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ABSTRACT

Large vision-language models (LVLMs) remain vulnerable to hallucination, often
generating content misaligned with visual inputs. Although recent training-based
approaches aim to mitigate hallucination, they typically rely on predefined or ran-
domly edited negative samples that do not reflect actual model errors, thus limiting
training efficacy. In this work, we propose an Online Vision-language Preference
Learning (OViP) framework that dynamically constructs contrastive training data
based on the model’s own hallucinated outputs. By identifying semantic differ-
ences between sampled response pairs and synthesizing negative images using a
diffusion model, OViP generates more relevant supervision signals in real time.
This failure-driven training enables adaptive alignment of both textual and visual
preferences. Moreover, we refine existing evaluation protocols to better capture
the trade-off between hallucination suppression and expressiveness. Experiments
on hallucination and general benchmarks demonstrate that OViP not only reduces
hallucinations while preserving core multi-modal capabilities, but also substan-
tially improves training efficiency.

1 INTRODUCTION

Large vision-language models (LVLMs) (Alayrac et al.,|2022; |Chen et al., 2023} 20244} [Liu et al.,
2023 2024b) have demonstrated remarkable performance across a wide range of multi-modal
tasks (Dai et al.| 2023} [Li et al.,2023a; Bai et al.| 2023 Wang et al.,[2024b)) by integrating pre-trained
visual encoders with large language models (LLMs) to process and generate language grounded in
visual inputs. However, LVLMs continue to struggle with persistent hallucination issues (Li et al.,
2023bj; Bai et al.| [2024), often exhibiting incorrect references to visual content (Liu et al., |[2024aj
Zhou et al., 2023 Bai et al., 2024). These errors manifest as misattributing object properties, de-
scribing nonexistent entities, or fabricating spatial relationships that do not align with the image.
Such inconsistencies undermine the model’s faithfulness to the input and hinder further reasoning
capabilities, significantly limiting the reliability of LVLMs in real-world applications.

Recent success of Direct Preference Optimization (DPO) (Rafailov et al2023)) in LLMs alignment
has inspired the exploration of multi-modal DPO to mitigate hallucination in LVLMs (Yu et al.,
2024ajb; |Xie et al.l [2024; [Sarkar et al.| [2024). However, early efforts directly extend the original
DPO designs from LLMs to LVLMs by constructing preference pairs solely on textual responses
given the same image input, primarily focusing on response-side preference optimization and show-
ing limited effectiveness. Recent advancements incorporate additional preference pairs conditioned
on varying image inputs while keeping the same response, optimizing both visual and textual pref-
erence optimization (Wang et al., [2024a; Wu et al.| 2025} [Fu et al.,2025)). This paradigm provides a
complementary training signal that encourages the model to attend more closely to visual content.

However, prior work mainly relies on existing paired datasets (Wu et al., 2025) or expert-defined
patterns to construct negative image inputs, using techniques such as random cropping (Wang et al.,
2024a)), noise disruption (Zhou et al.|[2024a)), object removal (Lu et al., [2025)), or human/LLMs gen-
erated element-replaced response for image editing (Xie et al.,|2024). These strategies are typically
not explicitly tied to model failures, resulting in distribution misalignment between the generated
negatives and the model’s actual hallucination behavior, thereby offering limited improvement and
failing to support adaptive and continual onlineﬂ learning (Guo et al., [2024). Another line of re-

"We adopt the LLM community’s convention of using “online” to denote “on-policy” in RL.
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Figure 1: Offline training (a) relies on static, predefined datasets and fails to adapt to the model’s
evolving failure patterns, limiting its ability to address hallucinations effectively. Moreover, ne-
glecting the role of visual input will result in overfitting to language priors. In contrast, OViP (b)
combines online preference learning with image-aware training in a unified framework, enabling
real-time data construction grounded in model behavior.

search explores online preference learning for hallucination mitigation, such as SIMA (Wang et al.,
2025)), Clip-DPO (Ouali et al, [2024b) and OPA-DPO (Yang et al., [2025). While these approaches
demonstrate the importance of on-policy preference signals, their design remains limited to the tex-
tual modality and does not construct visual counterexamples on the fly. So they do not address the
vision-specific failure modes of LVLMs, nor do they benefit from the proven advantages of visual
preference optimization in recent multi-modal DPO studies.

Building upon these two research directions, we develop the Online Vision-Language Preference
Learning Framework (OViP), a unified approach that directly targets multi-modal hallucinations
through continuous, failure-aware preference learning. OViP maintains an online pipeline that first
samples response pairs from the model’s own outputs and then identifies their semantic differences
using an external LLM. These differences guide the construction of response-conditioned negative
images via a diffusion model, allowing the framework to generate both textual and visual coun-
terexamples on the fly. By repeatedly sampling emerging failure patterns and converting them into
real-time training signals, OViP adapts to the model’s shifting output distribution and preserves
alignment throughout training. This adaptive process expands the limited coverage of static datasets
and substantially reduces the need for manual curation.

We evaluate our framework on diverse multi-modal benchmarks, covering both hallucination-
focused and general tasks. Based on our experiments, we find a notable trade-off between hallu-
cination suppression and general capability or informativeness (what we refer to as “implicit hal-
lucination”). To address this, we refine existing evaluation protocols and reveal that many prior
methods tend to overestimate their improvements. Experimental results show that OViP delivers
significant advantages in both performance and efficiency. Furthermore, we investigate the role of
online training and visual signals, as well as their interactions, in shaping training effectiveness.

2 METHODOLOGY

In this section, we first provide an overview of the Online Vision-Language Preference Learning
(OViP) framework (Section . We then elaborate the process of constructing the online preference
pairs during training (Section followed by how to learn from these preference data (Section[2.3).

2.1 OVERVIEW

As illustrated in Figure 2] our OViP framework is designed to dynamically construct real-time pref-
erence pairs during training, by collecting in-distribution success and failure responses along with
their corresponding original and synthesized images. These preference pairs are then integrated into
the next training iteration for direct preference optimization on both image and response sides, pro-
viding a continuous feedback loop that refines the model’s visual grounding and improves its ability
to distinguish high-quality outputs from suboptimal ones.
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Figure 2: Overview of OViP. Given an image and a query, we employ the current model m; to
generate multiple responses, which are then evaluated by an external LLM with reference to the
ground truth. We filter and select response pairs and then generate corresponding negative images.
The collected data are used to update 7;. The filtering strategy is detailed in Section[2.2}

Specifically, given an input image Z, an instruction Q, and a reference response A*, OViP first
samples multiple candidate responses using the target model 7. These responses are then filtered
and selected to form positive and negative pairs (A',.A47). Based on the semantic discrepancies
between the response pairs, contrastive images Z~ are further synthesized to describing the negative
responses. Finally, both image-level and response-level contrastive losses are applied to update the
target model 7. A detailed workflow of the OViP algorithm is provided in

2.2 IN-DISTRIBUTION PREFERENCE DATA CONSTRUCTION

We adopt training-time inference to dynamically construct richer preference signals that continu-
ously reflect the model’s in-distribution failure modes, thereby compensating for the limited cov-
erage of static offline datasets. At a conceptual level, the OViP framework consists of three stages:
(1) real-time generation of diverse candidate outputs conditioned on visual inputs and instructions,
(2) quality-aware identification of informative preference pairs that highlight the contrast between
grounded and hallucinated behaviors, and (3) inverse construction of response-conditioned negative
inputs that expose the model to visual evidence contradicting hallucinated outputs. We next describe
the functional roles of these stages and present our practical instantiation of each component within
our training pipeline.

Real-time Generation of Output Data At each training step s, given a visual input Z* and
its corresponding textual instruction Q, our model w, generates k¥ = 16 candidate responses
A? (i =1,2,...,k) through stochastic sampling. Each generated response is then individually
evaluated by an LLM-based reward function (denoted as G,), which assigns a numerical reward
score to each response, reflecting its alignment with the ground-truth answer A*.

Al (II1,Q) 5 rf =Gy (A" AY) (1

Contrasting Response Pair Sampling At this stage, OViP maintains an online pool of candidate
responses for queries and identifies response pairs that exhibit meaningful quality contrast, ensur-
ing that learning signals emphasize the distinction between successful and hallucinated behaviors,
which is crucial for preference learning (Yu et al., 2025)).

In our implementation,we dynamically construct preference pairs by selecting response pairs within
each batch that display significant score disparities. Specifically, for each set of candidate responses



Under review as a conference paper at ICLR 2026

{A}r_, with corresponding rewards {r*}*_,, we compute the standard deviation o,. of the reward
scores and select pairs (AT, A7) that satisfy [r* — r~| > max (§, 20,.) where 4 is a fixed lower-
bound margin. This criterion ensures that only response pairs exhibiting substantial contrast in
reward scores are selected, effectively emphasizing informative differences between success and
failure responses. Additionally, we enforce quality constraints by requiring that the accepted positive
responses meet a predefined quality criterion (i.e., 7™ > 7p0,), while rejected negative responses fall
below a specified threshold (i.e., 7~ < Tyeg). In cases where all candidate responses collectively
perform poorly, we leverage offline ground-truth answers A* as positive responses to guide the
model learning effectively, a practice reminiscent of the mixed-policy approach in|Yan et al.[(2025).

Dpair = {(Q.IF, AT, A7) [ AT, A™ € (AT},
+_ - + - )

[P — 7| > max(d,20,),r" > Thes, 1 < Tneg}
Inverse Negative Image Synthesis The goal of this stage is to construct response-conditioned
negative images for visual contrastive learning. Conceptually, the framework only requires a mech-
anism that maps the semantic discrepancy between (AT, A7) into a visually interpretable negative
example, and is compatible with various instantiations such as image editing, masked manipulation,
or text-to-image generation.

In our implementation, given a training tuple (Q,Z", A", A7) € Dy, we synthesize negative
images corresponding to negative responses while taking input images as positive. Specifically,
we utilize an external LLM (denoted as Ggjsr) to identify a set of semantic differences between the
positive and negative responses, including entities, attributes, and spatial relations, and then generate
a textual description 7~ = Ggir(Q, AT, A™) that encapsulates the semantic content of the negative
response A~ . Subsequently, a diffusion-based image generation model (denoted as Diff) synthesizes
a hard negative image as follows:

I~ =Diff(T7) 3)
This inverse generation process, in which the image is conditioned on the textual output, ensures that
the synthesized image captures hallucinated or incorrect content, providing more targeted supervi-
sion for hallucination mitigation. Moreover, as the generation is explicitly driven by response-level
discrepancies, the resulting negative images exhibit higher semantic relevance and visual specificity.

Other implementation details for training stability are provided in Appendix E}

2.3 IMAGE- AND RESPONSE-SIDE PREFERENCE OPTIMIZATION

To effectively align both textual and visual modalities during training, we formulate a unified op-
timization framework that simultaneously considers response-level and image-level preference sig-
nals. The overall optimization objective consists of two complementary components. The first is
the text DPO loss(Rafailov et al.,[2023)), which guides the model to learn response-level preferences
conditioned on the input image and instruction:

+ — |17+
Ero (A7 ATT7,0) = ~toga (5 log OIS 10 WO

Tref (~/4+ |I+7 Q) o8 Tref (-’47 |I+, Q)

In addition to response-level alignment, we incorporate a contrastive objective focused on the visual
input. By keeping the query and response fixed, the model is required to learn preferences solely
from differences in the visual input. On top of this, to further ensure that the model’s output main-
tains a reasonable and smooth probability distribution, we introduce the image-free term 74 (.A|Q)
and implement the image-side loss as inWu et al.| (2025)):

o e . mo(AT|IZT, Q) WH(A+Q)]
Crona 2. 50.4%) = g (1 1w 71 e Gy e ®
i, mo(ATIQ)  mp(ATIZT, Q) } )
+B2 |:10g 7Tref(v4+|Q) log 7T-ref(~/4+|-,z-_7 Q)

The overall loss function is then defined as:
‘COViP (QaI+7177 -’4+a Ai) = ['Text (A+7 -’47;13 Q) + EIInage (I+a 177 Q7 A+) (6)
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Method Error rate  Quality Cos Sim.
Model-based Synthesis (Ours) 9.41% 4.20 0.6224
Cropping 70.86% 3.94 0.9672
Random Sampling 3.39% 2.52 0.4177

Table 1: Quality of different images. Error Rate denotes the probability that a negative image is
incorrect (not contradicting the positive response). Quality reflects GPT-based assessments of image
fidelity, and Cos Sim measures the similarity between the negative image and the positive image.

2.4 QUALITY ANALYSIS

We evaluate both the accuracy of the LLM-based annotation in the OViP framework and the quality
of the synthesized negative images.

LLM-as-the-Annotator. We first use GPT to evaluate the response pairs from the Contrasting
Response Pair Sampling stage to check whether the preference between the positive and negative re-
sponses is unclear or even inverted. We then manually check the cases that are labeled as “incorrect”.
About 3.3% of the pairs contain unclear or incorrect preference assignments. Overall, the error rate
is low, indicating that using an LLM as a correctness annotator is feasible in practice.

Negative Image Synthesis. We further compare OViP’s diffusion-based negative image synthe-
sis strategy with two model-free negative image generation baselines used in prior works.
demonstrates that OViP’s synthesized negative images exhibit higher quality and higher cosine sim-
ilarity to the original images, while maintaining a low error rate.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Implementation Details We conduct our experiments on LLaVA-1.5-7B-hf and LLaVA-1.5-13B-
hf (Liu et al.;,2024b), with CLIP ViT-L-336px as the visual encoder and Vicuna-7b/13b as the back-
bone respectively. The training dataset, sourced from |Yang et al.| (2025), consists of 8,730 samples
and 4,013 distinct image—query combinations, including image description, question answering, and
some yes/no questions. We use LoRA (Hu et al.,[2022) with a rank of 256 and alpha of 512. Other
settings are listed in Appendix

Baselines We compare OViP with SFT, DPO (Rafailov et al., 2023, mDPO (Wang et al., [2024a)
and GRPO (Shao et al.|[2024)). As the original versions of SFT, DPO and mDPO are offline methods,
we additionally implement iterative DPO and GRPO to facilitate a more comprehensive comparison.
Furthermore, we evaluate several prior works with publicly available model weights, including HA-
DPO (Zhao et al., [2023), HALVA (Sarkar et al., [2024), RLAIF-V (Yu et al., [2024b) and OPA-
DPO (Yang et al.|[2025). Among them, our OViP and OPA-DPO use the same original training data,
which is a subset of the dataset used by RLAIF-V.

3.2 EVALUATION METRICS

We conduct evaluations on five hallucination-related and four general capability benchmarks to
assess hallucination mitigation and overall capability degradation.

Hallucination-Related Evaluation. We evaluate hallucination in LVLM outputs using MMHal-
Bench (MMHal) (Sun et al., [2024), AMBER generative (AMBy,,) (Wang et al., 2023)), Object
HalBench (ObjectHal) (Rohrbach et al., 2018), Llava-Bench-in-the-Wild (LV) (Liu et al., |2023),
and AMBER discriminative (AMBg;s) (Wang et al.l 2023)). Detailed descriptions of the datasets,
evaluation procedures, and metrics are provided in Appendix
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Table 2: Main Results for OViP and other methods across different benchmarks. The five
shaded metrics highlight the key metrics for each benchmark. HRI (Hallucination Reduction
Index) is the average improvement across five benchmarks. Accp;r is the total accuracy changes
across TextVQA(Singh et al.l 2019), RealworldQA(xAI 2024)), MMStar(Chen et al., 2024b) and
CVBench(Tong et al., [2024)). GPT4—V(T)’S results are cited from [Xiao et al.| (2025)/Wang et al.
(2023)/Duan et al.|(2024) for reference. ¥ indicates the use of original evaluation strategy. * denotes
methods with publicly released model weights trained on their own datasets, which we direct eval-
uate without re-training. * signifies methods trained on datasets that are the same as or larger than
ours. ‘“2-ep” means two epochs of training. We separate offline methods from non-offline methods
for clearer comparison. Detailed results of general benchmarks are provided in Appendix [B.6|

AMBgen MMHal ObjectHal LV AMBygis HRI General
Chair]  Covert F11 Score? Chair,. | F11 Score? F11 Accpi s
cpra-v' 4.6 67.1 788 3.49% 13.6 - 95.3 874 |
Baseline 7.1 50.0 65.01 1.90 51.38 72.40 57.20 85.5 - -
HA-DPO* 5.6 494 64.86 1.95 37.15 73.81 57.30 854 1.52 -11.59
HALVA™ 5.7 529 67.78 2.12 43.40 76.01 58.60 86.5 9.08 -7.36
RLAIF-V*# 3.1 49.8 65.79 2.54 9.35 69.78 58.90 86.4 1.37 -6.74
S OPA-DPO*# 24 45.2 61.79 2.78 6.37 63.26 64.80 86.7 -5.60 -11.82
w SFT 35 50.6 66.39 2.52 20.60 70.30 52.20 86.1 -1.47 -8.07
:':“ DPO 3.7 489 64.86 2.35 26.60 71.95 56.70 86.8 1.65 -3.86
c>q mDPO 34 48.6 64.67 2.55 25.45 73.92 55.80 86.1 2.99 -3.05
j DPOiterative 39 48.7 64.64 2.32 27.11 72.33 56.40 86.5 1.31 -2.98
GRPO2¢p 4.8 51.2 66.59 2.45 34.98 73.83 58.70 86.8 6.75 -3.83
OVviP 4.0 51.1 66.70 2.52 33.22 73.50 63.10 87.3 9.58 +0.88
OViP2ep, 4.0 51.6 67.12 2.65 29.54 74.18 60.90 874 10.00 -1.01
Baseline 6.5 51.0 65.99 2.24 46.18 76.73 62.60 89.1 - -
= HALVA* 6.0 522 67.12 245 35.07 71.75 61.70 90.0 422 -5.45
Q. OPA-DPO*# 2.8 47.8 64.08 2.88 5.88 64.46 64.70 89.3 -7.05 -9.66
'2 SFT 4.5 50.0 65.64 2.38 31.21 75.81 64.00 89.9 1.79 -1.24
« DPO 3.6 50.6 66.37 2.53 25.00 75.00 65.30 89.6 242 +0.12
% mDPO 3.9 50.1 65.86 2.51 21.79 75.35 64.50 89.5 1.78 -1.12
j GRPO2¢p, 3.8 524 67.84 2.38 23.76 75.55 66.70 90.4 4.96 -1.48
OVviP 4.4 53.1 68.28 2.58 36.30 76.52 64.60 89.7 5.25 +0.85
OViP;.,, 3.6 53.7 68.98 2.57 28.62 76.75 67.90 90.2 8.02 +2.02

Prior work has primarily focused on assessing the precision of model outputs, i.e., whether the
generated content contains explicit hallucinations. However, this perspective often overlooks the
completeness of the output: a model may omit relevant entities (especially in image description
tasks), leading to what we term implicit hallucinations. We argue that both explicit and implicit hal-
lucinations are critical for a faithful evaluation of model reliability. Building on this perspective and
the observation of failure cases where existing benchmarks can be hacked, we refine the evaluation
protocols and introduce an F1 score for AMB,.,, and ObjectHal to better capture the extent
of hallucination in generated responses. Illustrative failure cases of prior evaluation strategies are

presented in Appendix

To aggregate performance across five benchmarks, we introduce the Hallucination Reduction In-
dex (HRI) as a unified measure of overall improvement. HRI is computed by summing the normal-
ized improvements from each benchmark to obtain the overall relative gain. The detailed calculation
of HRI and the discussion of its fairness are provided in Appendix [A.T]

General Capability Evaluation To assess the trade-off between hallucination mitigation and
general visual capability, we evaluate the trained models on general benchmarks, including Real-
worldQA (xAl 2024), TextVQA (Singh et al., 2019), CVBench (Tong et al.,|2024), MMStar (Chen
et al.,[2024b). We aggregate the results across these benchmarks and compute the Accuracy Differ-
ence, serving as a unified metric to quantify overall performance variation after training.

3.3 MAIN RESULTS

presents results for OViP and other methods across multiple benchmarks on various LVLM
backbones. OViP consistently achieves significant improvements across most primary metrics
while effectively preserving the model’s general visual capabilities (achieving +0.88 with one
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epoch for General Accp;r and a slight drop of -1.01 for 2 epochs), whereas most other methods that
exhibit varying degrees of degradation in general benchmarks. Moreover, OViP further improves
with an additional training epoch. Notably, even with one epoch, OViP surpasses HALVA and 2-
epoch GRPO, both of which utilize twice as much training data, but still yield lower HRI and suffer
from general ability degradation.

A critical phenomenon often overlooked in previous work (Xie et al. [2024; |Yang et al.| 2025} [Fu
et al., 2025; | Xiao et al., 2025} [Wang et al., [2024a; |Yu et al., [2024ab) is that offline methods gen-
erally impair models’ general capability while also introducing implicit hallucinations (as dis-
cussed in [subsection 3.2). This issue is particularly evident in OPADPO, where Chair score on
AMBg.,, drops to 2.4, and Cover metric decreases from the initial 50.0 to 45.2, far below other
methods. An illustrative example of such omission is in[Figure 8|in Appendix. Moreover, excessive
training further exacerbates this problem: as shown in[Table 2| several DPO-like methods (HA-
DPO, HALVA, RLAIF-V, OPA-DPO) trained for more than two epochs suffer from much larger
declines in general capability compared to DPO and mDPO trained for only one epoch. At the same
time, except for HALVA, their HRI scores are also lower than those of DPO and mDPO, which
mainly influenced by the low F1 scores on AMB,.,, and ObjectHal. With these possible signs of
overfitting, we suggest that some improvements reported in prior work may be overestimated.

3.4 ABLATION STUDY

Loss functions. We evaluated various combinations of loss functions for online preference learn-
ing in hallucination mitigation to derive the final formulation in Our ablation study ex-
amines the effectiveness of different training objectives, including text-side (Lrext), image-side and
auxiliary losses. Specifically for image-side losses, we examine our image 108S Lrmaqge alongside
two variants El}‘}qu ge and Limage—sym- For auxiliary loss, we compare the anchor loss proposed
by [Wang et al| (2024a)) and the bidirectional anchor loss, which enforce the probability of posi-
tive response to increase and the negative one to decrease. Detailed formulations are provided in

Appendix The ablation for auxiliary loss is provided in Appendix

Table 3: Results of different loss functions. Table 4: Results of offline and online training
Lovip = Lrext + Limage- strategy with DPO and OViP. Cover measures
HRI the informativeness of the model from AMB,,,.
Loss Functions : Cover score of the original model is 50.
From Scratch  Iterative
Method Cover HRI General Accpis

Lovip 4.32 7.94 :

_ EText 4.23 7.71 OViP online 51.1 9.36 0.88

— Limage -2.29 4.56 offline 499 4.32 0.08
Lrtext + Livnage 4.08 7.50 ppo  Online 500 L71 2.57
L"Imagc—Sym -0.32 6.57 offline 48.3 -2.29 -1.38

We conduct experiments under two training regimes: (1) training from scratch, and (2) iterative
training initialized with a DPO-pretrained model using the existing dataset, to ablate these losses
on top of different initialized models with varying capabilities. We observe that models trained
with different losses do not suffer from a notable drop in general ability (General Accp;r > —1.5).
Therefore, in[Table 3|we only report the HRI results, which show that the full OViP loss consistently
outperforms all variants under both training regimes. Moreover, the form of the image loss greatly
affects the results, with the loss in achieving the best performance.

Online v.s. Offline. demonstrates that online training consistently outperforms its offline
counterpart in HRI by at least 4 points within just one epoch (and continues to improve with further
training, while offline training suffers from overfitting). Another notable observation is that online
training also improves the informativeness of model outputs. Even when trained with DPO, the
Cover score remains 50. In contrast, previous studies (Yu et al.| 2024b; |Yang et al.| 2025} [Fu et al.,
20235)) using the similar dataset typically exhibit a drop in this aspect. Additionally, the improvement
for online training over offline training is almost across every individual benchmark and each corre-
sponding metric, online training yields more stable and superior performance. Detailed results are

provided in Appendix
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AMBg.,, MMHal ObjectHal LV AMBgi;s  General
Chair Cover F1 Score  Chair, F1 Score F1 Accpir

Cropping 35 5250 68.00 2.50 2721 7375 6250  86.40 +0.34
Sampling 34 5050 6633 3.37 2420 73.11 6120  86.60 -0.66
Synthesis 3.3  52.80 68.30 2.70 28.21 7414 63.60  85.70 +1.44

Method

Table 5: Results for different negative image generation methods. Cropping refers to randomly
removing 0-20% of the positive image. Sampling denotes selecting a random image from the
entire dataset as the negative image. Synthesis corresponds to the diffusion-based negative image
generation method used in OViP.

Negative Images. We further investigate how different strategies for generating negative images
affect model performance. As shown in we compare three approaches: cropping (adopted
in mDPO)(Wang et al., [2024a)), random sampling, and model-based online synthesis. The images
obtained through Random Sampling have low semantic relevance to the original text and do not
lie in the model’s hallucination distribution. This approach suffers from the same informativeness
degradation observed in offline methods in Cover of AMBgen and F1 of ObjectHal are low. In
contrast, the Cropping strategy does not incur such losses in informativeness or general capability,
likely because the cropped images still preserve partial semantic alignment. Overall, the diffusion-
based online synthesis used in OViP delivers the most favorable performance, effectively generating
high-quality hallucination-targeted negative images.

4 FURTHER STUDY

4.1 TRAINING EFFICIENCY
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Figure 3: Performance comparison among on- existing dataset; Off Policy refers to train-
line training methods up to 2 epochs. The X- ing with sampled data; and Iterative indicates
axis shows the expected training time multiplied that the dataset for the second epoch is gen-
by the number of GPUs used. OViP outperforms erated by sampling from the offline-trained
GRPO with 1.97x higher training efficiency. model after the first epoch.

Although OViP requires constructing negative images, which needs additional GPU resources for
deploying diffusion models and incurs extra time overhead, we show that OViP still has clear ad-
vantages in overall training efficiency. In|Figure 3] we compare different online methods by plot-
ting their HRI and general capability against expected GPU hours. (A detailed analysis of training
cost and efficiency is provided in Appendix [D) The results show that despite slower per-iteration
speed, OViP achieves approximately 1.97x higher training efficiency than GRPO. OViP requires
only about half the computation of GRPO to achieve comparable performance, while Online DPO
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Figure 5: Change in probability mass for the responses with corresponding score after training. We
smooth the discrete probability changes over 11 score bins (0-10) into a continuous curve. “Low
score” refers to scores less than 4. “Change > 0” represents the probability increases after training.

performs slightly worse than GRPO. As for offline approaches, although their data construction and
training require a similar amount of computation, their performance consistently falls short of their
online counterparts; hence, our efficiency comparison focuses on online methods.

4.2 TRAINING DYNAMICS

IFigure 4|illustrates how HRI evolves during training under different strategies, which allows us to
investigate the dynamics of hallucination throughout training.

Need for Visual and Online Signals For hallucination mitigation in LVLMs, adding visual super-
vision signals proves crucial: offline OViP surpasses GRPO and all DPO variants with one epoch.
Building on this, online methods offer further advantages, which not only make each optimization
step more effective in reducing hallucinations, but also exhibit better scalability, with overfitting
arising significantly later compared to non-online approaches, whose performance starts to drop af-
ter training for one epoch. We conjecture that this superiority stems from the model-specific nature
of hallucinations, which requires supervision to precisely target the current model’s errors.

Early Training Stagnation Both Online DPO and Off-Policy DPO exhibit an initial drop in per-
formance, while GRPO and OViP show relatively slow improvement during the early stages of
training. We attribute this phenomenon to the model’s initially skewed output distribution. Early
training primarily increases the diversity of model outputs, which does not immediately translate
into performance gains but expands the search space for subsequent learning. A detailed discussion
is provided in Appendix [B.5]

4.3 WHAT DO WE ACTUALLY OPTIMIZE DURING TRAINING?

To understand how different training strategies reshape the model’s behavior, we sample responses,
score them using our evaluator, and track the change in probability mass across score levels before
and after training. This analysis reveals how each method redistributes probability over
the actual responses the model would generate.

Online preference learning suppresses severe hallucinations more effectively than offline DPO.
Offline DPO barely shifts probability mass away from extreme failures (scores < 4). In contrast, on-
line training continuously exposes the model to its own most confident mistakes, allowing the model
to substantially decrease the probability of severely hallucinated outputs.

Visual preference learning induces broad quality improvements but offers limited gains for
extreme hallucinations. Adding image-based supervision consistently shifts probability mass up-
ward across mid-quality responses, indicating better grounding and more informative answers. How-
ever, it does not significantly further suppress the lowest-scoring outputs.

These two components influence different regions of the response-quality distribution. Online
learning primarily corrects severe, high-confidence hallucinations, whereas visual preference learn-
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ing improves overall grounding and informativeness. Their effects are therefore complementary:
one targets the left tail of the distribution, the other lifts the central and right regions. This comple-
mentary behavior explains why combining the two yields stable, additive improvements across all
evaluation metrics.

5 RELATED WORK

5.1 LVLM HALLUCINATION

Works of synthetic data construction for mitigating hallucination in LVLMs can be broadly catego-
rized into image-related synthesis and text-only synthesis. On the image side, several approaches
leverage entity extraction and masking to perform targeted image editing, generating visually similar
but semantically distinct counterfactuals (Xie et al} [2024; [Lu et al.| 2025). In contrast, Hallusion-
Bench (Guan et al.l [2024) adopts a manual approach, carefully crafting counterfactual images to
probe specific failure modes. Other works take a generative perspective: SynthVLM (Liu et al.|
2024c) and SynthEmbedding (Sharifzadeh et al., [2024) utilize off-the-shelf models to synthesize
new images or directly generate image embeddings for hallucination-aware training. Meanwhile,
text-side data augmentation can also be used in LVLM training. VoCoT (Li et al., 2024) intro-
duces new prompting patterns and response types to generate hallucination-prone QA data at scale.
Other works such as|Zhou et al.| (20244), Sarkar et al.| (2024), |Amirloo et al.| (2024) introduce noise
through perturbation, masking, or controlled corruption to simulate erroneous responses. More re-
cent approaches (Xiao et al.| 2025} [Yu et al.| [2024a)) aim to detect and correct hallucinated content
at varying levels of granularity, from token-level edits to full-sequence rewrites.

These efforts significantly improve the diversity and coverage of supervision signals available for
training hallucination-robust VLMs.

5.2 ALLOCATING MORE COMPUTATION ON TRAINING SAMPLE CONSTRUCTION

Recent research has increasingly adopted the paradigm of allocating additional computation during
training to get better training samples. Several studies utilize reinforcement learning with human or
Al-generated feedback to guide VLM outputs. RLHF-V (Yu et al., 2024a) leverages fine-grained
human annotations to correct hallucinated content, while RLAIF-V (Yu et al.l [2024b) replaces hu-
man labels with feedback from ensembles of open-source models, significantly reducing annotation
overhead. Similarly, OPA-DPO (Yang et al.,|2025) employs an on-policy editing step prior to DPO,
aligning training samples closely with model predictions to enhance data efficiency. CLIP-based
methods dynamically filter self-generated samples for high-quality training pairs (Ouali et al.|[2024aj
Zhou et al.|[2024b)). Other methods integrate auxiliary reward models or evaluators during training,
providing continuous and adaptive feedback loops (Sun et al.,|2024;|Yan et al.,|2024). Additionally,
recent approaches incorporate reasoning or editing mechanisms directly into training, using iterative
self-feedback or generative data augmentation techniques to dynamically refine model outputs (Zhao
et al., 2023} Kim et al.,|2024). These strategies improve model alignment and factuality by enriching
the quality and relevance of supervision signals during training.

6 CONCLUSION

In this work, we propose the Online Vision-language Preference Learning (OViP) framework to effi-
ciently address the hallucination problem in LVLMs. By integrating online preference learning with
image-aware training, OViP enables real-time construction of high-quality contrastive data during
training. Furthermore, to better assess the trade-offs between hallucination reduction and overall
performance, we refine and extend existing evaluation protocols. Experimental results demonstrate
that OViP significantly outperforms prior offline/online training approaches, achieving substantial
hallucination reduction while preserving general vision-language capabilities, which many existing
offline methods fail to preserve. Our investigation into training dynamics also sheds light on the
underlying mechanisms behind OViP’s effectiveness.

10
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ETHICS STATEMENT

This work focuses on improving the factual reliability of vision-language models by reducing hal-
lucination. While it does not directly engage with societal applications, it contributes to the broader
goal of building more trustworthy and robust Al systems. Although the method itself does not
pose obvious risks, we note that even improved generation quality does not eliminate the possibility
of misuse, such as producing misleading content. Responsible deployment and proper safeguards
remain necessary when integrating such models into real-world applications.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the training and evaluation setups in Appendix |A| and Ap-
pendix [B] In addition, we include anonymized training and evaluation code, instructions for running
the experiments, and information on accessing the relevant datasets in the supplementary materials.
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A EVALUATION

A.1 HALLUCINATION REDUCTION INDEX
A.1.1 METRIC DESIGN

HRI represents an aggregate improvement metric across five different benchmarks. Simply summing
the raw scores from each benchmark would not be a reasonable or rigorous approach, as the metrics
are not directly comparable. Therefore, we calculate the improvement ratio for each benchmark
based on its potential improvement range, effectively converting the raw metric gains into an additive
proportion of improvement. Furthermore, we employ a conservative aggregation method to avoid
overestimating the effectiveness of our approach.

Let Qs S {17 2a 37 47 5} denotes FlAMBfgena SCOTeMMHaly FlObjectHal; LVSCOI‘67 FlAMdeis re-
spectively, namely the results on each benchmark, superscript “?2%¢” represents performances of the
baseline model and “**f”” represents the set reference performances. Then HRI is calculated as:

5 a; — abasc
HRI =2 x Z réf Zbase (7)
at®t — at

i=1 7 7
A.1.2 MAIN RESULTS

For 7B model, we set the reference performances as OViPap, o it comes:

a; —65.01 az —1.90 asz — 72.40 as — 957.20 as — 85.5 )

HRI =2
% (67.12 —65.01  2.65—190 74.18—-7240 60.90 —57.20 87.4—85.5
For 13B model, we also use OViPy, as the reference performances except for the ObjectHal bench-

mark which almost all methods fail to improve. We set the reference performance of ObjectHal to
79.0.

HRI=2x [ M~ 65.99 L 92 2.24 as — 76.73 L0 62.60 as — 89.1
68.98 —65.99  2.57—2.24  79.00—76.73 67.90 —62.60  90.2 — 89.1

A.1.3 ABLATION STUDY: LOSS FUNCTIONS

There is no method surpassing other methods significantly, so we consider the best performance on
the benchmark as its reference peerformance.

ay — 65.01 ag — 1.90 as — 72.40 as — 57.20 as — 85.5 >

HRI = 2x
(68.57 —-65.01  2.70-190 74147240 64.10-57.20 87.20 — 85.5

A.1.4 ABLATION STUDY: ONLINE AND OFFLINE

Same as Main Results.

a; —65.01 az —1.90 a3z — 72.40 as — 957.20 as — 85.5
67.12 -65.01  2.65—1.90 74.18 —72.40 60.90 —57.20 87.4 —85.5

HRI2><<

A.1.5 FURTHER STUDY

Same as Main Results.
a1 — 65.01 as — 1.90 as — 72.40 aq — 57.20 as — 85.5 )

HRI=2x (67.12 —65.01 265 1.90 | 74187240 | 60.90 — 57.20 = 87.4— 855

A.1.6 FAIRNESS

When aggregating different metrics through weighted averaging, it is necessary to account for the
relative importance of each metric. Here, we define the potential improvement of a metric by con-
sidering its maximum observed gain in comparable experiments, and assign its weight as the inverse
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of this gain to normalize across metrics. For example, if metric A shows a maximum improvement
of 2 points while metric B improves by 4 points, we assume that an equally strong model would, on
average, achieve only half as much gain on A as on B. Consequently, each point of improvement
on A should be considered twice as important as a point on B. Compared with simple averaging,
this weighting scheme better reflects the relative significance of different metrics and is less prone
to being gamed.

A.2 BENCHMARKS

* MMHal-Bench (MMHal) (Sun et al., 2024) is a model-evaluated question-answering bench-
mark covering 8 categories and 12 topics. While the original evaluation strategy uses GPT—4
to judge model responses, a text-only model will introduce considerable judging-time halluci-
nations and errors, so gpt-40-2024-05-13 is better for evaluation. (Amirloo et al., [2024)).

* AMBER generative (AMBg.,,) (Wang et al., |2023) is a judging-model-free benchmark for the
image description task, comprising 1,004 samples. Chair measures the object-level halluci-
nation rate as the average precision of objects mentioned in the model’s descriptions, while
Cover indicates the recall of objects. We observe a noticeable trade-off between these two met-
rics across various methods, where improvements in one often come at the expense of the other.
To provide a more balanced and overall assessment, we introduce a new F1 score calculated
as the harmonic mean of Chair and Cover:

* Object HalBench (ObjectHal) (Rohrbach et al., 2018)) evaluates object-level completeness and
hallucination rates. The generation prompts are augmented from |Yu et al.| (2024a)). Chair,
denotes the response-level hallucination rate. We also introduce an object-level F1 metric to
comprehensively measures the balance between hallucination and object coverage. Objects
extraction is performed using gpt-40-2024-05-13.

» Llava-Bench-in-the-Wild (LV) (Liu et al., |2023) evaluates models’ visual abilities, using 60
open-ended questions grounded in 24 diverse images from real-world and abstract scenarios.
The evaluation is conducted using gpt-40-2024-05-13.

* AMBER discriminative (AMBERy;5) (Wang et al., 2023) includes 14,216 ‘Yes/No” questions
regarding objects in image. We use the F1 score as its metrics.

A.3 BAD CASES
A.3.1 MMHAL

Shown in the original evaluation protocol utilizes the text-only
gpt—4-turbo-2024-04-09 to evaluate the model response, which has no access to the
input image and can only infer from the given image contents and ground truth, so it will lead
to many incorrect judgments. We replace it with gpt-40-2024-05-13, which yields more
accurate assessments.

A.3.2 AMBER-GENERATIVE & OBJECTHAL

AMBER uses an automatic method for detecting the hallucination entity, which primarily relies on
the pre-defined hallucination words. ObjectHal introduces LLM to extract the mentioned entities,
its metrics are basically the same with AMBER. illustrates several cases of misjudgment
in AMBER. Since the score is determined solely by the presence of specific predefined words rather
than the actual semantic correctness, the hallucination rate (Chair score) is often overestimated.
Moreover, this issue becomes more pronounced as the diversity and informativeness of model
responses increases.

Many methods achieve great improvements in the Chair score (entity-wise hallucination rate), but
often at the cost of a significant decrease in the cover rate (completeness and informativeness).
[ure 8] provides an example of this information deficit phenomenon, which should also be considered
in the evaluation of model performance.
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Question: How many people are there in the image?
Model response: There are four people in the image: a man, a
woman, and two children.
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Ground truth: There are four people in the image.

gpt-4-turbo-2024-04-09:

The LMM's response claims that there are four people in the image, which
matches the standard human-generated answer. However, the LMM further
specifies the composition of these four people as "a man, a woman, and two
children." This additional detail is not supported by the image contents provided,
which only mention a \"Girl\" and does not specify any other individuals or their
roles/ages. Therefore, the LMM's response includes information that is not present
or implied in the image, leading to a hallucination.

Explanation: The response is informative in terms of the number of people, but it
hallucinates details about their specific identities (man, woman, two children)
which are not mentioned in the image contents.

Rating: 1, informative, with

gpt-40-2024-05-13:

The LMM's response correctly identifies the number of people in the image, which
is four. It also provides additional information by specifying the likely roles of the
individuals (a man, a woman, and two children). This additional detail is accurate
and does not introduce any false claims or hallucinations. The response is
informative and provides a good analysis without any hallucination.

z

o

Rating: 6, very informative with good analysis or reasoning, no hallucination

Figure 6: Text-only LLM can not correctly judge the response.

Model description
b T ~ = | The image features a dog running on a sandy beach near the water. The dog is
positioned towards the center of the scene, with its legs spread out as it moves
across the sand. The beach appears to be relatively empty, with no othe
animals visible in the image. The sky above the beach is cloudy, adding & sense of
depth to the scene.

Annotated correct & wrong words

Truth: sky, cloud, sea, beach, dog, mountain
Hallucination: lounge, umbrella, tree, person, seegull

Model description
The image captures a woman running on a sandy beach. She is wearing a white top
and appears to be enjoying her run. The woman's shadow is visible on the sand,

indicating that th shining and casting light on the scene. The beach setting
provides a serene and picturesque backdrop for her activity.

Annotated correct & wrong words

Truth:' woman, beach
Hallucination: sky, sun, sea, dog, lounge

Figure 7: Rule-based extraction will lead to misjudgments to some extent.

OPA-DPO: The image features a stop sign prominently displayed against a
backdrop of a blue wall. The stop sign is positioned on the left side of the frame,
drawing attention to it as the main subject. The blue wall behind the sign adds a
contrasting element to the scene, creating visual interest. The overall composition
of the image suggests it might be capturing a moment in an urban or suburban
setting where traffic regulations are important.

OViP: The image features a man walking down a street, passing by a stop sign.
The stop sign is positioned on the left side of the scene, and the man is walking
towards it. The street appears to be empty, with no other people or vehicles visible
in the image. The man is wearing a striped shirt, and his pants are rolled up. The
scene is set against a blue wall, which adds a vibrant touch to the otherwise quiet
street.

Failing to mention the main entity in the generated
description is also a form of hallucination.

Figure 8: OPA-DPO fails to mention the man, a deficiency that is captured by Cover score but often
overlooked in previous evaluations. “vehicles” is incorrectly identified as a hallucination word.
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B EXPERIMENTS

B.1 Loss FUNCTIONS

Base image loss £25¢ _is similar to DPO loss which replace the response pair with the image pair:

Image
base + . +\ _ . o (A+|I+’ Q) _ o ("4+|I_’ Q)
Elmage (I 7I 7Q7A ) —IOgO' <5 |:10g ﬂref(A+‘I+,Q) log Wref(A+|Ii,Q)

Symmetrical image 10ss Limage—Sym considers the negative image and the negative response a cor-
rect pair, then calculate Image loss using negative response and image as the positive one:

EImage—Sym (I+71.77 AJF? Ai; Q) = Ehnage(zdhz.i; Qa »AJF) + leage(zialdr; Qa Ai)

- 1oga<ﬁ1 : :1og W —log m:
i s AL g AU O] )

—logo <ﬁ1 : :10% m ~log m
)

Anchor loss £ apchor directly enforces the probability of positive response to be higher for intuitively
better optimization results.

+ |7+
‘CAnchor(AJ:Ai;Q,IJr) = 10gg<ﬂ10g W@(A |I ;Q) >

Trref (A+ |I+ ) Q)

Bi-directional anchor loss £p;— anchor NOt only exerts supervision on the positive response, but it
also makes the negative response probability to be lower.

To(AT|IT, Q) mo(A”]Q) )

LBi-Anchor (AT, A7;Q,T7) = — 10g0(ﬁ -log 7TfW|I+Q)> +logo (5 -log Tt (A]Q)

B.2 SETTINGS

By default, we use the following settings:

Software infrastructure. In our implementation, we deploy the non-training LLM and diffusion
models as services using FastAPIL. During training, the system interacts with these services via API
calls to obtain feedback, image prompts, and the paths to generated images.

Models. The LLM we use for judging response and providing image-generation prompt is
Qwen-2.5-7b-instruct (https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). The diffusion
model for image generation is FLUX.1-dev (https://huggingface.co/black-forest-labs/FLUX.1-
dev).

Training Both the 7B and 13B models are trained for a single epoch using a cosine learning rate
schedule with a global batch size of 16. We set 5 = 31 = 82 = 0.1 in Eq. ] and Eq.[5] Learning
rates are 1e-6 for 7B model and 5e-7 for 13B model.

Sampling and Filter. The score is between 0 and 10, which 10 means a perfect response and 0
means a totally incorrect response. We sample 16 responses for one query and set the lower-bound
margin J to 3. Moreover, the quality criterion coefficients 7,05 = Tneg = 5, Which means the score
of positive response should be at least 6 and negative response be at most 4. The temperature of
the LLM scorer is 0.1.
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Table 6: OViP pseudocode
Algorithm 1 Algorithm of OViP

Input: training dataset D = {(ZT, Q, A*)};
target model 7r; reward model G,; prompt generator Ggig; diffusion model diff
Initialize: experience buffer B <+ ()
Output: optimized model 7
for each (Z,Q, A*) € D do
Sample candidate responses {A'}¥_| ~ 7(-|ZF, Q)
Compute reward scores: 7' = G, (A, A*)
Compute standard deviation . of {r?}
Initialize temporary pair list 7~ < ()
while 3 (A", A7) satisfying:
|1t — 77| > max(d,20,), 7T > Tpos, I < Tneg dO
Add (A", A7) to T and remove from candidate pool
end while
if 7 = () and min; 7' < 7, then
Let A~ be the lowest-scoring response
Add (A*, A7) to T
endif
for each (A7, A7) € T do
Generate prompt: 7~ = Gaig (AT, A7)
Synthesize image: Z— = diff (7 )
Add (I7,7,Q, A", A7) to buffer B
end for
if |B| > N then
Sample NV samples from B for training
Compute total loss: Lovip
Update 7 + m — nVLovip
endif
end for

Our hyperparameter settings are based on preliminary experiments and empirical intuition. We ob-
serve that when the model assigns a score between 0 and 3, the responses tend to contain significant
errors, while scores of 7 and above generally indicate correct answers. The more strict the prefer-
ence filtering criteria is, the higher the data quality tends to be; however, this also leads to fewer
preference pairs satisfying the condition. Therefore, our choice of hyperparameters is based on a
balance among empirical observations, data quantity, and data quality.

Image Generation. For image prompt generation, we set the model’s temperature as 0.1, top_p
as 0.9, and max_new_tokens as 128. We generate a 384 x 384 image given the prompt with
num_inference_steps=40 and guidance_scale=7.5.

We perform ablation and further study using LLaVA-1.5-7B. The following describes the relevant
experimental settings.

B.2.1 ABLATION ON L0OSS FUNCTIONS

We fine-tune the model for one epoch using data generated by the model itself immediately before
training, following the OViP data construction pipeline.
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Table 7: Online v.s. Offline detailed results

AMBgen MMHal ObjectHal LV AMB ;s
Chair/  Cover?f F11 Scoret Chair,- | F11 Score? F11
Baseline 7.1 50.0 65.01 1.90 51.38 72.40 57.20 85.5
DPOonline 4.7 50.0 65.59 2.38 31.58 71.70 56.10 86.7
DPOo¢fline 7.0 48.3 63.58 2.06 52.61 72.55 53.60 85.9
OViPonline 4.0 51.1 66.70 2.52 33.22 73.50 63.10 87.1
OViPotline 5.2 49.9 65.38 2.35 46.34 72.39 60.20 86.6

For iterative training, we first fine-tune the base model on the original dataset using DPO to obtain
a stronger initialization. We then sample and filter 4,730 instances as the second-stage contrastive
dataset, which remains fixed across all variants. To improve supervision quality, model responses
are annotated using DeepSeek-V3 for more accurate reward estimation.

B.2.2 ABLATION ON ONLINE LEARNING

Although online methods can continuously improve when trained with another epoch, we conduct
the experiment with one epoch for both online and offline methods.

B.3 AUXILIARY LOSS FUNCTION

Under the iterative training regime, we fur-

2 Loss Functions ther analyze the effect of auxiliary losses based
R ek Lroxt on the DPO-initialized model and its sampled

1 Al . . .
. *0 . Z:zzzism responses, as 111.ustrat.ed in Con-
g o | . e trary to the findings in mDPO (Wang et al.,
z % ' = Cowr 2024a), we find that incorporating anchor
g’l v i loss consistently reduces general capability
° ., ® : Aux. Loss and increases hallucinations across all loss
e o | * NoAnc. combinations. Moreover, while applying bi-
-3 s Initial model ; : e Anc, directional anchor loss slightly improves gen-
o 3 3 G p eral capabilities, it does not necessarily enhance
HRI hallucination mitigation. Therefore, OViP loss

without anchor loss is the most effective training
Figure 9: Effect of applying auxiliary loss to  objective for both reducing hallucination and
different loss functions. maintaining general ability.

B.4 ONLINE V.S. OFFLINE

The training results for online and offline are shown in[Table 7] Online training is significantly more
effective in mitigating hallucinations.

B.5 TRAINING DYNAMICS

The model’s initially skewed output distribution leads to a high rate of duplicate samples (in
Duplicate Response Rate surpasses 11.0% at first) and very low perplexity in
the generated responses, which is not conducive to optimization. In the early stages of training,
the output distribution gradually flattens, but the limited exploratory scope prevents the model from
identifying the correct optimization direction, resulting in stagnation of performance metrics. As the
coverage of the distribution expands, the model can effectively explore the correct update directions,
allowing training to get on track and performance to accelerate.

B.6 DETAILED RESULTS FOR GENERAL BENCHMARKS
[Table 8| presents the detailed results on the general benchmarks. As shown, previous offline methods

exhibit noticeable performance degradation, whereas OViP preserves the model’s general capabili-
ties to the greatest extent.
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Figure 10: Sampling statistics during train-
ing. The blue curve shows the probability
that, when sampling 16 responses with Tem-
perature 1.2 for the same prompt, multiple
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Table 8: Detailed results of different methods on four general benchmarks. General Accp;r denotes
the performance difference relative to the baseline model. Italicized values indicate notable perfor-
mance degradation, while bold values highlight the best results among models of the same scale.

Method CVBench MMStar RealWorldQA  TextVQA  General Accpir
Baseline 62.5 33.27 554 57.58 -
HA-DPO 58.9 32.33 50.5 5543 -11.59
HALVA 59.9 31.60 53.7 56.19 -7.36
RLAIF-V 60.0 35.27 52.3 54.44 -6.74
E OPA-DPO 59.0 31.33 50.8 55.80 -11.82
v, SFT 58.8 32.20 52.7 56.98 -8.07
= DPO 60.7 32.47 54.1 57.62 -3.86
§ mDPO 61.5 32.67 54.0 57.53 -3.05
S DPOiterative 61.3 32.67 54.5 57.30 -2.98
= GRPOgep 61.7 32.20 54.0 57.26 -3.83
OViP 62.8 34.07 55.2 57.56 +0.88
OViP2e, 63.1 33.07 54.1 57.47 -1.01
Baseline 61.6 33.40 55.4 61.78 -
s HALVA 59.1 32.33 54.6 60.70 -5.45
% OPA-DPO 57.8 32.07 53.3 59.35 -9.66
v,  SFT 60.8 33.13 55.3 61.71 -1.24
z DPO 61.0 34.00 55.8 61.50 +0.12
% mDPO 60.6 33.80 55.2 61.46 -1.12
j GRPO2¢p 61.3 33.87 54.2 61.33 -1.48
OViP 61.8 34.33 55.7 61.20 +0.85
OViPs., 62.9 34.40 55.9 61.00 +2.02
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Figure 12: Time consumption for each stage during training.

C ALGORITHM
The pseudocode is at[Table 6]

D EFFICIENCY AND TIME CONSUMING

OViP training takes approximately 17 hours on 7x A800 (40G) GPUs. Among them, 4 GPUs are
allocated for VLM training, 1 GPU for LLM deployment, and 2 GPUs for diffusion model deploy-
ment. We divide each training step into six stages: sampling (response generation), scoring (re-
sponse evaluation), description (image prompt construction), negative image (counterfactual image
generation), forward (model inference), and post-processing. [Figure 12]illustrates the proportion of
time spent on each stage, where post-processing refers to the period after forward propagation and
before the next training step begins, including gradient accumulation, backpropagation, optimizer
updates, and other related operations.

Excluding post-processing, the most time-consuming component is the sampling stage, similar to
reinforcement learning. This is because it requires autoregressive generation of 16 responses, one
token at a time. The second most expensive stage is negative image generation. To reduce latency,
we parallelize this process by assigning two diffusion models to handle image generation requests
from four sampling subprocesses.

Additionally, since the experience buffer is implemented independently in our system, repeated
sampling by one subprocess may block others due to synchronization constraints. This can indirectly
slow down the forward and post-processing stages as some processes await completion.

E LIMITATIONS

This work introduces an online training framework that integrates dual contrastive learning across
vision and language. While our loss function follows the DPO formulation, we do not explore how
existing reinforcement learning algorithms—such as PPO or GRPO—could be effectively combined
with image-level contrastive objectives. In terms of evaluation, although we identify and discuss
several limitations of prior protocols and propose improved metrics and procedures, the current
benchmarks still fall short of fully capturing model capability. We manually identified a subset of
erroneous cases through inspection, but did not conduct a comprehensive correction. Lastly, our
data filtering strategy during sampling has not been carefully tuned, and a more refined design could
potentially lead to better training dynamics and model performance.
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F IMPLEMENTATION DETAILS

Dynamic Inference and Experience Buffer To stabilize batch-wise training while retaining the
flexibility of online sampling, we maintain an experience buffer B that stores dynamically con-
structed contrastive training samples. At each training step, the current model 7, performs infer-
ence and response sampling, producing contrastive samples that are continuously added to B. This
sampling process persists until the accumulated samples reach the predefined batch size N. Once
|B| > N, a batch of N samples is retrieved from 5 for loss computation and gradient updates. The
remaining samples in the buffer are preserved for subsequent iterations, ensuring the training process
to proceed smoothly even under variable sampling yields.

G QUALITATIVE CASE STUDIES
G.1 FAILURE CASES FOR GENERATING NEGATIVE IMAGES

H USE OF LLMS

We used existing large language models solely for language polishing and minor coding assistance.
The models were not involved in the design of experiments, development of research ideas, or
analysis of results.
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Failure Cases in Diffusion-Based Synthesis (1)
Prompt: Where on the body might this device be placed while working?

Positive Response: While working, the device, such as a laptop or a tablet, would likely be placed on a flat surface like a
desk or a table, providing a stable and convenient workspace. In the image, a grey tabby cat is resting its head on the laptop
or tablet, indicating that it is not actively in use at the moment. However, it's also possible that the cat's owner may have
placed the device on their lap for better comfort, which would be common for a personal laptop or a similar-sized tablet.

Negative Response: In the image, the grey tabby cat is lying on the keyboard, which suggests that the laptop is likely
positioned on a desk or workstation. This allows the user to type and interact with the laptop while the cat rests or is attentive
nearby. A desk or workstation provides a suitable place for the laptop and can help the user maintain productivity while also
allowing the cat to stay close to them.

Reason: The negative
response is unrelated to
the prompt. The model
does not actually exhibit
any visual hallucination.

Positive Image Negative Image

Failure Cases in Diffusion-Based Synthesis (2)
Prompt: Are the giraffes taller than the trees?

Positive Response: Yes, in the image, the two giraffes are seen in a grassy field and there are two trees in the background.
Their height is significantly greater than that of the trees, as giraffes are the tallest land animals, with a maximum height of
around 18 feet (5.5 meters) for males.

Negative Response: No, the giraffes are not taller than the trees. The trees in the image are likely to be of similar height to
the giraffes, as they are grazing near them. This indicates that the giraffes may not be browsing at a significant height above
the ground. Instead, the giraffes and the trees coexist in the grassy field at similar heights, which may be related to their
feeding habits or simply the height limitations of both animals.

Reason: The generated
image is actually a correct
negative image. The
data’s annotation and
positive response is wrong.

Positive Image Negative Image

Failure Cases in Diffusion-Based Synthesis (3)
Prompt: Which material is used for making the yellow t shirt weared by the person?

Positive Response: The yellow t-shirt worn by the person in the image is made of a fabric called cotton.

Negative Response: The yellow t-shirt the person is wearing is made of a synthetic fabric called Polyester. Polyester is a
popular choice for clothing materials because it is affordable, lightweight, and easy to care for. It is made from recycled
materials or a mixture of natural and synthetic fibers, depending on the specific product and manufacturer. Polyester has a
variety of uses in the textile industry and is commonly used for sportswear, casual clothing, and other athletic apparel.

Reason: It is hard for the
model to generate a
image that accurately
reflects polyester texture
in a way that can be
clearly differentiated from
cotton.

Positive Image Negative Image

Figure 13: Failed case for generating a correct negative image.
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I PROMPTS FOR JUDGMENT AND NEGATIVE IMAGE GENERATION

Prompt for Quality Judgment

# Task

Your role is as a discerning assistant tasked with evaluating model responses for
multimodal tasks (though you have no access with the image). Upon being presented with
a question that requires the interpretation of both text and images, you will receive two
distinct responses. The first is crafted by our sophisticated multimodal model, while the
second represents an approximate ideal answer—it may be incomplete. Your objective is to
meticulously and precisely assess the model-generated response (the former) based on the
provided reference answer (the latter).

- Here’s how you should approach the assessment process:

1. The quality of the response depends on its accuracy and the degree of adherence
to the correct answer. Therefore, if the response is much more detailed than the reference
answer, it should not be considered a very good response (although it may still be
considered a good one).

2. Directly provide the score of the response, with a full score of 10. Your response
should follow this format: "Score: [x]\n", where "[x]" represents the score you give, and
"\n" is a line break.

3. Please do not provide additional reasoning, just give the score directly.

# Question
{question}

# Response
{response}

# Correct answer
{answer}

Table 9: The prompt for judging model response given the answer.
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Prompt for image generation-Part 1

# Task

Given an unknown image-related question, a correct answer, and an inaccurate response,
carefully analyze the differences between the response and the answer. Then, provide a
brief description of the image so that it aligns with the correct answer and differs from the
incorrect responses. In other words, infer the content of the image.

# Example

[Example 1]
**<Question>**

What is on the sandwich?

*k Answer>**
The sandwich has tomatoes and lettuce on it.

**<Response>**
The sandwich has a slice of egg and tomato on it.

**<Output Description>**
A sandwich with only tomatoes and lettuce on it.

**Explanation**: The answer mentions lettuce and tomato, while the incorrect response
mentions tomato and egg. So there is no egg on the sandwich.

[Example 2]
**<Question>**
Can you point out the details that make this image unique?

*E<Answer>**

In the image, there is a plate with a slice of pizza topped with tomatoes, herbs, and cheese.
The distinctive detail about the image is that the pizza is missing two slices, leaving just
one slice remaining on the plate. This suggests that someone has already started enjoying
the pizza. The slice appears to be well-cooked and freshly served, creating an appetizing
and mouthwatering scene for the viewer.

**<Response>**

In the image, there is a slice of pizza on a plate with tomatoes and cheese. The pizza
appears to be homemade and has been cut into two pieces. The tomatoes are sliced in
half, revealing their juicy interior. The cheese on top of the pizza is melted, creating
a delicious-looking dish. Additionally, there is a fork nearby, suggesting that someone
might be planning to enjoy this pizza soon.

**<Output Description>**
A plate with a one-third remaining piece of pizza, topped with herbs, cheese, and
tomatoes; someone has finished eating and left.

**Explanation**: The answer mentions that only one-third of the pizza remains and
that someone has just finished eating and left, which is inconsistent with the response.
Therefore, the image should include these two features.

Table 10: The prompt for image generation.
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Prompt for image generation-Part 2

[Example 3]
**<Question>**
Bird or cow?

*k Answer>**
Bird

**<Response>**

The bird in the image is a small, brown and white bird with a distinctive head shape and
coloration. It is not a cow. The bird is perched on a branch, which is situated in front of a
white building.

**<Output Description>**
A big, blue bird perched on a branch in front of a black building.

**Explanation**: Both the answer and the response mention the bird, but the response is
more detailed. So the description should be contrastive to the features of the bird in the
response.

# Requirements

- The description should be brief but precise.

- If both the answer and the response are long, focus on describing the one or two most
significant differences.

- Do not provide any analysis or explanation; only describe the image.

- A common approach is to describe what is present in the image and what is missing.

*E<Question>**
question
*E<Answer>**
answer
**<Response>**
response

**<Output Description>**

Table 11: The prompt for image generation.
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Prompt for Quality Assessment of Negative Images

You are an expert multimodal evaluator.
Your goal is to determine whether a given image is a valid *negative image sample* for
contrastive learning, based on an instruction, an answer, and the candidate image.

You will receive three inputs:
1. Instruction: {Prompt}

2. Answer: {Answer}

3. Image: {Image}

Your tasks:

quality (0 to 5)
Rate how suitable the candidate image is as a *high-quality negative sample*.

This quality score measures the semantic "alignment" or "hardness" of the negative
example.

Definition of quality:

- 5 — extremely relevant: image strongly matches the instruction domain, and provides
a meaningful hard-negative contrast to the answer. (e.g., instruction: "What is the cat
doing?", answer: "licking fur." image: a cat sleeping.)

- 4 — strongly related to instruction, but moderately different from answer.

- 3 — somewhat related: image loosely matches instruction (e.g., contains a cat-like
object).

- 2 — weakly related: image content only marginally matches the instruction.

- 1 — barely related: image does not match instruction but still contains some real-world
objects.

- 0 — unusable negative: random noise, corrupted image, irrelevant objects or completely
mismatched content.

Rules:

- Images with the correct content but different actions should receive higher scores than
images without relevant objects.

- Random noise, corrupted, blank, or chaotic images must get quality = 0.

- A high-quality negative is semantically challenging but still clearly wrong for the answer.

Output Format
Provide your result in **strict JSON** with keys:

{
"quality": integer in [0, 5]

Output **only** valid JSON.

Now evaluate the given inputs.

Table 12: The prompt is used for judging the quality of negative images generated by different
methods.
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Prompt for Correctness Assessment of Negative Images

You are an expert multimodal evaluator.

Your task is to compare two model responses given the same visual question-answering
setup.

You will receive the following inputs:

## Prompt

{Prompt}

## Image

{Image}

## Ground-truth answer

{gt}

## A candidate response called **better_response®*

{better}

## A candidate response called **worse_response**

{worse}

Your job:

Determine whether **better_response** is indeed better, or worse_response is better, or
they are roughly similar in correctness and quality.

Evaluation criteria

- Evaluate correctness primarily by whether a response correctly describes information
that *can be inferred from the image*, and correctly answers the prompt.

- Consider factual correctness, hallucination, consistency with the visual content,
relevance, and informativeness.

- If better_response is clearly more accurate, more correct, or more reliable than
worse_response, choose **A**,

- If worse_response is clearly more accurate, choose **B**.

- If both responses are similarly correct (or similarly incorrect), choose **C**.
IMPORTANT:

- Do not reward verbosity unless it increases correctness.

- Penalize hallucination.

- If both responses fail to answer the question, treat them as similar — choose **C**.

Output Format (STRICT)

Output ONLY a valid JSON dictionary in the following form:

{

"result": "A"

}

Meaning of result:

A = better_response is clearly better

B = worse_response is clearly better

C = difficult to tell / both are similar (good or bad)

No explanation, no comments, no markdown, no text outside JSON.

Now evaluate the given inputs.

Table 13: The prompt is used for judging the quality of negative images generated by different
methods.
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