
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXEMPLAR-FREE CONTINUAL REPRESENTATION
LEARNING WITH SYMMETRIC DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning strives to train a model in a sequential manner by learning from
new tasks while retaining information about old tasks. Treating this as a common
classification problem leads to catastrophic forgetting, especially in deep learning
settings, where knowledge of old tasks is forgotten as soon as a model is opti-
mized on new tasks. Existing solutions tackle this problem by imposing strict
assumptions, such as the availability of exemplars from previously seen classes or
a warm start of a model on many classes before starting the continual learning.
While effective on known benchmarks, such assumptions can be impractical and
do not directly address the stability-plasticity dilemma in continual learning. In
this paper, we follow a recent push in the field to tackle continual learning in the
exemplar-free cold-start setting. We propose Model-in-the-Middle (MITM). The
idea behind MITM is to separate the learning of new classes and retention of past
class knowledge by using two distinct models. We propose a learner with sym-
metric distillation from both models, enabling us to learn evolving representations
as new tasks arrive. We show that explicitly separating and balancing old and new
tasks through symmetric distillation helps absorb large distribution shifts, mitigat-
ing the stability gap. Our approach is simple yet outperforms the state-of-the-art
in the challenging exemplar-free cold-start continual learning setting.

1 INTRODUCTION

Continual representation learning addresses a fundamental limitation in deep learning: when a neu-
ral network is trained on a new task, it immediately forgets most information about old tasks (French,
1999). This catastrophic forgetting results from the stability-plasticity trade-off, as identified by
Grossberg (2012). An overly stable model may fail to learn new tasks, while an overly plastic model
risks forgetting previous tasks. Thus, the central challenge in continual learning is to strike the right
balance between stability and plasticity, allowing models to learn representations for both old and
new tasks (De Lange et al., 2021; Wang et al., 2024).

Continual learning methods approach the stability-plasticity dilemma from various angles. Some
focus on stability; Starting from a strong initialization point and attempting to change the model
as little as possible for the new classes (Zhang et al., 2023; McDonnell et al., 2024). Dynamic
network approaches, for instance, expand the model’s architecture as new data emerges, based on
the assumption that model capacity is limited and adapting to new features will overwrite old ones,
leading to forgetting (Rusu et al., 2016; Yan et al., 2021). For models with fixed or limited capac-
ity, regularization-based approaches control plasticity by either adjusting the optimization direction
(data regularization) (Li & Hoiem, 2017; Buzzega et al., 2020) or evaluating the importance of each
parameter and regularizing the parameters (Kirkpatrick et al., 2017; Liu et al., 2020).

Another group of methods emphasizes plasticity, enabling the model to adapt to new patterns while
remembering old patterns (Wu et al., 2019; Buzzega et al., 2020). Exemplar-based methods aim to
preserve the knowledge of previous tasks by replaying exemplars stored in memory (Chaudhry et al.,
2019; Rebuffi et al., 2017) or by generating synthetic examples using generative models (Smith et al.,
2021). On the other hand, prototype-based approaches use exemplars to prevent semantic drift by re-
calculating class prototypes after each stage (Rebuffi et al., 2017; De Lange & Tuytelaars, 2021; Zhu
et al., 2021). Model rectification methods assume that catastrophic forgetting will occur, and they at-
tempt to mitigate it by correcting the biases introduced (Wu et al., 2019). Similarly, prototype-based
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approaches that do not use exemplars or pre-trained models correct the biases by drift estimation
and feature consolidation (Gomez-Villa et al., 2024; Magistri et al., 2024). Knowledge distillation
techniques transfer information from an expert model, trained on previous tasks, to a student model
that is learning the current task (Li & Hoiem, 2017; Buzzega et al., 2020).

The need for exemplars remains central in most methods to avoid bias toward recent tasks. Storing
previous-task samples, however, has multiple practical limitations, such as memory constraints,
legal concerns, and dealing with sensitive and private data that should be safeguarded (Venkatesan
et al., 2017). Moreover, exemplar-based solutions do not generalize to vision-language domains,
as keeping exemplars of all possible textual descriptions is not tractable. This has prompted a shift
towards exemplar-free continual learning (Wang et al., 2024), where many methods use prototypes
to replace exemplars. A downside of exemplar-free prototype-based methods is that they are prone
to semantic feature drift (Yu et al., 2020). To mitigate the drift, these methods work under warm-start
settings, beginning with a large first task or a pretrained model (Zhu et al., 2021; Petit et al., 2023) to
start with good representations that stay unchanged. Recent works advocate studying exemplar-free
cold-start continual learning (Magistri et al., 2024; Gomez-Villa et al., 2024), as this setup provides
the most challenging setting for continual learning. In the absence of exemplars and warm-start,
models employ complex techniques to correct the bias (Gomez-Villa et al., 2024) or consolidate
features (Magistri et al., 2024).

The goal of this paper is to perform continual learning without the need for exemplars, prototypes,
warm starts, or additional corrections. We strive for a simple solution that stays close to a canonical
supervised objective, without the need to balance information from old and new tasks through careful
hyperparameter tuning. To that end, we introduce Model-in-the-Middle (MITM). MITM balances
plasticity and stability by separating the learning of new representations from the integration of
past and current knowledge. Given a network to be optimized, we take a leading, middle, and
trailing version. The trailing model retains past knowledge, while the leading model learns new
information. The middle model distills knowledge from both, achieving a natural balance between
stability and plasticity, effectively mitigating task-recency bias. To the best of our knowledge, this
is the first exemplar-free cold-start method that addresses task-recency biases without relying on
complex correction or consolidation mechanisms. Empirical results show that MITM provides state-
of-the-art results in the exemplar-free cold-start setting. Supporting analysis shows that our approach
comes without a significant bias toward initial or most recent tasks while mitigating forgetting.

2 RELATED WORK

Warm-start methods In the exemplar-free setting, most methods use regularization to prevent
forgetting. LwF (Li & Hoiem, 2017) applies regularization to class probabilities, while EWC (Kirk-
patrick et al., 2017) applies it to model weights. Others approach regularization by estimating pa-
rameter importance (Aljundi et al., 2017; Zenke et al., 2017). However, these methods often suffer
from significant semantic drift (Yu et al., 2020), leading to further research aimed at reducing this
issue. FeTrIL (Petit et al., 2023) addresses this by generating pseudo-features based on the differ-
ence between old and new prototypes, helping the model adapt to new classes. Panos et al. (2023)
freeze the feature extractor after the first task, using pseudo-features from the initial task to handle
subsequent ones. In FeCAM (Goswami et al., 2024), the authors leverage the heterogeneous fea-
ture distribution in class-incremental learning, using an anisotropic Mahalanobis distance instead
of the standard Euclidean metric for better classification. These methods are typically evaluated in
warm-start scenarios, which begin with a large initial task or pretrained models. Starting from strong
representations allows these models to focus more on stability by freezing the feature extractor (Petit
et al., 2023; Panos et al., 2023; Goswami et al., 2024), limiting plasticity or relying on pre-trained
models (Zhang et al., 2023; McDonnell et al., 2024). Recently, the shortcomings of warm-start set-
tings have sparked renewed interest in exemplar-free cold-start class-incremental learning (Magistri
et al., 2024; Gomez-Villa et al., 2024).

Correction-based methods Works addressing the difficult problem of exemplar-free cold-start
continual learning must manage the effects of increased plasticity. High plasticity can cause feature
drift, leading to a bias toward the most recent tasks, as the model adapts quickly but risks losing
information from earlier tasks (Masana et al., 2022). In earlier approaches, this bias was corrected
by using exemplars (Wu et al., 2019) or applying cosine normalization (Hou et al., 2019). In the
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exemplar-free setting, methods such as Zhu et al. (2021; 2022) mitigate this bias by employing
prototypes, which approximate class means in the feature space and help calibrate the classifier.
Prototypes are also used to model semantic drift, as in Gomez-Villa et al. (2024), and can even
eliminate the need for a classification layer. Direct prevention of semantic drift is addressed in
Magistri et al. (2024) by consolidating features and balancing them through prototype rehearsal.
While prototype-based methods are promising, they require assumptions about class distributions,
and the subsequent parameters must be carefully estimated for effective use.

Disentangling past and present task representations Another way to balance stability-plasticity
without using exemplars is by separating what is relevant for past and present tasks. One group of
methods (Mittal et al., 2021; Ahn et al., 2021) addresses this separation by identifying the Softmax
operation as a major cause of catastrophic forgetting. They show that applying Softmax separately
to the previous and current task classes can mitigate this issue. This separated Softmax also helps
reduce the stability gap (De Lange et al., 2023), as demonstrated in Caccia et al. (2022). On one
side, dynamic networks explicitly separate the past and present knowledge by expanding the model’s
backbone, or neurons, as new data emerges (Rusu et al., 2016; Yan et al., 2021), based on the as-
sumption that the model’s capacity is limited in representing both old and new tasks effectively.
However, these methods require expandable memory budgets, making them unsuitable for incre-
mental learning on edge devices. On the other side, distillation-based methods, such as Javed &
Shafait (2019); Buzzega et al. (2020); Mittal et al. (2021), compress past and present knowledge
into a single student model by using a previous copy of the model as a teacher. Our approach strikes
a balance between these extremes, where we use three separate models, each an expert in the current
task, past tasks, and a combination of the two. The idea of using three separate models for exemplar-
free incremental learning is also explored in Lee et al. (2019); Zhang et al. (2020). In contrast, we
jointly train all models on the current task data, preventing abrupt shifts in target distributions.

3 METHOD

Figure 1: Overview of Model-in-the-Middle (MITM) with a visual summary showing which task
logits each loss is applied to. Every image-label pair is propagated through all three identical models.
The leading model is trained exclusively on the classes in the current task Tc, which separates
learning new representations from merging previously learned ones. Symmetric distillation of the
leading and the trailing logits naturally balances the representations in the middle model. At each
task boundary, the middle model’s parameters are copied to the trailing model, preserving the newly
acquired knowledge. No gradients are propagated through connections marked as stop-grad. The
snowflake symbol indicates frozen network parameters.

3.1 MODEL-IN-THE-MIDDLE

In class-incremental representation learning, we are given data that is split up into N tasks, denoted
as T = {T1, ..., Tc, ..., TN}., with Tc ∈ T indicating the current task. The dataset D is split into an
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equivalent number of subsets DTc
⊂ D and a held-out evaluation set ETc

⊂ E . We are sequentially
given access to these tasks. A task consists of all samples and labels (x, y) ∼ DTc

. Classes in a task
CTc

⊂ C are mutually exclusive with all other tasks, i.e. CTi
∩ CTj

= ∅. The samples drawn from
these tasks conform to the i.i.d. assumption. This contrasts the dataset D as a whole, as it presents
the tasks sequentially over time, thereby undermining the stationarity assumption. In this work, we
investigate the cold-start exemplar-free setting, where all tasks are of equal size, and we do not allow
the storage of exemplars. With these definitions, the objective is to find parameters θ of the function
f(·; θ) to minimize

min
θ

L = E(x,y)∼D [ℓ (f(x; θ), y)] (1)

where ℓ(·, ·) denotes the softmax cross-entropy loss function. This is problematic when approximat-
ing the expectation, as D is not a stationary distribution. We, therefore, sequentially minimize the
stationary tasks

min
θ

N∑
i=1

LTi . (2)

The current task must be optimized not to affect the model’s predictions of past tasks. Finding a
suitable balance between retaining the past tasks and adapting to the current ones is a crucial chal-
lenge. We propose a new approach to this problem, Model-in-the-Middle (MITM), which obtains
this balance by using symmetric knowledge distillation. At its core, we hypothesize that using the
same mechanism for stability and plasticity simplifies the search for a balance between the two. Our
approach is visualized in Figure 1. Formally, we introduce

LTi
= Ltrailing + Lleading + Lclassification. (3)

Our approach uses two identical models in addition to θ but with separate parameterizations. We
denote the parameters of the leading model as ϕ and the trailing model as ψ. The leading model’s
function is to learn to classify the samples of the current task, similarly to Caccia et al. (2022). The
trailing model retains knowledge of past tasks, and it is obtained by copying the middle model’s
parameter when it is fully trained. Finally, the middle model is tuned to classify all tasks.

The classification loss term is used to optimize the leading model. A standard softmax cross-entropy
function ℓ is applied only to the logits of the classes in the current task. We denote the logits of the
classes in task Tc with fTc(x;ϕ):

Lclassification = E(x,y)∼DTc
[ℓ (fTc

(x;ϕ), y)] . (4)

The leading model provides a key benefit to our approach. As this model is not concerned with past
tasks, we can apply an unmodified supervised learning approach, ensuring we do not compromise
its ability to learn new representations with regularization or stability terms.

The middle model θ combines two knowledge distillation losses. The distillation from the leading
model ϕ provides plasticity, while the trailing model ψ provides stability. For both of these terms
we use mean squared error to match the target logits, shown to be effective in Buzzega et al. (2020).
As the leading model is only trained on the classes in the current task, we only distill on the corre-
sponding n logits in task Tc, indexed using i. Additionally, note the leading model is only optimized
through its respective loss in Eq. 4, as we do not propagate the gradients from this loss to ϕ.

Lleading = E(x,y)∼DTc

[
1

n

n∑
i=1

(fTc
(x; θ)i − fTc

(x;ϕ)i)2

]
(5)

where i is used to iterate over the subset of logits. Similarly, we only distill the logits of the trailing
model for the classes in which it has been trained. These logits from all past tasks up to Tc, are given
by fT0;c−1

(x;ϕ). We do not propagate gradients through the trailing model, and the parameters of
the trailing model are, therefore, only modified upon model copy after the task. We allow the trailing
model to update its batch norm statistics to better accommodate distribution shifts between tasks, as
described in Szatkowski et al. (2023). Finally, this term does not contribute to the first task as there
are no past logits.
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Ltrailing = E(x,y)∼DTc

[
1

n

n∑
i=1

(fT0;c−1
(x; θ)i − fT0;c−1

(x;ψ)i)2

]
(6)

Our motivation for choosing logit distillation builds on the observations on feature distillation in
Magistri et al. (2024), who argue that feature distillation avoids feature drift, a key factor in for-
getting, but does so by constraining plasticity in all directions. In contrast, by distilling based on
past logits, we constrain only the feature subspace relevant to these logits and allow for plasticity
in the underlying feature representations. This is crucial, as this allows the underlying features to
recombine to accommodate the new classes while retaining logit activation’s on past classes.

In summary, the leading model allows for a few simplifications compared to other approaches. Due
to the separation of learning new representations from merging existing ones, we allow for uncon-
strained optimization of the current task. Additionally, there is no need to explicitly balance this
plasticity, as the symmetric distillation naturally introduces this balance. The lack of hyperparame-
ters for balancing and additional codebooks, memory banks, or pretraining makes for a simple yet
effective approach.

4 EXPERIMENTS

4.1 TRAINING SETUP

We train a slimmed ResNet18 model based on Lopez-Paz & Ranzato (2017), as is commonly used in
continual learning literature (Buzzega et al., 2020; Zhu et al., 2021; Magistri et al., 2024). Following
Buzzega et al. (2020), we apply random crops and horizontal flips to both the input stream and buffer
exemplars. All introduced methods are trained for 100 epochs using SGD with a momentum of 0.9
and no weight decay. The learning rate is set to 0.01 and is reduced by a factor of 0.1 at epochs 50
and 85. The order of classes is fixed to ensure reproducibility.

Our experiments are conducted on S-CIFAR-100 (Krizhevsky et al., 2009; Rebuffi et al., 2017),
which consists of 10 incremental steps, each containing 10 classes, in a cold-start setting following
Magistri et al. (2024); Gomez-Villa et al. (2024). We also perform experiments on TinyImageNet
(Wu et al., 2017) under the same cold-start configuration and with 10 steps. Unlike the warm-start
setting, where the model is pretrained on a portion of the data (typically half of the tasks) before
incremental learning, the cold-start setting is more challenging as models must learn incrementally
from scratch.

4.2 EVALUATION METRICS

To provide insight into the performance of the method both during training and the resulting model,
we report multiple metrics. We report Final Average Accuracy (FAA), the accuracy averaged over all
tasks after training on the final task. Additionally, we report Average Incremental Accuracy (AIA)
as in Magistri et al. (2024), which averages the evaluation accuracy after every task, providing
some insight into the performance during training. As in De Lange et al. (2023), we report average
minimum accuracy (min-ACC) and average forgetting (Forgetting) to provide insight into how
well knowledge is retained. Specifically, to compute the average minimum accuracy, we evaluate
the entire test set after every training iteration and retain the per-task minimum observed value, as
specified in De Lange et al. (2023). This provides insight into the transient forgetting, known as the
stability gap, which is hypothesized to contribute to overall forgetting.

We introduce a new metric Final Accuracy standard deviation (FAσ) to provide further insight into
task bias, as many methods exhibit a bias towards the most recent task (Masana et al., 2022). To this
end, we report the standard deviation of the per-task final accuracy. The intuition is that a method
with significant bias towards any task has a larger variance in final task accuracies than an unbiased
method with equal accuracy for all tasks. FAσis not independent of FAA, and it should always be
considered alongside it.

For every task Tk we define a training dataset DTk
and a held-out evaluation set ETk

. We define the
accuracy A(ETk

, f(θTk
)) ∈ [0, 1] as the percentage of correct top-1 classifications on evaluation set

ETk
with the parameters θTk

just after training on task Tk. The task bias metric is defined as:
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Table 1: Comparison to the state-of-the-art on S-CIFAR-100 exemplar-free cold-start 10-step set-
ting. We observe MITM outperforming other methods in final average accuracy, average incremental
accuracy, and forgetting, indicating MITM is better able to learn new knowledge incrementally with-
out significantly degrading past knowledge. This is further supported by MITM’s exceptionally low
task bias score, indicated with FAσ, which approaches that of the lower bound. Additionally, the
high average minimum accuracy shows we successfully avoid the stability gap. †Reproduced using
mammoth (Buzzega et al., 2020). ¶Reproduced using author’s implementation. ‡Excerpted from
Gomez-Villa et al. (2024). §Estimated from author’s results. - indicates results are not available.
Mean and standard deviation of three runs is provided.

FAA↑ AIA↑ Forgetting↓ min-ACC↑ FAσ↓

Joint training (upper bound) 71.78±0.5 2.94±0.3

EWC (Kirkpatrick et al., 2017)† 8.18±0.5 24.86±0.1 83.86±0.8 0.0±0 22.13±1.2

LwF (Li & Hoiem, 2017)† 9.66±0.1 26.33±0.1 89.17±0.5 0.0±0 27.92±0.1

DMC (Zhang et al., 2020) 37§ - - - -
FeTrIL (Petit et al., 2023)‡ 34.94±0.5 51.20±1.1 - - -
EFC (Magistri et al., 2024)¶ 44.20±0.5 57.88±0.8 25.26±0.7 37.17±0.4 13.53±1.2

LwF+LDC (Gomez-Villa et al., 2024)‡ 45.4±2.8 59.5±3.9 - - -
MITM 49.57±0.5 61.52±0.3 14.58±0.2 44.00±0.7 3.91±0.3

FAσ =

√√√√ 1

N

N∑
i=1

(A(ETi
, f(θ))− µ)2 where µ =

1

N

N∑
i=1

A(ETi
, f(θ)) (7)

4.3 COMPARITIVE ANALYSIS

In our first experiment, we compare MITM to baselines and state-of-the-art exemplar-free ap-
proaches in the cold-start setting. Additionally, we consider forgetting and task bias metrics to
provide insight. In Table 1, MITM outperforms other methods by a margin in S-CIFAR100, while
Table 2 shows the same improvements for S-TinyImageNet. We observe that FeTrIL, tailored for
the warm-start setting, struggles in the cold-start setting. This is also the case for other warm-start
methods such as Zhu et al. (2021); Goswami et al. (2024); Zhu et al. (2022) as previously highlighted
by Magistri et al. (2024). EFC and LwF+LDC perform better in the cold-start setting and represent
the state-of-the-art. MITM outperforms these methods in both accuracy metrics. In terms of final
average accuracy we improve by more than 9% over LwF+LDC and EFC, while reducing forgetting
by 42% compared to the latter, indicating we do not prevent forgetting by simply not learning. The
average minimum accuracy observed for past tasks is close to the final average accuracy, indicating
we do not suffer from the transient forgetting observed in De Lange et al. (2023). This benefit in
minimum accuracy is also observed for EFC, which also employs a separated softmax.

Mitigating the stability gap prevents potential degradation of past task performance, contributing to
preventing a bias to certain tasks, and allowing EFC to improve over the baselines in terms of task
bias. MITM further improves in this metric, obtaining a result close to joint training performance.
This indicates it does not compromise in task bias to inflate final average accuracy, which can be the
case when biased to the most recent task. We attribute this additional balance shown by MITM to
the symmetrical distillations losses. On the more difficult S-TinyImageNet dataset, we still observe
some task bias compared to the upper bound, although we obtain an improvement over EFC. We
also include Deep Model Consolidation (DMC) introduced in Zhang et al. (2020), which shares an
equivalent architecture to our method. In contrast, our method optimizes all three models jointly on
the current task data. This is deliberate, as asynchronously updating the models introduces a sudden
shift in distillation targets. Distributional shifts, such as a task boundary, can introduce the stability
gap and lead to the degraded accuracy observed. Finally, we provide some additional exemplar-
based results in appendix A.2. In the appendix, we show how to extend our approach to work with
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Table 2: Comparison to the state-of-the-art on S-TinyImageNet exemplar-free cold-start 10-step
setting. We observe MITM to outperform other methods in terms of accuracy and forgetting.
‡Excerpted from Magistri et al. (2024). ¶Reproduced using author’s implementation.

FAA↑ AIA↑ Forgetting↓ FAσ↓

Joint training (upper bound) 59.58±0.3 3.43±0.2

EWC (Kirkpatrick et al., 2017)‡ 8.00±0.3 15.70±0.4 - -
LwF (Li & Hoiem, 2017)‡ 26.09±1.3 45.14±0.9 - -
FeTrIL (Petit et al., 2023)‡ 30.97±0.9 45.60±1.7 - -
EFC (Magistri et al., 2024)¶ 33.83±1.1 47.59±0.77 25.45±2.8 11.01±1.3

LwF+LDCGomez-Villa et al. (2024) 34.2±0.7 46.8±1.1 - -
MITM 42.18±0.6 55.14±0.7 23.29±0.7 8.29±0.3

Table 3: Comparison to the state-of-the-art on S-CIFAR-100 exemplar-free cold-start 20-step
setting. MITM slightly outperforms EFC, while achieving significantly less forgetting and task bias.
‡Excerpted from Magistri et al. (2024). ¶Reproduced using author’s implementation.

FAA↑ AIA↑ Forgetting↓ FAσ↓

Joint training (upper bound) 71.78±0.5 2.94±0.3

EWC (Kirkpatrick et al., 2017)‡ 17.7±2.4 31.02±1.2 - -
LwF (Li & Hoiem, 2017)‡ 17.44±073 38.39±1.1 - -
FeTrIL (Petit et al., 2023)‡ 23.28±1.2 38.8±1.1 - -
EFC (Magistri et al., 2024)¶ 31.87±0.9 47.22±0.72 24.68±0.8 14.24±0.7

MITM 32.54±0.1 48.04±0.4 15.21±0.9 9.43±0.7

exemplars and report results in low memory settings, where our approach is more effective than
existing solutions.

As in Magistri et al. (2024), we provide an evaluation of MITM in the cold-start 20 step setting of
S-CIFAR100 in Table 3. We use the same hyperparameters, with the exception of the learning rate
which is reduced to 0.005. In this setting, it is more difficult to prevent forgetting of past tasks due
to the increased number of steps and reduced numer of samples per step. Both EFC and MITM
observe degraded performance under these constraints, especially in terms of task bias, although
MITM retains the advantage in all metrics.

Table 4: Ablation on disentanglement of old and new tasks on S-CIFAR-100. Logit distillation is
a similar method to LwF. Extending this with a separated softmax shows a clear benefit to the average
minimum accuracy, indicating this mitigates the stability gap. MITM is obtained by introducing
a leading model to logit distillation. This naturally separates the softmax, while the symmetric
distillation significantly reduces task bias. We provide more details for these baselines in appendix
A.1.

FAA↑ AIA↑ Forgetting↓ min-ACC↑ FAσ↓

Logit distillation 9.87±0.3 26.90±0.5 83.26±0.7 0.0±0.0 26.70±0.4

Logit distillation + separated softmax 39.50±0.6 53.02±0.5 13.81±0.6 32.29±1.0 12.47±0.3

MITM 49.57±0.5 61.52±0.3 14.58±0.2 44.00±0.7 3.91±0.3
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Figure 2: Stability gap: Comparison of MITM to EFC, and LwF with separated softmax. The
validation accuracy for task N is shown during the initial training steps on task N+1. We show three
runs and highlight the mean. For LwF-SS, detailed in appendix A.1, we can observe significant
transient forgetting, i.e. a stability gap, for the first task. On other tasks, the stability gap is mitigated.
In EFC, we observe a subtle stability gap, indicating it is significantly mitigated. MITM does not
yield a similar gap.

In summary, we show MITM to obtain state-of-the-art results in CIFAR100 and TinyImageNet. This
result is achieved with very little task bias, as indicated by our introduced metric, outperforming
prototype based methods such as EFC.

4.4 ANALYSIS OF MODEL-IN-THE-MIDDLE

Below, we outline multiple ablation studies to better understand our approach.

Disentangling old and new tasks. In Table 4 we compare MITM’s disentanglement strategywith
other ablated variants. Logit distillation, equivalent to LwF, suffers strongly from excess forgetting
due to the global softmax. Separating this significantly improves the method and avoids the stability
gap. This method, LwF-SS, still suffers from a significant task-recency bias, as shown by the ob-
tained FAσ. The addition of a leading model allows us to naturally balance stability and plasticity,
and we see MITM outperforms others in the task bias metric.

Stability gap analysis. In Figure 2, we show the evaluation accuracy of the previous task for every
training iteration of the current task, as specified in De Lange et al. (2023). In this work, the authors
observe most methods to exhibit significant forgetting of the previous task, which is subsequently
recovered to a certain extent. This effect happens in the initial training iterations of the subsequent
task. Similar to Caccia et al. (2022), we observe applying a separated softmax mitigates this issue
on most tasks, which is the case for all methods shown. In the case of LwF+SS, we still observe the
stability gap for the first task. For EFC, we can observe the stability gap occurring on a small scale,
indicating it is largely mitigated. We observe no forgetting of previous tasks at the task boundary for
MITM. We attribute this to the the addition of the leading model. As this leading model is updated
through many small training steps, it avoids sudden distributional changes and slowly propagates
these to the middle model.
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Figure 3: Per-task accuracy after every task on S-CIFAR100. LwF observes excess plasticity,
leading to catastrophic forgetting. Applying a separated softmax (LwF-SS) significantly reduces
this, but is biased towards the initial and most recent tasks. EFC lessens the bias towards the initial
task, but still suffers from task-recency bias. MITM does not observe a clear bias towards any task.

Task-recency bias. In Figure 3, we show the accuracy on all tasks after each trained task. For LwF,
we observe the catastrophic forgetting to significantly bias the method towards the most recent tasks.
This forgetting is alleviated with LwF-SS, but a strong bias towards the initial and most recent tasks
is still observed. In EFC, a slight bias towards both the initial and most recent tasks is observed,
as we can observe some forgetting the tasks directly after the initial task. This indicates that the
prototypes used to balance the classifier may not be sufficient. The symmetric distillation does
not bias the middle model towards any particular task, naturally introducing this balance without
necessitating exemplars or prototypes.

Stability-plasticity trade-off. We further investigate the balance between the leading and trailing
distillation by introducing a balancing hyperparameter λ. That is, we update Equation 3 to be

LTi
= Ltrailing + λLleading + Lclassification (8)

In Table 5 we provide results for various choices for λ. We can observe choosing a lower λ, which
biases towards the trailing loss, slightly increases performance. As initial task is learned to a higher
accuracy, a bias towards these slightly increases accuracy. Pushing this bias further, with λ = 0.5,
we obtain the lowest amount of forgetting, which is generally highest on the initial tasks. However,
we observe this bias towards the earlier tasks is at the cost of the accuracy on later tasks, as any
choice other than λ = 1.0 increases the task bias metric. This shows symmetric distillation is
effective at balancing past and current tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Ablation on balancing leading and trailing model on cold-start S-CIFAR100 with 10
steps. We observe MITM to be robust to different choices for lambda, with λ = 1 providing the
least task bias. The mean and standard deviation of three runs are given.

Lambda FAA↑ AIA↑ Forgetting↓ FAσ↓

0.5 49.82±0.4 61.34±0.2 11.79±0.1 4.63±0.4

0.8 50.21±0.4 62.34±0.5 13.29±0.5 4.51±0.6

1.0 49.57±0.5 61.52±0.3 14.58±0.2 3.91±0.3
1.2 48.88±0.3 61.45±0.2 15.77±0.6 5.12±0.7

2.0 47.18±0.5 61.22±0.5 19.80±1.3 6.02±0.6

5 CONCLUSION

In this paper, we introduce MITM, a simple symmetric distillation method for continual represen-
tation learning that closely resembles canonical supervised learning. Our method does not depend
on exemplars, warm start, or additional bias correction. We motivate the separation of learning new
representations and merging existing ones, and show that this approach naturally mitigates the sta-
bility gap and reduces task bias. Building on these properties, our approach obtains state-of-the-art
results for exemplar-free cold-start class-incremental learning. Additionally, we introduce a new
metric for task bias and investigate MITM’s ability to balance past and current tasks. Finally, we
perform ablations on the components of our method regarding the disentanglement strategy and the
stability-plasticity balance to highlight their contribution.

We employ logit distillation to allow underlying features to adapt, providing increased plasticity
over feature distillation. It is possible that insights from regularization methods can further refine
the allowed plasticity to avoid forgetting. This paper focuses on offline continual learning without
exemplars and in low-memory settings. Extending our method to be complementary to exemplar-
based settings and online continual learning scenarios might be exciting directions to investigate.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF ABLATION METHODS

In Table 4 we introduce logit distillation. This method closely resembles LwF (Li & Hoiem, 2017),
and its objective is given by

L = E(x,y)∼DTc

[
ℓ (f(x;ϕ), y) +

1

n

n∑
i=1

(fT0;c−1(x; θ)
i − fT0;c−1(x;ψ)

i)2

]
(9)

where ℓ(·, ·) denotes the softmax cross-entropy loss function. This method can be extended with a
separated softmax by simply restricting the logits on which the softmax operates to the current task

L = E(x,y)∼DTc

[
ℓ (fTc

(x;ϕ), y) +
1

n

n∑
i=1

(fT0;c−1
(x; θ)i − fT0;c−1

(x;ψ)i)2

]
(10)
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A.2 EXEMPLAR-BASED EXTENSION

While our approach is designed for exemplar-free setting, it is flexible in nature and able to gener-
alize to the exemplar-based setting with few modifications. To make use exemplars from a small
buffer M, we modify the expectation of equations in leading loss (Eq. 5) and trailing loss (Eq. 6)
to be

E(x,y)∼DTc∪M. (11)

As in Chaudhry et al. (2019); Buzzega et al. (2020); Wu et al. (2019), we approximation the expec-
tation by sampling half the batch from DTc

and the other half M, as to avoid class imbalance from
the replay buffer. Additionally, we modify the total loss (Eq. 3) to add a cross entropy loss on the
labels for the middle model. To avoid introducing the stability gap, we scale the contribution of the
cross entropy loss by the fraction of epochs that have passed for the current task, η ∈ [0, 1]. This
way, when large distributional changes are occur at the task boundary, η is (close to) zero.

Lmiddle = η · E(x,y)∼DTc∪M [ℓ(fTc
(x; θ), y)] (12)

We provide a comparison to exemplar-based metods in Table 6. All methods have been run using
hyperparemeters specified in Boschini et al. (2022). It should be noted for fair comparison, as argued
in Zhou et al. (2023), that the compared methods only make use of two model copies, while MITM
uses three. However, this additional model copy is not used to provide additional storage of past
tasks.

In exemplar based setting, we see MITM is competitive in the low buffer regime. In Table 6 we
can observe these generally strong exemplar based methods to under-perform due to the low num-
ber of exemplars, especially in the case with only 20 per class. In the case of DER and DER++,
these methods do not employ a separated softmax, and therefore also obtain a low minimum accu-
racy, indicating significant transient forgetting. This is alleviated in X-DER, which combines the
logit distillation from DER together with separated softmax from ER-ACE to obtain state-of-the-art
results in the cold-start setting.

We note that both of these methods, ER-ACE and X-DER, observe a significant reduction in mini-
mum accuracy when the number of exemplars is small. This indicates these methods are not fully
able to mitigate the transient forgetting in this case, possibly contributing to a reduced final average
accuracy.

Table 6: S-CIFAR-100 exemplar-based cold-start comparison in the 10-step setting. MITM per-
forms comparably in the low memory buffer regime. In ER-ACE and X-DER the use of a separated
softmax significantly improves the average minimum accuracy, indicating the stability gap is re-
duced. This is further improved by MITM using symmetric distillation. Improving exemplar-based
results is an interesting avenue for future work.

FAA↑ AIA↑ Forgetting↓ min-ACC↑ FAσ↓

DER (Buzzega et al., 2020) 33.61±1.6 54.93±0.7 52.85±1.7 1.86±0.3 15.47±1.0

M
=

5
0
0

DER++ (Buzzega et al., 2020) 37.53±0.3 55.49±0.7 51.51±0.3 4.49±1.8 15.58±1.1

ER-ACE (Caccia et al., 2022) 38.12±1.3 54.34±0.7 38.80±0.8 25.46±1.2 9.91±1.6

X-DER (Boschini et al., 2022) 48.13±0.5 61.54±0.5 23.72±0.1 27.71±2.2 12.19±0.5

MITM 50.16±0.9 63.34±0.5 27.93±1.6 43.19±0.9 10.63±0.4

DER (Buzzega et al., 2020) 23.26±0.9 43.49±1.3 70.65±1.9 1.82±0.9 22.19±0.3

M
=

2
0
0

DER++ (Buzzega et al., 2020) 26.68±0.7 45.55±1.2 65.10±0.9 1.59±0.4 19.26±0.2

ER-ACE (Caccia et al., 2022) 29.39±0.9 48.35±0.8 45.98±1.7 18.96±0.4 10.76±1.0

X-DER (Boschini et al., 2022) 35.83±0.5 54.61±0.4 41.94±0.6 19.76±1.8 20.89±0.1

MITM 46.86±0.4 61.53±0.1 31.73±0.8 39.36±0.2 13.52±0.1

We note that compared to its exemplar-free variant, MITM with 200 exemplars has a reduced accu-
racy and significantly increased task bias. This result is in contrast to Chaudhry et al. (2019), which
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argue the benefit of these tiny memories. Improving the effectiveness of exemplars in our framework
is an interesting direction for future work.
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