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Abstract

Estimating treatment effects from observational data is often subject to a covariate shift
problem incurred by selection bias. Recent research has sought to mitigate this problem by
leveraging representation balancing methods that aim to extract balancing patterns from
observational data and utilize them for outcome prediction. The underlying theoretical
rationale is that minimizing the unobserved counterfactual error can be achieved through
two principles: (I) reducing the risk associated with predicting factual outcomes and (II)
mitigating the distributional discrepancy between the treated and controlled samples. How-
ever, an inherent trade-off between the two principles can lead to a potential over-balancing
issue, resulting in the loss of valuable information for factual outcome predictions and,
consequently, deteriorating treatment effect estimations. To overcome this challenge, we
propose a novel representation balancing model, DIGNet, for treatment effect estimation.
DIGNet incorporates two key components, PDIG and PPBR, which effectively mitigate the
trade-off problem by improving one aforementioned principle without sacrificing the other.
Specifically, PDIG captures more effective balancing patterns (Principle II) without affect-
ing factual outcome predictions (Principle I), while PPBR enhances factual outcome pre-
diction (Principle I) without affecting the learning of balancing patterns (Principle II). Our
comprehensive ablation studies confirm the effectiveness of PDIG and PPBR in improving
treatment effect estimation, and experimental results on benchmark datasets demonstrate
the superior performance of our DIGNet model compared to baseline models.

1 Introduction

In the context of the ubiquity of personalized decision-making, causal inference has sparked a surge of
research exploring causal machine learning in many disciplines, including economics and statistics (Wager &
Athey, 2018; Athey & Wager, 2019; Farrell, 2015; Chernozhukov et al., 2018; Huang et al., 2021), healthcare
(Qian et al., 2021; Bica et al., 2021a;b), and commercial applications (Guo et al., 2020b;c; Chu et al., 2021).
The core of causal inference is to estimate treatment effects, which is closely related to the factual outcomes
(observed outcomes) and counterfactual outcomes. The concept of the counterfactual outcome is closely
linked to a fundamental hypothetical question: What would the outcome be if an alternative treatment
were received? Answering this question is challenging because counterfactual outcomes are unobservable
in reality, making it impossible to directly access ground-truth treatment effects from observational data.
Consequently, an increasing amount of recent research has focused on developing innovative machine learning
models that aim to enhance the estimation of counterfactual outcomes to obtain more accurate treatment
effect estimates.

The major challenge of estimating counterfactual outcomes lies in the covariate shift problem incurred by
selection bias inherent in observational data (Guo et al., 2020a; Zhang et al., 2020; Yao et al., 2021). Selection
bias refers to the non-random treatment assignment, where the decision of whether to receive treatment (such
as whether to administer vaccination) is typically influenced by covariates (such as age) that also impact
the outcome (such as infection rate) (Huang et al., 2022b). Usually, individuals who received treatment are
referred to as treated samples or treatment samples, while those who did not receive treatment are referred to
as controlled samples or control samples. The probability of one receiving treatment is commonly referred to
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as the propensity score, and the differences in propensity scores within the population can naturally give rise
to the covariate shift problem, i.e., the distribution of covariates in the treated group significantly differs from
that in the control group. This covariate shift issue compounds the difficulty in estimating counterfactual
outcomes from observational data (Yao et al., 2018; Hassanpour & Greiner, 2019a).

To alleviate the covariate shift problem, recent advancements in representation balancing research have
explored the representation learning model, such as CounterFactual Regression Network (CFRNet) (Shalit
et al., 2017), to estimate individual treatment effects (ITEs). These representation balancing models aim
to extract balancing patterns from observational data and utilize these patterns to predict outcomes. The
corresponding objective function is typically concerned with minimizing the empirical risk of factual outcomes
while concurrently minimizing the distributional distance between the treatment and control groups in the
representation space (Shalit et al., 2017; Johansson et al., 2022). The underlying theoretical logic behind these
studies is that minimizing counterfactual error can be achieved by two principles in the representation space:
(Principle I) minimizing the risk associated with predicting factual outcomes, and (Principle
II) reducing the distributional discrepancy between the treated and controlled samples. The
theoretical foundation and the classic CFRNet structure proposed in Shalit et al. (2017) have inspired many
subsequent studies on representation balancing methods for treatment effect estimation, including Yao et al.
(2018); Shi et al. (2019); Zhang et al. (2020); Hassanpour & Greiner (2019a); Assaad et al. (2021); Huang
et al. (2022a).

While the representation balancing framework provides a powerful tool to tackle the covariate shift issue,
models that rely on the classic CFRNet structure still encounters a critical hurdle: Enforcing models to
learn merely balancing patterns can undermine the predictive power of the outcome function. This problem
is referred to as the over-balancing issue due to the trade-off between Principle I and Principle II, and it may
inadvertently harm the treatment effect estimation (Zhang et al., 2020; Assaad et al., 2021; Huang et al.,
2022a). To better understand this phenomenon, we present a motivating example below.

Motivating Example. Consider two individuals who are identical in every aspect except for their age. One
person is older and is designated as the treatment (T) group, while the other person is younger and serves as
the control (C) group. Age is used as a covariate to distinguish between T and C. If it is known that the older
person is more susceptible to a certain disease, the age information (covariate) can be used to predict the
likelihood of one developing the disease (outcome). However, suppose the age information of each individual
is mapped to some representations such that the representations of T and C are highly-balanced or even
identical. In that case, it may be difficult to differentiate between T and C based on these representations.
Consequently, these over-balanced representations may lose information to accurately predict the likelihood
of each individual developing the disease.

Classic representation balancing models (Figure 1(a)) may encounter a potential over-balancing issue due to
the inherent trade-off between Principle I and Principle II, because the learned balancing patterns ΦE also
serve as the outcome predictors. Once the learned patterns are over-balancing, leading to the loss of outcome-
related information, the treatment effect estimation tends to deteriorate. This motivates us to ponder an
important question: considering the inherent trade-off between the two principles, is it possible to explore
a scheme that enhances one principle without compromising the other? More specifically, can we
explore improving treatment effect estimation through the following two paths: (Path I) learning more
balanced patterns without affecting factual outcome prediction and (Path II) enhancing factual
outcome prediction without affecting the learning of balancing patterns?

In this paper, we propose a novel representation balancing model, DIGNet (Section 4.2.2), which is a neural
Network that incorporates Decomposed patterns with Individual propensity confusion and Group distance
minimization. The term of decomposed patterns denotes distinct components disentangled from some specific
representations in DIGNet (Section 4.2). The individual propensity confusion aspect of DIGNet aims to
learn representations that are difficult to utilize for characterizing the propensity of each individual being
treated or controlled (Section 4.1.2), and the corresponding theoretical foundation is based on our derived
H-divergence guided counterfactual and ITE error bounds (Section 3.2). The group distance minimization
aspect of DIGNet focuses on learning representations that minimize the distance between the treated and
controlled groups (Section 4.1.1), and the corresponding theoretical foundation is supported by previous
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Figure 1: (a): The classic model (e.g., GNet in Section 4.1.1 and INet in Section 4.1.2) maps the original data
D into representations ΦE to achieve representation balancing. The balanced representations are referred
to as balancing patterns. These balancing patterns are also used for outcome prediction. (b): The PDIG
(Section 4.2.1) is illustrated as the yellow part, where balancing patterns are decomposed into two distinct
components, ΦG and ΦI . ΦG serves for group distance minimization (Section 4.1.1) and ΦI serves for
individual propensity confusion (Section 4.1.2). The balancing patterns ΦG and ΦI are concatenated for
predicting outcomes. (c): The PPBR (Section 4.2.1) is represented by the yellow section, where ΦE is used
for feature extraction and ΦG is used for representation balancing. Here representations are decomposed
into pre-balancing patterns ΦE and balancing patterns ΦG. ΦE and ΦG are concatenated for predicting
outcomes. (d): The proposed model DIGNet (Section 4.2.2) integrates both PDIG and PPBR. Specifically,
DIGNet decomposes balancing patterns into two distinct components, ΦG and ΦI . The outcome predictors
are further formed by concatenating ΦG, ΦI , and pre-balancing patterns ΦE .

work (Shalit et al., 2017) on Wasserstein distance guided counterfactual and ITE error bounds (Section 3.1).
To illustrate and explain these introduced concepts, we provide Figure 1 which visually depicts the proposed
components and their relationships.

Contributions. Our main contributions are summarized as follows:

1. We derive theoretical upper bounds for counterfactual error and ITE error based on H-divergence
(Section 3.2). In particular, this theoretical foundation highlights the important role of propensity
score for representation balancing models, connecting the representation balancing with the concept
of individual propensity confusion.

2. We suggest learning decomposed patterns in representation balancing models (Section 4.2.1). First,
we propose a PDIG method (Figure 1(b)), which aims to learn Patterns Decomposed with
Individual propensity confusion and Group distance minimization to improve treatment effect es-
timation through Path I. Second, we propose a PPBR method (Figure 1(c)), which aims to learn
Patterns of Pre-balancing and Balancing Representations to improve treatment effect estimation
through Path II.

3. Building upon PDIG and PPBR, we propose a novel representation balancing model, DIGNet (Figure
1(d)), for treatment effect estimation. In Section 5, ablation studies verify the efficacy of PDIG
and PPBR in improving ITE estimation through Path I and Path II, respectively. Furthermore,
experimental results on benchmark datasets demonstrate that DIGNet surpasses the performance
of baseline models in terms of treatment effect estimation.

1.1 Related Work

The presence of a covariate shift problem stimulates the line of representation balancing works (Johansson
et al., 2016; Shalit et al., 2017; Johansson et al., 2022). These works aim to balance the distributions of
representations between treated and controlled groups and simultaneously try to maintain representations
predictive of factual outcomes. This idea is closely connected with domain adaptation. In particular, the
ITE error bound based on Wasserstein distance is similar to the generalization bound in Ben-David et al.
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(2010); Long et al. (2014); Shen et al. (2018). In addition to Wasserstein distance based model, this paper
derives a new ITE error bound based on H-divergence (Ben-David et al., 2006; 2010; Ganin et al., 2016).

Another recent line of causal representation learning literature investigates efficient neural network structures
for treatment effect estimation. Kuang et al. (2017); Hassanpour & Greiner (2019b) extract the original co-
variates into treatment-specific factors, outcome-specific factors, and confounding factors; X-learner (Künzel
et al., 2019) and R-learner (Nie & Wager, 2021) are developed beyond the classic S-learner and T-learner;
Curth & van der Schaar (2021) leverage structures for end-to-end learners to counteract the inductive bias
towards treatment effect estimation, which is motivated by Makar et al. (2020).

Our DIGNet model incoporates the PDIG and PPBR methods. The PDIG method is motivated by multi-
task learning, where we design a framework incorporating two specific balancing patterns that share the
same pre-balancing representations. The PPBR approach is motivated the over-balancing problem (Zhang
et al., 2020; Assaad et al., 2021; Huang et al., 2022a), where the researchers argue that improperly balanced
representations can be detrimental predictors for outcome modeling, since such representations can lose the
original information that contributes to outcome prediction. Other representation learning methods relevant
to treatment effect estimation include Louizos et al. (2017); Yao et al. (2018); Yoon et al. (2018); Shi et al.
(2019); Du et al. (2021).

2 Preliminaries

Notations. Suppose there are the N i.i.d. random variables D = {(Xi, Ti, Yi)}N
i=1 with observed re-

alizations {(xi, ti, yi)}N
i=1, where there are N1 treated units and N0 controlled units. For each unit i,

Xi ∈ X ⊂ Rd denotes d-dimensional covariates and Ti ∈ {0, 1} denotes the binary treatment, with
e(xi) := p(Ti = 1 | Xi = xi) defined as the propensity score (Rosenbaum & Rubin, 1983). Potential
outcome framework (Rubin, 2005) defines the potential outcomes Y 1, Y 0 ∈ Y ⊂ R for treatment T = 1
and T = 0, respectively. We let the observed outcome (factual outcome) be Y = T · Y 1 + (1 − T ) · Y 0,
and the unobserved outcome (counterfactual outcome) be Y = T · Y 0 + (1 − T ) · Y 1. For t ∈ {0, 1}, let
τ t(x) := E [Y t | X = x] be a function of Y t w.r.t. X, then our goal is to estimate the individual treat-
ment effect (ITE) τ(x) := E

[
Y 1 − Y 0 | X = x

]
= τ1(x) − τ0(x) 1, and the average treatment effect (ATE)

τAT E := E
[
Y 1 − Y 0]

=
∫

X τ(x)p(x)dx. The introduced concepts PPBR and PDIG are illustrated in Figure
1, and the necessary representation functions ΦE , ΦG and ΦI , as well as different model structures, are illus-
trated in Figure 2. Throughout the paper, we refer to patterns as meaningful representations. For instance,
decomposed patterns are distinct components disentangled from some specific representations.

2.1 Problem setup

In causal representation balancing works, we denote representation space by R ⊂ Rd, and Φ : X → R is
assumed to be a twice-differentiable, one-to-one and invertible function with its inverse Ψ : R → X such
that Ψ(Φ(x)) = x. The densities of the treated and controlled covariates are denoted by pT =1

x = pT =1(x) :=
p(x | T = 1) and pT =0

x = pT =0(x) := p(x | T = 0), respectively. Correspondingly, the densities of the treated
and controlled covariates in the representation space are denoted by pT =1

Φ = pT =1
Φ (r) := pΦ(r | T = 1) and

pT =0
Φ = pT =0

Φ (r) := pΦ(r | T = 0), respectively.

Our study is based on the potential outcome framework (Rubin, 2005). Assumption 1 states standard
and necessary assumptions to ensure treatment effects are identifiable. Before proceeding with theoretical
analysis, we also present some necessary terms and definitions in Definition 1.

Assumption 1 (Consistency, Overlap, and Unconfoundedness). Consistency: If the treatment is t, then the
observed outcome equals Y t. Overlap: The propensity score is bounded away from 0 to 1, i.e., 0 < e(x) < 1.
Unconfoundedness: Y t ⊥⊥ T | X, ∀t ∈ {0, 1}.

1The term E
[
Y 1 − Y 0 | X = x

]
is commonly known as the Conditional Average Treatment Effect (CATE). In order to

maintain consistency with the notion used in the existing causal representation balancing literature, e.g., Shalit et al. (2017),
we refer to this term as ITE throughout this paper. Note that the original definition of ITE for the i-th individual is commonly
expressed as the difference between their potential outcomes, represented as Y 1

i − Y 0
i .
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Definition 1. Let h : R × {0, 1} → Y be an hypothesis defined over the representation space R such
that h(Φ(x), t) estimates yt, and L : Y × Y → R+ be a loss function (e.g., the squared loss L(y, y′) =
(y − y′)2 or the absolute loss L(y, y′) = |y − y′|). If we define the expected loss for (x, t) as ℓh,Φ(x, t) =∫

Y L(yt, h(Φ(x), t))p(yt|x)dyt, we then have factual and counterfactual errors, as well as them on the treated
and controlled:

ϵF (h, Φ) =
∫

X ×{0,1}
ℓh,Φ(x, t)p(x, t)dxdt, ϵCF (h, Φ) =

∫
X ×{0,1}

ℓh,Φ(x, t)p(x, 1 − t)dxdt,

ϵT =1
F (h, Φ) =

∫
X

ℓh,Φ(x, 1)pT =1(x)dx, ϵT =0
F (h, Φ) =

∫
X

ℓh,Φ(x, 0)pT =0(x)dx,

ϵT =1
CF (h, Φ) =

∫
X

ℓh,Φ(x, 1)pT =0(x)dx, ϵT =0
CF (h, Φ) =

∫
X

ℓh,Φ(x, 0)pT =1(x)dx.

If we let f(x, t) be h(Φ(x), t), where f : X × {0, 1} → Y is a prediction function for outcome, then the
estimated ITE over f is defined as τ̂f (x) := f(x, 1) − f(x, 0). We can measure the error in ITE estimation
with the metric, Precision in the expected Estimation of Heterogeneous Effect (PEHE):

ϵP EHE(f) =
∫

X
L(τ̂f (x), τ(x))p(x)dx. (1)

Here, ϵP EHE(f) can also be denoted by ϵP EHE(h, Φ) if we let f(x, t) be h(Φ(x), t).

3 Theoretical Results

In this section, we first prove ϵP EHE is bounded by ϵF and ϵCF in Lemma 1. Next, we revisit the upper bound
for Wasserstein distance guided representation balancing method in Section 3.1. Furthermore, we state the
new theoretical results concerning H-divergence guided representation balancing method in Section 3.2.
Lemma 1. Let functions h and Φ be as defined in Definition 1. Recall that τ t(x) = E [Y t | X = x].
Define σ2

y = min{σ2
yt(p(x, t)), σ2

yt(p(x, 1 − t))} and Ay = max{Ayt(p(x, t)), Ayt(p(x, 1 − t))} ∀t ∈ {0, 1},
where σ2

yt(p(x, t)) =
∫

X ×{0,1}×Y(yt − τ t(x))2p(yt|x)p(x, t)dytdxdt and Ayt(p(x, t)) =
∫

X ×{0,1}×Y |yt −
τ t(x)|p(yt|x)p(x, t)dytdxdt ∀t ∈ {0, 1}.
Let loss function L be the squared loss. Then we have:

ϵP EHE(h, Φ) ≤ 2(ϵCF (h, Φ) + ϵF (h, Φ) − 2σ2
y). (2)

Let loss function L be the absolute loss. Then we have:

ϵP EHE(h, Φ) ≤ ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay. (3)

Lemma 1 reveals that the ITE error ϵP EHE is closely connected with the factual error ϵF and counterfactual
ϵCF . The proof of Lemma 1 is deferred to Section A.1. Note that equation (2) corresponds to the result
presented in Shalit et al. (2017), while equation (3) is our new result, which supplements the case when L
denotes the absolute loss.

3.1 Wasserstein Distance Guided Error Bounds

Previous causal learning models commonly adopt the Wasserstein distance guided approach to seek rep-
resentation balancing. In this subsection, we first give the definition of Wasserstein distance (Cuturi &
Doucet, 2014) by introducing the Integral Probability Metric (IPM) (Sriperumbudur et al., 2012) defined in
Definition 2. Then we state the theorem regarding the upper bounds for counterfactual error ϵCF and ITE
error ϵP EHE using Wasserstein distance in Theorem 1.
Definition 2. Let G be a function family consisting of functions g : S → R. For a pair of distributions p1,
p2 over S, the Integral Probability Metric is defined as

IPMG(p1, p2) := sup
g∈G

|
∫

S
g(s)(p1(s) − p2(s))ds|.
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If G is the family of 1-Lipschitz functions, we can obtain the so-called 1-Wasserstein distance, denoted
by Wass(p1, p2). Next, we present the bounds for counterfactual error ϵCF and ITE error ϵP EHE using
Wasserstein distance in Theorem 1.
Theorem 1. Let Φ : X → R be an invertible representation with Ψ being its inverse. Define
σ2

y = min{σ2
yt(p(x, t)), σ2

yt(p(x, 1 − t))} and Ay = max{Ayt(p(x, t)), Ayt(p(x, 1 − t))} ∀t ∈ {0, 1},
where σ2

yt(p(x, t)) =
∫

X ×{0,1}×Y(yt − τ t(x))2p(yt|x)p(x, t)dytdxdt and Ayt(p(x, t)) =
∫

X ×{0,1}×Y |yt −
τ t(x)|p(yt|x)p(x, t)dytdxdt ∀t ∈ {0, 1}. Let pT =1

Φ (r), pT =0
Φ (r) be as defined before, h : R × {0, 1} → Y,

u := Pr(T = 1) and G be the family of 1-Lipschitz functions. Assume there exists a constant BΦ ≥ 0, such
that for t ∈ {0, 1}, the function gΦ,h(r, t) := 1

BΦ
· ℓh,Φ(Ψ(r), t) ∈ G. Given a loss function L, we have

ϵCF (h, Φ) ≤(1 − u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ) + BΦ · Wass(pT =1
Φ , pT =0

Φ ). (4)

Let loss function L be the squared loss. Then we have:

ϵP EHE(h, Φ) ≤ 2(ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + BΦ · Wass(pT =1
Φ , pT =0

Φ ) − 2σ2
y). (5)

Let loss function L be the absolute loss. Then we have:

ϵP EHE(h, Φ) ≤ ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + BΦ · Wass(pT =1
Φ , pT =0

Φ ) + 2Ay. (6)

Theorem 1 reveals that the ITE error is closely tied to the factual error ϵF and the Wasserstein distance
between treated and controlled groups in the representation space. This theorem provides a theoretical
foundation for representation balancing models based on group distance minimization (Section 4.1.1). The
proof of Theorem 1 is deferred to Section A.2. Note that equation (5) corresponds to the result presented
in Shalit et al. (2017), while equation (6) is our new result, which supplements the case when L denotes the
absolute loss.

3.2 H-divergence Guided Error Bounds

In most representation balancing literature, the models mainly rely on Wasserstein distance guided error
bounds as discussed in Section 3.1. In this subsection, we will focus on establishing H-divergence guided
error bounds for counterfactual and ITE estimations in representation balancing approach. We first give the
definition of H-divergence (Ben-David et al., 2006) in Definition 3. Then we state the theorem regarding the
upper bounds for counterfactual error ϵCF and ITE error ϵP EHE using H-divergence in Theorem 2.
Definition 3. Given a pair of distributions p1, p2 over S, and a hypothesis binary function class H, the
H-divergence between p1 and p2 is defined as

dH(p1, p2) := 2 sup
η∈H

|Prp1 [η(s) = 1] − Prp2 [η(s) = 1]| . (7)

Theorem 2. Let Φ : X → R be an invertible representation with Ψ being its inverse. Define
σ2

y = min{σ2
yt(p(x, t)), σ2

yt(p(x, 1 − t))} and Ay = max{Ayt(p(x, t)), Ayt(p(x, 1 − t))} ∀t ∈ {0, 1},
where σ2

yt(p(x, t)) =
∫

X ×{0,1}×Y(yt − τ t(x))2p(yt|x)p(x, t)dytdxdt and Ayt(p(x, t)) =
∫

X ×{0,1}×Y |yt −
τ t(x)|p(yt|x)p(x, t)dytdxdt ∀t ∈ {0, 1}. Let pT =1

Φ (r), pT =0
Φ (r) be as defined before, h : R × {0, 1} → Y,

u := Pr(T = 1) and H be the family of binary functions. Assume that there exists a constant K ≥ 0 such
that

∫
Y L(y, y′)dy ≤ K ∀y′ ∈ Y. Given a loss function L, we have

ϵCF (h, Φ) ≤(1 − u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ). (8)

Let loss function L be the squared loss. Then we have:

ϵP EHE(h, Φ) ≤ 2(ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ) − 2σ2
y). (9)

Let loss function L be the absolute loss. Then we have:

ϵP EHE(h, Φ) ≤ ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ) + 2Ay. (10)
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Theorem 2 reveals that the ITE error is closely connected with the factual error ϵF and the H-divergence
between treated and controlled samples in the representation space. This new theoretical result provides a
theoretical foundation for representation balancing models based on individual propensity confusion (Section
4.1.2). The proof of Theorem 2 is deferred to Section A.3.

4 Method

In the preceding section, we have stated the theoretical foundations for representation balancing methods,
which are the Wasserstein distance guided error bounds (results in Shalit et al. (2017)) and H-divergence
guided error bounds (Our results). Moving on to Section 4.1, we will begin by introducing representation
balancing methods without decomposed patterns. Specifically, Section 4.1.1 revisits a Wasserstein distance
based representation balancing network GNet, and Section 4.1.2 demonstrates how Theorem 2 can be con-
nected with individual propensity confusion, helping us to build a H-divergence based representation balanc-
ing network INet. Subsequently, in Section 4.2, we will introduce how to design a representation balancing
method within the scheme of decomposed patterns, based on the PDIG and PPBR methods (Section 4.2.1).
The final proposed model DIGNet is presented in Section 4.2.2.

4.1 Representation Balancing without Decomposed Patterns

In representation balancing models, given the input data tuples (x, t, y) = {(xi, ti, yi)}N
i=1, the original

covariates x are extracted by some representation function Φ(·), and representations Φ(x) are then fed
into the outcome functions h1(·) := h(·, 1) and h0(·) := h(·, 0) that estimate the potential outcome y1 and
y0, respectively. Finally, the factual outcome can be predicted by ht(·) = th1(·) + (1 − t)h0(·), and the
corresponding outcome loss is

Ly(x, t, y; Φ, ht) = 1
N

N∑
i=1

L(ht(Φ(xi)), yi). (11)

The loss function Ly approximates the factual error ϵF appeared in Theorems 1 and 2. Minimizing Ly also
corresponds to the Principle I as mentioned in the Introduction.

4.1.1 GNet: Group Distance Minimization Guided Network

The group distance minimization focuses on learning representations that minimize the distance between
the treated and controlled groups, and the corresponding theoretical foundation is supported by Wasserstein
distance guided counterfactual and ITE error bounds (Theorem 1). Previous causal inference methods (e.g.,
Shalit et al. (2017); Yao et al. (2018); Zhang et al. (2020); Huang et al. (2022a)) commonly adopt Wasserstein
distance to achieve group distance minimization. Specifically, these methods aim to minimize the empirical
approximation of LG(x, t; Φ) = Wass ({Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1) to learn balancing patterns. If we denote
ΦE(·) by the feature extractor that extracts the original covariates x, then the objective function designed
on Theorem 1 is

min
ΦE ,ht

Ly(x, t, y; ΦE , ht) + α1LG(x, t; ΦE). (12)

Since the objective is to learn balancing patterns by minimizing the distributional distance between treated
and controlled groups, i.e., group distance minimization, we refer to a model with the objective in equation
(12) as GNet. For the reader’s convenience, we illustrate the structure of GNet in Figure 2(a). Note that
CFRNet (Shalit et al., 2017) is also the category of GNet.

4.1.2 INet: Individual Propensity Confusion Guided Network

In the field of causal inference, the propensity score plays a central role because it characterizes the probability
that one receives treatment (Rosenbaum & Rubin, 1983). For example, the propensity score has been widely
employed in prior literature for matching (Caliendo & Kopeinig, 2008) or weighting (Austin & Stuart, 2015)
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purposes. In this paper, we emphasize that the propensity score also plays an important role in representation
balancing, where it serves as a natural indicator of the adequacy of leanred balancing patterns. Specifically,
we propose the concept of individual propensity confusion, which aims to learn representations that are
difficult to utilize for characterizing the propensity of each individual being treated or controlled. The
corresponding theoretical foundation is based on our derived H-divergence guided counterfactual and ITE
error bounds (Theorem 2). In the upcoming content, we will detail how Theorem 2 establishes the connection
between representation balancing and individual propensity confusion.

Let I(a) be an indicator function that gives 1 if a is true, and H be the family of binary functions as defined
in Theorem 2. To achieve representation balancing, the objective function designed on Theorem 2 should
aim to minimize the empirical H-divergence d̂H(pT =1

Φ , pT =0
Φ ) such that

d̂H(pT =1
Φ , pT =0

Φ ) = 2

1 − min
η∈H

 1
N

∑
i:η(Φ(xi))=0

I[ti = 1] + 1
N

∑
i:η(Φ(xi))=1

I[ti = 0]

 . (13)

The “min” part in equation (13) indicates that the optimal classifier η∗ ∈ H minimizes the classification
error between the estimated treatment η∗(Φ(xi)) and the observed treatment ti, i.e., discriminating whether
Φ(xi) is a control (T = 0) or treatment (T = 1). Equation (13) suggests that d̂H(pT =1

Φ , pT =0
Φ ) will be large if

η∗ can easily distinguish whether Φ(xi) is treated or controlled. In contrast, d̂H(pT =1
Φ , pT =0

Φ ) will be small if
it is hard for η∗ to determine whether Φ(xi) is treated or controlled. Therefore, the prerequisite of a small
H-divergence is to find a map Φ such that any classifier η ∈ H will get confused about the probability of
Φ(xi) being treated or controlled. To achieve this goal, similar to the strategy of empirical approximation of
H-divergence (Ganin et al., 2016), we define a discriminator π(r) : R → [0, 1] that estimates the propensity
score of r, which can be regarded as a surrogate for η(r). The classification error for the ith individual can
be empirically approximated by the cross-entropy loss between π(Φ(xi)) and ti:

Lt(ti, π(Φ(xi))) = − [ti log π(Φ(xi)) + (1 − ti) log(1 − π(Φ(xi)))] . (14)

As a consequence, we aim to find an optimal discriminator π∗ for equation (13) such that π∗ maximizes the
probability that treatment is correctly classified:

max
π∈H

LI(x, t; Φ, π) = max
π∈H

[
− 1

N

N∑
i=1

Lt(ti, π(Φ(xi)))
]

. (15)

Given the feature extractor ΦE(·), the objective of INet can be formulated as a min-max game:

min
ΦE ,ht

max
π

Ly(x, t, y; ΦE , ht) + α2LI(x, t; ΦE , π). (16)

In the maximization, the discriminator π is trained to maximize the probability that treatment is correctly
classified. This forces π(ΦE(xi)) closer to the true propensity score e(xi). In the minimization, the feature
extractor ΦE is trained to fool the discriminator π. This confuses π such that π(ΦE(xi)) cannot correctly
specify the true propensity score e(xi). Eventually, the representations are balanced as the adversarial
process makes it difficult for π to determine the propensity of each individual being treated or controlled.
We refer to this process as individual propensity confusion. For the reader’s convenience, we illustrate
the structure of INet in Figure 2(b).

4.2 Representation Balancing with Decomposed Patterns

4.2.1 The Proposed PDIG and PPBR Methods

PDIG. Although Theorems 1 and 2 provide solid theoretical foundation for GNet (model proposed by
Shalit et al. (2017)) and INet (model proposed by us), both of these model types still encounter the inherent
trade-off between representation balancing and outcome modeling. To this end, we expect to capture more
effective balancing patterns by learning Patterns Decomposed with Individual propensity confusion and

8
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Φ𝐺𝐺

(a) GNet (CFR-Wass) (b) INet (c) DGNet (d) DINet (e) DIGNet
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Φ𝐸𝐸

Φ𝐺𝐺

Figure 2: Illustrations of the network architecture of the five models studied in Section 5.

Group distance minimization (PDIG). More specifically, the covariates x are extracted by the feature
extractor ΦE(·), and then ΦE(x) are fed into two distinct balancing networks ΦG(·) and ΦI(·) for group
distance minimization and individual propensity confusion, respectively. In summary, PDIG decomposes the
balancing patterns into two distinct parts, group distance minimization and individual propensity confusion,
which are respectively achieved by the following loss functions:

min
ΦG

LG(x, t; ΦG ◦ ΦE) (17)

min
ΦI

max
π

LI(x, t; ΦI ◦ ΦE , π). (18)

Here, ◦ denotes the composition of two functions, indicating that Φ(·) in LG(x, t; Φ) and LI(x, t; Φ, π) are
replaced by ΦG(ΦE(·)) and ΦI(ΦE(·)), respectively.

PPBR. Motivated by the discussion in Section 1, we design a framework that is capable of capturing
Patterns of Pre-balancing and Balancing Representations (PPBR) to mitigate potential over-balancing
issue mentioned in the Introduction, aiming to preserve information that is useful for outcome predictions.
In the PPBR method, the balancing patterns ΦG(ΦE(x)) and ΦI(ΦE(x)) are first learned over ΦG and
ΦI , while ΦE is remained fixed as pre-balancing patterns. Furthermore, we concatenate the balancing
patterns ΦG(ΦE(x)) and ΦI(ΦE(x)) with the pre-balancing representations ΦE(x) as attributes for outcome
prediction. As a result, the proxy features used for outcome predictions are ΦE(x)⊕ΦG(ΦE(x))⊕ΦI(ΦE(x)),
where ⊕ indicates the concatenation by column. For example, if a = [1, 2] and b = [3, 4], then a ⊕ b =
[1, 2, 3, 4]. Consequently, representation balancing is accomplished over ΦG and ΦI , rather than ΦE . Even if
there may be a loss of information relevant to outcome prediction in ΦG and ΦI , the pre-balancing patterns
ΦE can still effectively preserve such information. Finally, the objective function with regard to outcome
modeling under PPBR method becomes

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE) ⊕ (ΦG ◦ ΦE), ht). (19)

4.2.2 The Proposed DIGNet

Combining with PDIG and PPBR, we propose a new neural Network model that incorporates Decomposed
patterns with Individual propensity confusion and Group distance minimization, which we call DIGNet.
The objective of DIGNet is separated into four stages:

min
ΦG

α1LG(x, t; ΦG ◦ ΦE), (20)

max
π

α2LI(x, t; ΦI ◦ ΦE , π), (21)

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π), (22)

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE) ⊕ (ΦG ◦ ΦE), ht). (23)

Within each iteration, DIGNet minimizes the group distance through equation 20, and plays an adversarial
game to achieve propensity confusion through equation 21 and equation 22. In equation 23, DIGNet updates

9
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Figure 3: T-SNE visualizations of the covariates as γ varies. Red represents the treatment group and blue
represents the control group. A larger γ indicates a greater imbalance between the two groups.

both the pre-balancing patterns ΦE and balancing patterns ΦI , ΦG, along with the outcome function ht to
minimize the outcome prediction loss. For the reader’s convenience, we illustrate the structure of DIGNet
in Figure 2(e).

5 Experiments

In non-randomized observational data, the ground truth regarding treatment effects remains inaccessible
due to the absence of counterfactual information. Therefore, we use simulated data and semi-synthetic
benchmark data to test the performance of our methods and other baseline models. In this section, we
primarily investigate the three following questions:

Q1. Is PDIG helpful in ITE estimation through Path I in the Introduction, i.e., learning more effective
balancing patterns without affecting factual outcome prediction?

Q2. Is PPBR helpful in ITE estimation through Path II in the Introduction, i.e., improving factual outcome
prediction without affecting learning balancing patterns?

Q3. Can the proposed DIGNet model outperform other baseline models on benchmark dataset?

Ablation models. To investigate Q1 and Q2, we conducted ablation studies and designed two ablation
models, DGNet and DINet, where DGNet (or DINet) can be considered as DIGNet without PDIG, and
GNet (or INet) can be considered as DGNet (or DINet) without PPBR. The structures of DGNet and DINet
are shown in Figure 2(c) and Figure 2(d), and the objectives of DGNet and DINet are deferred to Section
A.5.

5.1 Experimental Settings

Simulation data. Previous causal inference works assess the model effectiveness by varying the distribu-
tion imbalance of covariates in treated and controlled groups at different levels (Yao et al., 2018; Yoon et al.,
2018; Du et al., 2021). As suggested by Assaad et al. (2021), we draw 1000 observational data points from
the following data generating strategy:

Xi ∼ N (0, σ2 · [ρ1p1
′

p + (1 − ρ)Ip]),
Ti | Xi ∼ Bernoulli(1/(1 + exp(−γXi))),
Y 0

i = β′
0Xi + ξi, Y 1

i = β′
1Xi + ξi, ξi ∼ N (0, 1).

Here, 1p denotes the p-dimensional all-ones vector and Ip denotes the identity matrix of size p. We fix
p = 10, ρ = 0.3, σ2 = 2, β′

0 = [0.3, ..., 0.3], β′
1 = [1.3, ..., 1.3] and vary γ ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 3} to yield

different levels of selection bias. As seen in Figure 3, selection bias becomes more severe with γ increasing.
For each γ, we repeat the above data generating process to generate 30 different datasets, with each dataset
split by the ratio of 56%/24%/20% as training/validation/test sets.

Semi-synthetic data. The IHDP dataset is introduced by Hill (2011). This dataset consists of 747
samples with 25-dimensional covariates collected from real-world randomized experiments. Selection bias is

10
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Figure 4: Plots of model performances on test set for different metrics as γ varies in
{0.25, 0.5, 0.75, 1, 1.5, 2, 3}. Each graph shows the average of 30 runs with standard errors shaded. Lower
lines indicate lower values of the metric.

created by removing some of treated samples. The goal is to estimate the effect of special visits (treatment)
on cognitive scores (outcome). The potential outcomes are generated using the NPCI package Dorie (2021).
We use the same 1000 datasets as used in Shalit et al. (2017), with each dataset split by the ratio of
63%/27%/10% as training/validation/test sets.

Models and metrics. In simulation experiments, we perform comprehensive comparisons between INet,
GNet, DINet, DGNet, and DIGNet in terms of the mean and standard error for the following metrics:√

ϵP EHE , √
ϵCF , and √

ϵF with L defined in Definition 1 being the squared loss, as well as the empirical
approximations of Wass(pT =1

Φ , pT =0
Φ ) and dH(pT =1

Φ , pT =0
Φ ) (denoted by Wass and d̂H, respectively). Note

that as shown in Figure 2, Wass is over ΦE for GNet while over ΦG for DGNet and DIGNet; d̂H is over ΦE

for INet while over ΦI for DINet and DIGNet. To analyze the source of gain and ensure fair comparison in
simulation studies, we fix hyperparameters across all models. This way is consistent with Curth & van der
Schaar (2021). We apply an early stopping rule to all models as Shalit et al. (2017) do. In IHDP experiment,
we use √

ϵP EHE , as well as an additional metric ϵAT E = |τ̂AT E − τAT E | to evaluate performances of various
causal models (see them in Table 4). More descriptions of the implementation details, as well as the analysis
of training time and training stability, are deferred to Section A.4.

Device. All the experiments are run on Dell 7920 with one 16-core Intel Xeon Gold 6250 3.90GHz CPU
and three NVIDIA Quadro RTX 6000 GPUs.

5.2 Results and Analysis

5.2.1 Preliminary Experimental Results

In this part, we first make a general comparison between different models with the degree of covariate
imbalance increasing, and the relevant results are shown in Figure 4. There are four main observations:

1. DIGNet attains the lowest √
ϵP EHE across all datasets, while GNet have inferior performances than

other models;

2. DINet and DGNet outperform INet and GNet regarding √
ϵCF and √

ϵP EHE ;

3. INet, DINet, and DGNet have comparable performance to DIGNet in terms of factual outcome
estimations (√ϵF ), but cannot compete with DIGNet in terms of counterfactual estimations (√ϵCF )
or ITE estimations ( √

ϵP EHE);

4. DIGNet achieves smaller d̂H (or Wass) than DINet and INet (or DGNet and GNet), especially when
the covariate shift problem is severe (e.g., when γ > 1).

In conclusion, the above study has produced several noteworthy findings. Firstly, finding (1) reveals that
our proposed DIGNet model consistently performs well in ITE estimation. Secondly, as indicated by finding
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Figure 5: Plots of model performances on test set for √
ϵF , √

ϵCF , d̂H, and Wass when γ = 3. Each graph
plots the metric for 30 runs. Mean ± std of each metric averaged across 30 runs are reported on the top.
Lower lines indicate lower values of the metric.

(2), implementing the PPBR approach can enhance the predictive accuracy of factual and counterfactual
outcomes. Lastly, findings (3) and (4) highlight the role of PDIG structure in enhancing the simultaneous
reinforcement and complementarity of group distance minimization and individual propensity confusion,
resulting in more balanced representations. Our subsequent analysis will step beyond these preliminary
conclusions to gain a deeper understanding of the effectiveness of the proposed methods.

5.2.2 Further Ablation Studies

So far our preliminary observations have show that the relationship between the ITE errors of each model is:
DIGNet<DINet<INet and DIGNet<DGNet<GNet. To further explore how PDIG and PPBR contribute
to the improvement of ITE estimations, we choose the case with high selection bias (γ = 3) to analyze the
source of gain for PDIG and PPBR. We plot specific metrics of 30 runs on test set in Figure 5 and Figure 6.
We also report model performances (mean ± std) averaged over 30 training and test sets in Table 1. Below
we discuss the source of gain in detail.

Ablation study for PDIG. The PDIG structure is manifest to be effective in capturing more
effective balancing patterns, without affecting factual outcome predictions. As depicted in Figure
4, DIGNet exhibits more balanced representations, irrespective of whether the discrepancy is measured by
d̂H or Wass, while DIGNet, DINet, and DGNet demonstrate comparable estimates of factual outcomes
(√ϵF ). Two additional pieces of specific evidence can be observed from Figure 5: (1) Despite the absence of
PDIG in DINet and DGNet when compared to DIGNet, these three models exhibit very similar performance
regarding √

ϵF , with the performance being 1.07 ± 0.01. This indicates that PDIG does not impact the
factual estimation. (2) DIGNet achieves smaller d̂H with a |1.94/1.96 − 1| = 1.0% reduction (or Wass
with a |0.06/0.10 − 1| = 40% reduction) compared with DINet (or DGNet). This indicates that PDIG
enables the model to learn more effective balancing patterns. The above two points indicate that PDIG can
capture more effective balancing patterns, without affecting factual outcome predictions. This advantage
translates into superior counterfactual estimation, with DIGNet reduceing √

ϵCF by |2.89/2.95 − 1| = 2.0%
and |2.89/3.08 − 1| = 6.2% compared to DINet and DGNet, respectively. Correspondingly, DIGNet also
shows superiority in treatment effect estimation (√ϵP EHE and ϵAT E) compared to DINet (or DGNet), as
demonstrated in Table 1.

Ablation study for PPBR. The PPBR approach contributes to enhancing factual outcome
predictions, without affecting learning balancing patterns. From Figure 6, we gain two important
insights: (1) The difference in learned balancing patterns, measured by d̂H (or Wass), between DINet
and INet (or DGNet and GNet), is negligible. This implies that PPBR does not affect learning balancing
patterns. (2) Compared with INet, DINet achieves smaller √

ϵF , with |1.07/1.08−1| = 0.9% error reduction.
Similarly, compared with GNet, DGNet achieves smaller √

ϵF , with |1.07/1.12 − 1| = 4.5% error reduction.
These two observations reveal that PPBR can improve factual outcome predictions, without affecting learning
balancing patterns. Benefiting from the advantage of PPBR, the improvement is particularly pronounced in
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Figure 6: Plots of model performances on test set for different metrics when γ = 3. Each graph plots the
metric for 30 runs, with mean ± std averaged across 30 runs reported on the top. Lower lines indicate lower
values of the metric.

counterfactual estimation. Comparing DINet with INet, the reduction in √
ϵCF amounts to |2.95/3.47−1| =

15.0%. Similarly, comparing DGNet with GNet, the reduction is |3.08/3.55 − 1| = 13.2%. Correspondingly,
DINet (or DGNet) attains smaller treatment effect errors (√ϵP EHE and ϵAT E) compared with INet (or
GNet), as shown in Table 1.

Significance analysis for the improvements. To assess the significance of the improvements observed
in the above ablation studies, we conducted an additional significance analysis by recording the values
of √

ϵP EHE and ϵAT E for 30 runs of each of the 5 models (GNet, INet, DGNet, DINet, and DIGNet).
Subsequently, we performed a t-test for GNet vs. DGNet, INet vs. DINet, DGNet vs. DIGNet, and DINet
vs. DIGNet, to investigate the statistical significance of their differences. The relevant results are reported in
Table 3. The results reveal a statistically significant difference between GNet and DGNet, INet and DINet,
as well as DGNet and DIGNet. Note that the difference between DINet and DIGNet is not statistically
significant, despite DIGNet exhibiting smaller treatment effect estimation errors on average compared to
DINet.

Table 1: Training- & test- set √
ϵP EHE & ϵAT E when

γ = 3. Mean ± standard error of 30 runs.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

GNet 3.30±0.15 2.58±0.14 3.30±0.16 2.59±0.14
INet 3.24±0.11 2.46±0.09 3.22±0.12 2.47±0.10

DGNet 2.86±0.06 2.15±0.03 2.83±0.07 2.15±0.04
DINet 2.70±0.06 2.12±0.04 2.69±0.08 2.13±0.05

DIGNet 2.66±0.07 2.04±0.05 2.63±0.07 2.03±0.04

Table 2: Training- & test- set √
ϵP EHE & ϵAT E on

IHDP. Mean ± standard error of 100 runs.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

GNet 0.71±0.15 0.12±0.01 0.77±0.18 0.15±0.02
INet 0.66±0.09 0.13±0.01 0.72±0.11 0.15±0.02

DGNet 0.53±0.07 0.11±0.01 0.60±0.09 0.13±0.01
DINet 0.57±0.12 0.13±0.01 0.60±0.11 0.14±0.01

DIGNet 0.42±0.02 0.11±0.01 0.45±0.04 0.12±0.01

Table 3: Significance analysis regarding the achieved improvements by comparing GNet and DGNet, INet
and DINet, DGNet and DIGNet, DINet and DIGNet. The p-value ≤ 0.05 indicates difference is statistically
significant.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

t-value p-value t-value p-value t-value p-value t-value p-value
GNet vs. DGNet 2.7435 0.0081 2.9844 0.0042 2.7073 0.0089 2.9269 0.0049
INet vs. DINet 4.0812 0.0001 3.5222 0.0008 3.5665 0.0007 3.0824 0.0031

DGNet vs. DIGNet 2.0240 0.0476 1.8888 0.0639 2.0650 0.0434 2.0935 0.0407
DINet vs. DIGNet 0.4513 0.6535 1.3525 0.1815 0.6079 0.5456 1.5473 0.1272

5.2.3 Comparisons on IHDP benchmark.
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Table 4: Training- & test- set √
ϵP EHE & ϵAT E on IHDP. Mean ±

standard error of 1000 runs.

Training set Test set√
ϵP EHE ϵAT E

√
ϵP EHE ϵAT E

OLS/LR1 (Johansson et al., 2016) 5.8 ± .3 .73 ± .04 5.8 ± .3 .94 ± .06
OLS/LR2 (Johansson et al., 2016) 2.4 ± .1 .14 ± .01 2.5 ± .1 .31 ± .02

k-NN (Crump et al., 2008) 2.1 ± .1 .14 ± .01 4.1 ± .2 .79 ± .05
BART (Chipman et al., 2010) 2.1 ± .1 .23 ± .01 2.3 ± .1 .34 ± .02

CF (Wager & Athey, 2018) 3.8 ± .2 .18 ± .01 3.8 ± .2 .40 ± .03
CEVAE (Louizos et al., 2017) 2.7 ± .1 .34 ± .01 2.6 ± .1 .46 ± .02

SITE (Yao et al., 2018) .69 ± .0 .22 ± .01 .75 ± .0 .24 ± .01
GANITE (Yoon et al., 2018) 1.9 ± .4 .43 ± .05 2.4 ± .4 .49 ± .05
BLR (Johansson et al., 2016) 5.8 ± .3 .72 ± .04 5.8 ± .3 .93 ± .05
BNN (Johansson et al., 2016) 2.2 ± .1 .37 ± .03 2.1 ± .1 .42 ± .03
TARNet (Shalit et al., 2017) .88 ± .0 .26 ± .01 .95 ± .0 .28 ± .01

CFR-Wass (GNet) (Shalit et al., 2017) .73 ± .0 .12 ± .01 .81 ± .0 .15 ± .01
Dragonnet (Shi et al., 2019) 1.3 ± .4 .14 ± .01 1.3 ± .5 .20 ± .05
MBRL (Huang et al., 2022a) .52 ± .0 .12 ± .01 .57 ± .0 .13 ± .01

DIGNet (Ours) .42 ± .0 .11 ± .01 .45 ± .0 .12 ± .01

In this part, we perform exper-
iments on the IHDP benchmark
dataset to compare the perfor-
mances of different models. The
corresponding results are reported
in Table 2 and 4.

First, we report the ablation re-
sults on 1-100 IHDP datasets in Ta-
ble 2, aiming to examine the con-
sistent effectiveness of PDIG and
PPBR. Specifically, Table 2 shows
that DINet and DGNet are supe-
rior to INet and GNet but infe-
rior to DIGNet concerning treat-
ment effect estimation, suggesting
that both PDIG and PPBR are ad-
vantageous for treatment effect es-
timation. For example, on the test
set, DINet reduces √

ϵP EHE by |0.60/0.72 − 1| = 16.7% for INet, and DIGNet reduces √
ϵP EHE by

|0.45/0.60 − 1| = 25% for DINet. This is consistent with the findings before: PDIG and PPBR are beneficial
to treatment effect estimation.

Furthermore, we undergo comparisons between DIGNet and other causal models on 1-1000 IHDP datasets
and report the results in Table 4. The results highlight the superior performance of the proposed DIGNet
across all the models. Specifically, in comparison to the second-best method in test-sample performance,
DIGNet achieves a substantial improvement, with error reducted by |0.45/0.57 − 1| = 21% in terms of√

ϵP EHE and |0.12/0.13−1| = 7.7% in terms of ϵAT E . Moreover, it is worth noting that DIGNet consistently
achieves the lowest errors across various datasets and metrics, revealing its robust performance. We also
conduct an additional experiments on another benchmark dataset Twins. The details and results are deferred
to Section A.4

6 Conclusion

This paper establishes a theoretical foundation by deriving counterfactual and ITE error bounds based on
H-divergence. This theoretical foundation builds a connection between representation balancing and in-
dividual propensity confusion. Furthermore, based on individual propensity confusion and group distance
minimization, we suggest learning decomposed patterns for representation balancing models using the PDIG
and PPBR methods. Further, building upon PDIG and PPBR, we propose a novel model DIGNet, for treat-
ment effect estimation. Comprehensive experiments verify that PDIG and PPBR follow different pathways
to improve counterfactual and ITE estimation. In particular, PDIG enables the model to capture more
effective balancing patterns without affecting factual outcome prediction, while PPBR contributes to im-
proving factual outcome predictions without influencing learning balancing patterns. We hope these findings
can constitute an important step to inspire more research concerning the generalization of representation
balancing models for counterfactual and ITE estimation.

Limitations. Our paper verifies the effectiveness of PDIG and PPBR in improving ITE estimation, it is
also important to step beyond our empirical insights into future theoretical studies aimed at addressing the
trade-off challenge mentioned in the introduction, e.g., exploring the possibility of deriving tighter theoretical
error bounds based on learning decomposed patterns. Furthermore, it remains challenging to analytically
determine the best divergence metric for representation balancing methods. A promising avenue for future
theoretical investigations would involve developing new distributional divergences or exploring a unified
theory that enables models to select appropriate divergence metrics based on the distinct data. Empirical
studies can focus on discouraging the redundancy of shared information within the decomposed patterns and
improving the optimization efficacy of DIGNet.
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A Appendix

A.1 Proof of Lemma 1

Proof of L taking the squared loss, i.e., L(y1, y2) = (y1 − y2)2:

Proof. We denote ϵP EHE(f) = ϵP EHE(h, Φ), ϵF (f) = ϵF (h, Φ), ϵCF (f) = ϵCF (h, Φ) for f(x, t) = h(Φ(x), t).
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ϵF (f)

=
∫

X ×{0,1}×Y
(f(x, t) − yt)2p(yt|x)p(x, t)dytdxdt

=
∫

X ×{0,1}×Y
(f(x, t) − τ t(x))2p(yt|x)p(x, t)dytdxdt

+
∫

X ×{0,1}×Y
(τ t(x) − yt)2p(yt|x)p(x, t)dytdxdt

+ 2
∫

X ×{0,1}×Y
(f(x, t) − τ t(x))(τ t(x) − yt)p(yt|x)p(x, t)dytdxdt (24)

=
∫

X ×{0,1}
(f(x, t) − τ t(x))2p(x, t)dxdt + σ2

yt(p(x, t)) (25)

Equation (25) is by the definition of σ2
yt(p(x, t)) in Lemma 1 and equation (24) equaling zero since τ t(x) =∫

Y ytp(yt|x)dyt. A similar result can be obtained for ϵCF :

ϵCF (f) =
∫

X ×{0,1}
(f(x, t) − τ t(x))2p(x, 1 − t)dxdt + σ2

yt(p(x, 1 − t)).

ϵP EHE(f)

=
∫

X
((f(x, 1) − f(x, 0)) − (τ1(x) − τ0(x)))2p(x)dx

≤2
∫

X
((f(x, 1) − τ1(x))2 + (f(x, 0) − τ0(x))2)p(x)dx (26)

=2
∫

X
(f(x, 1) − τ1(x))2p(x, T = 1)dx + 2

∫
X

(f(x, 0) − τ0(x))2p(x, T = 0)dx

+ 2
∫

X
(f(x, 1) − τ1(x))2p(x, T = 0)dx + 2

∫
X

(f(x, 0) − τ0(x))2p(x, T = 1)dx (27)

=2
∫

X ×{0,1}
(f(x, t) − τ t(x))2p(x, t)dxdt + 2

∫
X ×{0,1}

(f(x, t) − τ t(x))2p(x, 1 − t)dxdt

=2(ϵF (f) − σ2
yt(p(x, t))) + 2(ϵCF (f) − σ2

yt(p(x, 1 − t))). (28)

Inequality (26) is by (x + y)2 ≤ 2(x2 + y2); equation (27) is by p(x) = p(x, T = 0) + p(x, T = 1). By
(equation 28) and the definition of σ2

y in Lemma 1, we have

ϵP EHE(h, Φ) ≤ 2(ϵCF (h, Φ) + ϵF (h, Φ) − 2σ2
y).

Proof of L taking the absolute loss, i.e., L(y1, y2) = |y1 − y2|:
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Proof. We denote ϵP EHE(f) = ϵP EHE(h, Φ), ϵF (f) = ϵF (h, Φ), ϵCF (f) = ϵCF (h, Φ) for f(x, t) = h(Φ(x), t).

ϵF (f)

=
∫

X ×{0,1}×Y
|f(x, t) − yt|p(yt|x)p(x, t)dytdxdt

≥
∫

X ×{0,1}×Y
|f(x, t) − τ t(x)|p(yt|x)p(x, t)dytdxdt

−
∫

X ×{0,1}×Y
|τ t(x) − yt|p(yt|x)p(x, t)dytdxdt (29)

=
∫

X ×{0,1}
|f(x, t) − τ t(x)|p(x, t)dxdt − Ayt(p(x, t)). (30)

Inequality (29) is by |x + y| ≥ |x| − |y|, equation (30) is by the definition of Ayt(p(x, t)) in Lemma 1. A
similar result can be obtained for ϵCF :

ϵCF (f) ≥
∫

X ×{0,1}
|f(x, t) − τ t(x)|p(x, 1 − t)dxdt − Ayt(p(x, 1 − t)).

ϵP EHE(f)

=
∫

X
|(f(x, 1) − f(x, 0)) − (τ1(x) − τ0(x))|p(x)dx

≤
∫

X
(|f(x, 1) − τ1(x)| + |f(x, 0) − τ0(x)|)p(x)dx (31)

=
∫

X
|f(x, 1) − τ1(x)|p(x, T = 1)dx +

∫
X

|f(x, 1) − τ1(x)|p(x, T = 0)dx (32)

+
∫

X
|f(x, 0) − τ0(x)|p(x, T = 0)dx +

∫
X

|f(x, 0) − τ0(x)|p(x, T = 1)dx (33)

=
∫

X ×{0,1}
|f(x, t) − τ t(x)|p(x, t)dxdt +

∫
X ×{0,1}

|f(x, t) − τ t(x)|p(x, 1 − t)dxdt

≤ϵF (f) + Ayt(p(x, t)) + ϵCF (f) + Ayt(p(x, 1 − t)). (34)

Inequality (31) is by |x+y| ≤ |x|+ |y|. Equation (32) and equation (33) are by p(x) = p(x, T = 0)+p(x, T =
1). By equation (34) and the definition of Ay in Lemma 1, we have

ϵP EHE(h, Φ) ≤ ϵF (f) + Ayt(p(x, t)) + ϵCF (f) + Ayt(p(x, 1 − t))
≤ ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay.

A.2 Proof of Theorem 1

Proof of equation (4):
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Proof.

ϵCF (h, Φ) − [(1 − u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ)]
=[(1 − u) · ϵT =1

CF (h, Φ) + u · ϵT =0
CF (h, Φ)] − [(1 − u) · ϵT =1

F (h, Φ) + u · ϵT =0
F (h, Φ)]

=(1 − u) · [ϵT =1
CF (h, Φ) − ϵT =1

F (h, Φ)] + u · [ϵT =0
CF (h, Φ) − ϵT =0

F (h, Φ)]

=(1 − u)
∫

X
ℓh,Φ(x, 1)(pT =0(x) − pT =1(x))dx + u

∫
X

ℓh,Φ(x, 0)(pT =1(x) − pT =0(x))dx

=(1 − u)
∫

R
ℓh,Φ(Ψ(r), 1)(pT =0

Φ (r) − pT =1
Φ (r))dr + u

∫
R

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r) − pT =0

Φ (r))dr (35)

=BΦ · (1 − u)
∫

R

1
BΦ

ℓh,Φ(Ψ(r), 1)(pT =0
Φ (r) − pT =1

Φ (r))dr

+ BΦ · u

∫
R

1
BΦ

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r) − pT =0

Φ (r))dr

≤BΦ · (1 − u) sup
g∈G

|
∫

R
g(r)(pT =0

Φ (r) − pT =1
Φ (r))dr|

+ BΦ · u · sup
g∈G

|
∫

R
g(r)(pT =1

Φ (r) − pT =0
Φ (r))dr| (36)

=BΦ · Wass(pT =1
Φ , pT =0

Φ ) (37)

Equation (35) is by the change of formula, pT =0
Φ (r) = pT =0(Ψ(r))JΨ(r), pT =1

Φ (r) = pT =1(Ψ(r))JΨ(r), where
JΨ(r) is the absolute of the determinant of the Jacobian of Ψ(r). Equation (37) is by Definition 2.

Proof of equation (5):

Proof.

ϵP EHE(h, Φ)
≤2(ϵCF (h, Φ) + ϵF (h, Φ) − 2σ2

y). (38)
≤2(ϵT =1

F (h, Φ) + ϵT =0
F (h, Φ) + BΦ · Wass(pT =1

Φ , pT =0
Φ ) − 2σ2

y). (39)

Inequality (38) is by equation (2) in Lemma 1. Inequality (39) is by equation 4 in Theorem 1.

Proof of equation (6):

Proof.

ϵP EHE(h, Φ)
≤ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay (40)
≤ϵT =1

F (h, Φ) + ϵT =0
F (h, Φ) + BΦ · Wass(pT =1

Φ , pT =0
Φ ) + 2Ay (41)

Inequality (40) is by equation (3) in Lemma 1. Inequality (41) is by equation 4 in Theorem 1.

A.3 Proof of Theorem 2

We first introduce Lemma 2 that is useful for proving Theorem 2.
Lemma 2. Let G that is defined in Definition 2 be the family of binary functions. Then we obtain
supη∈H

∣∣∫
S η(s)(p1(s) − p2(s))ds

∣∣ = 1
2 dH(p1, p2).
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Proof. Let I(·) denotes an indicator function.

dH(p1, p2)

=2 sup
η∈H

∣∣∣∣∣
∫

η(s)=1
(p1(s) − p2(s))ds

∣∣∣∣∣
=2 sup

η∈H

∣∣∣∣∫
S
I(η(s) = 1)(p1(s) − p2(s))ds

∣∣∣∣
=2 sup

η∈H

∣∣∣∣∫
S

η(s)(p1(s) − p2(s))ds

∣∣∣∣ (42)

The last equation is because an indicator function is also a binary function.

Proof of equation (8):

Proof.

ϵCF (h, Φ) − [(1 − u) · ϵT =1
F (h, Φ) + u · ϵT =0

F (h, Φ)]

=(1 − u)
∫

R
ℓh,Φ(Ψ(r), 1)(pT =0

Φ (r) − pT =1
Φ (r))dr + u

∫
R

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r) − pT =0

Φ (r))dr (43)

≤(1 − u)
∫

pT =0
Φ >pT =1

Φ

ℓh,Φ(Ψ(r), 1)(pT =0
Φ (r) − pT =1

Φ (r))dr

+ u

∫
pT =1

Φ >pT =0
Φ

ℓh,Φ(Ψ(r), 0)(pT =1
Φ (r) − pT =0

Φ (r))dr (44)

≤(1 − u)K
∫

pT =0
Φ >pT =1

Φ

(pT =0
Φ (r) − pT =1

Φ (r))dr + u · K

∫
pT =1

Φ >pT =0
Φ

(pT =1
Φ (r) − pT =0

Φ (r))dr (45)

=(1 − u)K
∫

R
I(pt=0

Φ > pT =1
Φ )(pT =0

Φ (r) − pT =1
Φ (r))dr

+ u · K

∫
R
I(pT =1

Φ > pT =0
Φ )(pT =1

Φ (r) − pT =0
Φ (r))dr

≤(1 − u)K sup
η∈H

|
∫

R
η(r)(pT =1

Φ (r) − pT =0
Φ (r))dr|

+ u · K · sup
η∈H

|
∫

R
η(r)(pT =1

Φ (r) − pT =0
Φ (r))dr| (46)

≤K · sup
η∈H

|
∫

R
η(r)((pT =1

Φ (r) − pT =0
Φ (r)))dr|

=K

2 dH(pT =1
Φ , pT =0

Φ ) (47)

Equation (43) is derived in the same way as equation (35). Equation (44) is by ℓh,Φ ≥ 0 for all r and t.
Inequality (45) is by the definition of K in Theorem 2. Inequality (46) is because an indicator function is
also a binary function. Equation (47) is by Lemma 2.

Proof of equation (9):

Proof.

ϵP EHE(h, Φ)
≤2(ϵCF (h, Φ) + ϵF (h, Φ) − 2σ2

y) (48)

≤2(ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ) − 2σ2
y) (49)
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Inequality (48) is by equation 2 in Lemma 1. Inequality (49) is by equation 8 in Theorem 2.

Proof of equation (10):

Proof.

ϵP EHE(h, Φ)
≤ϵCF (h, Φ) + ϵF (h, Φ) + 2Ay (50)

≤ϵT =1
F (h, Φ) + ϵT =0

F (h, Φ) + K

2 dH(pT =1
Φ , pT =0

Φ ) + 2Ay (51)

Inequality (50) is by equation 3 in Lemma 1. Inequality (51) is by equation 8 in Theorem 2.

A.4 Additional Experimental details

Additional results on Twins Benchmark. To investigate the applicability of our model DIGNet to
benchmark datasets beyond the commonly used IHDP benchmark, we conducted additional comparisons
with several baseline models, including linear, tree, matching, and representation learning methods, on the
Twins benchmark, as presented in Table 5.

The Twins dataset comprises records of twin births in the USA between 1989 and 1991. After preprocessing,
each unit contains 30 covariates relevant to parents, pregnancy, and birth. The treatment D = 1 indicates
the heavier twin, while D = 0 indicates the lighter twin. The binary outcome variable Y represents 1-year
mortality. For more comprehensive details on this dataset and the limitation of IHDP, refer to Curth et al.
(2021).

Notably, for ϵAT E , the simple linear or matching estimator performs best across different methods. On the
other hand, when assessing ITE performance using the AUC of potential outcomes, representation learning
models all demonstrate strong performance, with AUC values exceeding 0.800 on both training and test
sets. The observation might stem from the fact that representation balancing models are based on ITE
error bounds, rather than ATE error bounds, thereby optimizing for AUC instead of ϵAT E . Moreover,
among all the models, our DIGNet achieves the second-best AUC results. The best results are achieved by
MBRL, which involves the orthogonality information (similar to doubly robust estimators) in representation
balancing. This, in turn, inspires us to explore ATE error bounds, or consider involving doubly robust
methods in future research.

Table 5: Training- & test- set AUC & ϵAT E on Twins. Mean ± standard error of 100 runs.

Training set Test set
AUC ϵAT E AUC ϵAT E

OLS/LR1 Johansson et al. (2016) .660 ± .005 .004 ± .003 .500 ± .028 .007 ± .006
OLS/LR2 Johansson et al. (2016) .660 ± .004 .004 ± .003 .500 ± .016 .007 ± .006

k-NN Crump et al. (2008) .609 ± .010 .003 ± .002 .492 ± .012 .005 ± .004
BART Chipman et al. (2010) .506 ± .014 .121 ± .024 .500 ± .011 .127 ± .024
CEVAE Louizos et al. (2017) .845 ± .003 .022 ± .002 .841 ± .004 .032 ± .003

SITE Yao et al. (2018) .862 ± .002 .016 ± .001 .853 ± .006 .020 ± .002
BLR Johansson et al. (2016) .611 ± .009 .006 ± .004 .510 ± .018 .033 ± .009
BNN Johansson et al. (2016) .690 ± .008 .006 ± .003 .676 ± .008 .020 ± .007
TARNet Shalit et al. (2017) .849 ± .002 .011 ± .002 .840 ± .006 .015 ± .002

CFR-Wass (GNet) Shalit et al. (2017) .850 ± .002 .011 ± .002 .842 ± .005 .028 ± .003
MBRL (Huang et al., 2022a) .879 ± .000 .003 ± .000 .874 ± .001 .007 ± .00q

DIGNet (Ours) .874 ± .001 .004 ± .001 .871 ± .001 .008 ± .001
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Hyperparameters. In simulation studies, we ensure a fair comparison by fixing all the hyperparameters in
all datasets across different models. The relevant details are stated in Table 6. In IHDP studies, to compare

Table 6: Hyperparameters of different models in simulation studies.

ΦE ΦG ΦI π h1 h0 α1 α2 batchsize iteration learning rate learning rate for π

Gnet (100, 100, 100, 100) − − − (100, 100) (100, 100) 0.1 − 100 300 1e−3 −
Inet (100, 100, 100, 100) − − (100, 100, 100) (100, 100) (100, 100) − 0.1 100 300 1e−3 1e−4

DGNet (100, 100, 100, 100) (100, 100) − − (100, 100) (100, 100) 0.1 − 100 300 1e−3 −
DINet (100, 100, 100, 100) − (100, 100) (100, 100, 100) (100, 100) (100, 100) − 0.1 100 300 1e−3 1e−4

DIGNet (100, 100, 100, 100) (100, 100) (100, 100) (100, 100, 100) (100, 100) (100, 100) 0.1 0.1 100 300 1e−3 1e−4

with the baseline model CFR-Wass (GNet), we remain the hyperparameters of INet, DGNet, DINet and the
early stopping rule the same as those used in CFR-Wass Shalit et al. (2017). Since DIGNet is more complex
than other four models, we adjust the hyperparameters of ΦE , ΦG, ΦI , α1, and α2 for DIGNet as Shalit
et al. (2017) do. The relevant details are stated in Table 7.

Table 7: Hyperparameters of different models in IHDP experiments.

ΦE ΦG ΦI π h1 h0 α1 α2 batchsize iteration learning rate learning rate for π

Gnet (100, 100, 100, 100) − − − (100, 100, 100) (100, 100, 100) 1 − 100 600 1e−3 −
Inet (100, 100, 100, 100) − − (200, 200, 200) (100, 100, 100) (100, 100, 100) − 1 100 600 1e−3 1e−3

DGNet (100, 100, 100, 100) (100, 100) − − (100, 100, 100) (100, 100, 100) 1 − 100 600 1e−3 −
DINet (100, 100, 100, 100) − (100, 100) (200, 200, 200) (100, 100, 100) (100, 100, 100) − 1 100 600 1e−3 1e−3

DIGNet (100, 100, 100, 100, 100, 100) (100, 100, 100) (100, 100, 100) (200, 200, 200) (100, 100, 100) (100, 100, 100) 0.1 1 100 600 1e−3 1e−3

Analysis of training time and training stability. We record the time it took for different models to
run through 100 IHDP datasets, and each model is trained within 600 epochs. Following Shalit et al. (2017),
all models adopt the early stopping rule. We also record the average early stopping epoch on 100 runs
and the actual time on 100 runs, where (actual time) = (total time) × (average early stopping epoch)/600.
Not surprisingly, GNet took the least amount of time with 3096 seconds since the objective of GNet is the
simplest. However, it is very interesting that the proposed methods, DGNet and DINet, are the first two
to early stop. As a result, though DGNet and DINet have multi-objectives, they spent less actual training
time but achieved better ITE estimation compared to GNet and INet. Since GNet and INet are actually
DGNet and DINet with PPBR ablated, we find that PPBR component can help a model achieve better ITE
estimates with less time. In addition, we find that DIGNet spent the longest time to optimize since it has
the most complex objective. To further study the stability of the model training, we also plot the metrics√

ϵF , Wass, d̂H, and √
ϵP EHE for the first 100 epochs of each model on the first IHDP dataset. We find

that the training process of DIGNet is stable, even steadier than GNet and INet. From this perspective, we
haven’t seen a difficulty of optimizing DIGNet.

Table 8: Training time records on 100 IHDP datasets.

Model Time for 600 epochs Avg early stopping Actual time √
ϵP EHE on test set

GNet 3096s 240.61 1241s 0.77±0.18
INet 4042s 254.19 1712 0.72±0.11

DGNet 3775s 169.17 1064s 0.60±0.09
DINet 3212s 157.98 846s 0.60±0.11

DIGNet 4984s 226.76 1884s 0.45±0.04

A.5 Objectives of Different Models

Objective of GNet.

min
ΦE ,ht

Ly(x, t, y; ΦE , ht) + α1LG(x, t; ΦE).
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Figure 7: Training loss plots for the first 100 epochs on the first IHDP dataset.

Objective of INet.

max
π

α2LI(x, t; ΦE , π),

min
ΦE ,ht

Ly(x, t, y; ΦE , ht) + α2LI(x, t; ΦE , π).

Objective of DINet. Note that similar to DIGNet, the pre-balancing patterns are preserved by only
updating ΦI but fixing ΦE in the second step.

max
π

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦE ,ΦI ,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE), ht).

Objective of DGNet. Note that similar to DIGNet, the pre-balancing patterns are preserved by only
updating ΦG but fixing ΦE in the first step.

min
ΦG

α1LG(x, t; ΦG ◦ ΦE),

min
ΦE ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦG ◦ ΦE), ht).

Objective of DIGNet.

min
ΦG

α1LG(x, t; ΦG ◦ ΦE),

max
π

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦI

α2LI(x, t; ΦI ◦ ΦE , π),

min
ΦE ,ΦI ,ΦG,ht

Ly(x, t, y; ΦE ⊕ (ΦI ◦ ΦE) ⊕ (ΦG ◦ ΦE), ht).
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