Under review as a conference paper at ICLR 2025

SVD-LLM: TRUNCATION-AWARE SINGULAR VALUE
DECOMPOSITION FOR LARGE LANGUAGE MODEL
COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

The advancements in Large Language Models (LLMs) have been hindered by
their substantial sizes, which necessitate LLM compression methods for practical
deployment. Singular Value Decomposition (SVD) offers a promising solution
for LLM compression. However, state-of-the-art SVD-based LLM compression
methods have two key limitations: truncating smaller singular values may lead to
higher compression loss, and the lack of update on the compressed weight after
SVD truncation. In this work, we propose SVD-LLM, a new SVD-based LLM
compression method that addresses the limitations of existing methods. SVD-LLM
incorporates a truncation-aware data whitening strategy to ensure a direct mapping
between singular values and compression loss. Moreover, SVD-LLM adopts a
parameter update with sequential low-rank approximation to compensate for the
accuracy degradation after compression. We evaluate SVD—-LLM on 10 datasets
and seven models from three different LLM families at three different scales. Our
results demonstrate the superiority of SVD-LLM over state-of-the-arts, especially
at high model compression ratios.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in a wide range of
tasks such as natural language understanding and generation (Zhao et al., [2023} |Gozalo-Brizuela
and Garrido-Merchan, [2023)). Despite such capabilities, the democratization of LLMs is primarily
restricted by their substantial resource demands (Wan et al., 2023;Wang et al.,[2024;Zhou et al.,[2024).
One of the most effective techniques to reduce resource demands of LLMs is model compression (Zhu
et al., 2023). To avoid resource-intensive retraining, LLM compression is often conducted in a
post-training manner, and methods based on quantization (Yuan et al., 2024} [Huang et al., [2024),
unstructured pruning (Frantar and Alistarhl 2023), and structured pruning (Ma et al., [2023} |Ashkboos
et al.} |2024; Zhong et al., |2024) specifically designed for LLMs have been intensively studied.
Regardless of their success, these techniques have their own constraints, such as hardware dependency
and low inference speedup. Compared to those techniques, compression techniques based on low-rank
approximation, such as Singular Value Decomposition (SVD) are not limited by those constraints.
Moreover, the KV cache of LLMs compressed via SVD at runtime can also be reduced.

Despite these advantages, the potential of SVD for LLM compression has not been thoroughly
explored. A few SVD-based LLM compression methods such as FWSVD (Hsu et al., [2022) and
ASVD (Yuan et al, 2023) have recently been proposed. However, these methods exhibit severe
performance degradation when model compression rati(ﬂincreases. Such limitation can be attributed
to two fundamental issues involved in their approaches: @ Misalignment between SVD Truncation
and Compression Los All existing methods fail to establish a direct relationship between singular
values and the model compression loss. As a consequence, truncating smaller singular values in
SVD could lead to significant compression loss. @ Lack of Model Parameter Update after SVD
Truncation: as model compression ratio increases, the number of singular values that need to be

"Model compression ratio refers to the percentage of parameter reduction achieved through compression.
2Given input activation X, original weight matrix W and its compressed version W' in the LLM, the SVD
compression loss (Yuan et al.| [2023}|Hsu et al.| [2022) refers to ||W X — W’ X]||r in the form of Frobenius loss.

Under review as a conference paper at ICLR 2025

truncated in SVD increases as well. To compensate for the accuracy degradation caused by truncating
a larger number of singular values, it becomes necessary to update the remaining parameters of the
compressed model. Unfortunately, existing SVD-based LLM compression methods do not take such
update into account, and thus fail to compensate for the accuracy degradation under high model
compression ratios.

In this paper, we propose a SVD-based post-training LLM compression method, which we refer to
as SVD-LLM, that effectively addresses the two fundamental issues of existing methods. SVD-LLM
differs from existing SVD-based LLM compression methods in two key aspects: @ Truncation-
Aware Data Whitening: supported by the theoretical proof, SVD-LLM incorporates a truncation-
aware data whitening technique that ensures a direct mapping between singular values and model
compression loss. In doing so, the proposed truncation-aware data whitening technique is able
to identify which singular values should be truncated to incur minimal model compression loss.
@ Parameter Update with Sequential Low-rank Approximation: to compensate for accuracy
degradation after compression, SVD-LLM sequentially fine-tunes the decomposed low-ranking
matrices for a global accuracy recovery.

We compare SVD-LLM with both state-of-the-art SVD-based LLM compression methods as well
as pruning and quantization-based LLM compression methods. To demonstrate the generability of
SVD-LLM, we conduct our evaluation on a total of 10 datasets and seven models from three different
LLM families (LLaMA, OPT, and Mistral) at three different scales (7B, 13B, 30B), and evaluate the
performance of SVD-LLM on both GPU and CPU. We highlight three of our findings:

* SVD-LLM consistently outperforms state-of-the-art SVD-based LLM compression methods
across all 10 datasets, three LLM families at three scales by a large margin.

* SVD-LLM outperforms state-of-the-art structured pruning-based LLM compression methods
with up to 57% lower perplexity under 7GB memory budget. It also outperforms state-of-
the-art 1-bit post-training quantization-based LLM compression methods. More importantly,
when combined with 2-bit post-training quantization, SVD-LLM outperforms state-of-the-art
1-bit training-required quantization-based LLM compression method, presenting a new way
to achieve state-of-the-art compression performance without incurring expensive retraining.

* LLMs compressed by SVD-LLM are able to achieve inference speedup and memory reduc-
tion when deployed on real hardware. In particular, compared to the original LLMs, models
compressed by SVD-LLM are able to achieve 3.1 times higher throughput on A100 GPU
and 2.3 times higher throughput on AMD EPYC 7643 CPU. Moreover, the weight memory
saving brought by SVD-LLM are near linear to the compression ratio. At the same time,
SVD-LLM is able to reduce runtime KV cache memory without additional accuracy drop.

2 RELATED WORK

Large Language Model Compression: LLMs in general contain billion-scale parameters. Applying
conventional model compression methods for LLMs is unfeasible as they necessitate resource-
intensive retraining. Given that, post-training methods that avoid retraining in the compression
process have been developed. In general, these methods can be grouped into four categories:
unstructured pruning, structured pruning, quantization, and low-rank approximation. Specifically,
unstructured pruning methods set the individual weights of an LLM to zero without changing its shape.
However, the irregular sparsification of unstructured pruning is difficult to achieve the desired speedup
or memory saving and can only demonstrate its best efficiency on certain hardware architecture such
as NVIDIA Ampere GPU. Unlike unstructured pruning, structured pruning methods directly remove
entire channels or other structured components from LL.Ms, making them easier to implement on
hardware. A notable contribution is LLM-Pruner (Ma et al.| 2023), which utilizes a small amount of
data to obtain the weight, parameter, and group importance of the coupled structure for pruning with
LoRA to recover precision. However, due to the great modification of the weight matrix, it suffers
from accuracy degradation especially under high compression ratios, and many follow-up works
such as SliceGPT (Ashkboos et al.;2024)) and BlockPruner (Zhong et al.,|2024) have been proposed
with better compression performance. Quantization methods, on the other hand, achieve model
compression by reducing the precision of weight matrices of an LLM. However, quantization is not
only difficult to achieve the desired inference speedup (Lin et al.,[2024), but also has the drawback
of only providing a limited range of compression options, typically ranging from 2 to 8 bits. This
limited range prevents full utilization of the available memory budget. Recent studies, including

Under review as a conference paper at ICLR 2025

Original Compressed
LLM Callbrahon Data LLM

7

Layer 1 Input Activation | [wes| . o ___________________, UP dmz Wu H

SVD :

Layer 2 Clnolzsky decomposition |:> XE |:> Wy | X W £ :>

e . Trune. : Upda?e W
-Layer M : Whitening Matrix S -

\ '

......................................

X [Weight W Layer M

®Truncatlon-Aware Data @Parameter Update with Sequential
Whitening Low-rank Approximation

Figure 1: Overview of SVD-LLM.

PB-LLM (Yuan et al.,[2024)), and BiLLM (Huang et al., [2024)) have focused on 1-bit post-training
quantization. Nevertheless, these approaches often lead to severe accuracy degradation, indicating
that 1-bit quantization remains a challenging aspect of LLM compression.

SVD for LLM Compression: Singular Value Decomposition (SVD) is a widely used technique to
reduce matrix size by approximating a matrix with two smaller low-ranking matrices (Golub et al.|
1987). SVD is commonly used to compress models. Previous work Drone (Chen et al., 2021) has
successfully compressed the Bert model via SVD. In LLM compression, for example, AAFM (Yu
and Wu, [2023) dynamically identifies the compressed model architecture and selectively compresses
the output features of individual linear layers instead of the model weights. LoSparse (L1 et al.l |2023)
compresses the weight matrix by the sum of a low-rank matrix and a sparse matrix. ARS (Gao et al.|
2024) dynamically allocates the rank of the SVD compression based on the importance of weights in
the LLM. Directly applying SVD on the weight matrix without considering the importance of the
weights leads to a large LLM compression error. To address this issue, Hsu et al.| (2022)) propose
FWSVD, which introduces Fisher information to weigh the importance of parameters. To make up
for the lack of motivation to apply SVD in the context of LLM compresion, the authors in FWSVD
also provide an analysis of the impact of SVD compression to the final compression performance.
However, FWSVD requires a complex gradient calculation that demands substantial computing
and memory resources for LLM compression. Another problem of vanilla SVD is the distribution
of activation can affect the compression error. To address this issue, [Yuan et al.| (2023)) propose
ASVD, which scales the weight matrix by a diagonal matrix that normalizes the impact of input
channels on the weights. However, all of the SVD-based LLM compression methods, particularly
including FWSVD and ASVD, do not establish a direct relationship between singular values and
compression loss. As a result, truncating the smaller singular values may lead to higher compression
loss. Moreover, as the compression ratio increases, it is necessary to update the compressed weights
due to truncating a great number of singular values. However, existing methods have no design for
this update and thus incur severe accuracy degradation under high compression ratios.

3 SVD-LLM

Figure[I|provides an overview of SVD—-LLM. At a high level, SVD—-LLM is a SVD-based post-training
LLM compression method. Specifically, following the standard procedure of post-training LLM
compression methods (Frantar and Alistarh) 2023} |Yuan et al.} 2023; X1ao et al.,[2023), SVD-LLM
uses a random set of sentences as calibration data to generate activation for truncation-aware data
whitening. Given the generated activation, SVD-LLM calculates the whitening matrix S through
Cholesky decomposition, and then performs SVD to truncate the multiplication of weight matrices
W and whitening matrix S to compress the LLM. After truncation, SVD-LLM updates the remaining
model parameters with sequential low-rank approximation to recover accuracy. In the following,
we describe both truncation-aware data whitening and parameter update with sequential low-rank
approximation in detail. The pseudocode of SVD-LLM is provided in Appendix [A.8]

3.1 TRUNCATION-AWARE DATA WHITENING

Motivation: Due to high variance of input activation, simply applying vanilla SVD for LLM
compression leads to severe accuracy degradation (Yuan et al.|[2023). To address this issue, existing
methods (Yuan et al., 2023} Hsu et al., [2022) formulate LLM compression as an optimization problem
with the following objective:

O =min(|[WX —W'X]||F)))]

Under review as a conference paper at ICLR 2025

v Trunc.) v Trunc.
[@ One Singular Value] [eMuItipIe Singular Values] [@ One Singular Value] [eMuItipIe Singular Values]

T T AR | M i
Loss: (1.1)[0.7) (19](17) Loss: (0.1] (09) /@) /@

(a) Data Normalization (ASVD) (b) Truncation Aware Data Whitening (SVD-LLM)

Figure 2: Compression loss (L = ||IWX — W'X||r) of different data preprocessing methods.

where W is the weight matrix of the original LLM, X is the activation of W, W’ is the compressed
weight matrix, and ||[WX — W' X||r is the compression loss in the form of Frobenius loss.

Although existing methods attempt to reduce this compression loss during their SVD truncation,
they all fail to establish a direct relationship between singular values and compression loss. As a
consequence, truncating smaller singular values in SVD could lead to significant compression loss.
Taking ASVD (Yuan et al,[2023) as an example, ASVD extracts a diagonal matrix Sy from X where
each element in the diagonal is the absolute mean value of each channel. It then uses Sy to normalize
X and converts WX into (W Sy)(S; ' X). Subsequently, SVD is performed on W .Sy to obtain the
decomposed matrices Uy, X, and Vj. Lastly, ASVD truncates the smallest singular values in X to
obtain the compressed weight matrix W} = Uy x Trunc.(3g) x Vp x St

Although normalizing the activation improves the performance, ASVD does not establish a direct rela-
tionship between singular values and compression loss (a detailed proof is included in Appendix [A-T)).
To better illustrate this point, we show two concrete examples in Figure[2(a)] In the first example
@ where only one singular value is truncated, truncating the smallest singular value 0.1 results in a
higher compression loss (loss = 1.1) than truncating the second smallest singular value 0.9 (loss =
0.7). In the second example ® where multiple singular values are truncated, truncating the smallest
two singular values 0.9 and 0.1 also leads to a higher loss (loss = 1.9) than truncating 2.4 and 0.1
(loss = 1.7). Hence, truncating the smallest singular values does not lead to minimal loss.

Key Design: The key idea of SVD-LLM is to incorporate a truncation-aware data whitening tech-
nique that ensures a direct mapping between singular values and compression loss. To achieve
this, SVD-LLM enforces the whitened activation S~ X to be orthonormal such that each channel
is independent of each other, i.e., (S7!X)(S71X)T = S7IXXT(S™1)T = I, where S is de-
rived through Cholesky decomposition (Meyer, [2000). Then we perform SVD on WS to obtain
the decomposed matrices U, X, V, where U = [u1, us, us, ..., u,], & = diag(o1, 092,03, ,0.),
and V. = [v1,v9,vs3,...,0,]. Lastly, the smallest singular values in ¥ are truncated to ob-
tain the compressed weight matrix W/ = U x Trunc.(X) x VT x S~!. To save the model
memory, SVD-LLM replace the original matrix W with the two smaller and low-ranking ones

W, = U x [Trunc.(2)]z, W, = [Trunc.(2)]z x VT x S~ in the compressed LLM.

Figure 2(b)]illustrates the effect of the proposed truncation-aware data whitening method. In the first
example @ where only one singular value is truncated, the compression loss equals to the truncated
singular value. In the second example @, the compression loss of truncating multiple singular values
equals to the square root of the sum of their squares. As such, under the proposed truncation-aware
data whitening method, truncating the smallest singular values leads to minimal compression loss.

In the following, we provide a theoretical proof on why the proposed truncation-aware data whitening
technique ensures a direct mapping between singular values and compression loss in the case of one
singular value (Theorem [3.2)) and multiple singular values (Corollary [3.3). To further illustrate the
feasibility of our proposed technique in compressing LLM, we also provide the spectrum analysis of
the singular values obtained by our technique in Appendix [A-4]

Lemma 3.1. The Frobenius norm of matrix A with dimension m X n can be deduced into the square
root of the trace of its gram matrix, which is:

2

1AL 2 [SO ayl? | = [trace (A74)] 2 @)

j=1i=1

Under review as a conference paper at ICLR 2025

Using Lemma we obtain the compression loss L; when truncating the 7* singular value of WS
to reduce its rank for compression:

Li = |[WX —W'X||p = |[WSST'X - SVD(WS)S™'X|| . = |[(WS = SVD(WS)S™X|| .

= HaiuiviTsleHF = o trace (uiviTSﬂXXT (Sil)TviulT) ?

3)
Since both U = [uy, us, ug, ..., u,] and V = [vq, va, v3, ..., v,] are orthonormal matrices, we have:
v v; = ul u; = L0l v = ul uy = 0,Vi # jitrace(viv]) = trace(uul) =1 4)

Theorem 3.2. If S is the Cholesky decomposition of X X, the compression loss L; equals to o;.

Proof. Since the whitening matrix S is the Cholesky decomposition of X X7, we have SST = X X7,
We can further infer Equation (3) to obtain:

1
2

1
L, =0 trace(uivaiu?)% = o, trace (u7 (viTvi) u?) ® = g, trace (u7u1T) =o0; 5)

Therefore, L; of truncating o; equals to the singular value o; itself.]

Corollary 3.3. If S is the Cholesky decomposition of X X*, truncating the smallest singular values
leads to the lowest loss L compared to truncating others.

Proof. If we truncate o,,, 11, 042, Om+3, ..., 0y in 2 for compression, the square of the loss L is:
2

L? = Z ol STIX|| = Z Z 0i0; trace(uiviTSleXT(Sfl)ijuJT)
i=m-+1 F j=m+1li=m+1 (6)
= Z 0? trace(uiviTSﬂXXT(Sfl)TUiuiT) = Z (Li)2 = Z (cr,-)2
1=m-+1 i=m-+1 i=m-+1

The squared loss L? equals to the sum of the squared singular values (More detailed derivation is in
Appendix [A.2). Truncating the smallest singular values achieves the lowest compression loss. [

Apart from aligning the SVD truncation with the compression loss, our data whitening method
can even obtain the optimal minimization of compression loss, which has been achieved by Drone
on small model but unable to be applied for LLM. More detailed analysis about the optimality of
SVD-LLM and comparison with Drone are provided in Appendix [A.10

3.2 PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION

Motivation: Although aligning SVD truncation with the compression loss, as done in Section [3.1]
helps to preserve the accuracy degradation during compression, with the increase of compression
ratio, the performance of the compressed LLM may still become worse since more and more larger
singular values will get truncated by SVD compression. Therefore, it is necessary to update the
remaining parameters in the compressed LLM.

Key Design: Driven by previous post-training LLM compression works (Ma et al.,2023), SVD-LLM
uses LoRA fine-tuning to update the remaining weight parameters of the compressed LLM for
accuracy recovery. Specifically, suppose that we decompose the original weight matrix W into two
low-ranking matrices W,,, Wv with SVD-LLM, as discussed in the pseudocode in Appendix [A.§]
Instead of directly fine-tuning the compressed weight matrix W’ = W,, x W,,, which would break its
low-rank structure, we treat W,, and W, as two linear layers and update them sequentially as follows:

Y =W, x W, x X 7)
where W) = W, + B, A,, W) = W, + B, A,, and A,, B, A,, and B, are matrices used for LORA

v
fine-tuning. Simultaneously fine-tuning W,, and W,, will not guarantee a decrease in fine-tuning
loss. This is because the derivatives of W,, and W,, are interdependent during the fine-tuning process,

meaning that changes in one matrix may counteract or interfere with the optimization of the other. As

Under review as a conference paper at ICLR 2025

Table 1: Performance of LLaMA-7B compressed by SVD-LLM (SVD-LLM * denote the version
without parameter update with sequential low-rank approximation) and baselines under different
compression ratio (corresponding weight memory is listed inside bracket) on two language modeling
datasets (measured by perplexity (|)), eight common sense reasoning datasets (six measured by
both individual and average accuracy (1), TruthfulQA measured by BLEU score (1), and GSM8K
measured by Exact Match Accuracy (1)). The best performance is marked in bold. The relative
performance gain compared to the best-performing baseline is marked in green inside bracket.

RATIO (MEM.) \ METHOD \ ‘WikiText-2.| C4] \ Openb. ARC_e WinoG. HellaS. PIQA MathQA Average? Truthful QAT GSMBK?
\ \ \
SVD 20061 18800 0.05 0.04 0.01 0.03 0.02 0.03 0.03 0.00 0.00
20% (102 GB) FWSVD 1727 1511 0.09 0.11 0.05 0.08 0.10 0.05 0.08 0.00 0.00
o L ASVD 11.14 15.93 0.29 0.53 0.64 0.41 0.68 0.17 0.45 0.21 0.04
SVD-LLM* | 7.94 (|29%) 15.84 ([1%) 0.31 0.62 0.61 0.45 0.71 0.21 0.49 (19%) 0.26 (+0.05) 0.05 (+0.01)
SVD-LLM | 6.73(l40%) 9.81(|38%) 0.33 0.67 0.69 055 0.79 0.26 0.55(122%) 028 (+0.07) 0.08 (+0.04)
SVD 52489 47774 0.04 0.04 0.05 0.01 0.03 0.02 0.03 0.00 0.00
40% (7.76 GB) FWSVD 18156 12847 0.06 0.05 0.02 0.00 0.05 0.03 0.04 0.00 0.00
o ASVD 1407 1109 0.08 0.11 0.09 0.08 0.13 0.08 0.10 0.01 0.00
SVD-LLM* | 13.73 (199%) 75.42 (193%) 0.25 0.33 0.61 0.40 0.63 0.12 0.39 (1290%) 0.17 (+0.17) ~ 0.02 (+0.02)
SVD-LLM | 8.18(]99%) 12.61(199%) | 0.29 0.59 0.68 052 0.69 020 0.50 (1400%) 0.24 (+0.23) 0.07 (+0.07)
SVD 105474 106976 0.01 0.03 0.01 0.00 0.01 0.02 0.01 0.00 0.00
60% (5.35 GB) FWSVD 32194 29292 0.06 0.02 0.01 0.01 0.02 0.03 0.03 0.00 0.00
02 ASVD 57057 43036 0.05 0.04 0.06 0.09 0.08 0.05 0.06 0.00 0.00
SVD-LLM * | 66.62(199%) 471.83 (199%) 0.10 0.05 0.17 0.10 0.21 0.04 0.11 (183%) 0.01 (+0.01) 0.00(+0.00)
SVD-LLM | 13.31(199%) 19.72(199%) | 027 0.52 0.60 041 0.66 021 045(1650%) 0.04 (+0.04) 0.04(+0.04)
SVD 687291 708243 0.00 0.04 0.02 0.01 0.01 0.00 0.01 0.00 0.00
80% (.58 GB) FWSVD 96872 89243 0.01 0.02 0.00 0.06 0.09 0.00 0.03 0.00 0.00
o ASVD 80425 67927 0.04 0.03 0.03 0.07 0.10 0.01 0.05 0.00 0.00
SVD-LLM * | 1349 (198%) 6224 (191%) 0.07 0.01 0.12 0.10 0.07 0.06 0.07 (140%) 0.00 (+0.00) 0.00 (+0.00)

SVD-LLM | 3179 (199%) 43.71(199%) | 021 033 051 029 053 021 0.35(1600%) 0.14(+0.14) 0.02 (+0.02)

a result, the overall effect on the fine-tuning loss function can be unpredictable and may not always
lead to a reduction in loss. Therefore, as depicted in Figure[I] we propose a sequential fine-tuning
strategy in SVD-LLM. To better illustrate the effectiveness of our sequential fine-tuning strategy
compared to the normal simultaneous fine-tuning, we provide a comparison in Appendix [A712]
Specifically, we first freeze matrix W, and fine-tune W,, with LoRA for all the decomposed weight
matrices in the LLM. We then perform the second-round LoRA fine-tuning on the matrix W, while
freezing the updated weight matrix 1W,,. Finally, we fuse the A,,, B,, A,, and B, matrices into W,
and W, as the final compressed matrices.

4 EXPERIMENTS AND ANALYSIS

Experiment Setup. We compare SVD-LLM against three groups of methods. (1) We com-
pare SVD-LLM with vanilla SVD and state-of-the-art SVD-based LLM compression methods:
FWSVD (Hsu et all, [2022), ASVD (Yuan et al., 2023) (Section[d.T)) and FLAP (Appendix [A-TT). (2)
We compare SVD-LLM with other types of LLM compression methods. These include three state-of-
the-art pruning-based LLM compression methods: LLM-Pruner (Ma et al.}2023)), SliceGPT (Ashk-
boos et al., [2024), and BlockPruner (Zhong et al., |2024)), and three state-of-the-art quantization-
based LLM compression methods: PB-LLM (Yuan et al.} 2024), BiLLM (Huang et al., [2024), and
OneBit (Xu et al., [2024) (Section @) (3) Lastly, we compare SVD-LLM against smaller LLM
StableLM-3B (Tow et al.) pre-trained from scratch (Appendix [A.7). More experimental setups are
provided in Appendix [A.3]due to page limit.

4.1 COMPARISON WITH STATE-OF-THE-ART SVD-BASED LLM COMPRESSION METHODS

First, we compare the performance of SVD-LLM with state-of-the-art SVD-based LLM compression
methods from three aspects: (1) performance under different compression ratios, (2) performance on
different LLMs, and (3) performance on LLMs with larger scales. The compression speed analysis
is provided in Appendix @ Driven from FLAP|An et al.| (2023), to ensure a fair comparison, we
not only evaluate the integrated SVD-LLM to show its best accuracy, but also compare SVD-LLM
without without parameter update with sequential low-rank approximation (denoted as SVD-LLM
*) with other baselines under the no LoRA fine-tuning setting. Example contents generated by the
compressed LLMs are included in Appendix [A.6]

Performance under Different Compression Ratios. We first evaluate the performance of LLaMA-
7B compressed by SVD-LLM and the SVD-based baselines under compression ratios ranging from
20% to 80% on all 10 datasets. Table [Tl summarizes the results. Both SVD-LLM and SVD-LLM *
without LoRA fine-tuning consistently outperforms vanilla SVD, FWSVD and ASVD across all the

Under review as a conference paper at ICLR 2025

Table 2: Perplexity (}) of SVD-LLM (SVD-LLM * denote the version without parameter update with
sequential low-rank approximation) and baselines on WikiText-2 and the average accuracy (1) of the
six common sense reasoning datasets of four different LLMs — OPT-6.7B, LLaMA 2-7B, Mistral-7B,
and Vicuna-7B — under 20% compression ratio. The relative performance gain compared to the
best-performing baseline is marked in green color inside bracket.

\ OPT-6.7B LLAMA 2-7B MISTRAL-7B VICUNA-7B
METHOD | Perplexity] Accuracy] | Perplexity| Accuracy? | Perplexity| Accuracy? | Perplexity| Accuracyf
| | | |
SVD 66275 0.03 18192 0.09 159627 0.03 18644 0.05
FWSVD 14559 0.06 2360 0.12 6357 0.08 2758 0.09
ASVD 82.00 0.32 10.10 0.36 13.72 0.32 16.23 0.33
SVD-LLM * | 16.04 (|80%) 0.41 (128%) | 8.50 ([16%) 0.53 (147%) | 10.21 (|126%) 0.42 (124%) | 8.41 (|48%) 0.51 (155%)
SVD-LLM | 11.61 ([86%) 0.48 (150%) | 6.07 (140%) 0.56 (156%) | 6.01 (156%) 0.59 (184%) | 7.43 (|54%) 0.54 (164%)

compression ratios. In particular, when the compression ratio reaches 40% and above, SVD-LLM
reduces the perplexity by more than 99% on two language modeling datasets and achieves over
400% higher average accuracy on six classification datasets. More importantly, the results on two
generation datasets ((TruthfulQA, GSMS8K) of all three baselines when compression ratios are 60%
and above are zero, meaning that the compressed LLMs totally lose their generation ability. In
contrast, SVD—LLM still outputs good generation even under the 80% compression ratio. These
results indicate that SVD-LLM is more effective in compressing LLMs for more resource-constrained
devices such as smartphones and IoT devices.

Performance on Different LLMs. To exam- Table 3: Perplexity (/) of SVD-LLM (SVD-LLM

ine the generability of SVD-LLM across differ- * denote the version without parameter update

ent LLMs, we compare the performance between with sequential low-rank approximation) and
SVD-LLM and the baselines on four different mod- paselines on WikiText-2 and the average ac-

els from three different LLM families — OPT- curacy (1) of the six classification datasets of

6.7B (OPT family), LLaMA 2-7B (LLaMA fam- [L.aMA-13B and LLaMA-30B under 20% com-
ily), Mistral-7B (Mistral family), and Vicuna-7B pression ratio. The relative performance gain
(LLaMA family) — under 20% compression ratio compared to the best-performing baseline is
on WikiText-2 and six classification datasets. As marked in green color inside bracket.

shown in Table[2] SVD-LLM consistently outper-
forms baselines on all four LLMs, and exhibits
more stable performance across different LLMs,
especially compared to vanilla SVD and FWSVD.

‘ LLAMA-13B LLAMA-30B
METHOD | Perplexity| — Accuracyl | Perplexity| Accuracy’

SVD 94631 021 54.11 0.33
. FWSVD 1598 043 20.54 0.42
Performance on LLMs with Larger Scales. To ASVD 6.74 0.54 271 0.44

examine the generability of SVD-LLM on LLMs svp-rum*
with larger scales, we compare the performance —>— "
between SVD-LLM and the baselines on LLaMA-

13B, and LLaMA-30B under 20% compression ratio. As shown in Table[3] SVD-LLM consistently
outperforms vanilla SVD, FWSVD, and ASVD on both of the two model sizes.

6.61 (12%) 0.54 (10%)
518 (|23%) 0.58 (17%)

5.63 (L75%) 0.57 (130%)
4.54 (180%) 0.61 (139%)

4.2 INFERENCE EFFICIENCY OF SVD-LLM

Theoretical Analysis of Inference Efficiency. Suppose SVD-LLM compresses the weight matrix
W € R¥™ into two low- rankmg matrices W, € R¥" W, € R"*™, as discussed in the pseudocode
in Appendlx 8l The compression ratio R,, will be R =1- (dn)r .

dn

(1) Compute Complexity Analysis: Given the input X € R™*<¢, instead of recalculating the full
weight matrix W’ = W,, x W, and then compute the output W’ x X, we calculate the intermediate
state M = W, x X and then compute the output Y = W, x M. In this way, the compute complexity
will be reduced from original O (d°n) to O (d*r + rnd). If we set the compression ratio R, = 50%,

since Ry = 1 — 07 we have, r = The compute complexity will be O (d°r + rnd) =

dn
2(d+n) "
O(rd(d+n)) =0 (d%”) = 10 (d?n), which reduces 50%. Similarly, given a compression ratio R,
the compute complexity will also be reduced to 1 — R,, times of the original.
(2) Inference Memory Analysis: Since SVD—-LLM does not recalculate the full weight W' = W,, x

W,, the weight memory will still be reduced to 1 — R,, times of the original one during inference.
Additionally, SVD-LLM is able to reduce the runtime KV cache memory without further losing

Under review as a conference paper at ICLR 2025

Il Ratio=80% Il Ratio=60% I Ratio=40% [Ratio=20% [Original

L 4000 v 2400
b b
23200 22000
% 2400 % 1600
X 1600h X 1200
o o
F 800 F 800
64 128 256 512 32 64 128 256
Batch Size Sequence Length
(a) Varying Batch Size on GPU (b) Varying Sequence Length on GPU
b @ 120
0350 o
@ 250 2 80
L1s50 9
o o
= =
208, 128 256 512 40732 64 128 256
Batch Size Sequence Length
(c) Varying Batch Size on CPU (d) Varying Sequence Length on CPU

Figure 3: Throughput (Tokens/sec) of original LLaMA-7B and its compressed version by SVD-LLM
under different compression ratio on single A100 GPU (Figure (a),(b)) and single AMD EPYC 7643
CPU (Figure (c),(d)). Figure (a),(c) is the comparison with different batch size while sequence length
= 32, Figure (b), (d) is the comparison with different sequence length while batch size = 64.

accuracy. Specifically, instead of keeping W,, x W, x X into the KV cache, SVD-LLM provides the
option to store the intermediate result M = W, x X into the KV cache and recompute the original key
and value states with the decomposed weight matrix W, if required. Therefore, the memory of the
runtime KV cache will be reduced to 5 = (1 — Ry) n%d times of the original. This a trade-off since
the Floating Point Operations (FLOPs) will get increased and the inference could be slow. We leave
the speedup a future work.oreover, since W, is already stored as the weight matrix in the decomposed
LLM, the original intermediate state matrix can still be recovered by Y = W,, x M without accuracy
drop. Therefore, SVD—LLM provides a unified solution that combines model compression and KV
cache compression into a single process.

Inference Speedup on Hardware. To quantify the inference speedup achieved by SVD-LLM, we
measure the numbers of tokens that the original LLaMA-7B and its compressed version by SVD-LLM
generate per second with different batch sizes and sequence lengths on a single NVIDIA A100
GPU and a single AMD EPYC 7643 CPU. As shown in Figure[3] SVD-LLM consistently ensures
an enhancement in the generation speed across all the compression ratios. More importantly, the
enhancement becomes more significant as the batch size increases and the sequence length decreases,
resulting in a maximum speedup of 1.2x on GPU and 1.1x on CPU under 20% compression ratio,
1.7x on GPU and 1.5x on CPU under 40% compression ratio, 2.1x on GPU and 1.64x on CPU under
60% compression ratio, and 3.1x on GPU and 2.3x on CPU under 80% compression ratio.

Inference Memory Reduction on Hardware. In this experiment, we evaluate the inference memory
saving, including the compressed weight memory and the runtime KV cache memory saving on
a single A100 GPU. Specifically, we measure the peak memory footprint during inference when
generating 128 tokens with batch size of 32 using LLaMA-7B compressed by SVD-LLM under
different compression ratios w/ and w/o considering KV cache reduction. The results are illustrated
in Figure f] where the memory reduction from the dotted line to the blue bars comes mainly from
model compression and the memory reduction from the blue to the yellow bars comes mainly from
the reduced footprint of the KV cache. As shown, the weight memory saving brought by SVD-LLM
is near linear to the compression ratio, which meets other previous theoretical analyses. Moreover,
SVD—-LLM is able to save additional 51% memory from its KV cache under 80% compression ratio.

4.3 ABLATION STUDY

In this section, we provide three ablation studies of SVD-LLM while more are provided in Ap-
pendix due to page limit.

Under review as a conference paper at ICLR 2025

B SVD-LLM w/o KV cache reduction [SVD-LLM w/ KV cache reduction 'Table 4: Perplexity (\L) of Compressed LLaMA-
....................... l l 7B on WikiText-2 under different Compression
5.7GB
0 8.2GB

)

-
~
N

1441378 . .
| 2468 15 ratios. SVD-LLM (W) denotes the version of
SVD-LLM with truncation-aware data whiten-
ing only; SVD-LLM (U) denote the version of
SVD-LLM with parameter update with sequen-
tial low-rank approximation only; SVD-LLM
(W+U) denotes the version of SVD-LLM with
both truncation-aware data whitening and param-
eter update with sequential low-rank approxima-
tion. The relative performance gain compared to
ASVD is marked in green color inside bracket.

o
N
=)

‘l/z.sucs 9.5\

©
=)

i‘ 3.265 7.1

w o
o

Peak Mem. (GB
o

20% 40% 60% 80%
Compression Ratio

Figure 4: Peak memory to generate 128 tokens
with batch size of 32 using LLaMA-7B com-
pressed by SVD-LLM w/ and w/o KV-cache reduc-
tion. The dotted line indicates the peak memory of

the original LLaMA-7B. The memory reduction MeTHOD | 20% 40% 60%
from the dotted line to the blue bars mainly comes ASVD | 1n4 | 1407 | 57057
from the model compression. The memory reduc- __ SVD-LLM (W) | 7.94(129%) | 13.11(J99%) | 42.30 (J99%)
tion from the blue to the yellow bars mainly comes _ SVP~LLM (U) | 10.12 (J9%) | 19.28 (199%) | 49.88 (199%)
from the reduced footprint of the KV cache. SVD-LLM (1+U) | 6.73(140%) | 8.18 (199%) | 1331 (J99%))

Modular Sensitivity Study. We conduct ablation studies to evaluate the separate contributions of
the two key components (i.e., truncation-aware data whitening and parameter update with sequential
low-rank approximation) of SVD-LLM. Let SVD-LLM (W) denote the version of SVD-LLM with
truncation-aware data whitening only; SVD—-LLM (U) denote the version of SVD-LLM with normal
SVD truncation and parameter update with sequential low-rank approximation; and SVD-LLM
(W+U) denote the version of SVD-LLM with both truncation-aware data whitening and parameter
update with sequential low-rank approximation. As shown in Table 4] We have three observations.
(1) SVD-LLM (W), SVD-LLM (U) and SVD-LLM (W+U) consistently outperform ASVD across
all the compression ratios. Notably, when the compression ratio is at and above 40%, all variants
reduce the perplexity by more than 99% compared to ASVD. (2) SVD-LLM (W+U) consistently
outperforms SVD-LLM (U) across all compression ratios and SVD-LLM (W) achieves a lower
perplexity compared to SVD-LLM (U) across all compression ratios, highlighting the effectiveness
of truncation-aware data whitening component in SVD—LLM. (3) With the increase of compression
ratio, SVD-LLM (W+U) achieves a much lower perplexity compared to SVD-LLM (W) , highlighting
the importance of combining both components in SVD-LLM when the compression ratio increases.

Impact of Calibration Data. Next, we examine the impact of calibration data on SVD-LLM.
Figure [5]and Table 6] summarize the performance of compressed LLaMA-7B when changing three
key characteristics of the calibration data: (1) the number of the calibration data, (2) the seed used
to randomly sample the calibration data, and (3) the data set from which the calibration data is
sampled. As shown, the changes on calibration data incur no more than 2% to the final performance,
demonstrating that the sensitivity of SVD-LLM on calibration data is limited.

Impact of Updating Order. We finally examine the impact of updating order in parameter update
with sequential low-rank approximation component to the final performance of the compressed LLM.
Table [5] summarizes the performance of compressed LLaMA-7B under 20% to 80% compression
ratios on WikiText-2 with different updating order. As shown, there is only a small difference of the
final performance between updating matrix U first and updating matrix V first, indicating SVD-LLM
is not sensitive to the updating order.

4.4 COMPARISON WITH OTHER TYPES OF LLM COMPRESSION METHODS

SVD-LLM is orthogonal to other post-trainingL.L.M compression methods including quantization
and pruning. In this experiment, we compare the performance of SVD-LLM with the state-of-the-
art structured pruning-based and quantization-based LLM compression methods. As discussed in
Section 2] since unstructured pruning methods are difficult to realize its efficiency, we do not make a
comparison with them in this experiment.

Comparison with Structured Pruning. First, we compare SVD-LLM with three state-of-
the-art structured pruning-based LLM compression methods: LLM-Pruner (Ma et al., [2023)),
SliceGPT (Ashkboos et al.l [2024), and BlockPruner (Zhong et al., |2024) under the same com-
pressed weight memory, ranging from 10GB to 7GB. The results on LLaMA-7B are shown in Table[7]

Under review as a conference paper at ICLR 2025

L Y 1 678 pA o1 Table 6: Performance of LLaMA-7B compressed
3 e 3 ? . by SVD-LLM under 20% compression ratio us-
26.78 <1 5673 ¢ ing calibration data sampled from WikiText-2
a o :
6,701 51135255 512 67051547 57 10 (DY default in our paper) and C4 datasets. The
Number of data (x2048 tokens) Seed for Random Sampling performance on WikiText-2 and C4 are reported

(a) Change of Number (b) Change of Seed by perplexity (), while the performance on six
. . downstream datasets are reported by average ac-
Figure 5:. Perpl.e Xity of LLaMA-7B under 20% curacy (7). The performancl; on Tru}t/hfulQi and
compression ratio using calibration dat.a .sampled GSMBSK are reported by BLEU score(T) and Ex-
with different number or seeds from WikiText-2. . nro Accuracy (1) respectively. The rela-
tive performance gain for data sampled from one
dataset compared to another is marked in green
Table 5: Perplexity of LLaMA-7B compressed by color inside bracket.
SVD-LLM under 20% to 80% compression ratio
on WikiText-2 with different updating order.

WikiText-2| C4] | Averagel | TruthfulQAT GSMSK?T
Calibration data sampled from WikiText-2

UPDATING ORDER | 20% 40% 60% 80% 6.73 (L1%) 9.81 | 0.55(12%) | 0.28 0.08
V first, then U | 6.85 8.32 13.20 (L1%) 31.67(11%) Calibration data sampled from C4
Ufirst,then V| 6.73(12%) 8.18 (12%) 1331 31.79 6.79 9.62(12%) | 054 | 028 0.08

Table 7: Perplexity (}) of LLaMA-7B compressed Table 8: Perplexity (|) of LLaMA-7B com-
by structured pruning methods and SVD-LLM un- pressed by 1-bit quantization methods and
der various weight memory budget on WikiText-2. svD-LLM on WikiText-2. The relative perfor-
The relative performance gain compared to the best- mance gain compared to the best-performing

performing baseline is marked in green. baseline is marked in green.
‘ PERPLEXITY UNDER WEIGHT MEMORY BUDGET METHOD ‘ TYPE ‘ MEMORY ‘ PERPLEXITY
METHOD | 10GB | 9GB | 8GB | 7GB PB-LLM Post-training ‘ 19GB ‘ 104.83
LLMPruncr | 9.88 1221 18.94 21.68 BILLM Post-training | 15 GB 4767
SliceGPT 8.78 12.73 16.39 2741 SVD-1LM | Post-training | L5GB | 47.21(}1%)
BlockPruner 9.4 12.76 19.78 43.05 OneBit | Training-required | 1.3 GB | 10.20
SVD-LLM | 6.92(]26%) | 7.38 (140%) | 8.02(|51%) | 9.23 (157%) SVD-LLM+ QuIP# | Post-training | 13GB | 9.83(|4%)

SVD-LLM outperforms all state-of-the-art structured pruning-based LLM compression methods. In
particular, SVD-LLM achieves up to 57% reduction in perplexity under the 7G memory budget.

Comparison with Quantization. Finally, we compare SVD-LLM with three state-of-the-
art quantization-based LLM compression methods that push the frontier to 1-bit quantization:
BiLLM (Huang et al., 2024), PB-LLM (Yuan et al) 2024), and OneBit (Xu et al.l 2024). Both
BiLLM and PB-LLM are post-training methods, and OneBit is training-required. The results on
LLaMA-7B are shown in Table [We have three observations: (1) Among all the post-training
methods, SVD-LLM achieves the best performance compared to PB-LLM and BiLLM. (2) Training-
required method OneBit outperforms SVD-LLM. This result is expected. This is because OneBit
belongs to training-required method, which involves retraining using the large-scale dataset with
intensive computing resources to boost performance after compression. However, compared to post-
training methods such as SVD—-LLM which does not require retraining, training-required method is
way too expensive. (3) Lastly, by combining SVD-LLM with a 2-bit post-training quantization-based
LLM compression method QulIP# (Tseng et al., 2024 we can outperform training-required method
OneBit without expensive retraining. This result is important, because it introduces a highly efficient
post-training approach that outperforms state-of-the-art 1-bit training-required quantization-based
LLM compression method without incurring expensive retraining.

5 CONCLUSION

In this paper, we presented SVD-LLM, a SVD-based post-training LLM compression method.
SVD-LLM proposes a novel truncation-aware data whitening strategy to guide which singular values
to be truncated with minimal compression loss. It also introduces a parameter update with sequential
low-rank approximation to compensate for accuracy degradation. We evaluated SVD-LLM on 10
datasets and seven models from three LLM families at three scales. Our results demonstrate the
superiority of SVD-LLM over state-of-the-arts, especially at high model compression ratios.

3We first decompose all the weight matrices W in the LLM to the two low-ranking matrices W,, and W,
with SVD-LLM under 40% compression ratio and quantize W, and then W,, with QuIP#.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In NAACL-HLT (1), pages 2357-2367. Association for Computational Linguistics,
2019.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jingiao Wang. Fluctuation-based adaptive structured
pruning for large language models, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In ICLR.
OpenReview.net, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In AAAI, pages 7432-7439. AAAI Press, 2020.

Patrick H. Chen, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui Hsieh. DRONE: data-aware low-rank
compression for large NLP models. In NeurIPS, pages 29321-29334, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-
shot. In ICML, volume 202 of Proceedings of Machine Learning Research, pages 10323-10337.
PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://zenodo.org/records/10256836

Under review as a conference paper at ICLR 2025

Shanggian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Adaptive rank selections
for low-rank approximation of language models. In NAACL-HLT, pages 227-241. Association for
Computational Linguistics, 2024.

G.H. Golub, Alan Hoffman, and G.W. Stewart. A generalization of the eckart-young-mirsky matrix ap-
proximation theorem. Linear Algebra and its Applications, 88-89:317-327, 1987. ISSN 0024-3795.
doi: https://doi.org/10.1016/0024-3795(87)90114-5. URL https://www.sciencedirect.
com/science/article/pii/0024379587901145!.

Roberto Gozalo-Brizuela and Eduardo C. Garrido-Merchan. A survey of generative Al applications.
CoRR, abs/2306.02781, 2023.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR. OpenReview.net, 2022.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In ICML.
OpenReview.net, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse approxi-
mation. In ICML, volume 202 of Proceedings of Machine Learning Research, pages 20336-20350.
PMLR, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods. In ACL (1), pages 3214-3252. Association for Computational Linguistics, 2022.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4A8KV4 quantization and system co-design for efficient LLM serving. CoRR,
abs/2405.04532, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurlIPS, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR (Poster). OpenReview.net, 2017.

Carl Dean Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In EMNLP, pages 2381-2391.
Association for Computational Linguistics, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1-140:67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, pages 8732-8740. AAAI Press, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca)l 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,

12

https://www.sciencedirect.com/science/article/pii/0024379587901145
https://www.sciencedirect.com/science/article/pii/0024379587901145
https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2025

Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023.

Jonathan Tow, Marco Bellagente, Dakota Mahan, and Carlos Riquelme. Stablelm 3b
4elt. URL | [https://huggingface.co/stabilityai/stablelm—-3b-4elt]
(https://huggingface.co/stabilityai/stablelm—3b—-4elt)!

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. In ICML.
OpenReview.net, 2024.

Zhongwei Wan, Xin Wang, et al. Efficient large language models: A survey. arXiv preprint
arXiv:2312.03863, 2023.

Xin Wang, Zhongwei Wan, Arvin Hekmati, Mingyu Zong, Samiul Alam, Mi Zhang, and Bhaskar
Krishnamachari. Iot in the era of generative ai: Vision and challenges. arXiv preprint
arXiv:2401.01923, 2024.

Guangxuan Xiao, Ji Lin, Mickaél Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, volume 202
of Proceedings of Machine Learning Research, pages 38087-38099. PMLR, 2023.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. CoRR, abs/2402.11295,
2024.

Hao Yu and Jianxin Wu. Compressing transformers: Features are low-rank, but weights are not! In
AAAI, pages 11007-11015. AAAI Press, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
activation-aware singular value decomposition for compressing large language models. CoRR,
abs/2312.05821, 2023.

Zhihang Yuan, Yuzhang Shang, and Zhen Dong. PB-LLM: partially binarized large language models.
In ICLR. OpenReview.net, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In ACL (1), pages 4791-4800. Association for Computational
Linguistics, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. CoRR, abs/2406.10594, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong, and
Yu Wang. A survey on efficient inference for large language models, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. CoRR, abs/2308.07633, 2023.

13

https://huggingface.co/stabilityai/stablelm-3b-4e1t
https://huggingface.co/stabilityai/stablelm-3b-4e1t

Under review as a conference paper at ICLR 2025

A APPENDIX.

A.1 THE COMPRESSION LOSS OF ASVD

The previous state-of-the-art method ASVD introduced a diagonal scaling matrix Sy that modifies
the weight matrix to reflect the varying significance of different input channels. The linear layer is
formulated as Y = (W Sy)S, ! X. The compression is made by keeping the largest 1 singular value
of W Sy:

WSONZU/ ’ /T

The resulting activation is expressed as:

Y ~ Zalu’v' SotX .

The compression error L = ||(W Sy — >_i" oluv']) Sy X || is demonstrated below:

~
(V]
| |

WSO—ZU’ WS X%

2

T
2:0_///le
i=m-+1

r

Z Z ;0 trace(u XXTU’u’T)

j=m+1i=m+1

Z Z ;0 trace u’T WIS X XT (S5 v})

j=m+1i=m+1

F

= Z o'? trace(v’] S; X XT (S)
i=m-+1

2| T q—
Z o'y [l SOIXH%»

i=m+1

which is still a complex function that involves the activation X, the diagonal matrix Sy, the singular
vector v} and the singular value o). As a result, compression error is not directly related to the singular
value, and the conventional SVD compression by truncating the smallest singular values may lead to
suboptimal compression error.

A.2 THE COMPRESSION LOSS OF SVD-LLM

In SVD-LLM, we also formulate the linear layeras Y = (W.S)S~1 X, where S~1 X X7 (S’l)T =1
The compression is made by keeping the largest m out of total r singular values of W.S. The
compression loss L is demonstrated as:

14

Under review as a conference paper at ICLR 2025

L2 = WX = WX = [WSS™'X = SVDWS)s ™ X[
= (WS - svDWs)s~ x|

H(WS ZJﬁH}) X

2
E O'i’u,i’l};-TS_lX
1=m-+1

2

F

F
r

T
_ _\T
Z Z 0;0j trace (uiviTS LxxT (S 1) vjuJT)
j=m-+1li=m-+1

r

Z Z a,ajtrace((S TxxT (S’)T) vju?)

j=m-+1li=m-+1

T T
E E o;0; trace (uiv;fvju?)

j=m-+1li=m-+1

cog Do T 4., T T, _ T\ _
S0 v =g u = v vj—uiuj—O,trace(vivi)—trace(ul)—1V2;£]

T T

L= E E 00 trace (uiviju g o trace (uzv V; U E O'

j=m+1li=m+1 1=m-+1 1=m-+1

Therefore, the squared loss L? is equal to the sum of the squared singular values. Therefore, truncating
the smallest singular values achieves the lowest compression loss.

A.3 MORE EXPERIMENTAL SETUPS

Implementation Details of the experiments. To ensure a fair comparison, we followed ASVD (Yuan
et al.}2023) to randomly select 256 samples from WikiText-2 as the calibration data. We followed
the same configuration used in LLM-Pruner (Ma et al., 2023) to use Alpaca (Taori et al., [2023)
dataset with SOK samples for parameter update in SVD—LLM. The inference efficiency experiment is
conducted on both NVIDIA A100 GPU and AMD EPYC 7643 CPU while the other experiments are
conducted on NVIDIA A100 GPUs.

Models and Datasets. To demonstrate the generability of our method, we evaluate the performance of
SVD-LLM on seven models from three different LLM families at three different scales (LLaMA-7B,
13B, 30B, LLaMA2-7B (Touvron et al., 2023), OPT-6.7B (Zhang et al., [2022), Vicuna-7B (Chiang
et al.,[2023)) and Mistral-7B (Jiang et al.,[2023)) and 10 datasets including two language modeling
datasets (WikiText-2 (Merity et al.| [2017), and C4 (Raffel et al.| 2020))), six classification datasets
(OpenbookQA (Mihaylov et al., [2018), WinoGrande (Sakaguchi et al., 2020}, HellaSwag (Zellers
et al.,[2019), Arc_e (Clark et al.| 2018), PIQA (Bisk et al., [2020), MathQA (Amini et al.| 2019)), and
two generation datasets (Truthful QA (Lin et al.| 2022), and GSMS8K (Cobbe et al.,|[2021) with the
LM-Evaluation-Harness framework (Gao et al., [2023)).

A.4 SPECTRUM ANALYSIS OF SINGULAR VALUES DECOMPOSED BY SVD-LLM

In general, SVD for compression is useful when the matrix to be compressed shows a sharp decay of
the singular values. Since SVD-LLM decomposes the multiplication of the weight matrix W and its
corresponding whitening matrix S instead of the original weight matrix W, which is different from
the weight decomposition in the previous work (Yuan et al., 2023} Hsu et al.} [2022), to study whether
SVD compression is also applicable in SVD—LLM, we select the Query (W) and Key (W) weight

15

Under review as a conference paper at ICLR 2025

[y
o
S
(o]
o
o
o
o
(o]
@

100,

o

(o}
o
o

(o]
o
o
o

Spectrum of Singular Values
=
i 2
o{ ccwa—m7r—— o | }— o
o ©
o wommmms—— [—0 o
ocmoum»—— [—0 0
o
o a
o ocozmmmm®» — | —DO
0 ooocknmmme—— | —i0
0 0 e —— | — 0
o ocozmmmme— [—oo
commmmme»—— | —i0
ooonommmmms———{ | |——o00
o
@ oo ——/ | — O
00 oxmummm»—— | —P O
0 o — [|— O
O 0O CoonumES— | |——000
0 00 Commmmm®— [—ic0 O
0 onummm®—— | ——aD O
o commmmmm»—— | ——i@mo o
o cocomummm—{ [|—0 O
O e —— [——0 O
00 o conmmmm®—— [—® O
o oo ——/ [—o o
O oo [|——©® O
coummmE— [| —® O

o
(o]

o o
o

H
<
I

123456 7 8 91011121314151617181920212223 242526272829 3031

Layer Index
(a) Wg x Sg
0
Q o0 © © 00 000000000000 DO0O0DOO0DOO0O0O0D0O0D00O0 00
>
= 10%{% 8
©
-
L 10?4
3 i
(@)}
C
-—100_
wn
Y e o
) g Bo 828905’080880 gO 0886
caoe|| ghigeiocit Saeee . a0t X
> 5 ° ° o
-l 8)
=
O .64 o °
0)10'8
o S o
wn

o
=
N
w

4 5 6 7 8 910111213141516171819202122232425262728293031
Layer Index

(b) Wk x Sk

Figure 6: The singular value spectrum of the decomposed matrices across layers in LLaMA-7B.

matrices and show the spectrum of the singular values of their multiplication with corresponding
whitening matrices Sq and Sy . As shown in Figure [} most of the single values are less than 100
with only a few extremely large values, indicating that SVD compression is applicable in SVD—-LLM.

A.5 COMPRESSION SPEED EVALUATION

Besides compression per- Table 9: Compression time of SVD-LLM and ASVD on LLaMA-7B
formance, we also evalu- under 20% compression ratio. The relative speedup is marked in green
ate the compression speed color inside bracket.

of SVD-LLM and the base-

. . SVD-LLM | ASVD
lines. Specifically, we mea- ———- - -

runcation-Aware Parameter Update with Sequential Total N i Search Total
sured the GPU hours used Data Whitening Low-rank Approximation ota ormafize searc ota
for SVD-LLM and ASVD 10min 3.5h 3.5h (J36%) | Smin 55h 5.5h
when compressing LLaMA-

7B under 20% compression ratio on an A100 GPU. The results are shown in Table[9] As shown,

16

Under review as a conference paper at ICLR 2025

ASVD takes about 5.5 hours whereas SVD-LLM completes the compression process in 3.5 hours,
which is 36% times faster. When breaking down the time, most of the time consumed by ASVD
is dedicated to searching for the specific compression ratio for each weight matrix based on its
calculated importance score. In contrast, SVD—LLM maintains a consistent compression ratio across
all weight matrices and thus gets rid of the time-consuming search process.

A.6 CONTENTS GENERATED FROM THE LLM COMPRESSED BY SVD-LLM AND ASVD

Some examples of sentences generated by LLaMA-7B compressed with SVD-LLM and ASVD
are shown in Table[T0] The sentences generated by the model compressed by SVD-LLM exhibit
better fluency, relevance, and informativeness compared to that compressed by ASVD. More impor-
tantly, when the compression ratio is increased to 40%, the previous state-of-the-art method ASVD
completely loses its generation ability. In contrast, even when the compression ratio is up to 80%,
SVD-LLM is still capable of generating complete sentences.

Table 10: An example of contents generated by the fine-tuned LLaMA-7B with LoRA after being
compressed by SVD-LLM and ASVD under different compression ratios. The input is marked in
bold and the normal texts are the generated sentences.

RATIO | SVD-LLM | AsvD

Original What is the responsibility of the AI assistant? The responsibility of an Al assistant is to complete the job without any
hesitation. Also, the Al assistant has no problem with taking a decision and executing it. An Al assistant is responsible to
complete the task and it needs to learn from his past experience to take the best possible decision without any hesitation...

20% What is the responsibility of the Al assistant? The Al What is the responsibility of the Al assistant? 1. To act
assistant’s role and responsibilities are often ambiguous and in the same way as the programmer intended. 2. To make
can vary depending on the context and the type of assistant a value assessment of the user’s intentions and offer an
being used. Some Al assistants may have preset responses appropriate response. 3. To help the user carry out specific
to common queries, but their behavior can also depend on tasks or follow a strict script. 4. To make the system as
the user’s interaction and expectations... independent of the user as possible...

40% What is the responsibility of the AI assistant? 1. The Al ‘What is the responsibility of the AI assistant? 1. Define
assistant is responsible for performing tasks that can only the definition of the job specification. 2. Define the role of
be done by Al technology such as scheduling appointments, the Al assistant for the job. 3. Define the skills necessary
setting reminders and making suggestions, while also pro- in order to carryout the tasks assigned to the job to do the
viding quick and accurate responses. 2. The Al assistant work of the same capacity in the market. 4. Determine
is also responsible for learning and updating its knowledge the evaluation of the job competence of the Al assistant
base through continuous improvement, thus making it more to ensure their professional integrity. 5. What type of Al
efficient and effective. 3. The Al assistant is responsible assistant jobs are available? 6. What industries require
for handling and managing user-generated and customer- technology assistance work to complete the tasks that it
oriented input... own personnel cannot perform...

60% What is the responsibility of the AI assistant? In a nut- What is the responsibility of the AI assistant? 2.3.
shell, the responsibility of the Al assistant could vary depend- ?? Brush for a discussion I wonder is it worth doing is
ing on the task, but generally, the focus would be on auto- important.2- It isn’t useful just reducing labor costs; it
matic tasks, without the need for human intervention. Some helps employees feel a sense of connected to your atten-
common tasks could include setting reminders, scheduling tion which leads to better workplace values among staffers
appointments, and making routine household or productivity and leads to long relationships among org...
tasks. The Al assistant also serves as a backup or a relief
system, taking on responsibilities when the user is not avail-
able ...

80% ‘What is the responsibility of the AI assistant? Our Design What is the responsibility of the AI assistant? ygua
is based on our understanding of the world, and we are Aleltemperaturen/2, (64mbz/.3/.1/, 7.kbld.org.0/2/ In
actively learning, adapting and adapting, so we’re always these puthebout les bnvols n merginels ...
evolving new ideas, which we see to be most unique and
relevant in our community...

A.7 COMPARISON WITH SMALLER LLMS PRE-TRAINED FROM SCRATCH

To compare the performance between SVD-LLM and scratch training, following the previous ex-
perimental design (Ma et al.} 2023), we compress LLaMA-7B to the size of the 3B parameter with
SVD-LLM and select StableLM-3B (Tow et al.) as the baseline for comparison. The result is shown
in Table[TT] LLaMA-3B compressed from LLaMA-7B by SVD-LLM achieves better accuracy in all
datasets, indicating that SVD-LLM could even achieve better accuracy than some scratch training
methods. Furthermore, SVD-LLM ensures higher throughput and lower memory consumption than
StableLM-3B as shown in the table, which also meets other efficiency analysis and discussion in
Section

17

Under review as a conference paper at ICLR 2025

Table 11: Comparison of LLaMA-3B (compressed from LLaMA-7B by SVD-LLM) and original
StableLM-3B (Tow et al.) trained from scratch. Both the throughput and the peak memory footprint
during the inference are measured with batch size=32, sequence length = 128 on single A100 GPU.

MODEL | Throughput | Peak Mem. | Openb. Arc_e WinoG. HellaS. PIQA MathQA | Average! | TruthfulQAT | GSMB8K?
StableLM-3B ‘ 8463 Tokens/sec ‘ 9.41 GB ‘ 0.19 0.51 0.55 0.37 0.69 0.21 ‘ 0.44 ‘ 0.22 ‘ 0.02
LLaMA-3B ‘ 9254 Tokens/sec ‘ 7.43 GB ‘ 0.27 0.54 0.58 0.46 0.68 0.23 ‘ 0.46 (15%) ‘ 0.23 (+ 0.01) ‘ 0.04 (+ 0.02)

Algorithm 1 Pseudocode of SVD-LLM
1: Input: M: Original LLM

2: Output: M": Compressed LLM by SVD-LLM

3. procedure SVD-LLM(M)

4 Randomly collect several sentences as the calibration data C'

5: Sets <~ TRUNCATION-AWARE DATA WHITENING(M, C')

6 Sety +— M > Obtain the set of weights in M to compress
7 for W in Sety, do

8: S < Setg (W) > Extract the whitening matrix of current weight W
9: UX,V + SVD(WS) > Apply singular value decomposition on W
10: 31 + Trunc.(X) > Truncate the smallest singular values in ¥
11: W, < U(S)Y2, W, «+ (3;)/2vTs-1 > Obtain two low-rank matrices
12: M' (W) + W, W, > Replace W with W, and W,, in L
13: end for
14: M"" + PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION(M')
15: return M"

16: end procedure

A.8 PSEUDOCODE OF SVD-LLM

Algorithm [T]shows the pseudocode of SVD-LLM. Before compression, SVD-LLM randomly collects
a small amount of sentences as the calibration data C, it then runs the truncation-aware data whitening
process as shown in Algorithm 2]to obtain the set of whitening matrix Setg for the weight to compress.
After that, it runs the SVD and truncation with Setg on each weight matrix in the LLM. Instead of
directly finishing the whole compression, it stores the decomposed matrices and further utilizes these
matrices to run the parameter update with sequential low-rank approximation as shown in Algorithm[3]

A.9 COMPARISON ON EXTREMELY LARGE-SCALE AND MORE RECENT LLMS

To further show the generalization of SVD-LLM, we com- Table 12: Perplexity (|) on WikiText-
pare its performance with other SVD-based baselines on 2 of .LaMA 2-70B and LLaMA 3-8B
extremely large-scale and more recent LLMs. Below ynder 20% compression ratio.

shows the perplexity of SVD-LLM and other baselines
on WikiText-2 when compressing LLaMA-2 70B (Tou] _ MODEL | LLAMA 2-70B | LLAMA 3-8B
vron et al}[2023)) and LLaMA-3 8B (Dubey et al.,[2024) | |

under 20% compression ratio. For LLaMA-2 70B, we SVD 19.82 29871
only apply truncation-aware data whitening of SvD-LLM ~ FWSVD OOM 4782
ASVD OOM 17.55

without parameter update with sequential low-rank approx-
imation due to the limited computational budget. OOM
means that running the algorithm causes out-of-memory on 4 A100 GPUs. As shown, SVD-LLM
still consistently outperforms other baselines when applied on these two LLMs.

SVD-LLM | 421 ([66%) | 8.16(154%)

A.10 COMPARISON WITH DRONE

Previous work Drone (Chen et al., 2021) focusing on compressing the Bert model also proposes
their data-aware method for SVD compression. They even provide a theoretical analysis to prove the

18

Under review as a conference paper at ICLR 2025

Algorithm 2 Pseudocode of Truncation-Aware Data Whitening
1: Input: M: Original LLM

2: Input: C: Calibration Data
3: Output: Setg: Set of whitening matrices for the weight to compress in M
4: procedure TRUNCATION-AWARE DATA WHITENING(M, C)
5: Sets < 0 > Initialize the set of whitening matrices
6: Setyy «+— M > Obtain the set of weights in M to compress
7: for W in Sety, do
8: X« M(W,C) > Obtain the input activation of the weight matrix W
9: S < Cholesky_Decomposition(X X7) > Apply cholesky decomposition on X X7
10: Setg < S U Setg > Store the whitening weight matrix in the set
11: end for
12: return Setg

13: end procedure

Algorithm 3 Pseudocode of Parameter Update with Sequential Low-rank Approximation

1: Input: M’: Compressed LLM by Truncation-aware Data Whitening
2: Output: M": Compressed LLM with Parameter Update with Sequential Low-rank Approxima-

tion
3: procedure PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION(M")
4: M < LoRA,(M’) > Fix all W,,, fine-tune all W,
5: M" <+ LoRA, (M) > Fix all W,,, fine-tune all W,
6: return M
7: end procedure

optimal solution that their method achieve.s Specifically, Drone represents the low-rank compressed
weight matrix W’ by WM. It performs SVD on both weight matrix W = U,,S,, V.l and the
transpose of input activation X7 = U,.S, V.1 and then split these decomposed matrices as follows:

Uy = [Uwyr Uw,r},SWZ{SIg’T 8:|7VW:|:VW,T Vv |

Ux = [Uxy UX,t}aSX_|:SE)(’t 8}7VX_[VX¢ Vxu |-

where r and k are the rank of_ the VY and_X . (_JWA,T, Vw.r, Ux, Vx, denote corresponding row
spaces and column spaces and Uy, Vv, Ux ¢, Vx ¢ are null spaces. Through theoretical deduction,
Drone converts the minimization of compression loss |[WX — W/ X||p = [|[WX — WMX||F to
the minimization of ’|SW7,,«VV€’TVX¢SX¢ — SWJ,VV?,’TMVXJSX,IL, ||F, whose optimal value L,,;,, is
the rank-k truncated SVD of Z = SW,TV&TVX’tS x,¢ by the fundamental property of SVD decom-

position. To achieve the optimal value, Drone formulates a solution M = VW7TS‘/_V}TZk;S)_(}t V)g £
where Z}, is the rank-k SVD truncation of Z.

In short, compared with Drone, SVD-LLM is also optimal with the same theoretical compression
loss as Drone. Moreover, SVD-LLM has three key advantages.

SVD-LLM is also optimal with the same theoretical compression loss as Drone. Although the
motivation of SVD-LLM originates from the LLM-based SVD compression method, especially
ASVD, and its motivation is to align the SVD truncation with the truncated singular values for
a correct truncation, as discussed in Section 3.1, our theoretical analysis shows that SVD-LLM
is also optimal with the same compression loss as Drone. Specifically, the theoretical minimum
compression loss L, is the F-norm loss of rank-k SVD truncation of WX, which has also been
achieved by Drone in their paper. Unlike Drone, SVD-LLM constructs the whitening matrix S so
that S~1 X is orthonormal. Therefore, we have ||AS~!1X||r = ||A||r. Suppose that we decompose
S with SVD to Uy, S, Vs, we can have S, = S, Us = U,,Us = Ux,V, = QV,, where @ is
an orthogonal matrix. The matrix WS to which SVD-LLM applies SVD could be represented by

19

Under review as a conference paper at ICLR 2025

UwSwV.IU,S, V. Suppose that we use Trunc.(C) to represent the rank-k truncation of the matrix
C during SVD compression, the compression loss L is derived as follows:

L=|[WX -W'X||lp=|[(WSS™'X — SVD(WS)S™'X)||r = ||[(WS - SVDWS))S ' X||r
= || Trunc. WSS X||p = ||Trunc.(WS)||r
= ||Trunc.(Uy S, VEUS V)| F
= ||Trunc. WXQ")||r = Lmin

Therefore, SVD-LLM shares the same theoretical compression loss as Drone.

Advantage #1: SVP'LLM Table 13: Compression loss of the randomly generated weight and
has better numerical sta- activation matrices with different shapes under 50% compression ratio

bility, which leads to su- ysing SVD-1.LM, Drone, and the theoretical minimum.
perior empirical compres-

sion loss.

While SVD- MLoss } [125 121 x“[;és x 128 } [2048 x 2(1)2]8 : 2[(2););18 X 2045 } [1096 x 4222]2 lx 9[11221)6 X 4090
INIMUM . . .

LLM shares the same the- — o0 | 276.1130 | 17785.6992 \ 503372148

oretical compression loss as ;77 276.1130 | 17784.2676 | 503219727

Drone, Drone’s higher com-
plexity—stemming from additional SVD operations and inverse calculations on large-scale matri-
ces—makes it less numerically stable compared to SVD-LLM. This often results in higher empirical
compression losses in practice. To illustrate this, we compare SVD-LLM and Drone in terms of the
empirical compression losses for randomly generated matrices of various shapes. We also include the
theoretical minimum value, represented by the rank-k Frobenius norm loss of W X . The results are
summarized in the following table. As shown, we observe that SVD-LLM achieves lower empirical
compression losses than Drone, underscoring its superior numerical stability.

Advantage #2: In practice, Drone incurs out-of-memory when compressing LL.Ms due to its
requirement of storing the full large-scale activations, whereas SVD-LLM is feasible. To achieve
data-awareness during compression, Drone caches all input activations X and spans them to calculate
the corresponding singular vectors and singular values. In the Drone paper, the authors apply Drone
to BERT. However, the activations generated by LLMs are often extremely large and are much larger
than BERT. For example, using Drone, caching 16 input activations produced by LLaMA-7B in
FP32 format, as required for SVD computation, already exceeds the memory capacity of an A100
GPU with 80GB memory. In contrast, SVD-LLM incrementally updates its X X matrix by adding
the zzT of each new input x. As such, SVD-LLM eliminates the need to store the full activations,
requiring only the storage of the X X7 matrix, which is considerably smaller than even a single input
activation. Due to this advantage, SVD-LLM is far more practical to compress LLMs of size 7B or
larger compared to Drone.

Advantage #3: SVD-LLM Table 14: Compression Time of the randomly generated weight and
incurs much shorter com- activation matrices with different shapes using SVD-LLM and Drone.
pression time compared The compression time is measured for 5 times’ compression.

to Drone. Drone involves

- TIME | [128 x 128] x [128 x 128] | [2048 x 2048] x [2048 x 2048] | [4096 x 4096] x [4096 x 4096]
more COH]P]CX matrix opera- DRONE | 0.07 seconds | 5.81 seconds | 30.35 seconds
tions, 1Cadlng to longel‘ com- SVD-LLM | 0.02 seconds | 1.98 seconds | 10.37 seconds

pression time compared to
SVD-LLM. To illustrate this, we measured the time required by Drone and SVD-LLM to compress
randomly generated weight and activation matrices of varying shapes under a 50% compression ratio.
The results show that SVD-LLM is approximately three times faster than Drone.

A.11 COMPARISON WITH FLAP

Recent work FLAP is also a post-training structured-pruning method. Below we
compare the perplexity of SVD-LLM and FLAP on WikiText-2 under different compression ratios
when compressing LLaMA-7B. As shown in Table[T5] SVD-LLM consistently outperforms FLAP,
especially under high compression ratios.

20

Under review as a conference paper at ICLR 2025

Table 15: Perplexity (|) of SVD-LLM and FLAP on WikiText-2 to compress LLaMA-7B under
different compression ratios. The better performance is marked in bold. The relative performance
gain of SVD-LLM compared to FLAP is marked in green inside bracket.

RATIO (MEM.) | 20% (10.2GB) | 40% (7.76GB) | 60% (5.35GB) | 80% (2.58GB)
FLAP \ 7.99 \ 14.43 \ 106.87 \ 15023
SvD-LIM | 673(116%) | 8.18(143%) | 13.31(88%) | 31.79 (199%)

Table 16: Perplexity (}) of SVD-LLM with original LoRA fine-tuning (denoted as SVD—-LLM (SFT)),
ASVD with sequential LoRA fine-tuning (denoted as ASVD (SFT)), and SVD-LLM with sequential
LoRA fine-tuning (denoted as SVD-LLM (SFT)) on WikiText-2 to compress LLaMA-7B under
different compression ratios.

RATIO (MEM.) | 20% (10.2GB) | 40% (7.76GB) | 60% (5.35GB) | 80% (2.58GB)

SVD-LLM (NFT) 7.25 11.98 16.30 80.23
ASVD (SFT) 8.37 14.86 44.81 271
SVD-LLM (SFT) | 6.73 \ 8.18 \ 13.31 \ 31.79

A.12 MORE ABLATION STUDIES

SVD-LLM + Normal LoRA Fine-tuning v.s. SVD-LLM + Sequential LoRA Fine-tuning. To
illustrate the superiority of the designed parameter update with sequential low-rank approximation in
SVD-LLM, which is a kind of sequential LoRA fine-tuning strategy over the normal LoRA fine-tuning
strategy, we compare the compression performance of SVD-LLM by applying either of these two
fine-tuning strategies. Let’s denote SVD-LLM (SFT) as SVD-LLM by applying sequential LoRA
fine-tuning and SVD-LLM (NFT) as SVD-LLM by applying normal LoRA fine-tuning. As shown
in Table[T6] SVD-LLM (SFT) consistently outperforms SVD-LLM (NFT), which also reaffirms our
analysis in Section [3.2] that optimizing both of the low-rank matrices W, W, at the same time is not
stable and may lead to poor fine-tuning performance.

ASVD + Sequential LoRA Fine-tuning v.s. SVD-LLM + Sequential LoRA Fine-tuning. Although
the designed sequential LoRA fine-tuning strategy could also be applied in other SVD-based LLM
compression methods, other methods’ performance is still poorer than SVD-LLM even being inte-
grated with this strategy for enhancement. To illustrate this, we compare the performance of previous
state-of-the-art method ASVD when be applied with the sequential LoRA finetuning with SVD-LLM.
Let’s denote SVD-LLM (SFT) as SVD-LLM by applying sequential LoRA fine-tuning and ASVD
(SFT) as ASVD by applying sequential LoRA fine-tuning. As shown in Table[T6] SVD-LLM (SFT)
consistently outperforms ASVD (SFT) under various compression ratios.

Orthogonality of whitening matrix on inference acti-
vations. Below we randomly select three weight matrices
Wi, Wy, W3 in LLaMA-7B and compute their on-the-fly
whitening matrix Sy, computed during inference. To test
whether S, precomputed on the calibration data can also
make the inference activation orthogonal like Sy, we
measure the difference between S flySley and SppeS T in DATA ‘ W, ‘ Wo ‘ Wi

pre
MSE | 0.003 | 0.0011 | 0.0009

Table 17: MSE between Sy Sg;e pre-
computed on WikiText-2 calibration data
and S f[ysﬁy computed on-the-fly on
three randomly selected weight matrices
in LLaMA-7B.

the MSE format, e.i., % |[S 1,57, — SpreSpye|F» where

T
N is the number of elements in SpmSﬁe. As shown
in Table [T7] the difference is small, indicating that the
pre-computed whitening matrix S, is still effective in making the inference activation orthogonal to

ensure the alignment between SVD truncation and compression loss.

21

	Introduction
	Related Work
	SVD-LLM
	Truncation-Aware Data Whitening
	Parameter Update with Sequential Low-rank Approximation

	Experiments and Analysis
	Comparison with State-of-the-Art SVD-based LLM compression Methods
	Inference Efficiency of SVD-LLM
	Ablation Study
	Comparison with Other Types of LLM Compression Methods

	Conclusion
	Appendix.
	The compression loss of ASVD
	The compression loss of SVD-LLM
	More Experimental Setups
	Spectrum Analysis of Singular Values decomposed by SVD-LLM
	Compression Speed Evaluation
	Contents Generated from the LLM Compressed by SVD-LLM and ASVD
	Comparison with smaller LLMs pre-trained from scratch
	Pseudocode of SVD-LLM
	Comparison on extremely large-scale and more recent LLMs
	Comparison with Drone
	Comparison with FLAP
	More Ablation Studies

