

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OVIP: ONLINE VISION-LANGUAGE PREFERENCE LEARNING FOR VLM HALLUCINATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large vision-language models (LVLMs) remain vulnerable to hallucination, often
012 generating content misaligned with visual inputs. Although recent training-based
013 approaches aim to mitigate hallucination, they typically rely on predefined or ran-
014 domly edited negative samples that do not reflect actual model errors, thus limiting
015 training efficacy. In this work, we propose an Online Vision-language Preference
016 Learning (OViP) framework that dynamically constructs contrastive training data
017 based on the model’s own hallucinated outputs. By identifying semantic differ-
018 ences between sampled response pairs and synthesizing negative images using a
019 diffusion model, OViP generates more relevant supervision signals in real time.
020 This failure-driven training enables adaptive alignment of both textual and visual
021 preferences. Moreover, we refine existing evaluation protocols to better capture
022 the trade-off between hallucination suppression and expressiveness. Experiments
023 on hallucination and general benchmarks demonstrate that OViP not only reduces
024 hallucinations while preserving core multi-modal capabilities, but also substan-
025 tially improves training efficiency.

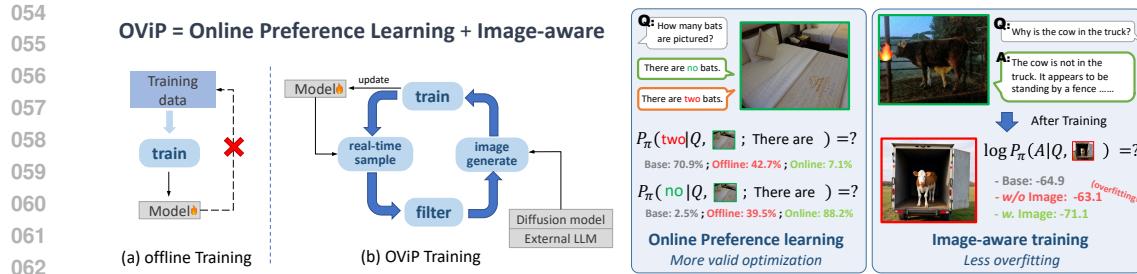
1 INTRODUCTION

026 Large vision-language models (LVLMs) (Alayrac et al., 2022; Chen et al., 2023; 2024a; Liu et al.,
027 2023; 2024b) have demonstrated remarkable performance across a wide range of multi-modal
028 tasks (Dai et al., 2023; Li et al., 2023a; Bai et al., 2023; Wang et al., 2024b) by integrating pre-trained
029 visual encoders with large language models (LLMs) to process and generate language grounded in
030 visual inputs. However, LVLMs continue to struggle with persistent hallucination issues (Li et al.,
031 2023b; Bai et al., 2024), often exhibiting incorrect references to visual content (Liu et al., 2024a;
032 Zhou et al., 2023; Bai et al., 2024). These errors manifest as misattributing object properties,
033 describing nonexistent entities, or fabricating spatial relationships that do not align with the image.
034 Such inconsistencies undermine the model’s faithfulness to the input and hinder further reasoning
035 capabilities, significantly limiting the reliability of LVLMs in real-world applications.

036 Recent success of Direct Preference Optimization (DPO) (Rafailov et al., 2023) in LLMs alignment
037 has inspired the exploration of multi-modal DPO to mitigate hallucination in LVLMs (Yu et al.,
038 2024a;b; Xie et al., 2024; Sarkar et al., 2024). However, early efforts directly extend the original
039 DPO designs from LLMs to LVLMs by constructing preference pairs solely on textual responses
040 given the same image input, primarily focusing on response-side preference optimization and show-
041 ing limited effectiveness. Recent advancements incorporate additional preference pairs conditioned
042 on varying image inputs while keeping the same response, optimizing both visual and textual pref-
043 erence optimization (Wang et al., 2024a; Wu et al., 2025; Fu et al., 2025). This paradigm provides a
044 complementary training signal that encourages the model to attend more closely to visual content.

045 However, prior work mainly relies on existing paired datasets (Wu et al., 2025) or expert-defined
046 patterns to construct negative image inputs, using techniques such as random cropping (Wang et al.,
047 2024a), noise disruption (Zhou et al., 2024a), object removal (Lu et al., 2025), or human/LLMs gen-
048 erated element-replaced response for image editing (Xie et al., 2024). These strategies are typically
049 not explicitly tied to model failures, resulting in distribution misalignment between the generated
050 negatives and the model’s actual hallucination behavior, thereby offering limited improvement and
051 failing to support adaptive and continual online¹ learning (Guo et al., 2024). Another line of re-

¹We adopt the LLM community’s convention of using “online” to denote “on-policy” in RL.



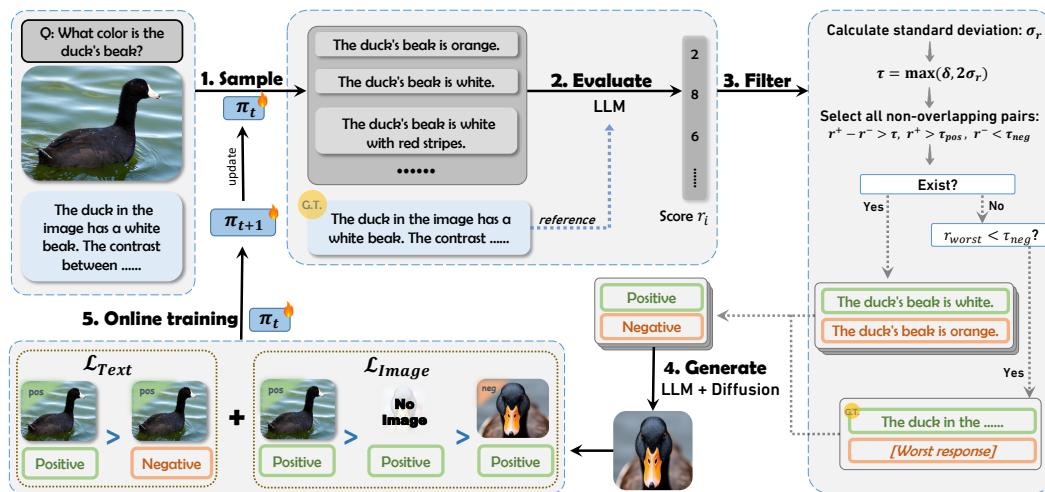


Figure 2: Overview of OViP. Given an image and a query, we employ the current model π_t to generate multiple responses, which are then evaluated by an external LLM with reference to the ground truth. We filter and select response pairs and then generate corresponding negative images. The collected data are used to update π_t . The filtering strategy is detailed in Section 2.2.

Specifically, given an input image \mathcal{I}^+ , an instruction \mathcal{Q} , and a reference response \mathcal{A}^* , OViP first samples multiple candidate responses using the target model π . These responses are then filtered and selected to form positive and negative pairs $(\mathcal{A}^+, \mathcal{A}^-)$. Based on the semantic discrepancies between the response pairs, contrastive images \mathcal{I}^- are further synthesized to describing the negative responses. Finally, both image-level and response-level contrastive losses are applied to update the target model π . A detailed workflow of the OViP algorithm is provided in Table 6.

2.2 IN-DISTRIBUTION PREFERENCE DATA CONSTRUCTION

We adopt training-time inference to dynamically construct richer preference signals that continuously reflect the model’s in-distribution failure modes, thereby compensating for the limited coverage of static offline datasets. At a conceptual level, the OViP framework consists of three stages: (1) real-time generation of diverse candidate outputs conditioned on visual inputs and instructions, (2) quality-aware identification of informative preference pairs that highlight the contrast between grounded and hallucinated behaviors, and (3) inverse construction of response-conditioned negative inputs that expose the model to visual evidence contradicting hallucinated outputs. We next describe the functional roles of these stages and present our practical instantiation of each component within our training pipeline.

Real-time Generation of Output Data At each training step s , given a visual input \mathcal{I}^+ and its corresponding textual instruction \mathcal{Q} , our model π_s generates $k = 16$ candidate responses \mathcal{A}^i ($i = 1, 2, \dots, k$) through stochastic sampling. Each generated response is then individually evaluated by an LLM-based reward function (denoted as G_r), which assigns a numerical reward score to each response, reflecting its alignment with the ground-truth answer \mathcal{A}^* .

$$\mathcal{A}^i \sim \pi_s(\cdot | \mathcal{I}^+, \mathcal{Q}) ; \quad r^i = G_r(\mathcal{A}^i, \mathcal{A}^*) \quad (1)$$

Contrasting Response Pair Sampling At this stage, OViP maintains an online pool of candidate responses for queries and identifies response pairs that exhibit meaningful quality contrast, ensuring that learning signals emphasize the distinction between successful and hallucinated behaviors, which is crucial for preference learning (Yu et al., 2025).

In our implementation, we dynamically construct preference pairs by selecting response pairs within each batch that display significant score disparities. Specifically, for each set of candidate responses

162 $\{\mathcal{A}^i\}_{i=1}^k$ with corresponding rewards $\{r^i\}_{i=1}^k$, we compute the standard deviation σ_r of the reward
 163 scores and select pairs $(\mathcal{A}^+, \mathcal{A}^-)$ that satisfy $|r^+ - r^-| > \max(\delta, 2\sigma_r)$ where δ is a fixed lower-
 164 bound margin. This criterion ensures that only response pairs exhibiting substantial contrast in
 165 reward scores are selected, effectively emphasizing informative differences between success and
 166 failure responses. Additionally, we enforce quality constraints by requiring that the accepted positive
 167 responses meet a predefined quality criterion (i.e., $r^+ > \tau_{\text{pos}}$), while rejected negative responses fall
 168 below a specified threshold (i.e., $r^- < \tau_{\text{neg}}$). In cases where all candidate responses collectively
 169 perform poorly, we leverage offline ground-truth answers \mathcal{A}^* as positive responses to guide the
 170 model learning effectively, a practice reminiscent of the mixed-policy approach in Yan et al. (2025).
 171

$$\mathcal{D}_{\text{pair}} = \{(\mathcal{Q}, \mathcal{I}^+, \mathcal{A}^+, \mathcal{A}^-) \mid \mathcal{A}^+, \mathcal{A}^- \in \{\mathcal{A}^i\}_{i=1}^k, \\ |r^+ - r^-| > \max(\delta, 2\sigma_r), r^+ > \tau_{\text{pos}}, r^- < \tau_{\text{neg}}\} \quad (2)$$

174 **Inverse Negative Image Synthesis** The goal of this stage is to construct response-conditioned
 175 negative images for visual contrastive learning. Conceptually, the framework only requires a mech-
 176 anism that maps the semantic discrepancy between $(\mathcal{A}^+, \mathcal{A}^-)$ into a visually interpretable negative
 177 example, and is compatible with various instantiations such as image editing, masked manipulation,
 178 or text-to-image generation.

180 *In our implementation*, given a training tuple $(\mathcal{Q}, \mathcal{I}^+, \mathcal{A}^+, \mathcal{A}^-) \in \mathcal{D}_{\text{pair}}$, we synthesize negative
 181 images corresponding to negative responses while taking input images as positive. Specifically,
 182 we utilize an external LLM (denoted as G_{diff}) to identify a set of semantic differences between the
 183 positive and negative responses, including entities, attributes, and spatial relations, and then generate
 184 a textual description $\mathcal{T}^- = G_{\text{diff}}(\mathcal{Q}, \mathcal{A}^+, \mathcal{A}^-)$ that encapsulates the semantic content of the negative
 185 response \mathcal{A}^- . Subsequently, a diffusion-based image generation model (denoted as Diff) synthesizes
 186 a hard negative image as follows:

$$\mathcal{I}^- = \text{Diff}(\mathcal{T}^-) \quad (3)$$

188 This inverse generation process, in which the image is conditioned on the textual output, ensures that
 189 the synthesized image captures hallucinated or incorrect content, providing more targeted supervi-
 190 sion for hallucination mitigation. Moreover, as the generation is explicitly driven by response-level
 191 discrepancies, the resulting negative images exhibit higher semantic relevance and visual specificity.

192 Other implementation details for training stability are provided in Appendix F.

194 2.3 IMAGE- AND RESPONSE-SIDE PREFERENCE OPTIMIZATION

196 To effectively align both textual and visual modalities during training, we formulate a unified op-
 197 timization framework that simultaneously considers response-level and image-level preference sig-
 198 nals. The overall optimization objective consists of two complementary components. The first is
 199 the text DPO loss(Rafailov et al., 2023), which guides the model to learn response-level preferences
 200 conditioned on the input image and instruction:

$$\mathcal{L}_{\text{Text}}(\mathcal{A}^+, \mathcal{A}^-; \mathcal{I}^+, \mathcal{Q}) = -\log \sigma \left(\beta \cdot \left[\log \frac{\pi_{\theta}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})} - \log \frac{\pi_{\theta}(\mathcal{A}^- | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^- | \mathcal{I}^+, \mathcal{Q})} \right] \right) \quad (4)$$

204 In addition to response-level alignment, we incorporate a contrastive objective focused on the visual
 205 input. By keeping the query and response fixed, the model is required to learn preferences solely
 206 from differences in the visual input. On top of this, to further ensure that the model’s output main-
 207 tains a reasonable and smooth probability distribution, we introduce the image-free term $\pi_{\theta}(\mathcal{A} | \mathcal{Q})$
 208 and implement the image-side loss as in Wu et al. (2025):

$$\mathcal{L}_{\text{Image}}(\mathcal{I}^+, \mathcal{I}^-; \mathcal{Q}, \mathcal{A}^+) = -\log \sigma \left(\beta_1 \cdot \left[\log \frac{\pi_{\theta}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})} - \log \frac{\pi_{\theta}(\mathcal{A}^+ | \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{Q})} \right] \right. \\ \left. + \beta_2 \cdot \left[\log \frac{\pi_{\theta}(\mathcal{A}^+ | \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{Q})} - \log \frac{\pi_{\theta}(\mathcal{A}^+ | \mathcal{I}^-, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^-, \mathcal{Q})} \right] \right) \quad (5)$$

214 The overall loss function is then defined as:

$$\mathcal{L}_{\text{OViP}}(\mathcal{Q}, \mathcal{I}^+, \mathcal{I}^-, \mathcal{A}^+, \mathcal{A}^-) = \mathcal{L}_{\text{Text}}(\mathcal{A}^+, \mathcal{A}^-; \mathcal{I}, \mathcal{Q}) + \mathcal{L}_{\text{Image}}(\mathcal{I}^+, \mathcal{I}^-; \mathcal{Q}, \mathcal{A}^+) \quad (6)$$

Method	Error rate	Quality	Cos Sim.
Model-based Synthesis (Ours)	9.41%	4.20	0.6224
Cropping	70.86%	3.94	0.9672
Random Sampling	3.39%	2.52	0.4177

Table 1: Quality of different images. Error Rate denotes the probability that a negative image is incorrect (not contradicting the positive response). Quality reflects GPT-based assessments of image fidelity, and Cos Sim measures the similarity between the negative image and the positive image.

2.4 QUALITY ANALYSIS

We evaluate both the accuracy of the LLM-based annotation in the OViP framework and the quality of the synthesized negative images.

LLM-as-the-Annotator. We first use GPT to evaluate the response pairs from the Contrasting Response Pair Sampling stage to check whether the preference between the positive and negative responses is unclear or even inverted. We then manually check the cases that are labeled as “incorrect”. About 3.3% of the pairs contain unclear or incorrect preference assignments. Overall, the error rate is low, indicating that using an LLM as a correctness annotator is feasible in practice.

Negative Image Synthesis. We further compare OViP’s diffusion-based negative image synthesis strategy with two model-free negative image generation baselines used in prior works. Table 1 demonstrates that OViP’s synthesized negative images exhibit higher quality and higher cosine similarity to the original images, while maintaining a low error rate.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Implementation Details We conduct our experiments on LLaVA-1.5-7B-hf and LLaVA-1.5-13B-hf (Liu et al., 2024b), with CLIP ViT-L-336px as the visual encoder and Vicuna-7b/13b as the backbone respectively. The training dataset, sourced from Yang et al. (2025), consists of 8,730 samples and 4,013 distinct image–query combinations, including image description, question answering, and some yes/no questions. We use LoRA (Hu et al., 2022) with a rank of 256 and alpha of 512. Other settings are listed in Appendix B.2

Baselines We compare OViP with SFT, DPO (Rafailov et al., 2023), mDPO (Wang et al., 2024a) and GRPO (Shao et al., 2024). As the original versions of SFT, DPO and mDPO are offline methods, we additionally implement iterative DPO and GRPO to facilitate a more comprehensive comparison. Furthermore, we evaluate several prior works with publicly available model weights, including HA-DPO (Zhao et al., 2023), HALVA (Sarkar et al., 2024), RLAIF-V (Yu et al., 2024b) and OPA-DPO (Yang et al., 2025). Among them, our OViP and OPA-DPO use the same original training data, which is a subset of the dataset used by RLAIF-V.

3.2 EVALUATION METRICS

We conduct evaluations on five **hallucination-related** and four **general capability** benchmarks to assess hallucination mitigation and overall capability degradation.

Hallucination-Related Evaluation. We evaluate hallucination in LVLM outputs using MMHal-Bench (MMHal) (Sun et al., 2024), AMBER generative (AMB_{gen}) (Wang et al., 2023), Object HalBench (ObjectHal) (Rohrbach et al., 2018), Llava-Bench-in-the-Wild (LV) (Liu et al., 2023), and AMBER discriminative (AMB_{dis}) (Wang et al., 2023). Detailed descriptions of the datasets, evaluation procedures, and metrics are provided in Appendix A.2

270
271 **Table 2: Main Results for OViP and other methods across different benchmarks.** The five
272 shaded metrics highlight the key metrics for each benchmark. **HRI** (Hallucination Reduction
273 Index) is the average improvement across five benchmarks. Acc_{Dif} is the total accuracy changes
274 across TextVQA(Singh et al., 2019), RealworldQA(xAI, 2024), MMStar(Chen et al., 2024b) and
275 CVBench(Tong et al., 2024). GPT4-V(\dagger)’s results are cited from Xiao et al. (2025),Wang et al.
276 (2023),Duan et al. (2024) for reference. \ddagger indicates the use of original evaluation strategy. * denotes
277 methods with publicly released model weights trained on their own datasets, which we direct evaluate
278 without re-training. \ddagger signifies methods trained on datasets that are the same as or larger than
279 ours. “2-ep” means two epochs of training. We separate offline methods from non-offline methods
for clearer comparison. Detailed results of general benchmarks are provided in Appendix B.6.

		AMB _{gen}	MMHal	ObjectHal		LV	AMB _{dis}	HRI	General			
				Chair \downarrow	F1 \uparrow	Score \uparrow	Chair $_r \downarrow$	F1 \uparrow	Score \uparrow	Acc Dif		
280 281 282 283 284 285 286 287 288 289 290 291	282 283 284 285 286 287 288 289 290 291	GPT4-V \dagger	4.6	67.1	78.8	3.49 \ddagger	13.6	-	95.3	87.4	-	-
		Baseline	7.1	50.0	65.01	1.90	51.38	72.40	57.20	85.5	-	-
		HA-DPO*	5.6	49.4	64.86	1.95	37.15	73.81	57.30	85.4	1.52	-11.59
		HALVA*	5.7	52.9	67.78	2.12	43.40	76.01	58.60	86.5	9.08	-7.36
		RRAIF-V* \ddagger	3.1	49.8	65.79	2.54	9.35	69.78	58.90	86.4	1.37	-6.74
		OPA-DPO* \ddagger	2.4	45.2	61.79	2.78	6.37	63.26	64.80	86.7	-5.60	-11.82
		SFT	3.5	50.6	66.39	2.52	20.60	70.30	52.20	86.1	-1.47	-8.07
		DPO	3.7	48.9	64.86	2.35	26.60	71.95	56.70	86.8	1.65	-3.86
		mDPO	3.4	48.6	64.67	2.55	25.45	73.92	55.80	86.1	2.99	-3.05
		DPO _{iterative}	3.9	48.7	64.64	2.32	27.11	72.33	56.40	86.5	1.31	-2.98
292 293 294 295 296 297 298	292 293 294 295 296 297 298	GRPO _{2ep}	4.8	51.2	66.59	2.45	34.98	73.83	58.70	86.8	6.75	-3.83
		OViP	4.0	51.1	66.70	2.52	33.22	73.50	63.10	87.3	9.58	+0.88
		OVIP _{2ep}	4.0	51.6	67.12	2.65	29.54	74.18	60.90	87.4	10.00	-1.01
		Baseline	6.5	51.0	65.99	2.24	46.18	76.73	62.60	89.1	-	-
		HALVA*	6.0	52.2	67.12	2.45	35.07	77.75	61.70	90.0	4.22	-5.45
		OPA-DPO* \ddagger	2.8	47.8	64.08	2.88	5.88	64.46	64.70	89.3	-7.05	-9.66
		SFT	4.5	50.0	65.64	2.38	31.21	75.81	64.00	89.9	1.79	-1.24
		DPO	3.6	50.6	66.37	2.53	25.00	75.00	65.30	89.6	2.42	+0.12
		mDPO	3.9	50.1	65.86	2.51	21.79	75.35	64.50	89.5	1.78	-1.12
		GRPO _{2ep}	3.8	52.4	67.84	2.38	23.76	75.55	66.70	90.4	4.96	-1.48
299 300 301	299 300 301	OViP	4.4	53.1	68.28	2.58	36.30	76.52	64.60	89.7	5.25	+0.85
		OVIP _{2ep}	3.6	53.7	68.98	2.57	28.62	76.75	67.90	90.2	8.02	+2.02

300
301 Prior work has primarily focused on assessing the precision of model outputs, i.e., whether the
302 generated content contains explicit hallucinations. However, this perspective often overlooks the
303 *completeness* of the output: a model may omit relevant entities (especially in image description
304 tasks), leading to what we term *implicit hallucinations*. *We argue that both explicit and implicit hal-
305 lucinations are critical for a faithful evaluation of model reliability.* Building on this perspective and
306 the observation of failure cases where existing benchmarks can be hacked, we **refine the evaluation**
307 **protocols and introduce an F1 score for AMB_{gen} and ObjectHal to better capture the extent**
308 **of hallucination in generated responses.** Illustrative failure cases of prior evaluation strategies are
309 presented in Appendix A.3.

310 To aggregate performance across five benchmarks, we introduce the **Hallucination Reduction In-
311 dex (HRI)** as a unified measure of overall improvement. HRI is computed by summing the normal-
312 ized improvements from each benchmark to obtain the overall relative gain. The detailed calculation
313 of HRI and the discussion of its fairness are provided in Appendix A.1.

314 **General Capability Evaluation** To assess the trade-off between hallucination mitigation and
315 general visual capability, we evaluate the trained models on general benchmarks, including Real-
316 worldQA (xAI, 2024), TextVQA (Singh et al., 2019), CVBench (Tong et al., 2024), MMStar (Chen
317 et al., 2024b). We aggregate the results across these benchmarks and compute the **Accuracy Differ-
318 ence**, serving as a unified metric to quantify overall performance variation after training.

319 3.3 MAIN RESULTS

320 Table 2 presents results for OViP and other methods across multiple benchmarks on various LVLM
321 backbones. **OViP consistently achieves significant improvements across most primary metrics**
322 **while effectively preserving the model’s general visual capabilities** (achieving +0.88 with one

epoch for General Acc_{Dif} and a slight drop of -1.01 for 2 epochs), whereas most other methods that exhibit varying degrees of degradation in general benchmarks. Moreover, OViP further improves with an additional training epoch. Notably, even with one epoch, OViP surpasses HALVA and 2-epoch GRPO, both of which utilize twice as much training data, but still yield lower HRI and suffer from general ability degradation.

A critical phenomenon often overlooked in previous work (Xie et al., 2024; Yang et al., 2025; Fu et al., 2025; Xiao et al., 2025; Wang et al., 2024a; Yu et al., 2024a;b) is that **offline methods generally impair models’ general capability while also introducing implicit hallucinations** (as discussed in subsection 3.2). This issue is particularly evident in OPADPO, where Chair score on AMB_{gen} drops to 2.4, and Cover metric decreases from the initial 50.0 to 45.2, far below other methods. An illustrative example of such omission is in Figure 8 in Appendix. Moreover, excessive training further exacerbates this problem: as shown in Table 2, several DPO-like methods (HA-DPO, HALVA, RLAIF-V, OPA-DPO) trained for more than two epochs suffer from much larger declines in general capability compared to DPO and mDPO trained for only one epoch. At the same time, except for HALVA, their HRI scores are also lower than those of DPO and mDPO, which mainly influenced by the low F1 scores on AMB_{gen} and ObjectHal. **With these possible signs of overfitting, we suggest that some improvements reported in prior work may be overestimated.**

3.4 ABLATION STUDY

Loss functions. We evaluated various combinations of loss functions for online preference learning in hallucination mitigation to derive the final formulation in Equation 6. Our ablation study examines the effectiveness of different training objectives, including text-side ($\mathcal{L}_{\text{Text}}$), image-side and auxiliary losses. Specifically for image-side losses, we examine our image loss $\mathcal{L}_{\text{Image}}$ alongside two variants $\mathcal{L}_{\text{Image}}^{\text{base}}$ and $\mathcal{L}_{\text{Image-Sym}}$. For auxiliary loss, we compare the anchor loss proposed by Wang et al. (2024a) and the bidirectional anchor loss, which enforce the probability of positive response to increase and the negative one to decrease. Detailed formulations are provided in Appendix B.1. **The ablation for auxiliary loss is provided in Appendix B.3.**

Table 3: Results of different loss functions.
 $\mathcal{L}_{\text{OViP}} = \mathcal{L}_{\text{Text}} + \mathcal{L}_{\text{Image}}$.

Loss Functions	HRI	
	From Scratch	Iterative
$\mathcal{L}_{\text{OViP}}$	4.32	7.94
– $\mathcal{L}_{\text{Text}}$	4.23	7.71
– $\mathcal{L}_{\text{Image}}$	-2.29	4.56
$\mathcal{L}_{\text{Text}} + \mathcal{L}_{\text{Image}}^{\text{base}}$	4.08	7.50
$\mathcal{L}_{\text{Image-Sym}}$	-0.32	6.57

Table 4: Results of offline and online training strategy with DPO and OViP. Cover measures the informativeness of the model from AMB_{gen}. Cover score of the original model is 50.

Method	Cover	HRI	General Acc _{Dif}
OViP	online	51.1	9.36
	offline	49.9	4.32
DPO	online	50.0	1.71
	offline	48.3	-2.29
			-1.38

We conduct experiments under two training regimes: (1) training from scratch, and (2) iterative training initialized with a DPO-pretrained model using the existing dataset, to ablate these losses on top of different initialized models with varying capabilities. We observe that models trained with different losses do not suffer from a notable drop in general ability ($\text{General Acc}_{\text{Dif}} > -1.5$). Therefore, in Table 3 we only report the HRI results, which show that the full OViP loss consistently outperforms all variants under both training regimes. Moreover, the form of the image loss greatly affects the results, with the loss in Equation 5 achieving the best performance.

Online v.s. Offline. Table 4 demonstrates that online training consistently outperforms its offline counterpart in HRI by at least 4 points within just one epoch (and continues to improve with further training, while offline training suffers from overfitting). Another notable observation is that *online training also improves the informativeness of model outputs*. Even when trained with DPO, the Cover score remains 50. In contrast, previous studies (Yu et al., 2024b; Yang et al., 2025; Fu et al., 2025) using the similar dataset typically exhibit a drop in this aspect. Additionally, the improvement for online training over offline training is almost across every individual benchmark and each corresponding metric, online training yields more stable and superior performance. Detailed results are provided in Appendix B.4.

Method	Chair	AMB _{gen} Cover	F1	MMHal Score	ObjectHal Chair _r	F1	LV Score	AMB _{dis} F1	General Acc _{Dif}
Cropping	3.5	52.50	68.00	2.50	27.21	73.75	62.50	86.40	+0.34
Sampling	3.4	50.50	66.33	3.37	24.20	73.11	61.20	86.60	-0.66
Synthesis	3.3	52.80	68.30	2.70	28.21	74.14	63.60	85.70	+1.44

Table 5: Results for different negative image generation methods. **Cropping** refers to randomly removing 0–20% of the positive image. **Sampling** denotes selecting a random image from the entire dataset as the negative image. **Synthesis** corresponds to the diffusion-based negative image generation method used in OViP.

Negative Images. We further investigate how different strategies for generating negative images affect model performance. As shown in Table 5, we compare three approaches: cropping (adopted in mDPO)(Wang et al., 2024a), random sampling, and model-based online synthesis. The images obtained through Random Sampling have low semantic relevance to the original text and do not lie in the model’s hallucination distribution. This approach suffers from the same informativeness degradation observed in offline methods in Cover of AMBgen and F1 of ObjectHal are low. In contrast, the Cropping strategy does not incur such losses in informativeness or general capability, likely because the cropped images still preserve partial semantic alignment. Overall, the diffusion-based online synthesis used in OViP delivers the most favorable performance, effectively generating high-quality hallucination-targeted negative images.

4 FURTHER STUDY

4.1 TRAINING EFFICIENCY

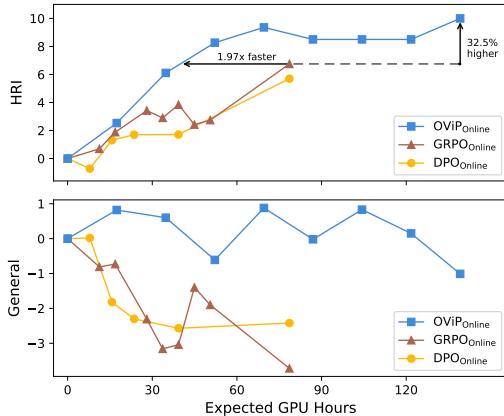


Figure 3: **Performance comparison among online training methods up to 2 epochs.** The X-axis shows the expected training time multiplied by the number of GPUs used. OViP outperforms GRPO with $1.97\times$ higher training efficiency.

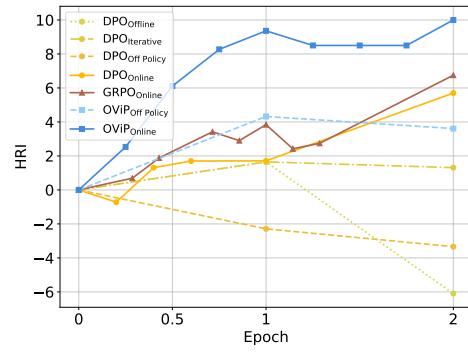


Figure 4: **Results under different training strategies.** Offline denotes training with the existing dataset; Off Policy refers to training with sampled data; and Iterative indicates that the dataset for the second epoch is generated by sampling from the offline-trained model after the first epoch.

Although OViP requires constructing negative images, which needs additional GPU resources for deploying diffusion models and incurs extra time overhead, we show that OViP still has clear advantages in overall training efficiency. In Figure 3, we compare different online methods by plotting their HRI and general capability against expected GPU hours. (A detailed analysis of training cost and efficiency is provided in Appendix D) The results show that despite slower per-iteration speed, OViP achieves approximately $1.97\times$ higher training efficiency than GRPO. OViP requires only about half the computation of GRPO to achieve comparable performance, while Online DPO

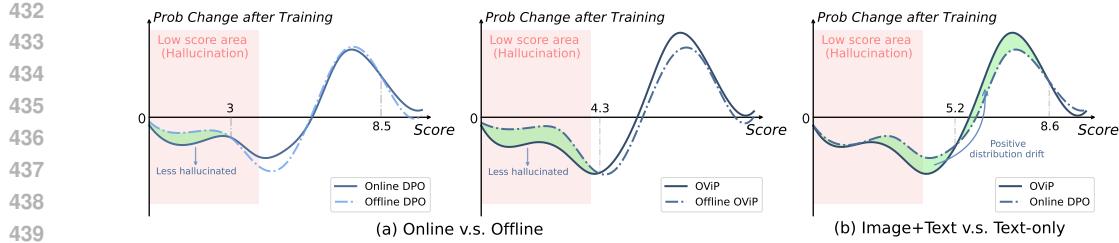


Figure 5: Change in probability mass for the responses with corresponding score after training. We smooth the discrete probability changes over 11 score bins (0-10) into a continuous curve. “Low score” refers to scores less than 4. “Change > 0 ” represents the probability increases after training.

performs slightly worse than GRPO. As for offline approaches, although their data construction and training require a similar amount of computation, their performance consistently falls short of their online counterparts; hence, our efficiency comparison focuses on online methods.

4.2 TRAINING DYNAMICS

Figure 4 illustrates how HRI evolves during training under different strategies, which allows us to investigate the dynamics of hallucination throughout training.

Need for Visual and Online Signals For hallucination mitigation in LVLMs, *adding visual supervision signals proves crucial*: offline OViP surpasses GRPO and all DPO variants with one epoch. Building on this, *online methods offer further advantages, which not only make each optimization step more effective in reducing hallucinations, but also exhibit better scalability*, with overfitting arising significantly later compared to non-online approaches, whose performance starts to drop after training for one epoch. We conjecture that this superiority stems from the model-specific nature of hallucinations, which requires supervision to precisely target the current model’s errors.

Early Training Stagnation Both Online DPO and Off-Policy DPO exhibit an initial drop in performance, while GRPO and OViP show relatively slow improvement during the early stages of training. We attribute this phenomenon to the model’s initially skewed output distribution. Early training primarily increases the diversity of model outputs, which does not immediately translate into performance gains but expands the search space for subsequent learning. A detailed discussion is provided in Appendix B.5.

4.3 WHAT DO WE ACTUALLY OPTIMIZE DURING TRAINING?

To understand how different training strategies reshape the model’s behavior, we sample responses, score them using our evaluator, and track the change in probability mass across score levels before and after training (Figure 5). This analysis reveals how each method redistributes probability over the actual responses the model would generate.

Online preference learning suppresses severe hallucinations more effectively than offline DPO. Offline DPO barely shifts probability mass away from extreme failures (scores < 4). In contrast, online training continuously exposes the model to its own most confident mistakes, allowing the model to substantially decrease the probability of severely hallucinated outputs.

Visual preference learning induces broad quality improvements but offers limited gains for extreme hallucinations. Adding image-based supervision consistently shifts probability mass upward across mid-quality responses, indicating better grounding and more informative answers. However, it does not significantly further suppress the lowest-scoring outputs.

These two components influence different regions of the response-quality distribution. Online learning primarily corrects severe, high-confidence hallucinations, whereas visual preference learn-

486 ing improves overall grounding and informativeness. Their effects are therefore complementary:
 487 one targets the left tail of the distribution, the other lifts the central and right regions. This comple-
 488 mentary behavior explains why combining the two yields stable, additive improvements across all
 489 evaluation metrics.
 490

491 5 RELATED WORK

492 5.1 LVLM HALLUCINATION

493 Works of synthetic data construction for mitigating hallucination in LVLMs can be broadly catego-
 494 rized into image-related synthesis and text-only synthesis. On the image side, several approaches
 495 leverage entity extraction and masking to perform targeted image editing, generating visually similar
 496 but semantically distinct counterfactuals (Xie et al., 2024; Lu et al., 2025). In contrast, Hallusion-
 497 Bench (Guan et al., 2024) adopts a manual approach, carefully crafting counterfactual images to
 498 probe specific failure modes. Other works take a generative perspective: SynthVLM (Liu et al.,
 499 2024c) and SynthEmbedding (Sharifzadeh et al., 2024) utilize off-the-shelf models to synthesize
 500 new images or directly generate image embeddings for hallucination-aware training. Meanwhile,
 501 text-side data augmentation can also be used in LVLM training. VoCoT (Li et al., 2024) intro-
 502 duces new prompting patterns and response types to generate hallucination-prone QA data at scale.
 503 Other works such as Zhou et al. (2024a), Sarkar et al. (2024), Amirloo et al. (2024) introduce noise
 504 through perturbation, masking, or controlled corruption to simulate erroneous responses. More re-
 505 cent approaches (Xiao et al., 2025; Yu et al., 2024a) aim to detect and correct hallucinated content
 506 at varying levels of granularity, from token-level edits to full-sequence rewrites.
 507

508 These efforts significantly improve the diversity and coverage of supervision signals available for
 509 training hallucination-robust VLMs.
 510

511 5.2 ALLOCATING MORE COMPUTATION ON TRAINING SAMPLE CONSTRUCTION

512 Recent research has increasingly adopted the paradigm of allocating additional computation during
 513 training to get better training samples. Several studies utilize reinforcement learning with human or
 514 AI-generated feedback to guide VLM outputs. RLHF-V (Yu et al., 2024a) leverages fine-grained
 515 human annotations to correct hallucinated content, while RLAIF-V (Yu et al., 2024b) replaces hu-
 516 man labels with feedback from ensembles of open-source models, significantly reducing annotation
 517 overhead. Similarly, OPA-DPO (Yang et al., 2025) employs an on-policy editing step prior to DPO,
 518 aligning training samples closely with model predictions to enhance data efficiency. CLIP-based
 519 methods dynamically filter self-generated samples for high-quality training pairs (Ouali et al., 2024a;
 520 Zhou et al., 2024b). Other methods integrate auxiliary reward models or evaluators during training,
 521 providing continuous and adaptive feedback loops (Sun et al., 2024; Yan et al., 2024). Additionally,
 522 recent approaches incorporate reasoning or editing mechanisms directly into training, using iterative
 523 self-feedback or generative data augmentation techniques to dynamically refine model outputs (Zhao
 524 et al., 2023; Kim et al., 2024). These strategies improve model alignment and factuality by enriching
 525 the quality and relevance of supervision signals during training.
 526

527 6 CONCLUSION

528 In this work, we propose the Online Vision-language Preference Learning (OViP) framework to effi-
 529 ciently address the hallucination problem in LVLMs. By integrating online preference learning with
 530 image-aware training, OViP enables real-time construction of high-quality contrastive data during
 531 training. Furthermore, to better assess the trade-offs between hallucination reduction and overall
 532 performance, we refine and extend existing evaluation protocols. Experimental results demonstrate
 533 that OViP significantly outperforms prior offline/online training approaches, achieving substantial
 534 hallucination reduction while preserving general vision-language capabilities, which many existing
 535 offline methods fail to preserve. Our investigation into training dynamics also sheds light on the
 536 underlying mechanisms behind OViP’s effectiveness.
 537

540
541 ETHICS STATEMENT

542 This work focuses on improving the factual reliability of vision-language models by reducing hal-
 543 lucination. While it does not directly engage with societal applications, it contributes to the broader
 544 goal of building more trustworthy and robust AI systems. Although the method itself does not
 545 pose obvious risks, we note that even improved generation quality does not eliminate the possibility
 546 of misuse, such as producing misleading content. Responsible deployment and proper safeguards
 547 remain necessary when integrating such models into real-world applications.

548
549 REPRODUCIBILITY STATEMENT
550

551 We provide detailed descriptions of the training and evaluation setups in Appendix A and Ap-
 552 pendix B. In addition, we include anonymized training and evaluation code, instructions for running
 553 the experiments, and information on accessing the relevant datasets in the supplementary materials.

554
555 REFERENCES
556

557 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 558 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 559 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
 560 23736, 2022.

561 Elmira Amirloo, Jean-Philippe Fauconnier, Christoph Roesmann, Christian Kerl, Rinu Boney, Yusu
 562 Qian, Zirui Wang, Afshin Dehghan, Yinfei Yang, Zhe Gan, et al. Understanding alignment in
 563 multimodal llms: A comprehensive study. *arXiv preprint arXiv:2407.02477*, 2024.

564 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 565 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

566 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng
 567 Shou. Hallucination of multimodal large language models: A survey. *arXiv preprint
 568 arXiv:2404.18930*, 2024.

569 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
 570 Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
 571 language model as a unified interface for vision-language multi-task learning. *arXiv preprint
 572 arXiv:2310.09478*, 2023.

573 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahu-
 574 Lin. Sharegpt4v: Improving large multi-modal models with better captions. In *European Confer-
 575 ence on Computer Vision*, pp. 370–387. Springer, 2024a.

576 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
 577 Wang, Yu Qiao, Dahu Lin, et al. Are we on the right way for evaluating large vision-language
 578 models? *arXiv preprint arXiv:2403.20330*, 2024b.

579 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
 580 Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
 581 models with instruction tuning, 2023. URL <https://arxiv.org/abs/2305.06500>.

582 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
 583 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evalua-
 584 ting large multi-modality models. In *Proceedings of the 32nd ACM International Conference on
 585 Multimedia*, pp. 11198–11201, 2024.

586 Jinlan Fu, Shenzhen Huangfu, Hao Fei, Xiaoyu Shen, Bryan Hooi, Xipeng Qiu, and See-Kiong Ng.
 587 Chip: Cross-modal hierarchical direct preference optimization for multimodal llms, 2025. URL
 588 <https://arxiv.org/abs/2501.16629>.

594 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 595 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for
 596 entangled language hallucination and visual illusion in large vision-language models. In *Pro-
 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14375–
 598 14385, 2024.

599 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
 600 Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
 601 online ai feedback. *arXiv preprint arXiv:2402.04792*, 2024.

603 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 604 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

606 Minchan Kim, Minyeong Kim, Junik Bae, Suhwan Choi, Sungkyung Kim, and Buru Chang. Ex-
 607 ploiting semantic reconstruction to mitigate hallucinations in vision-language models. In *Euro-
 608 pean Conference on Computer Vision*, pp. 236–252. Springer, 2024.

609 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 610 pre-training with frozen image encoders and large language models. In *International conference
 611 on machine learning*, pp. 19730–19742. PMLR, 2023a.

613 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 614 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

616 Zejun Li, Ruiyu Luo, Jiwen Zhang, Minghui Qiu, Xuanjing Huang, and Zhongyu Wei. Vocot:
 617 Unleashing visually grounded multi-step reasoning in large multi-modal models. *arXiv preprint
 618 arXiv:2405.16919*, 2024.

619 Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
 620 Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. *arXiv
 621 preprint arXiv:2402.00253*, 2024a.

623 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 624 in neural information processing systems*, 36:34892–34916, 2023.

625 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 626 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 627 nition*, pp. 26296–26306, 2024b.

629 Zheng Liu, Hao Liang, Xijie Huang, Wentao Xiong, Qinhan Yu, Linzhuang Sun, Chong Chen,
 630 Conghui He, Bin Cui, and Wentao Zhang. Synthvilm: High-efficiency and high-quality synthetic
 631 data for vision language models. *arXiv preprint arXiv:2407.20756*, 2024c.

632 Jinda Lu, Jinghan Li, Yuan Gao, Junkang Wu, Jiancan Wu, Xiang Wang, and Xiangnan He. Adavip:
 633 Aligning multi-modal llms via adaptive vision-enhanced preference optimization. *arXiv preprint
 634 arXiv:2504.15619*, 2025.

636 Yassine Ouali, Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Clip-dpo: Vision-
 637 language models as a source of preference for fixing hallucinations in l1lms. In *European Con-
 638 ference on Computer Vision*, pp. 395–413. Springer, 2024a.

639 Yassine Ouali, Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Clip-dpo: Vision-
 640 language models as a source of preference for fixing hallucinations in l1lms. In *European Con-
 641 ference on Computer Vision*, pp. 395–413. Springer, 2024b.

643 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 644 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 645 A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in
 646 Neural Information Processing Systems*, volume 36, pp. 53728–53741. Curran Associates, Inc.,
 647 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.

648 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 649 hallucination in image captioning. In *Proceedings of the 2018 Conference on Empirical Methods
 650 in Natural Language Processing*, pp. 4035–4045, 2018.

651

652 Pritam Sarkar, Sayna Ebrahimi, Ali Etemad, Ahmad Beirami, Sercan Ö Arik, and Tomas Pfis-
 653 ter. Data-augmented phrase-level alignment for mitigating object hallucination. *arXiv preprint
 654 arXiv:2405.18654*, 2024.

655

656 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 657 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 658 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

659

660 Sahand Sharifzadeh, Christos Kaplanis, Shreya Pathak, Dharshan Kumaran, Anastasija Ilic, Jovana
 661 Mitrovic, Charles Blundell, and Andrea Banino. SynthQ: Boosting visual-language models with
 662 synthetic captions and image embeddings. *arXiv preprint arXiv:2403.07750*, 2024.

663

664 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 665 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF
 conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

666

667 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
 668 Liangyan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
 669 factually augmented rlhf. In *Findings of the Association for Computational Linguistics ACL
 2024*, pp. 13088–13110, 2024.

670

671 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
 672 Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fer-
 673 gus, Yann LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric ex-
 674 ploration of multimodal llms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 675 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Pro-
 676 cessing Systems*, volume 37, pp. 87310–87356. Curran Associates, Inc., 2024. URL
 677 https://proceedings.neurips.cc/paper_files/paper/2024/file/9ee3a664ccfeabc0da16ac6f1f1cfe59-Paper-Conference.pdf.

678

679 Fei Wang, Wenxuan Zhou, James Y Huang, Nan Xu, Sheng Zhang, Hoifung Poon, and Muhan
 680 Chen. mdpo: Conditional preference optimization for multimodal large language models. In
 681 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 682 8078–8088, 2024a.

683

684 Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Jiaqi Wang, Haiyang
 685 Xu, Ming Yan, Ji Zhang, et al. Amber: An llm-free multi-dimensional benchmark for mllms
 686 hallucination evaluation. *arXiv preprint arXiv:2311.07397*, 2023.

687

688 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 689 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 690 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

691

692 Xiyao Wang, Juhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou,
 693 Tom Goldstein, Parminder Bhatia, Taha Kass-Hout, Furong Huang, and Cao Xiao. Enhancing
 694 visual-language modality alignment in large vision language models via self-improvement. In
 695 Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational
 696 Linguistics: NAACL 2025*, pp. 268–282, Albuquerque, New Mexico, April 2025. Association for
 697 Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.15.
 698 URL <https://aclanthology.org/2025.findings-naacl.15/>.

699

700 Shengguang Wu, Fan-Yun Sun, Kaiyue Wen, and Nick Haber. Symmetrical visual contrastive op-
 701 timization: Aligning vision-language models with minimal contrastive images. *arXiv preprint
 702 arXiv:2502.13928*, 2025.

703 xAI. Grok-1.5 vision preview, April 2024. URL <https://x.ai/blog/grok-1.5v>. Ac-
 704 cessed: 2024-12-12.

702 Wenyi Xiao, Ziwei Huang, Leilei Gan, Wanggui He, Haoyuan Li, Zhelun Yu, Fangxun Shu, Hao
 703 Jiang, and Linchao Zhu. Detecting and mitigating hallucination in large vision language models
 704 via fine-grained ai feedback. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 705 volume 39, pp. 25543–25551, 2025.

706 Yuxi Xie, Guanzhen Li, Xiao Xu, and Min-Yen Kan. V-dpo: Mitigating hallucination in
 707 large vision language models via vision-guided direct preference optimization. *arXiv preprint*
 708 *arXiv:2411.02712*, 2024.

709 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 710 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

711 Siming Yan, Min Bai, Weifeng Chen, Xiong Zhou, Qixing Huang, and Li Erran Li. Vigor: Im-
 712 proving visual grounding of large vision language models with fine-grained reward modeling. In
 713 *European Conference on Computer Vision*, pp. 37–53. Springer, 2024.

714 Zhihe Yang, Xufang Luo, Dongqi Han, Yunjian Xu, and Dongsheng Li. Mitigating hallucina-
 715 tions in large vision-language models via dpo: On-policy data hold the key. *arXiv preprint*
 716 *arXiv:2501.09695*, 2025.

717 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 718 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
 719 scale. *arXiv preprint arXiv:2503.14476*, 2025.

720 Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
 721 Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment
 722 from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF Conference on*
 723 *Computer Vision and Pattern Recognition*, pp. 13807–13816, 2024a.

724 Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,
 725 Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for
 726 super gpt-4v trustworthiness. *arXiv preprint arXiv:2405.17220*, 2024b.

727 Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiaqi Wang, and Conghui He. Beyond hal-
 728 lucinations: Enhancing lvlms through hallucination-aware direct preference optimization. *arXiv*
 729 *preprint arXiv:2311.16839*, 2023.

730 Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit
 731 Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language
 732 models. *arXiv preprint arXiv:2310.00754*, 2023.

733 Yiyang Zhou, Chenhang Cui, Rafael Rafailev, Chelsea Finn, and Huaxiu Yao. Aligning modalities
 734 in vision large language models via preference fine-tuning. *arXiv preprint arXiv:2402.11411*,
 735 2024a.

736 Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiayao
 737 Wang, Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models,
 738 2024b. URL <https://arxiv.org/abs/2405.14622>.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A EVALUATION**
757758 **A.1 HALLUCINATION REDUCTION INDEX**
759760 **A.1.1 METRIC DESIGN**
761

762 HRI represents an aggregate improvement metric across five different benchmarks. Simply summing
763 the raw scores from each benchmark would not be a reasonable or rigorous approach, as the metrics
764 are not directly comparable. Therefore, we calculate the improvement ratio for each benchmark
765 based on its potential improvement range, effectively converting the raw metric gains into an additive
766 proportion of improvement. Furthermore, we employ a conservative aggregation method to avoid
767 overestimating the effectiveness of our approach.

768 Let $a_i, i \in \{1, 2, 3, 4, 5\}$ denotes $F1_{AMB\text{-}gen}$, $Score_{MMHal}$, $F1_{ObjectHal}$, LV_{score} , $F1_{AMB\text{-}dis}$ re-
769 spectively, namely the results on each benchmark, superscript “ $base$ ” represents performances of the
770 baseline model and “ ref ” represents the set reference performances. Then HRI is calculated as:

$$771 \quad 772 \quad 773 \quad \mathbf{HRI} = 2 \times \sum_{i=1}^5 \frac{a_i - a_i^{base}}{a_i^{ref} - a_i^{base}} \quad (7)$$

774 **A.1.2 MAIN RESULTS**
775

776 For 7B model, we set the reference performances as \mathbf{OViP}_{2ep} , so it comes:

$$777 \quad 778 \quad \mathbf{HRI} = 2 \times \left(\frac{a_1 - 65.01}{67.12 - 65.01} + \frac{a_2 - 1.90}{2.65 - 1.90} + \frac{a_3 - 72.40}{74.18 - 72.40} + \frac{a_4 - 57.20}{60.90 - 57.20} + \frac{a_5 - 85.5}{87.4 - 85.5} \right)$$

781 For 13B model, we also use \mathbf{OViP}_{2ep} as the reference performances except for the ObjectHal bench-
782 mark which almost all methods fail to improve. We set the reference performance of ObjectHal to
783 79.0.

$$784 \quad 785 \quad \mathbf{HRI} = 2 \times \left(\frac{a_1 - 65.99}{68.98 - 65.99} + \frac{a_2 - 2.24}{2.57 - 2.24} + \frac{a_3 - 76.73}{79.00 - 76.73} + \frac{a_4 - 62.60}{67.90 - 62.60} + \frac{a_5 - 89.1}{90.2 - 89.1} \right)$$

787 **A.1.3 ABLATION STUDY: LOSS FUNCTIONS**
788

789 There is no method surpassing other methods significantly, so we consider the best performance on
790 the benchmark as its reference performance.

$$791 \quad 792 \quad \mathbf{HRI} = 2 \times \left(\frac{a_1 - 65.01}{68.57 - 65.01} + \frac{a_2 - 1.90}{2.70 - 1.90} + \frac{a_3 - 72.40}{74.14 - 72.40} + \frac{a_4 - 57.20}{64.10 - 57.20} + \frac{a_5 - 85.5}{87.20 - 85.5} \right)$$

794 **A.1.4 ABLATION STUDY: ONLINE AND OFFLINE**
795

796 Same as Main Results.

$$797 \quad 798 \quad \mathbf{HRI} = 2 \times \left(\frac{a_1 - 65.01}{67.12 - 65.01} + \frac{a_2 - 1.90}{2.65 - 1.90} + \frac{a_3 - 72.40}{74.18 - 72.40} + \frac{a_4 - 57.20}{60.90 - 57.20} + \frac{a_5 - 85.5}{87.4 - 85.5} \right)$$

800 **A.1.5 FURTHER STUDY**
801

802 Same as Main Results.

$$803 \quad 804 \quad \mathbf{HRI} = 2 \times \left(\frac{a_1 - 65.01}{67.12 - 65.01} + \frac{a_2 - 1.90}{2.65 - 1.90} + \frac{a_3 - 72.40}{74.18 - 72.40} + \frac{a_4 - 57.20}{60.90 - 57.20} + \frac{a_5 - 85.5}{87.4 - 85.5} \right)$$

806 **A.1.6 FAIRNESS**
807

808 When aggregating different metrics through weighted averaging, it is necessary to account for the
809 relative importance of each metric. Here, we define the potential improvement of a metric by con-
sidering its maximum observed gain in comparable experiments, and assign its weight as the inverse

of this gain to normalize across metrics. For example, if metric A shows a maximum improvement of 2 points while metric B improves by 4 points, we assume that an equally strong model would, on average, achieve only half as much gain on A as on B. Consequently, each point of improvement on A should be considered twice as important as a point on B. Compared with simple averaging, this weighting scheme better reflects the relative significance of different metrics and is less prone to being gamed.

A.2 BENCHMARKS

- MMHal-Bench (MMHal) (Sun et al., 2024) is a model-evaluated question-answering benchmark covering 8 categories and 12 topics. While the original evaluation strategy uses GPT-4 to judge model responses, a text-only model will introduce considerable judging-time hallucinations and errors, so gpt-4o-2024-05-13 is better for evaluation. (Amirloo et al., 2024).
- AMBER generative (AMB_{gen}) (Wang et al., 2023) is a judging-model-free benchmark for the image description task, comprising 1,004 samples. **Chair** measures the object-level hallucination rate as the average precision of objects mentioned in the model’s descriptions, while **Cover** indicates the recall of objects. *We observe a noticeable trade-off between these two metrics across various methods, where improvements in one often come at the expense of the other. To provide a more balanced and overall assessment, we introduce a new **F1** score calculated as the harmonic mean of Chair and Cover.*
- Object HalBench (ObjectHal) (Rohrbach et al., 2018) evaluates object-level completeness and hallucination rates. The generation prompts are augmented from Yu et al. (2024a). **Chair_r** denotes the response-level hallucination rate. We also introduce an object-level **F1** metric to comprehensively measures the balance between hallucination and object coverage. Objects extraction is performed using gpt-4o-2024-05-13.
- Llava-Bench-in-the-Wild (LV) (Liu et al., 2023) evaluates models’ visual abilities, using 60 open-ended questions grounded in 24 diverse images from real-world and abstract scenarios. The evaluation is conducted using gpt-4o-2024-05-13.
- AMBER discriminative (AMBER_{dis}) (Wang et al., 2023) includes 14,216 ‘Yes/No’ questions regarding objects in image. We use the **F1** score as its metrics.

A.3 BAD CASES

A.3.1 MMHAL

Shown in Figure 6, the original evaluation protocol utilizes the text-only gpt-4-turbo-2024-04-09 to evaluate the model response, which has no access to the input image and can only infer from the given image contents and ground truth, so it will lead to many incorrect judgments. We replace it with gpt-4o-2024-05-13, which yields more accurate assessments.

A.3.2 AMBER-GENERATIVE & OBJECTHAL

AMBER uses an automatic method for detecting the hallucination entity, which primarily relies on the pre-defined hallucination words. ObjectHal introduces LLM to extract the mentioned entities, its metrics are basically the same with AMBER. Figure 7 illustrates several cases of misjudgment in AMBER. Since the score is determined solely by the presence of specific predefined words rather than the actual semantic correctness, the hallucination rate (Chair score) is often overestimated. **Moreover, this issue becomes more pronounced as the diversity and informativeness of model responses increases.**

Many methods achieve great improvements in the Chair score (entity-wise hallucination rate), but often at the cost of a significant decrease in the cover rate (completeness and informativeness). Figure 8 provides an example of this information deficit phenomenon, which should also be considered in the evaluation of model performance.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

Question: How many people are there in the image?
Model response: There are four people in the image: a man, a woman, and two children.

Ground truth: There are four people in the image.

gpt-4-turbo-2024-04-09:
 The LMM's response claims that there are four people in the image, which matches the standard human-generated answer. *However, the LMM further specifies the composition of these four people as "a man, a woman, and two children." This additional detail is not supported by the image contents provided*, which only mention a "Girl" and does not specify any other individuals or their roles/ages. Therefore, the LMM's response includes information that is not present or implied in the image, leading to a hallucination.

Explanation: The response is informative in terms of the number of people, but it hallucinates details about their specific identities (man, woman, two children) which are not mentioned in the image contents.

Rating: 1, somewhat informative, with hallucination.

gpt-4o-2024-05-13:
 The LMM's response correctly identifies the number of people in the image, which is four. It also provides additional information by specifying the likely roles of the individuals (a man, a woman, and two children). This additional detail is accurate and does not introduce any false claims or hallucinations. The response is informative and provides a good analysis without any hallucination.

Rating: 6, very informative with good analysis or reasoning, no hallucination

881
882
883
884

Figure 6: Text-only LLM can not correctly judge the response.

900

901

902

903

904

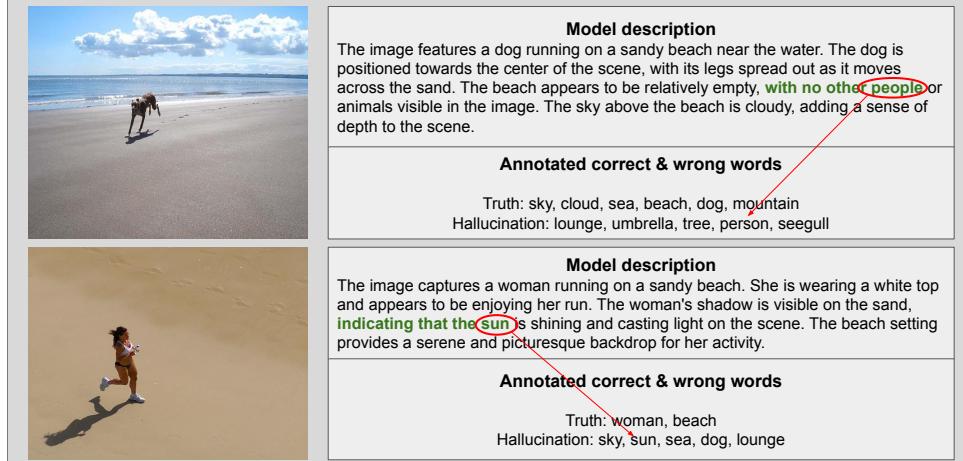
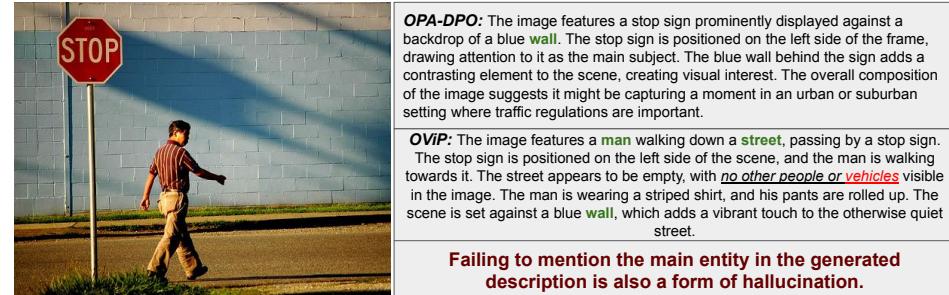


Figure 7: Rule-based extraction will lead to misjudgments to some extent.

915
916
917

Figure 8: OPA-DPO fails to mention the man, a deficiency that is captured by Cover score but often overlooked in previous evaluations. "vehicles" is incorrectly identified as a hallucination word.



918 **B EXPERIMENTS**

919 **B.1 LOSS FUNCTIONS**

920 Base image loss $\mathcal{L}_{\text{Image}}^{\text{base}}$ is similar to DPO loss which replace the response pair with the image pair:

$$921 \mathcal{L}_{\text{Image}}^{\text{base}}(\mathcal{I}^+, \mathcal{I}^-; \mathcal{Q}, \mathcal{A}^+) = \log \sigma \left(\beta \cdot \left[\log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})} - \log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{I}^-, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^-, \mathcal{Q})} \right] \right)$$

922 Symmetrical image loss $\mathcal{L}_{\text{Image-Sym}}$ considers the negative image and the negative response a correct pair, then calculate Image loss using negative response and image as the positive one:

$$923 \mathcal{L}_{\text{Image-Sym}}(\mathcal{I}^+, \mathcal{I}^-, \mathcal{A}^+, \mathcal{A}^-; \mathcal{Q}) = \mathcal{L}_{\text{Image}}(\mathcal{I}^+, \mathcal{I}^-; \mathcal{Q}, \mathcal{A}^+) + \mathcal{L}_{\text{Image}}(\mathcal{I}^-, \mathcal{I}^+; \mathcal{Q}, \mathcal{A}^-) \\ 924 = -\log \sigma \left(\beta_1 \cdot \left[\log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})} - \log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{Q})} \right] \right. \\ 925 \quad \left. + \beta_2 \cdot \left[\log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{Q})} - \log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{I}^-, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^-, \mathcal{Q})} \right] \right) \\ 926 = -\log \sigma \left(\beta_1 \cdot \left[\log \frac{\pi_\theta(\mathcal{A}^- | \mathcal{I}^-, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^- | \mathcal{I}^-, \mathcal{Q})} - \log \frac{\pi_\theta(\mathcal{A}^- | \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^- | \mathcal{Q})} \right] \right. \\ 927 \quad \left. + \beta_2 \cdot \left[\log \frac{\pi_\theta(\mathcal{A}^- | \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^- | \mathcal{Q})} - \log \frac{\pi_\theta(\mathcal{A}^- | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^- | \mathcal{I}^+, \mathcal{Q})} \right] \right)$$

928 Anchor loss $\mathcal{L}_{\text{Anchor}}$ directly enforces the probability of positive response to be higher for intuitively better optimization results.

$$929 \mathcal{L}_{\text{Anchor}}(\mathcal{A}^+, \mathcal{A}^-; \mathcal{Q}, \mathcal{I}^+) = -\log \sigma \left(\beta \cdot \log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})} \right)$$

930 Bi-directional anchor loss $\mathcal{L}_{\text{Bi-Anchor}}$ not only exerts supervision on the positive response, but it also makes the negative response probability to be lower.

$$931 \mathcal{L}_{\text{Bi-Anchor}}(\mathcal{A}^+, \mathcal{A}^-; \mathcal{Q}, \mathcal{I}^+) = -\log \sigma \left(\beta \cdot \log \frac{\pi_\theta(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^+ | \mathcal{I}^+, \mathcal{Q})} \right) + \log \sigma \left(\beta \cdot \log \frac{\pi_\theta(\mathcal{A}^- | \mathcal{Q})}{\pi_{\text{ref}}(\mathcal{A}^- | \mathcal{Q})} \right)$$

932 **B.2 SETTINGS**

933 By default, we use the following settings:

934 **Software infrastructure.** In our implementation, we deploy the non-training LLM and diffusion models as services using FastAPI. During training, the system interacts with these services via API calls to obtain feedback, image prompts, and the paths to generated images.

935 **Models.** The LLM we use for judging response and providing image-generation prompt is `Qwen-2.5-7b-instruct` (<https://huggingface.co/Qwen/Qwen2.5-7B-Instruct>). The diffusion model for image generation is `FLUX.1-dev` (<https://huggingface.co/black-forest-labs/FLUX.1-dev>).

936 **Training** Both the 7B and 13B models are trained for a single epoch using a cosine learning rate schedule with a global batch size of 16. We set $\beta = \beta_1 = \beta_2 = 0.1$ in Eq. 4 and Eq. 5. Learning rates are 1e-6 for 7B model and 5e-7 for 13B model.

937 **Sampling and Filter.** The score is between 0 and 10, which 10 means a perfect response and 0 means a totally incorrect response. We sample 16 responses for one query and set the lower-bound margin δ to 3. Moreover, the quality criterion coefficients $\tau_{\text{pos}} = \tau_{\text{neg}} = 5$, which means the score of positive response should be at least 6 and negative response be at most 4. The **temperature** of the LLM scorer is 0.1.

Table 6: OViP pseudocode

972	
973	
974	Algorithm 1 Algorithm of OViP
975	
976	Input: training dataset $\mathcal{D} = \{(\mathcal{I}^+, \mathcal{Q}, \mathcal{A}^*)\}$;
977	target model π ; reward model G_r ; prompt generator G_{diff} ; diffusion model diff
978	Initialize: experience buffer $\mathcal{B} \leftarrow \emptyset$
979	Output: optimized model π
980	for each $(\mathcal{I}^+, \mathcal{Q}, \mathcal{A}^*) \in \mathcal{D}$ do
981	Sample candidate responses $\{\mathcal{A}^i\}_{i=1}^k \sim \pi(\cdot \mathcal{I}^+, \mathcal{Q})$
982	Compute reward scores: $r^i = G_r(\mathcal{A}^i, \mathcal{A}^*)$
983	Compute standard deviation σ_r of $\{r^i\}$
984	Initialize temporary pair list $\mathcal{T} \leftarrow \emptyset$
985	while $\exists (\mathcal{A}^+, \mathcal{A}^-)$ satisfying:
986	$ r^+ - r^- > \max(\delta, 2\sigma_r)$, $r^+ > \tau_{\text{pos}}$, $r^- < \tau_{\text{neg}}$ do
987	Add $(\mathcal{A}^+, \mathcal{A}^-)$ to \mathcal{T} and remove from candidate pool
988	end while
989	if $\mathcal{T} = \emptyset$ and $\min_i r^i < \tau_{\text{neg}}$ then
990	Let \mathcal{A}^- be the lowest-scoring response
991	Add $(\mathcal{A}^*, \mathcal{A}^-)$ to \mathcal{T}
992	endif
993	for each $(\mathcal{A}^+, \mathcal{A}^-) \in \mathcal{T}$ do
994	Generate prompt: $\mathcal{T}^- = G_{\text{diff}}(\mathcal{A}^+, \mathcal{A}^-)$
995	Synthesize image: $\mathcal{I}^- = \text{diff}(\mathcal{T}^-)$
996	Add $(\mathcal{I}^+, \mathcal{I}^-, \mathcal{Q}, \mathcal{A}^+, \mathcal{A}^-)$ to buffer \mathcal{B}
997	end for
998	if $ \mathcal{B} \geq N$ then
999	Sample N samples from \mathcal{B} for training
1000	Compute total loss: $\mathcal{L}_{\text{OViP}}$
1001	Update $\pi \leftarrow \pi - \eta \nabla_{\pi} \mathcal{L}_{\text{OViP}}$
1002	endif
1003	end for
1004	
1005	
1006	
1007	
1008	

Our hyperparameter settings are based on preliminary experiments and empirical intuition. We observe that when the model assigns a score between 0 and 3, the responses tend to contain significant errors, while scores of 7 and above generally indicate correct answers. The more strict the preference filtering criteria is, the higher the data quality tends to be; however, this also leads to fewer preference pairs satisfying the condition. Therefore, our choice of hyperparameters is based on a balance among empirical observations, data quantity, and data quality.

Image Generation. For image prompt generation, we set the model’s **temperature** as 0.1, **top_p** as 0.9, and **max_new_tokens** as 128. We generate a 384×384 image given the prompt with **num_inference_steps**=40 and **guidance_scale**=7.5.

We perform ablation and further study using LLaVA-1.5-7B. The following describes the relevant experimental settings.

B.2.1 ABLATION ON LOSS FUNCTIONS

We fine-tune the model for one epoch using data generated by the model itself immediately before training, following the OViP data construction pipeline.

1026

1027

Table 7: Online v.s. Offline detailed results

	Chair \downarrow	AMB _{gen} Cover \uparrow	MMHal Score \uparrow	ObjectHal Chair _r \downarrow	LV Score \uparrow	AMB _{dis} F1 \uparrow
Baseline	7.1	50.0	65.01	1.90	51.38	72.40
DPO _{online}	4.7	50.0	65.59	2.38	31.58	71.70
DPO _{offline}	7.0	48.3	63.58	2.06	52.61	72.55
OViP _{online}	4.0	51.1	66.70	2.52	33.22	73.50
OViP _{offline}	5.2	49.9	65.38	2.35	46.34	72.39
						60.20
						86.6

1034

1035

For *iterative training*, we first fine-tune the base model on the original dataset using DPO to obtain a stronger initialization. We then sample and filter 4,730 instances as the second-stage contrastive dataset, which remains fixed across all variants. To improve supervision quality, model responses are annotated using DeepSeek-V3 for more accurate reward estimation.

1040

1041

B.2.2 ABLATION ON ONLINE LEARNING

1042

1043

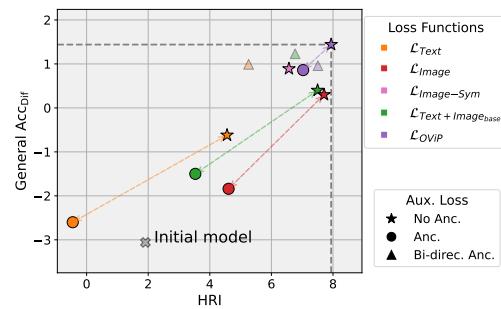
Although online methods can continuously improve when trained with another epoch, we conduct the experiment with one epoch for both online and offline methods.

1044

1045

B.3 AUXILIARY LOSS FUNCTION

1046



1058

1059

Figure 9: Effect of applying auxiliary loss to different loss functions.

Under the iterative training regime, we further analyze the effect of auxiliary losses based on the DPO-initialized model and its sampled responses, as illustrated in Figure 9. Contrary to the findings in mDPO (Wang et al., 2024a), we find that **incorporating anchor loss consistently reduces general capability and increases hallucinations across all loss combinations**. Moreover, while applying bi-directional anchor loss slightly improves general capabilities, it does not necessarily enhance hallucination mitigation. Therefore, OViP loss without anchor loss is the most effective training objective for both reducing hallucination and maintaining general ability.

1061

1062

B.4 ONLINE v.S. OFFLINE

1063

1064

The training results for online and offline are shown in Table 7. Online training is significantly more effective in mitigating hallucinations.

1066

1067

B.5 TRAINING DYNAMICS

1068

1069

The model's initially skewed output distribution leads to a high rate of duplicate samples (in Figure 10, Duplicate Response Rate surpasses 11.0% at first) and very low perplexity Figure 11 in the generated responses, which is not conducive to optimization. In the early stages of training, the output distribution gradually flattens, but the limited exploratory scope prevents the model from identifying the correct optimization direction, resulting in stagnation of performance metrics. As the coverage of the distribution expands, the model can effectively explore the correct update directions, allowing training to get on track and performance to accelerate.

1075

1076

B.6 DETAILED RESULTS FOR GENERAL BENCHMARKS

1077

1078

1079

Table 8 presents the detailed results on the general benchmarks. As shown, previous offline methods exhibit noticeable performance degradation, whereas OViP preserves the model's general capabilities to the greatest extent.

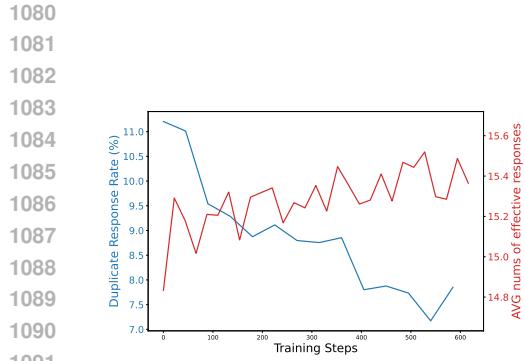


Figure 10: Sampling statistics during training. The blue curve shows the probability that, when sampling 16 responses with Temperature 1.2 for the same prompt, multiple identical responses appear (i.e., the number of distinct responses is fewer than 14). The red curve shows the average number of distinct responses obtained when sampling 16 times with Temperature 1.2.

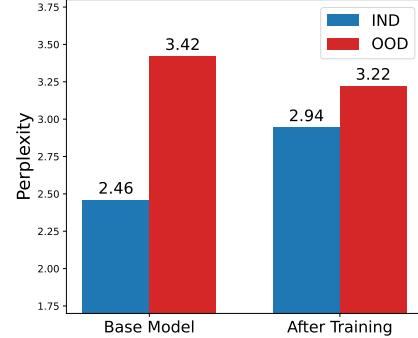


Figure 11: Perplexity changes for IND and OOD sequences. The perplexity of base model's generation is relatively low.

Table 8: Detailed results of different methods on four general benchmarks. General Acc_{Dif} denotes the performance difference relative to the baseline model. *Italicized* values indicate notable performance degradation, while **bold** values highlight the best results among models of the same scale.

	Method	CVBench	MMStar	RealWorldQA	TextVQA	General Acc _{Dif}
LLaVA-1.5-7B	Baseline	62.5	33.27	55.4	57.58	-
	HA-DPO	<i>58.9</i>	32.33	50.5	55.43	-11.59
	HALVA	<i>59.9</i>	<i>31.60</i>	53.7	56.19	-7.36
	RLAIF-V	60.0	35.27	52.3	54.44	-6.74
	OPA-DPO	59.0	<i>31.33</i>	50.8	55.80	-11.82
	SFT	58.8	32.20	52.7	56.98	-8.07
	DPO	60.7	32.47	54.1	57.62	-3.86
	mDPO	61.5	32.67	54.0	57.53	-3.05
	DPO _{iterative}	61.3	32.67	54.5	57.30	-2.98
	GRPO _{2ep}	61.7	32.20	54.0	57.26	-3.83
LLaVA-1.5-13B	OVIP	62.8	34.07	55.2	57.56	+0.88
	OVIP _{2ep}	63.1	33.07	54.1	57.47	-1.01
	Baseline	61.6	33.40	55.4	61.78	-
	HALVA	59.1	32.33	54.6	60.70	-5.45
	OPA-DPO	<i>57.8</i>	32.07	53.3	59.35	-9.66
LLaVA-1.5-13B	SFT	60.8	33.13	55.3	61.71	-1.24
	DPO	61.0	34.00	55.8	61.50	+0.12
	mDPO	60.6	33.80	55.2	61.46	-1.12
	GRPO _{2ep}	61.3	33.87	54.2	61.33	-1.48
	OVIP	61.8	34.33	55.7	61.20	+0.85
LLaVA-1.5-13B	OVIP _{2ep}	62.9	34.40	55.9	61.00	+2.02

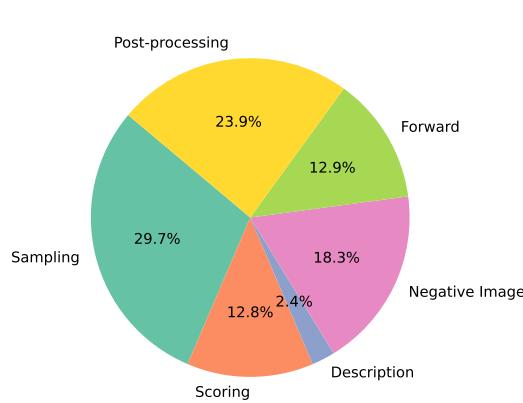


Figure 12: Time consumption for each stage during training.

C ALGORITHM

The pseudocode is at Table 6.

D EFFICIENCY AND TIME CONSUMING

OViP training takes approximately 17 hours on $7 \times$ A800 (40G) GPUs. Among them, 4 GPUs are allocated for VLM training, 1 GPU for LLM deployment, and 2 GPUs for diffusion model deployment. We divide each training step into six stages: sampling (response generation), scoring (response evaluation), description (image prompt construction), negative image (counterfactual image generation), forward (model inference), and post-processing. Figure 12 illustrates the proportion of time spent on each stage, where post-processing refers to the period after forward propagation and before the next training step begins, including gradient accumulation, backpropagation, optimizer updates, and other related operations.

Excluding post-processing, the most time-consuming component is the sampling stage, similar to reinforcement learning. This is because it requires autoregressive generation of 16 responses, one token at a time. The second most expensive stage is negative image generation. To reduce latency, we parallelize this process by assigning two diffusion models to handle image generation requests from four sampling subprocesses.

Additionally, since the experience buffer is implemented independently in our system, repeated sampling by one subprocess may block others due to synchronization constraints. This can indirectly slow down the forward and post-processing stages as some processes await completion.

E LIMITATIONS

This work introduces an online training framework that integrates dual contrastive learning across vision and language. While our loss function follows the DPO formulation, we do not explore how existing reinforcement learning algorithms—such as PPO or GRPO—could be effectively combined with image-level contrastive objectives. In terms of evaluation, although we identify and discuss several limitations of prior protocols and propose improved metrics and procedures, the current benchmarks still fall short of fully capturing model capability. We manually identified a subset of erroneous cases through inspection, but did not conduct a comprehensive correction. Lastly, our data filtering strategy during sampling has not been carefully tuned, and a more refined design could potentially lead to better training dynamics and model performance.

1188 F IMPLEMENTATION DETAILS
11891190 **Dynamic Inference and Experience Buffer** To stabilize batch-wise training while retaining the
1191 flexibility of online sampling, we maintain an experience buffer \mathcal{B} that stores dynamically con-
1192 structed contrastive training samples. At each training step, the current model π_s performs infer-
1193 ence and response sampling, producing contrastive samples that are continuously added to \mathcal{B} . This
1194 sampling process persists until the accumulated samples reach the predefined batch size N . Once
1195 $|\mathcal{B}| \geq N$, a batch of N samples is retrieved from \mathcal{B} for loss computation and gradient updates. The
1196 remaining samples in the buffer are preserved for subsequent iterations, ensuring the training process
1197 to proceed smoothly even under variable sampling yields.
11981199 G QUALITATIVE CASE STUDIES
12001201 G.1 FAILURE CASES FOR GENERATING NEGATIVE IMAGES
12021203 H USE OF LLMs
12041205 We used existing large language models solely for language polishing and minor coding assistance.
1206 The models were not involved in the design of experiments, development of research ideas, or
1207 analysis of results.
12081209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Failure Cases in Diffusion-Based Synthesis (1)**Prompt:** Where on the body might this device be placed while working?**Positive Response:** While working, the device, such as a laptop or a tablet, would likely be placed on a flat surface like a desk or a table, providing a stable and convenient workspace. In the image, a grey tabby cat is resting its head on the laptop or tablet, indicating that it is not actively in use at the moment. However, it's also possible that the cat's owner may have placed the device on their lap for better comfort, which would be common for a personal laptop or a similar-sized tablet.**Negative Response:** In the image, the grey tabby cat is lying on the keyboard, which suggests that the laptop is likely positioned on a desk or workstation. This allows the user to type and interact with the laptop while the cat rests or is attentive nearby. A desk or workstation provides a suitable place for the laptop and can help the user maintain productivity while also allowing the cat to stay close to them.

Positive Image

Negative Image

Reason: The negative response is unrelated to the prompt. The model does not actually exhibit any visual hallucination.**Failure Cases in Diffusion-Based Synthesis (2)****Prompt:** Are the giraffes taller than the trees?**Positive Response:** Yes, in the image, the two giraffes are seen in a grassy field and there are two trees in the background. Their height is significantly greater than that of the trees, as giraffes are the tallest land animals, with a maximum height of around 18 feet (5.5 meters) for males.**Negative Response:** No, the giraffes are not taller than the trees. The trees in the image are likely to be of similar height to the giraffes, as they are grazing near them. This indicates that the giraffes may not be browsing at a significant height above the ground. Instead, the giraffes and the trees coexist in the grassy field at similar heights, which may be related to their feeding habits or simply the height limitations of both animals.

Positive Image

Negative Image

Reason: The generated image is actually a correct negative image. The data's annotation and positive response is wrong.**Failure Cases in Diffusion-Based Synthesis (3)****Prompt:** Which material is used for making the yellow t shirt weared by the person?**Positive Response:** The yellow t-shirt worn by the person in the image is made of a fabric called cotton.**Negative Response:** The yellow t-shirt the person is wearing is made of a synthetic fabric called Polyester. Polyester is a popular choice for clothing materials because it is affordable, lightweight, and easy to care for. It is made from recycled materials or a mixture of natural and synthetic fibers, depending on the specific product and manufacturer. Polyester has a variety of uses in the textile industry and is commonly used for sportswear, casual clothing, and other athletic apparel.

Positive Image

Negative Image

Reason: It is hard for the model to generate a image that accurately reflects polyester texture in a way that can be clearly differentiated from cotton.

Figure 13: Failed case for generating a correct negative image.

1296 I PROMPTS FOR JUDGMENT AND NEGATIVE IMAGE GENERATION
1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Prompt for Quality Judgment

Task

Your role is as a discerning assistant tasked with evaluating model responses for multimodal tasks (though you have no access with the image). Upon being presented with a question that requires the interpretation of both text and images, you will receive two distinct responses. The first is crafted by our sophisticated multimodal model, while the second represents an approximate ideal answer—it may be incomplete. Your objective is to meticulously and precisely assess the model-generated response (the former) based on the provided reference answer (the latter).

- Here's how you should approach the assessment process:

1. The quality of the response depends on its accuracy and the degree of adherence to the correct answer. Therefore, if the response is much more detailed than the reference answer, it should not be considered a very good response (although it may still be considered a good one).

2. Directly provide the score of the response, with a full score of 10. Your response should follow this format: "Score: [x]\n", where "[x]" represents the score you give, and "\n" is a line break.

3. Please do not provide additional reasoning, just give the score directly.

Question

{question}

Response

{response}

Correct answer

{answer}

Table 9: The prompt for judging model response given the answer.

1350
 1351
 1352
 1353
 1354
 1355 Prompt for image generation-Part 1
 1356
 1357 # Task
 1358 Given an unknown image-related question, a correct answer, and an inaccurate response,
 1359 carefully analyze the differences between the response and the answer. Then, provide a
 1360 brief description of the image so that it aligns with the correct answer and differs from the
 1361 incorrect responses. In other words, infer the content of the image.
 1362
 1363 # Example
 1364 [Example 1]
 1365 **<Question>**
 1366 What is on the sandwich?
 1367
 1368 **<Answer>**
 1369 The sandwich has tomatoes and lettuce on it.
 1370
 1371 **<Response>**
 1372 The sandwich has a slice of egg and tomato on it.
 1373
 1374 **<Output Description>**
 1375 A sandwich with only tomatoes and lettuce on it.
 1376
 1377 **Explanation**: The answer mentions lettuce and tomato, while the incorrect response
 1378 mentions tomato and egg. So there is no egg on the sandwich.
 1379
 1380 [Example 2]
 1381 **<Question>**
 1382 Can you point out the details that make this image unique?
 1383
 1384 **<Answer>**
 1385 In the image, there is a plate with a slice of pizza topped with tomatoes, herbs, and cheese.
 1386 The distinctive detail about the image is that the pizza is missing two slices, leaving just
 1387 one slice remaining on the plate. This suggests that someone has already started enjoying
 1388 the pizza. The slice appears to be well-cooked and freshly served, creating an appetizing
 1389 and mouthwatering scene for the viewer.
 1390
 1391 **<Response>**
 1392 In the image, there is a slice of pizza on a plate with tomatoes and cheese. The pizza
 1393 appears to be homemade and has been cut into two pieces. The tomatoes are sliced in
 1394 half, revealing their juicy interior. The cheese on top of the pizza is melted, creating a
 1395 delicious-looking dish. Additionally, there is a fork nearby, suggesting that someone
 1396 might be planning to enjoy this pizza soon.
 1397
 1398 **<Output Description>**
 1399 A plate with a one-third remaining piece of pizza, topped with herbs, cheese, and
 1400 tomatoes; someone has finished eating and left.
 1401
 1402 **Explanation**: The answer mentions that only one-third of the pizza remains and
 1403 that someone has just finished eating and left, which is inconsistent with the response.
 1404 Therefore, the image should include these two features.

Table 10: The prompt for image generation.

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415 Prompt for image generation-Part 2
 1416 [Example 3]
 1417 **<Question>**
 1418 Bird or cow?
 1419
 1420 **<Answer>**
 1421 Bird
 1422
 1423 **<Response>**
 1424 The bird in the image is a small, brown and white bird with a distinctive head shape and
 1425 coloration. It is not a cow. The bird is perched on a branch, which is situated in front of a
 1426 white building.
 1427
 1428 **<Output Description>**
 1429 A big, blue bird perched on a branch in front of a black building.
 1430
 1431 **Explanation**: Both the answer and the response mention the bird, but the response is
 1432 more detailed. So the description should be contrastive to the features of the bird in the
 1433 response.
 1434
 1435 # Requirements
 1436 - The description should be brief but precise.
 1437 - If both the answer and the response are long, focus on describing the one or two most
 1438 significant differences.
 1439 - Do not provide any analysis or explanation; only describe the image.
 1440 - A common approach is to describe what is present in the image and what is missing.
 1441
 1442 **<Question>**
 1443 question
 1444 **<Answer>**
 1445 answer
 1446 **<Response>**
 1447 response
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

Table 11: The prompt for image generation.

1458
1459
1460
1461
1462

1463 Prompt for Quality Assessment of Negative Images

1464
1465
1466
1467

You are an expert multimodal evaluator.

Your goal is to determine whether a given image is a valid *negative image sample* for contrastive learning, based on an instruction, an answer, and the candidate image.

1468
1469
1470
1471
1472

You will receive three inputs:

1. Instruction: {Prompt}
2. Answer: {Answer}
3. Image: {Image}

Your tasks:

=====

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1508
1509
1510
1511

=====

quality (0 to 5)
Rate how suitable the candidate image is as a *high-quality negative sample*.

This quality score measures the semantic "alignment" or "hardness" of the negative example.

Definition of quality:

- 5 → extremely relevant: image strongly matches the instruction domain, and provides a meaningful hard-negative contrast to the answer. (e.g., instruction: "What is the cat doing?", answer: "licking fur." image: a cat sleeping.)
- 4 → strongly related to instruction, but moderately different from answer.
- 3 → somewhat related: image loosely matches instruction (e.g., contains a cat-like object).
- 2 → weakly related: image content only marginally matches the instruction.
- 1 → barely related: image does not match instruction but still contains some real-world objects.
- 0 → unusable negative: random noise, corrupted image, irrelevant objects or completely mismatched content.

Rules:

- Images with the correct content but different actions should receive higher scores than images without relevant objects.
- Random noise, corrupted, blank, or chaotic images must get quality = 0.
- A high-quality negative is semantically challenging but still clearly wrong for the answer.

=====

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1508
1509
1510
1511

Output Format

Provide your result in **strict JSON** with keys:

```
{
  "quality": integer in [0, 5]
}
```

Output **only** valid JSON.

=====

1503
1504
1505
1506
1508
1509
1510
1511

Now evaluate the given inputs.

Table 12: The prompt is used for judging the quality of negative images generated by different methods.

1512
 1513
 1514
 1515
 1516
 1517 Prompt for Correctness Assessment of Negative Images
 1518
 1519 You are an expert multimodal evaluator.
 1520 Your task is to compare two model responses given the same visual question-answering
 1521 setup.
 1522 You will receive the following inputs:
 1523 ## Prompt
 1524 {Prompt}
 1525 ## Image
 1526 {Image}
 1527 ## Ground-truth answer
 1528 {gt}
 1529 ## A candidate response called **better_response**
 1530 {better}
 1531 ## A candidate response called **worse_response**
 1532 {worse}
 1533 Your job:
 1534 Determine whether **better_response** is indeed better, or worse_response is better, or
 1535 they are roughly similar in correctness and quality.
 1536 =====

1537 Evaluation criteria
 1538 - Evaluate correctness primarily by whether a response correctly describes information
 1539 that *can be inferred from the image*, and correctly answers the prompt.
 1540 - Consider factual correctness, hallucination, consistency with the visual content,
 1541 relevance, and informativeness.
 1542 - If better_response is clearly more accurate, more correct, or more reliable than
 1543 worse_response, choose **A**.
 1544 - If worse_response is clearly more accurate, choose **B**.
 1545 - If both responses are similarly correct (or similarly incorrect), choose **C**.
 1546 IMPORTANT:
 1547 - Do not reward verbosity unless it increases correctness.
 1548 - Penalize hallucination.
 1549 - If both responses fail to answer the question, treat them as similar → choose **C**.
 1550 =====

1551 Output Format (STRICT)
 1552 Output ONLY a valid JSON dictionary in the following form:
 1553 {
 1554 "result": "A"
 1555 }
 1556 Meaning of result:
 1557 A = better_response is clearly better
 1558 B = worse_response is clearly better
 1559 C = difficult to tell / both are similar (good or bad)
 1560 No explanation, no comments, no markdown, no text outside JSON.
 1561 =====

1562 Now evaluate the given inputs.
 1563
 1564
 1565

Table 13: The prompt is used for judging the quality of negative images generated by different methods.