network assisted tree search and quantum-inspired
computing. Frontiers in Applied Mathematics and Statistics volume 9 (2023).
https://doi.org/10.3389/fams.2023.1155356

7. Errami, N., Queiroga, E., Sadykov, R., Uchoa, E.: VrpSolverEasy: A python library
for the exact solution of a rich vehicle routing problem. INFORMS Journal on
Computing (2023). https://doi.org/10.1287/ijoc.2023.0103

8. Feld, S., Roch, C., Gabor, T., Seidel, C., Neukart, F., Galter, I., Mauerer, W.,
Linnho�-Popien, C.: A hybrid solution method for the capacitated vehicle routing
problem using a quantum annealer. Frontiers in ICT volume 6 (2019). https:
//doi.org/10.3389/fict.2019.00013

9. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem.
Operations Research 22(2), 340�349 (1974). https://doi.org/10.1287/opre.22.
2.340

10. Gurobi Optimization, L.: Gurobi optimizer reference manual (2022), https://www.
gurobi.com

11. Helsgaun, K.: An extension of the lin-kernighan-helsgaun tsp solver for con-
strained traveling salesman and vehicle routing problems: Technical report.
Roskilde Universitet (2017), http://www.akira.ruc.dk/~keld/research/LKH-3/
LKH-3_REPORT.pdf

12. Irie, H., Wongpaisarnsin, G., Terabe, M., Miki, A., Taguchi, S.: Quantum an-
nealing of vehicle routing problem with time, state and capacity. In: Feld, Sebas-
tianand Linnho�-Popien, C. (ed.) Quantum Technology and Optimization Prob-
lems. QTOP 2019, Lecture Notes in Computer Science, vol. 11413, pp. 145�156
(2019). https://doi.org/10.48550/arXiv.1903.06322

13. Joshi, C.K., Laurent, T., Bresson, X.: An e�cient graph convolutional net-
work technique for the travelling salesman problem. Preprint arXiv:1906.01227
(2019). https://doi.org/10.48550/arXiv.1906.01227

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. Preprint
arXiv:1412.6980v9 (2014). https://doi.org/10.48550/arXiv.1412.6980

https://doi.org/10.1007/978-3-642-15396-9_11
https://doi.org/10.1007/978-3-642-15396-9_11
https://doi.org/10.1007/978-3-642-15396-9_11
https://doi.org/10.1007/978-3-642-15396-9_11
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.48550/arXiv.1711.07553
https://doi.org/10.48550/arXiv.1711.07553
https://doi.org/10.1137/1.9781611973594.ch5
https://doi.org/10.1137/1.9781611973594.ch5
https://doi.org/10.1137/1.9781611973594.ch5
https://doi.org/10.1137/1.9781611973594.ch5
https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.077
https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.077
https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.077
https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.077
https://doi.org/10.3389/fams.2023.1155356
https://doi.org/10.3389/fams.2023.1155356
https://doi.org/10.1287/ijoc.2023.0103
https://doi.org/10.1287/ijoc.2023.0103
https://doi.org/10.3389/fict.2019.00013
https://doi.org/10.3389/fict.2019.00013
https://doi.org/10.3389/fict.2019.00013
https://doi.org/10.3389/fict.2019.00013
https://doi.org/10.1287/opre.22.2.340
https://doi.org/10.1287/opre.22.2.340
https://doi.org/10.1287/opre.22.2.340
https://doi.org/10.1287/opre.22.2.340
https://www.gurobi.com
https://www.gurobi.com
http://www.akira.ruc.dk/~keld/research/LKH-3/LKH-3_REPORT.pdf
http://www.akira.ruc.dk/~keld/research/LKH-3/LKH-3_REPORT.pdf
https://doi.org/10.48550/arXiv.1903.06322
https://doi.org/10.48550/arXiv.1903.06322
https://doi.org/10.48550/arXiv.1906.01227
https://doi.org/10.48550/arXiv.1906.01227
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980


A Hybrid Quantum-Inspired and Deep Learning Approach for the CVRPTW 15

15. Kowalsky, M., Albash, T., Hen, I., Lidar, D.A.: 3-regular three-XORSAT planted
solutions benchmark of classical and quantum heuristic optimizers. Quantum Sci.
Technol. 7(2), 025008 (Apr 2022). https://doi.org/10.1088/2058-9565/ac4d1b

16. Laporte, G., Semet, F.: Classical heuristics for the capacitated vrp. In: Toth, P.,
Vigo, D. (eds.) The Vehicle Routing Problem, pp. 109�128 (2002). https://doi.
org/10.1137/1.9780898718515.ch5

17. Lucas, A.: Ising formulations of many np problems. Frontiers in Physics 2 (2014).
https://doi.org/10.3389/fphy.2014.00005

18. Matsubara, S., Takatsu, M., Miyazawa, T., Shibasaki, T., Watanabe, Y., Takemoto,
K., Tamura, H.: Digital annealer for high-speed solving of combinatorial optimiza-
tion problems and its applications. In: Yang, H., Cheng, K.T.T. (eds.) Proceedings
of the 25th Asia and South Paci�c Design Automation Conference. ASPDAC 2020.
p. 667�672 (2020). https://doi.org/10.1109/ASP-DAC47756.2020.9045100

19. Ouyang, Y.: Design of vehicle routing zones for large-scale distribution systems.
Transportation Research Part B: Methodological 41(10), 1079�1093 (2007). https:
//doi.org/https://doi.org/10.1016/j.trb.2007.04.010

20. Perron, L., Furnon, V.: Or-tools routing library (2022), https://developers.

google.com/optimization/

21. Poullet, J.: Leveraging machine learning to solve the vehicle routing problem with
time windows. Master Thesis, Massachusetts Institute of Technology, Sloan School
of Management, Operations Research Center (2020), https://hdl.handle.net/
1721.1/127285

22. Qi, M., Lin, W.H., Li, N., Miao, L.: A spatiotemporal partitioning approach for
large-scale vehicle routing problems with time windows. Transportation Research
Part E: Logistics and Transportation Review 48(1), 248�257 (2012). https://doi.
org/10.1016/j.tre.2011.07.001

23. Rie�el, E.G., Venturelli, D., O'Gorman, B., Do, M.B., Prystay, E.M., Smelyan-
skiy, V.N.: A case study in programming a quantum annealer for hard opera-
tional planning problems. Quantum Information Processing 14(1), 1�36 (2014).
https://doi.org/10.1007/s11128-014-0892-x

24. Sadykov, R., Uchoa, E., Pessoa, A.: A bucket graph�based labeling algorithm with
application to vehicle routing. Transportation Science 55(1), 4�28 (2021). https:
//doi.org/10.1287/trsc.2020.0985

25. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254�265 (1987). https://
doi.org/10.1287/opre.35.2.254

26. Tran, T., Do, M., Rie�el, E., Frank, J., Wang, Z., O'Gorman, B., Venturelli, D.,
Beck, J.: A hybrid quantum-classical approach to solving scheduling problems. In:
Baier, J.A., Botea, A. (eds.) Proceedings of the 9th International Symposium on
Combinatorial Search. vol. 7, pp. 98�106 (2021). https://doi.org/10.1609/socs.
v7i1.18390

27. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems. vol. 28, pp. 2692�2700 (2015), https://proceedings.neurips.
cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

https://doi.org/10.1088/2058-9565/ac4d1b
https://doi.org/10.1088/2058-9565/ac4d1b
https://doi.org/10.1137/1.9780898718515.ch5
https://doi.org/10.1137/1.9780898718515.ch5
https://doi.org/10.1137/1.9780898718515.ch5
https://doi.org/10.1137/1.9780898718515.ch5
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1109/ASP-DAC47756.2020.9045100
https://doi.org/10.1109/ASP-DAC47756.2020.9045100
https://doi.org/https://doi.org/10.1016/j.trb.2007.04.010
https://doi.org/https://doi.org/10.1016/j.trb.2007.04.010
https://doi.org/https://doi.org/10.1016/j.trb.2007.04.010
https://doi.org/https://doi.org/10.1016/j.trb.2007.04.010
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://hdl.handle.net/1721.1/127285
https://hdl.handle.net/1721.1/127285
https://doi.org/10.1016/j.tre.2011.07.001
https://doi.org/10.1016/j.tre.2011.07.001
https://doi.org/10.1016/j.tre.2011.07.001
https://doi.org/10.1016/j.tre.2011.07.001
https://doi.org/10.1007/s11128-014-0892-x
https://doi.org/10.1007/s11128-014-0892-x
https://doi.org/10.1287/trsc.2020.0985
https://doi.org/10.1287/trsc.2020.0985
https://doi.org/10.1287/trsc.2020.0985
https://doi.org/10.1287/trsc.2020.0985
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1609/socs.v7i1.18390
https://doi.org/10.1609/socs.v7i1.18390
https://doi.org/10.1609/socs.v7i1.18390
https://doi.org/10.1609/socs.v7i1.18390
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

	A Hybrid Quantum-Inspired and Deep Learning Approach for the Capacitated Vehicle Routing Problem with Time Windows

