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Abstract

We consider the problem of recovering the ground truth ordering (ranking, top-k,
or others) over a large number of alternatives. The wisdom of crowd is a heuristic
approach based on Condorcet’s Jury theorem to address this problem through
collective opinions. This approach fails to recover the ground truth when the
majority of the crowd is misinformed. The surprisingly popular (SP) algorithm [36]
is an alternative approach that is able to recover the ground truth even when
experts are in minority. The SP algorithm requires the voters to predict other
voters’ report in the form of a full probability distribution over all rankings of
alternatives. However, when the number of alternatives, m, is large, eliciting
the prediction report or even the vote over m alternatives might be too costly.
In this paper, we design a scalable alternative of the SP algorithm which only
requires eliciting partial preferences from the voters, and propose new variants
of the SP algorithm. In particular, we propose two versions—Aggregated-SP
and Partial-SP—that ask voters to report vote and prediction on a subset of size
k (≪ m) in terms of top alternative, partial rank, or an approval set. Through
a large-scale crowdsourcing experiment on MTurk, we show that both of our
approaches outperform conventional preference aggregation algorithms for the
recovery of ground truth rankings, when measured in terms of Kendall-Tau distance
and Spearman’s ρ. We further analyze the collected data and demonstrate that
voters’ behavior in the experiment, including the minority of the experts, and the
SP phenomenon, can be correctly simulated by a concentric mixtures of Mallows
model. Finally, we provide theoretical bounds on the sample complexity of SP
algorithms with partial rankings to demonstrate the theoretical guarantees of the
proposed methods.

1 Introduction

The wisdom of the crowds is a systematic approach to statistically combine the opinions of a diverse
group of (non-expert) individuals to achieve a final collective truth. It dates back to Sir Francis
Galton’s observation—based on Aristotle’s hypothesis—that the point estimation of a continuous
value using the noisy individual opinions can recover its true value with high accuracy [22]. In the
modern era, the wisdom of the crowd has been the foundation of legal, political, and social systems
with the premise that one can recover the truth by collecting the opinion of a large number of diverse
individuals (e.g. trial by jury, election polling, and Q&A platforms such as Reddit/Quora).
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The formal arguments of this phenomenon—rooted in social choice theory—is provided by Con-
dorcet’s Jury Theorem [20], which states that under the condition of independent opinions and each
individual having more than a 50% chance of selecting the correct answer, the probability of the
majority decision being correct increases as the size of the crowd increases. However, this approach
may fail when the majority of the crowd are misinformed (less than 50% chance of selecting the
correct answer) [19] or are systematically biased [46]. In other words, when the experts are in
minority, simply aggregating individuals’ opinions (regardless of the aggregation method) cannot
recover the truth.

To overcome this challenge, Prelec et al. [36] proposed a simple, yet effective, method called the
Surprisingly Popular (SP) algorithm, which is able to uncover the ground truth even when the majority
opinion is wrong. The approach works by asking each individual about their opinion (the vote) along
with an additional meta-question to predict the majority opinion of other individuals (the prediction).
The surprisingly popular algorithm then selects an answer whose actual frequency in the votes is
greater than its average predicted frequency, and it will provably recover the correct answer with
probability 1, as the number of individuals grows in the limit, even when experts are in minority.

While the SP algorithm is effective in estimating a continuous value (e.g. the value of a painting)
or a binary vote (e.g. “Is São Paulo the capital of Brazil?”), it cannot be directly applied to recover
true ordinal rankings over a set of m alternatives due to the large number of votes (m!), and more
importantly, eliciting predictions over a complete rankings. Hosseini et al. [25] extended this approach
to rankings by proposing an algorithm, called Surprisingly Popular Voting, that can accurately recover
the ground-truth ranking over multiple alternatives by eliciting a complete ranking as a vote and
only a single majority prediction (as opposed to full probability distributions over m! rankings).1
Despite its success in finding the ground-truth ranking over a small number of alternatives, it remains
unclear how to adapt it to settings with large number of alternatives where only partial preferences
(e.g. pairwise comparisons or partial ranks) can be elicited. Thus, it raises the following questions:

How can we design scalable algorithms based on the surprisingly popular method
that recovers the ground truth only by eliciting partial preferences from voters?
What elicitation formats and aggregation algorithms are more effective in recover-
ing the full ranking over all alternatives?

Our Contributions. We focus on developing methods, based on the surprisingly popular approach,
that only elicit partial vote and prediction information to find the full ranking. Given a set of m
alternatives, we ask individuals to provide their rank-ordered vote and predictions on a subset of size
k (≪ m) of alternatives. Informally, we ask them to identify the most preferred alternative among the
k choices (Top), select the t < k most preferred alternatives with no order (Approval(t)), or provide
a rank-ordered list of all k alternatives (Rank). The precise formulation is provided in Section 2.1.

Given that the SP algorithm [36] and its extension to rankings [25] do not generalize to partial
preferences with large number of alternatives, we design two novel aggregation methods, namely
Partial-SP and Aggregated-SP algorithms. On a high level, these algorithms use a carefully crafted
method to select subsets of size k ≪ m for vote and prediction elicitation, and apply the SP method
either independently on each subset (Partial-SP) or on the aggregated (potentially partial) votes and
ranks (Aggregated-SP).

We conduct a human-subject study with 432 participants recruited from Amazon’s Mechanical Turk
(MTurk) to empirically evaluate the performance of our SP algorithms using metrics such as the
Kendall-Tau distance from the full ground truth ranking and Spearman’s rank correlation coefficient.
We consider several classical vote aggregation methods (e.g. Borda, Copeland, Maximin, Schulze) as
benchmarks—rooted in the computational social choice theory—that operate solely on votes (and not
prediction information). Our results show that the SP voting algorithms perform significantly better
than the classical methods when the vote and prediction information only contain partial rankings.
We also observe that SP voting algorithms are effective even when restricted to approval votes.

Moreover, we demonstrate that voters’ behavior in the experiment, including the minority of the
experts can be correctly simulated by a concentric mixtures of Mallows model [33, 10]. Finally, we
provide theoretical bounds on the sample complexity of the SP algorithms with partial preferences to

1This paper also explored various elicitation techniques combining vote and prediction questions based on
only top choice and complete rankings.
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further demonstrate the theoretical guarantees of the proposed methods. We show that the sample
complexity only depends on the size of the subset k which is significantly smaller than m.

1.1 Related Work

Our work is related to information elicitation, and partial aggregation which we discuss briefly.

Information Elicitation. Various information elicitation schemes [35, 36, 48, 17] attempt to in-
centivize voters to reveal useful information, often through the investment of efforts. Our work is
primarily related to the surprisingly popular algorithm [36] which is a a novel second-order informa-
tion based elicitation scheme. This framework has since been used to incentivize truthful behaviour
in agents [35, 42, 43], mitigate biases in academic peer review [32], elicit expert knowledge [27], and
aggregate information [9]. Our study builds upon this literature, specifically addressing the challenges
in rank recovery. Originally, the SP algorithm by Prelec et al. [36] required data on all m! potential
rankings for m alternatives , a requirement that becomes impractical as m increases. Hosseini et al.
[25] addressed this by developing a Surprisingly Popular Voting algorithm that leverages pairwise
preference data across

(
m
2

)
alternatives. This approach doesn’t scale when m is large, and our contri-

bution lies in advancing this methodology by proposing a scalable generalization of the Surprisingly
Popular Voting method with partial preferences.

Partial Aggregation. In situations where it is difficult or not necessary to elicit complete rankings
from voters, partial preferences are used. Partial vote aggregation has different solution concepts [6].
Partial preferences can be used to conclude which alternatives are necessary and possible winners
based on the preference profiles [26, 14, 47, 2, 3, 49]. The primary goal of partial aggregation
methods is to either minimize the amount of information communicated by the voters [12, 45, 40]
or to reduce the number of queries that each voter needs to answer [37, 14]. Our work attempts to
reduce such communication from the voters by eliciting partial preferences.

More broadly, our work is also related to information aggregation, and probabilistic rank-order
models which we discuss further in Appendix A.

2 Model

In this section, we formally define the model for Surprisingly Popular Voting in the context of
partial preferences. Let A = {a1, a2, ..., am} denote the set of m possible alternatives. The set L(A)
represents all possible complete rankings over the alternatives. Let σ ∈ L(A) represent a complete
ranking of the m possible alternatives. We denote the ground truth ranking by π⋆ ∈ L(A); which is
assumed to be drawn from a prior P (·) over L(A). Voter i observes a ranking πi that is assumed to be
a noisy version of the ground truth ranking π⋆. We will write Prs(πi | π⋆) to denote the probability
that the voter i observes her ranking πi given the ground truth π⋆.

Given voter i’s ranking πi and the prior P (·), voter i can compute the posterior distribution over the
ground truth using the Bayes rule.

Prg(π
⋆ | πi) =

Prs(πi|π⋆)·P (π⋆)∑
π′∈L(A) Prs(πi|π′)·P (π′) (1)

Using the posterior over the ground truth, voter i can also compute a distribution over the rankings
observed by another voter.

Pro(πj | πi) =
∑

π′∈L(A) Prs(πj | π′) · Prg(π′ | πi) (2)

The surprisingly popular algorithm [36] asks voters to report their votes, and posterior over others’
votes. For each ranking π′, it then computes the frequency f(π′) = 1

n

∑
i 1[π = π′], and posterior

g(π | π′) = 1
|{i:πi=π′}|

∑
i:πi=π′ Pro(π | πi), and finally picks the ranking with highest prediction

normalized votes.2

π̂ ∈ argmaxπV (π) = f(π) ·
∑

π′∈Π
g(π′|π)
g(π|π′) (3)

As observed by Hosseini et al. [25], eliciting full posterior and even the vote might be prohibitive if
the number of alternatives m is huge. In this work, we are concerned about eliciting partial rankings

2This is the direct application of SP algorithm [36] by considering m! possible ground truths.
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over subsets of size k ≪ m. Let us fix a subset T ⊆ A of size k. Then the probability of a partial
ranking σi is given as

Prs(σi | π⋆) =
∑

π:π▷σi
Prs(π | π⋆) (4)

Here we use the notation π ▷ σi to indicate that the ranking π when restricted to the set T is σi.

We can also naturally extend definition 1 to define the posterior distribution over partial preferences
given a partial preference σi. In order to do so, let us first define the posterior over full ground truth
π⋆ given σi as,

Prg(π
⋆ | σi) =

Prs(σi|π⋆)P (π⋆)∑
π̃ Prs(σi|π̃)P (π̃)

where one can use definition (4) to compute Prs(σ | π⋆). Now we can write down the posterior
probability over the partial ground truth σ̃ as follows.

Prg(σ̃ | σi) =
∑

π:π▷σ̃i
Prg(π | σi) (5)

Finally, we can write the posterior over another partial ranking σ′ over the subset T .

Pro(σ
′ | σi) =

∑
σ̃ Prg(σ̃ | σi)Prs(σ

′ | σ̃) (6)

In this work, our aim is to propose several versions of surprising popular algorithm that work with
partial preferences. As shown in definition 3, it requires eliciting information regarding voters partial
preferences, and posterior over others’ partial preferences (as defined in eq. (6)). Next, we discuss
various ways of eliciting such information from the voters.

2.1 Elicitation Formats

Given a subset of size k ≪ m alternatives, voter i’s prediction Pro(· | σi) is a distribution over k!
rankings. In practice, this renders elicitation of full prediction information difficult, if not impossible,
due to its cognitive overload. Thus, we focus on simple, and more explainable, elicitation methods
that rely on ordinal information either by identifying the most preferred alternative (Top), selecting
the most preferred t alternatives (Approval(t)), or a complete ranking of the partial set (Rank). The
formal definitions can be found in Appendix B.

Given these elicitation methods, we study different combinations of formats for votes and predictions
where the first component indicates the vote format and the second component denotes the prediction
format. These give rise to nine formats: Top-None, Top-Top, Top-Approval(t), Top-Rank,
Approval(t)-Rank, Approval(t)-Approval(t), Rank-None, Rank-Top, and Rank-Rank. For
Approval(t), the approval set of size t ∈ {1, 2, 3} is selected. Note that Approval(1) ≡ Top.

3 Aggregation Algorithms for Partial Preferences

The surprisingly popular method (as we discussed in section 1) cannot be applied directly to find
a full ranking using only partial preferences. Thus, we develop two vote aggregation algorithms
that only rely on partial ordinal preferences both for votes and predictions. On the high level, the
two algorithms differ on how and when they implement the SP method, whether independently on
each subset (Partial-SP) or on the aggregated (potentially partial) votes and ranks (Aggregated-SP).
Here we provide a high-level description for each of the algorithms; additional details and exact
pseudo-codes are relegated to Appendix D.

Partial-SP. The key element of this algorithm is utilizing SP voting on the partial rankings obtained
at each step. It takes a set of potentially overlapping subsets of alternatives and a voting rule as input
and proceeds as follows: For each subset Sj of alternatives, collect votes and predictions from voters
on this subset according to one of the elicitation formats detailed in Section 2.1. Compute the ground
truth partial ranking on the subset Sj using the SP algorithm. Aggregate all partial rankings using a
voting rule (e.g. Condorcet) to find a full ranking over all alternatives (breaking ties at random).

Aggregated-SP. This variation utilizes SP voting on the final rankings over votes and predictions. It
takes a set of potentially overlapping subsets of alternatives and a voting rule as input and proceeds
as follows: For each subset Sj of alternatives, collect votes and predictions from voters on this
subset according to one of the elicitation formats detailed in Section 2.1. Aggregate all votes (partial
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rankings) using a voting rule (e.g., Condorcet) to find the aggregated vote over all alternatives,
breaking ties at random. Predictions are not aggregated to preserve conditional prediction information
crucial for SP voting. Apply SP algorithm pairwise across all alternatives where for each pair (a, b),
the vote information is derived from the scores of a and b based on the aggregation rule used, and the
prediction information is used to find the conditional probabilities, P (a|b) and P (b|a). Breaking ties
at random throughout this process results in a full ranking over all alternatives.

Subset Selection. The algorithms described in this section rely on partial rankings on the subset
of alternatives. Given m alternatives, we carefully select subsets of size k with an inter-alternative
pairwise distance of s between elements from the ground-truth ranking. Formally, a subset Sj of size
k is generated as follows:

Sj = {a1+j , a1+j+s, . . . , a1+j+(k−1)s}, (7)

where j ≥ 0 and j+(k− 1)s < m, ensuring elements are within the range of m alternatives. We get
a total of m− (k − 1)s subsets. Note that we use overlapping subsets so as to introduce transitivity
among different subsets enabling us to compare alternatives across different subsets. This leads to an
improvement in the accuracy of our algorithms as we discuss in Section 5.

4 Experimental Design

This section describes the experimental design of the Amazon Mechanical Turk (MTurk) study
to assess the comparative efficacy of Partial-SP and Aggregated-SP against other voting rules for
partial preferences. Participants in this study were asked to answer a series of questions, wherein
they were required to express their preferences by voting on a range of alternatives. In addition to
casting their own votes, participants were asked to predict the collective preference of others for the
same set of alternatives. Data was collected from 432 respondents. Each participant was given a
20-minute window to complete a series of 18 questions (see details below).3 Datasets. The survey
encompassed three distinct domains: (i) The geography dataset contains 36 countries with their
population estimates, according to the United Nations, (ii) The movies dataset contains 36 movies
with their lifetime box-office gross earnings, and (iii) The paintings dataset contains 36 paintings
with their latest auction prices.4

Participant Preview &
Consent

Tutorial
(Elicitation
Format 1)

6 Questions
(Elicitation
Format 1)

Review
(Elicitation
Format 1)

Tutorial 2

6 Questions
(Elicitation
Format 2)

Review
(Elicitation
Format 2)

QuizSubmit

Figure 1: Workflow of a participant

Questions. We explored 36 alternatives per do-
main, aiming to gather partial preferences from
voters. Each question featured a subset of alter-
natives, with the size of each subset maintained
uniformly throughout the experiment.

Each participant was presented with a subset
of 5 alternatives, selected based on an inter-

alternative gap of 6 positions within the ground-truth ranking. This strategy was designed to balance
the cognitive load against the quality of the responses. We tested subset sizes of 4 to 6 and inter-
alternative gaps of 3 to 8, finding that larger sizes and wider gaps generally enhanced ground-truth
recovery. However, larger subset sizes increase cognitive load for participants, and wider gaps reduce
overlap between subsets when limited to 36 alternatives. For each combination of 12 subsets, 9
elicitation formats, and 3 domains, each question received 16 responses.

The survey was structured for each participant to answer two questions from each of the three domains
and two elicitation formats, totaling 12 questions per participant. Figure 1 shows the workflow for
each participant; each participant was assigned 18 questions to answer. Refer to Appendix E for
details on the tutorials, participant qualifications for the MTurk study, and review questions regarding
the perceived difficulty and expressiveness of the study.

Elicitation Formats. We use various elicitation formats (as described in section 2.1). For example,
consider a question that requires participants to rank five movies: a) Rogue One: A Star Wars Story,
b) Titanic, c) Toy Story 3, d) The Dark Knight Rises, and e) Jumanji: Welcome to the Jungle—based
on their lifetime gross earnings. Under the Approval(3)-Rank elicitation format, the structure of
the vote and prediction questions would be framed as follows:

3This study received IRB approval from the ethics board, which is available upon request.
4The dataset can be found here -https://github.com/amrit19/Surprisingly-Popular-Voting-Partial
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• Part A (vote): "Which among the following movies are the top three in terms of highest
grossing income of all time?"

• Part B (prediction): "Considering that other participants will also respond to Part A, in
what order do you predict the following movies will be ranked, from the most common
response (top) to the least common (bottom)?"

Refer to Appendix I for further details about formulations of all nine elicitation formats, the consent
form, the tutorial for each domain, screenshots, and other details.

5 Results and Analysis

In this section, we present the results of this study averaged across all three domains. We measure
the accuracy of the proposed SP algorithms (Partial-SP and Aggregated-SP) in predicting the full
ground-truth ranking, in comparison with common vote aggregation methods (e.g. Borda, Copeland,
Maximin, Schulze). The details of these aggregation methods is provided in Appendix C.

Additionally, we compare the elicitation formats (described in Section 2.1) with respect to cognitive
effort (measured by response time and difficulty) and expressiveness (measured directly by survey
questions). They are provided in Appendix G.2

5.1 Accuracy Metrics

To capture the error in predicting the full ground-truth ranking, we use three different metrics: (i)
the Kendall-Tau correlation, which measures the distance between ordinal rankings, (ii) Spearman’s
ρ correlation, which measures the statistical dependence between ordinal rankings, (iii) Pairwise
hit rate, which measures the fraction of pairs at distance d that are correctly ranked with respect to
the ground-truth ranking, and (iv) Top-t hit rate, which measures the fraction of alternatives that
are predicted correctly (in no order) in most preferred t compared to the ground-truth ranking. The
formal definitions can be found in Appendix G.1.

For example, consider the ground-truth ranking a ≻ b ≻ c ≻ d. The predicted ranking b ≻ a ≻ d ≻ c
has a pairwise hit rate of 1/3 at distance 1, 1 at distances 2 and 3. Its Top-1 hit rate is 0, Top-2 is 1,
Top-3 is 2/3, and Top-4 is 1.

5.2 Predicting the Ground Truth Ranking

Figure 2 illustrates the performance of SP algorithms measured by Kendall-Tau and Spearman’s
correlations. We fix Copeland as the aggregation rule used in both variations of SP voting and compare
the accuracy with applying Copeland on votes alone (without the use of prediction information).

Statistical correlations and elicitation. SP voting produces rankings with a significantly higher
correlation with the ground truth ranking, and this effect improves as the information provided as
votes and prediction becomes more expressive. In particular, Rank-Rank and Approval(3)-Rank
outperform all other elicitation formats. We note that Aggregated-SP seem to be more reliant on
the vote information, compared to the predictions, as it can seen in Top-Rank vs. Rank-Top. In
contrast, Partial-SP does not exhibit any significant favor for vote vs. prediction information as both
Top-Rank and Rank-Top improve by additional information. However, the difference between them
is not statistically significant.

Interestingly, eliciting unordered information for both noisy votes and predictions (e.g.
Approval(2)-Approval(2)) seem to be sufficient in recovering the ground truth—raising the
question of whether pairwise comparisons are necessary in designing SP algorithms.

Hit rates. With respect to pairwise hit rate and the Top-t hit rate, the noisy prediction information
significantly improves the performance of the Partial-SP algorithm (with lower variance) as shown in
Figure 3. The results for Aggregated-SP are qualitatively similar and are presented in Appendix G.5.
The slight dip in pairwise hit rate, can be explained by the survey’s design choice of an inter-alternative
distance of 6, leading to fewer comparisons being available for these pairs.

Partial-SP vs. Aggregated-SP. While both variants of the SP algorithm significantly outperform
common voting rules by utilizing (noisy) prediction information, the Partial-SP algorithm significantly
outperforms the Aggregated-SP algorithm (see Figure 2 and Figure 4). This could be explained
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Figure 2: Comparing the predicted and ground-truth rankings for different elicitation formats using
Kendall-Tau and Spearman’s ρ correlations (higher is better). All results use Copeland as their
aggregation rule.
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Figure 3: Comparing the Partial-SP algorithm with Copeland (no prediction information) measured
by pairwise and Top-t hit rates. The elicitation format is Approval(2)-Approval(2).

by the importance of ‘correcting’ noisy votes on the subsets of alternatives because the prediction
information of the Partial-SP algorithm helps identify experts early on in predicting partial rankings
of these alternatives.

For Partial-SP, the plots indicate no statistical significance between Approval(2)-Approval(2),
Approval(3)-Rank, and Rank-Rank elicitation formats, suggesting they perform as well as
Rank-Rank. An interesting ramification here is demonstrating that approval sets not only per-
form well in predicting the ground truth, but also pose less cognitive burden on voters compared to
those elicitation formats that ask for rankings (see appendix G.2).

Domain impacts. Performance of Partial-SP and Aggregated-SP is robust across domains. They
outperform common voting rules with the sole exception of the Schulze method, which matches the
performance of Aggregated-SP (see Figure 4). The difference in performance is notably high for
Paintings domain, where specialized expertise is required to predict painting prices. Here, Partial-SP
significantly outperforms common aggregation rules, showcasing its effectiveness in leveraging
expert knowledge and correcting misinformation. For further details see Appendix G.3.

6 Simulated Model of Voter Behavior

In this section, we investigate whether there is any underlying probabilistic model that can explain the
voters’ behaviours when measured in terms of the vote and predictions. If successful, such a model
will also enable us to theoretically analyze the sample complexity of SP algorithms (as we present
in Section 7). In particular, we posit that a concentric mixtures of Mallows model can explain the
users’ reports (both vote and prediction) in the dataset. The concentric mixtures of Mallows model is
a type of mixture models where there is one ground truth, but different groups of users have different
dispersion parameters, and hence different distribution over observed preferences.
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Figure 4: Comparing the predicted and ground-truth rankings for different aggregation rules using
Kendall-Tau and Spearman’s ρ correlations (higher is better). The elicitation format is Rank-Rank;
each comparison uses the same aggregation rule in the SP algorithm.

Concentric mixtures of Mallows model. We assume that each voter is likely to be an expert with
probability p(≪ 1) and a non-expert with probability 1− p. Given a ground truth ranking π⋆, an
expert voter observes a ranking that is distributed according to a Mallows model with center π⋆ and
dispersion parameter ϕE . On the other hand, a non-expert voter observes a ranking that is again
distributed according to a Mallows model with center π⋆, but with a larger dispersion parameter ϕNE .
In particular, the ranking observed by voter i is distributed as

Prs(πi | π⋆) = p · Prs(πi | π⋆, ϕE) + (1− p) · Prs(πi | π⋆, ϕNE) (8)

where Prs(π | π⋆, ϕ) is the standard Mallows model with dispersion ϕ i.e. Prs(π | π⋆, ϕ) = ϕd(π,π⋆)

Z(ϕ,m) .

The term Z(ϕ,m) is the normalization constant, and is defined as Z(ϕ,m) =
∑

π ϕ
d(π,π⋆). With

a slight abuse of notation, we will write Z(ϕ) as Z(ϕ,m) since the number of alternatives in the
ground truth is assumed to be fixed.

Note that, Equation (8) defines a distribution over complete preferences, but given a subset of
size k we can naturally extend this definition to define a distribution over partial preferences e.g.
Prs(σi | π⋆) (eq. (4)), and posterior over partial preferences of other voters e.g. Pro(σ | σi) (eq. (6)).
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Figure 5: Comparison of inferred parameters of the Concentric mixtures of Mallows model for real
data with all domains combined and synthetic data. The experts vote closer to and predict farther
from the ground-truth. The non-experts vote and predict far from the ground truth. The proportion of
experts in both datasets was found to be less than 20%.

We fit the mixture model eq. (8) on the real datasets and estimate the following parameters – proportion
of experts (p), dispersion parameters of experts’ votes (ϕE-votes) and predictions (ϕE-predictions), as
well as the dispersion parameters of non-experts’ votes (ϕNE-votes) and predictions (ϕNE-predictions).
The parameters were inferred using Bayesian inference [24]. We also generated synthetic data using
the concentric mixtures of Mallows model, and again used Bayesian inference to estimate the
parameters. The details of estimation and data generation are provided in the appendix F. Figure 5
shows the posterior distributions for the dispersion parameters when the datasets of all the three
domains are combined. We see that the synthetic data generation process accurately replicates real
data characteristics, and highlights that the concentric mixtures of Mallows accurately model voters’
behaviours on MTurk. Furthermore, Figure 6 also plots the same posterior distributions but only for
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Figure 6: Comparison of inferred parameters of the Concentric mixtures of Mallows model for real
data of Movie domain and synthetic data. The quality of model fit improves if the focus is on one
single domain.

the Movies domain. Now we see almost perfect fit between the synthetic data and the original data.
Further similarity in results between real and simulated data is described in Appendix G.6.

7 Analysis of Sample Complexity

In this section, we use a concentric mixture of Mallows models, and provide upper bound on the
sample complexity of the surprisingly popular voting method with partial preferences. We start with
a simple problem. Given a subset T of size k, suppose our goal is to recover the true partial ranking
over the alternatives in T , then how many samples does SP algorithm require?

We will analyze the following simplified version of the SP algorithm: Voter i reports vote σi over the
subset T , which is used to build an estimate of f(σ) for all σ ∈ Πs. For each σ, the posterior report
by the voter is a partial ranking drawn from the distribution g(· | σ). These reports are used to build
an estimate ĝ(σ′ | σ) for all σ′, σ. Select partial ranking σ̂ ∈ argmaxσV̂ (σ) = f̂(σ) ·

∑
σ∈Πs

ĝ(σ′|σ)
ĝ(σ|σ′) .

It is impossible to recover the partial ground truth ranking if the fraction of the experts p can be
very small, or the dispersion parameter of the non-experts ϕNE can be very large. In order to ensure
recovery of the true partial ranking we will make the following assumption.
Assumption 1. The dispersion parameters ϕE , ϕNE , and the fraction of experts p satisfy the
following inequality, (

p
1−p

)2
≥ 2 ·

(
Z(ϕNE)
Z(ϕE)

)2
Z(ϕNE , k)ϕ

k(k−1)/2
E

where Z(ϕ, k) =
∑

σ:[k]→[k] ϕ
d(σ,σ⋆).

The next theorem states that sample complexity under the above assumption.

Theorem 1. Suppose Assumption 1 holds, and the total number of samples n ≥ k!
√

10k log(2k/δ)
µ

where µ = p · Z(ϕE ,m−k)
Z(ϕE) · ϕk(k−1)/2

E + (1 − p) · Z(ϕNE ,m−k)
Z(ϕNE) · ϕk(k−1)/2

NE . Then the surprisingly
popular algorithm recovers true ranking over the subset T of size k with probability at least 1− δ.

Suppose ϕE ≪ ϕNE < 1. Then Assumption 1 requires p
1−p ≥ Ω

(
ϕ
k2/4+1
NE ϕ

k2/4−1
E

)
, and it implies

that if ϕNE is very large compared to ϕE (i.e. noisy non-experts) then we need a larger value of p
(i.e. more experts).

We provide the full proof of the theorem in Appendix I. The main ingredient of the proof is Lemma 2
which shows that under Assumption 1 there is a strict separation between the true prediction-
normalized score of the true partial ranking and any other ranking. In fact, we show that V (σ⋆) ≥
2V (τ) for any τ with d(τ, σ⋆) ≥ 1. Given this result, we can apply standard concentration inequality
to show that V̂ (σ) is close to V (σ) for all σ when the number of samples is large, and V̂ (σ⋆) will
be larger than V̂ (τ) for any τ ̸= σ⋆. Therefore, picking the ranking with the largest empirical
prediction-normalized score returns the correct ranking.

Note that the sample complexity grows proportional to k! only because we compute prediction-
normalized votes over all k! partial rankings. If we are interested in recovering top t-alternatives then
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it will grow proportional to
(
k
t

)
. Moreover, the subset size k is assumed to be very small compared to

the number of alternatives m, and Theorem 1 shows the benefit of applying SP algorithm to partial
preferences. We can immediately apply Theorem 1 to a collection of subsets S through a union
bound, and extend our analysis to the Partial-SP algorithm. Let us assume that in the second stage
of Partial-SP, we apply a t-consistent voting rule f that recovers top-t alternatives as long as each
partial ranking in S is correct.
Corollary 1. Under the same setting as Theorem 1, suppose the number of samples from each

subset in S is n ≥ k!
√

10k log(2|S|k/δ)
µ . Then the Partial-SP algorithm with a t-consistent voting rule,

recovers the top t alternatives of the ground truth π⋆ with probability at least 1− δ.

Finally note that, the total sample complexity of Õ(|S| · k!
√
k) is needed only because we adopt a

naive version of the SP algorithm for proving theoretical guarantees. For the experiments, we adopt
a pairwise version of the SP algorithm which applies SP-voting to each pair within a subset. We
believe that under further assumptions, the total sample complexity can be reduced to Õ(|S| · k2)
with such a pairwise variant of the partial-SP algorithm, and we leave this analysis for the future.

8 Discussion and Future Work

We conclude by discussing some limitations and future directions. When dealing with partial
preferences, even when majority have the correct information, effective preference elicitation or
finding a necessary winner in most vote aggregation rules are often computationally intractable
[11, 39, 18]. These challenges, together with the minority of experts, further highlight the efficacy
of the SP approach in balancing information elicitation and accuracy, by employing additional
prediction information. Future research can explore the setting of SP beyond the majority-minority
dichotomy (e.g. informed, but not expert voters) or when malicious voters are present (e.g. in
detecting misinformation). Theoretically, the sample complexity can be explored beyond Mallows
model under other probabilistic models to enhance our understanding of this approach, particularly in
notable applications such as political polling or collective moderation of online content.
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A Additional Related Work

Information Aggregation. Information Aggregation by eliciting votes from voters is a well-studied
problem in social choice theory. The aggregation rules proposed by De Condorcet [20], Borda [5],
Copeland [16], Young [51], and many others focus on information aggregation by eliciting votes.
These rules can be adapted to elicit ranked information from voters and then aggregate them into a
single ranking representing the collective opinion of the crowd. [4]. Information Aggregation has
also been examined from a statistical perspective, where the aggregated ranking is viewed as the
maximum likelihood estimate of the population’s rankings [20, 15, 50, 13]. Within this framework,
individual votes are considered outcomes of probabilistic models such as the Thurstonian model,
Bradley-Terry model, Mallows’ model, or Plackett-Luce model [34].
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Partial Aggregation. In situations where it is difficult or not necessary to elicit complete rankings
from voters, partial preferences are used. Partial vote aggregation has different solution concepts
[6]. Partial preferences can be used to conclude which alternatives are necessary and possible
winners based on the preference profiles [26, 14, 47, 2, 3, 49]. Alternatively, a regret based approach
can be used to assess the quality of a winning alternative where the optimal alternative is the one
that minimizes regret [30]. Apart from these epistemic notions, a lot of work has been done on
probabilistic analysis of winners from partial profiles [1, 23, 29, 31]. To minimize the information
elicited from a population, it is crucial to understand the methods used for eliciting partial preferences.
It can either be by minimizing the amount of information communicated by each voter in their
answer [12, 45, 40] or by reducing the number of queries that each voter needs to answer [37, 14]. In
either of these cases, the objective is still to determine the winner accurately. Cognitive complexity
also plays an important part in this, as all these notions are highly correlated. Finally, the recovery
of complete rankings from partial preferences is another solution concept that is studied [21, 41].
Due to the combinatorial nature of the rankings, winner determination, communication complexity,
query complexity, and cognitive complexity are all relevant here. This is where our research work
contributes.

Surprisingly Popular Framework. In their seminal work, Prelec [35], Prelec et al. [36] introduced
the Surprisingly Popular (SP) algorithm, a novel second-order information based method that recovers
truthful subjective data in scenarios where objective truth remains unknown. This framework has
since been used to incentivize truthful behaviour in agents [35, 42, 43], mitigate biases in academic
peer review [32], elicit expert knowledge [27], model thinking hierarchy of people without any prior
[28], aggregate information [9] and recover ground-truth ranking [36, 25]. Our study builds upon this
literature, specifically addressing the challenges in rank recovery. Originally, the SP algorithm by
Prelec et al. [36] required data on all m! potential rankings for m alternatives , a requirement that
becomes impractical as m increases. Hosseini et al. [25] addressed this by developing a Surprisingly
Popular Voting algorithm that leverages pairwise preference data across

(
m
2

)
alternatives. However,

this approach encountered scalability limitations when dealing with more than four alternatives
in partial preference profiles. Our contribution lies in advancing this methodology by proposing
a scalable generalization of the Surprisingly Popular Voting method for partial preferences, thus
broadening its applicability and effectiveness.

B Formalism of Elicitation Formats

In this section, we formally define the elicitation formats used in our study. Let vi and pi denote the
vote and prediction submitted by voter i. Let T = {a1, a2, . . . , ak} denote the subset of alternatives
of size k that voters will report on and L(T ) denote the set of all possible rankings of alternatives in
T . Let σ denote a ranking of the alternatives in T and σ(j) denote the alternative at the jth position
in σ. The elicitation formats are defined as follows:

Top-None: Voter i reports the top alternative in her observed noisy ranking, i.e., vi = σ(1), and
does not provide any inference about other’s aggregated votes.

Top-Top: Voter i reports the top alternative in her observed noisy ranking, i.e., vi = σ(1),
and provides the estimate of the most frequent alternative among the other voters, i.e., pi =
argmaxa∈T

∑
σ∈L(T ):σ(1)=a Pro(σ|σi).

Top-Approval(3): Voter i reports the top alternative in her observed noisy ranking, i.e., vi = σ(1),
and provides the estimate of the top three most frequent alternatives, in no specific order, among the
other voters., i.e., pi = argmaxa,b,c∈T

∑
σ:{a,b,c}⊆{σ(1),σ(2),σ(3)} Pro(σ|σi).

Top-Rank: Voter i reports the top alternative in her observed noisy ranking, i.e., vi = σ(1), and
provides the estimate of other’s rankings i.e, pi ∈ L(T ) such that

∑
σ∈L(A):σ(1)=qi(x)

Pro(σ|σi) ≥∑
σ∈L(T ):σ(1)=qi(y)

Pro(σ|σi) for all x > y.

Approval(2)-Approval(2): Voter i reports the top two alternatives, in no specific order, in her
observed noisy ranking, i.e., vi = {σ(1), σ(2)} = {a, b} with a, b ∈ T in no particular order and
provides the estimate of the top two most frequent alternatives, in no specific order, among the other
voters., i.e., pi = argmaxa,b∈T

∑
σ:{a,b}⊆{σ(1),σ(2)} Pro(σ|σi).
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Approval(3)-Rank: Voter i reports the top three alternatives, in no specific order, in her observed
noisy ranking, i.e., vi = {σ(1), σ(2), σ(3)} = {a, b, c} with a, b, c ∈ T in no particular order, and
provides the estimate of other’s rankings i.e, pi ∈ L(T ) such that

∑
σ∈L(A):σ(1)=qi(x)

Pro(σ|σi) ≥∑
σ∈L(T ):σ(1)=qi(y)

Pro(σ|σi) for all x > y.

Rank-None: Voter i reports her entire observed noisy ranking, i.e., vi = σi, and does not provide
any inference about other’s aggregated votes.

Rank-Top: Voter i reports her entire observed noisy ranking, i.e., vi = σi, and pro-
vides the estimate of the most frequent alternative among the other voters, i.e., pi =
argmaxa∈T

∑
σ∈L(T ):σ(1)=a Pro(σ|σi).

Rank-Rank: Voter i reports her entire observed noisy ranking, i.e., vi = σi, and provides
the estimate of other’s rankings i.e, pi ∈ L(T ) such that

∑
σ∈L(A):σ(1)=qi(x)

Pro(σ|σi) ≥∑
σ∈L(T ):σ(1)=qi(y)

Pro(σ|σi) for all x > y.

C Common Voting Rules

Vote aggregation rules are social choice functions that are used to aggregate individual votes to make
conclusions about the collective opinion of a multi-candidate voting system [6]. Given below are the
vote aggregation rules used in our study. We will only focus on aggregating ranked preferences.

Number of Voters Preference Profile
44 A ≻ B ≻ C ≻ D
24 B ≻ C ≻ D ≻ A
18 C ≻ D ≻ B ≻ A
14 D ≻ C ≻ B ≻ A

Table 1: Voter Preferences

C.1 Borda

The Borda rule [5] is a voting rule in which voters order candidates by ranked preference, and
candidates are awarded points based on their position in each voter’s ranking. The winner is the
candidate with the highest total score after all votes are counted. It can be mathematically represented
as:

Borda Score(a) =
n∑

i=1

(m− 1− σ−1
i (a))

where σ−1
i (a) represents the position at which alternative a is present. The aggregated ranking is

derived by sorting the Borda scores of the alternatives in descending order.

Example 1. Apply Borda Rule to the preference profile given in Table 1

Table 1 provides the preference profiles of voters. Applying Borda Rule, we find that Borda Scores of
A, B, C, D are 132, 192, 174, and 102 respectively. Thus arranging the scores in descending order
results in the aggregated ranking of B ≻ C ≻ A ≻ D.

C.2 Copeland

The Copeland rule [16] is a voting method used to select a single winner from a set of candidates
based on pairwise comparisons between each pair of candidates. In the Copeland method, each
candidate receives a score based on the number of head-to-head contests they win against other
candidates, with ties potentially receiving a half point for each candidate involved in the tie. It can be
mathematically represented as:
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Copeland Score(a) =
∑

a,b∈A,
b̸=a


1 if V (a, b) > V (b, a)

0.5 if V (a, b) = V (b, a)

0 if V (a, b) < V (b, a)

where V (a, b) represents all the voters who preferred a over b. The aggregated ranking is derived by
sorting the Copeland scores of the alternatives in descending order.
Example 2. Apply Copeland Rule to the preference profile given in Table 1

Applying Copeland Rule (with Borda tie-breaking) to the preference profiles given in Table 1 results
in the following pairwise table:

Pairwise Comparisons Winner
A vs B B
A vs C C
A vs D D
B vs C B
B vs D B
C vs D C

Table 2: Results of Pairwise Comparisons

Thus, arranging the alternatives in decreasing order of number of time they become winners results in
the aggregated ranking of B ≻ C ≻ D ≻ A.

C.3 Maximin

The Maximin rule [51], also known as the Simpson-Kramer method , selects a winner from a set of
candidates by considering the strength of a candidate’s worst-case pairwise comparison against all
other candidates. It identifies the candidate whose least favorable comparison is superior to those
of the others, aiming to find the most robust candidate against the strongest opponent. This can be
mathematically expressed as:

Maximin Score(a) = min
b∈A,b̸=a

V (a, b)

where V (a, b) represents all the voters who preferred a over b. The aggregated ranking is derived by
sorting the Maximin scores of the alternatives in descending order.
Example 3. Apply Maximin Rule to the preference profile given in Table 1

In order to apply Maximin Rule to the preference profiles given in Table 1 we first analyze the worst
pairwise defeat and its margin by the following table:

Alternative Worst Pairwise Defeat Margin of Worst Pairwise Defeat
A 56 12
B 0 -12
C 68 36
D 86 72

Table 3: Analysis of Worst Pairwise Defeats

The alternative that has a higher score of worst pairwise defeat or that loses by a higher margin is
considered worse off. Thus, arranging in ascending order of the scores of any of the column results in
the aggregated ranking of B ≻ A ≻ C ≻ D.

C.4 Schulze

The Schulze rule [44] selects a ranking of a set of candidates based on the strength of preferences
expressed by voters. The strength of a preference is considered to be the number of voters who prefer
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one candidate over another. For every pair of candidates, a directed graph is constructed where the
edges represent the strength of preference. The method then calculates the strongest path (defined
as the weakest link in the path being as strong as possible) between every pair of candidates. A
candidate wins if, for every other candidate, there exists a stronger (or equal strength) path to that
candidate than from that candidate. It can be mathematically expressed as:

Initially, for all pairs of candidates a, b:

P (a, b) =

{
V (a, b) if V (a, b) > V (b, a)

0 otherwise

Then, for each a, b, c ∈ A with a ̸= b ̸= c, update:

P (a, b) = max(P (a, b),min(P (a, c), P (c, b)))

For each candidate a, calculate a comprehensive score that may involve the sum of all positive
differences P (a, b) − P (b, a) against other candidates b. The aggregated ranking is obtained by
sorting these scores in descending order.
Example 4. Apply Schulze Rule to the preference profile given in Table 1

In order to apply Schulze Rule to the preference profile given in Table 1, we first generate a Directed
Graph where the vertices denote the alternatives and the weight of the edges denote the score by which
one alternative defeats the other. For the preferences in Table 1, we get the following graph:

A

B C

D

56
56

56

68

68

86

Figure 7: Directed Graph with Vertices Arranged as Corners of a Square

The Table 4 finds the strongest path for each pair of vertices:

A B C D
A X 0 0 0
B B → 68 → C → 86 → D → 56 → A X B → 68 → C B → 68 → C → 86 → D
C C → 86 → D → 56 → A 0 X C → 86 → D
D D → 56 → A 0 0 X

Table 4: Strongest Path between Vertices

Finally, the Table 4 provides the weakest link between each pair of vertices:

A B C D
A X 0 0 0
B 56 X 68 68
C 56 0 X 86
D 56 0 0 X

Table 5: Strength of weakest link between vertices

Arranging the alternatives in decreasing order of their pairwise wins in Table 5 results in the aggregated
ranking of B ≻ C ≻ D ≻ A.
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D Algorithms

Appendix D.1 details the approach used to extract information from various elicitation formats.
Explanation and pseudocode for Partial-SP and Aggregated-SP is provided in Appendix D.2 and
Appendix D.3, respectively.

D.1 Extracting Reports from Voters

Algorithm 1 describes how information is extracted from different elicitation formats. The algorithm
takes as input the votes ({vi}i∈[n]) and predictions ({pi}i∈[n]) of n voters, pair (a, b) of alternatives,
and parameters α and β. Using grid search on the datasets from the three domains, it was observed
that any α > 0.5 and β < 0.5 can be used. In our experiments we use α = 0.55 and β = 0.1. For
votes and predictions expressed as top choices or approvals, if a is the preferred alternative, v(a,b)i

is set to 1, with p
(a,b)
i adjusted to α if the prediction aligns with the vote, or to β otherwise; if b is

chosen, v(a,b)i is 0, and p
(a,b)
i is set to 1− α or 1− β, depending on prediction alignment. For ranks,

v
(a,b)
i indicates preference based on rank ordering, and p

(a,b)
i reflects the confidence in this preference

(α or 1− α if aligned, β or 1− β if not). The algorithm returns the processed vote and prediction
reports.

ALGORITHM 1: Extract-Reports
Input: Votes {vi}i∈[n], Predictions {pi}i∈[n], pair (a, b), and probabilities α > 0.5, and β < 0.5.
for i = 1, . . . , n do

/* Extract Vote Information */
if vi is elicited as rank then

Set v(a,b)i =

{
1 if a ≻vi b
0 o.w.

else if vi is elicited as top or approval then

Set v(a,b)i =

{
1 if vi = a
0 if vi = b

else
Ignore (vi, qi)

/* Extract Prediction Information */
if pi is elicited as rank then

Set p(a,b)i =


α if a ≻pi b and v

(a,b)
i = 1

1− α if b ≻pi a and v
(a,b)
i = 1

1− β if a ≻pi b and v
(a,b)
i = 0

β o.w.
else if pi is elicited as top or approval then

Set p(a,b)i =


α if pi = a and v

(a,b)
i = 1

1− α if pi = b and v
(a,b)
i = 1

1− β if pi = a and v
(a,b)
i = 0

β o.w.
else

Set pa,bi = 1
2

return
(
{v(a,b)i , p

(a,b)
i }i∈[n]

)

D.2 Partial-SP

Algorithm 2 describes the proposed Partial-SP aggregation approach. The algorithm takes as input
the number of voters (n), number of alternatives (m), set of all subsets that voters voted on (S),
voters’ votes ({vi,j}i∈[n],j∈S), voters’ predictions ({pi,j}i∈[n],j∈S), parameters α and β representing
the conditional probabilities that would be returned for the predictions, and Vote Aggregation Rule
(V). For n voters and m alternatives, depending on the elicitation format, the voters will be providing
votes (vi,j) and predictions (pi,j) as Top choices, Approvals(t), or Rankings over a subset Sj ∈ S.
Additionally, we use Borda, Copeland, and Maximin aggregation rule for V .

For every pair of alternatives (a, b) within a subset Sj , we extract information about the number of
people that voted for a ≻ b and b ≻ a represented by f(a ≻ b) and f(b ≻ a) respectively, and the
conditional probability of their predictions (g(0|0), g(0|1), g(1|0), g(1|1)). Refer to Appendix D.1
for a detailed explanation of how information is extracted for different elicitation formats. With
this, the prediction normalized score V̄ (a ≻ b) and V̄ (b ≻ a) is calculated and a higher prediction
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normalized score decides the correct ordering for each pair (a, b) within a subset Sj . This results in a
partial ground-truth ranking representing the correct relative ordering for the alternatives within that
subset. Q represents the set of partial ground-truth ranking for all subsets. Finally, Vote-Aggregation
rule V is applied on Q to find the complete ground-truth ordering of the m alternatives.

ALGORITHM 2: Partial-SP
Input: Number of Voters n, Subsets of alternatives S, Votes {vi,j}i∈[n],j∈S , Predictions {pi,j}i∈[n],j∈S ,

probabilities α > 0.5 and β < 0.5, and Vote-Aggregation rule V
Q← ϕ

for j = 1, . . . , |S| do
G← ϕ

/* Apply SP-voting on votes and predictions for each subset */
for each pair of alternatives (a, b) in Sj do(

{v(a,b)i , p
(a,b)
i }i∈[n]

)
← Extract-Reports({vij , pij}i∈[n],j∈S , pair(a, b), α, β)

/* Signal 1 (resp. 0) corresponds to a ≻ b (resp. b ≻ a). */

Na≻b =
{
c : v

(a,b)
c = 1

}
Nb≻a =

{
c : v

(a,b)
c = 0

}
f(a ≻ b) =

∑
i 1

{
v
(a,b)
i = 1

}
/(|Na≻b|+ |Nb≻a|)

f(b ≻ a) = 1− f(a ≻ b)
g(1 | 1) = 1

|Na≻b|
∑

i∈Na≻b
pi and P (0 | 1) = 1− P (1 | 1)

g(1 | 0) = 1

|Nb≻a|
∑

i∈Nb≻a
pi and P (0 | 0) = 1− P (1 | 0)

/* Compute prediction-normalized vote */

V̄ (a ≻ b) = f(a ≻ b)
∑
i

g
(
v
(a,b)
i |1

)
g
(
1|v(a,b)i

)
V̄ (b ≻ a) = f(b ≻ a)

∑
i

g
(
v
(a,b)
i |0

)
g
(
0|v(a,b)i

)
/* Ties are broken uniformly at random */

if V̄ (a ≻ b) < V̄ (b ≻ a) then
G← G ∪ a ≻ b

else
G← G ∪ b ≻ a

Qj ← Qj ∪G
GT ← V(Q)

return GT

D.3 Aggregated-SP

Algorithm 3 describes the proposed Aggregated-SP aggregation approach. The algorithm takes as
input the number of voters (n), number of alternatives (m), set of all subsets that voters voted on (S),
voters’ votes ({vi,j}i∈[n],j∈S), voters’ predictions ({pi,j}i∈[n],j∈S), parameters α and β representing
the conditional probabilities that would be returned for the predictions, and Vote Aggregation Rule
(V). For n voters and m alternatives, depending on the elicitation format, the voters will be providing
votes (vi,j) and predictions (pi,j) as Top choices, Approvals(t), or Rankings over a subset Sj ∈ S.
Additionally, we use Borda, Copeland, and Maximin aggregation rule for V .

For every subset Sj , we aggregate the votes using V , resulting in the set of partial aggregated subsets
represented by Q. Q is a dictionary containing the alternative and its corresponding score according
to the aggregation rule V . We now apply SP-Algorithm on Q. For every pair of alternatives (a, b)
within a partial aggregated subset Qj , we extract information about the conditional probability of
their predictions (g(0|0), g(0|1), g(1|0), g(1|1)). Refer to Appendix D.1 for a detailed explanation
of how information is extracted for different elicitation formats. With this, the prediction normalized
score V̄ (a ≻ b) and V̄ (b ≻ a) is calculated where we use the scores of the alternatives represented
by Q(a) and Q(b). A higher prediction normalized score decides the correct ordering for each pair
(a, b). Parsing all pairs, results in the complete ground-truth ordering of the m alternatives.
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ALGORITHM 3: Aggregated-SP Aggregation
Input: Number of Voters n, Subsets of alternatives S, Votes {vi,j}i∈[n],j∈S , Predictions {pi,j}i∈[n],j∈S ,

probabilities α > 0.5 and β < 0.5, and Vote-Aggregation rule V
Q← ϕ
GT ← ϕ
for j = 1, . . . , |S| do

G← ϕ
G← V(vi,j)

Qj ← Qj ∪G
/* Apply pairwise SP-voting on aggregated votes and non-aggregated
predictions */

for each pair of alternatives (a, b) in Qj do(
{v(a,b)i , p

(a,b)
i }i∈[n]

)
← Extract-Reports({vij , pij}i∈[n],j∈S , pair(a, b), α, β)

Na≻b =
{
c : v

(a,b)
c = 1

}
Nb≻a =

{
c : v

(a,b)
c = 0

}
g(1 | 1) = 1

|Na≻b|
∑

i∈Na≻b
pi and P (0 | 1) = 1− P (1 | 1)

g(1 | 0) = 1

|Nb≻a|
∑

i∈Nb≻a
pi and P (0 | 0) = 1− P (1 | 0)

/* Compute prediction-normalized vote */

V̄ (a ≻ b) = Q(a)
∑
i

g
(
v
(a,b)
i |1

)
g
(
1|v(a,b)i

)
V̄ (b ≻ a) = Q(b)

∑
i

g
(
v
(a,b)
i |0

)
g
(
0|v(a,b)i

)
/* Ties are broken uniformly at random */

if V̄ (a ≻ b) < V̄ (b ≻ a) then
GT ← GT ∪ a ≻ b

else
GT ← GT ∪ b ≻ a

return GT

E Additional Details of Experimental Design

This section provides additional details about the MTurk study

Tutorial. Prior to engaging with each set of 6 questions within a specific elicitation format, par-
ticipants completed a tutorial designed to evaluate their understanding of the voting process and
prediction tasks. To proceed, participants had to accurately apply these beliefs within the voting and
prediction framework, ensuring they were adequately prepared.

Reviews. Following the completion of each set of 6 questions, participants were asked to evaluate
the preceding questions’ elicitation format in terms of difficulty (ranging from "Very Easy" to
"Very Difficult") and expressiveness (from "Very Little" to "Very Significant"). Although question
complexity was standardized within each domain, the domains themselves varied considerably in
difficulty. To mitigate potential bias from implicit comparisons between the two elicitation formats
assigned to each participant, the sequence of domains in the first set of questions was mirrored in the
subsequent set. This methodological approach ensured consistency and fairness in the evaluation of
the elicitation formats, thereby enhancing the reliability of participants’ feedback

Response qualifications & payment. To ensure reliable responses, we established several qual-
ification criteria for participants in our study on MTurk. Participants were required to have: (a)
a minimum approval rate of 90% for their previous tasks, (b) completed at least 100 tasks on the
platform, and (c) specified the region as US and Canada (to ensure language proficiency). To check
attentiveness of the participants, we included an additional quiz that repeated one of the previous
questions. The compensation structure included a base payment of 50 cents for completing the survey,
which encompassed tutorials, questions, and evaluations. Additionally, a 50-cent bonus was offered
for accurately completing the attentiveness quiz.
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F Additional Details of Simulation

F.1 Parameter Inference for the concentric mixtures of Mallows model

To assess the accuracy of the simulations, we fit the concentric mixtures of Mallows model to both
the real and simulated data to infer the model parameters. This process allows us to compare the
inferred parameters, thereby evaluating how effectively the model captures the underlying patterns in
the data. Specifically, we infer the proportion of experts (p), dispersion parameters of experts’ votes
(ϕE-votes) and predictions (ϕE-predictions), as well as the dispersion parameters of non-experts’ votes
(ϕNE-votes) and predictions (ϕNE-predictions). For the real data, the distribution of these parameters
can help us in understanding the voting behavior of experts and non-experts. For the synthetic
data, generated based on known parameters, we can check if the model accurately recovers these
parameters.

The parameters are inferred using Bayesian inference, implemented through the No-U-Turn Sampler
(NUTS) [24], an extension of Hamiltonian Monte Carlo (HMC) available in Stan [8]. Before sampling,
we calculate the Kendall-Tau distance between the ground-truth ranking and the votes (τvotes) and
predictions (τpredictions) of all the voters. We then define the priors for our parameters as follows:

p ∼ β(1, 2.5)

ϕE-votes ∼ N (0.15, 0.075)

ϕE-predictions ∼ N (0.7, 0.3)

ϕNE-votes ∼ N (0.7, 0.3)

ϕNE-predictions ∼ N (0.7, 0.3)

We then combine the likelihood of the parameters of our mixture model and perform inference over
the following target function:

target+ = logmix (p,
N (τvotes[n] | 0, ϕE-votes) +N (τpredictions[n] | 0, ϕE-predictions),

N (τvotes[n] | 0, ϕNE-votes) +N (τpredictions[n] | 0, ϕNE-predictions))

The log-likelihood function incorporates the observed τvotes and τpredictions using the mixture model
to account for the possibility that each voter could be an expert or a non-expert. We run four chains,
each for 4000 iterations with 1000 iterations of warm-up for the NUTS algorithm. The algorithm
explores the parameter space and updates the parameter estimates iteratively based on the input data
and priors.

F.2 Synthetic Data Generation

The synthetic data was generated by simulating voter behavior using the concentric mixtures of
Mallows model to construct preference rankings. This approach allows for the simulation of both
expert and non-expert voters, with experts’ votes closely aligning with a ground truth ranking and
non-experts showing a broader dispersion in their preferences. The subsets to be voted on were
generated as described in Section 4.

Voter Classification. To simulate the voting process effectively, voters are initially classified into
experts and non-experts. Since we need the experts to be in the minority, we determine the probability
of a voter being an expert by sampling the proportion parameter as p ∼ β(1, 2.5).

Voting Simulation: The voting behavior is simulated by the concentric mixtures of Mallows model.

Prs(πi | π⋆) = p · Prs(πi | π⋆, ϕE) + (1− p) · Prs(πi | π⋆, ϕNE) (9)

where ϕE ∼ N(0.15, 0.075) and ϕNE ∼ N(0.9, 0.4). Kendall-Tau distance is used as the distance
metric between the rankings πi and π⋆.
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G Missing Results and Analysis

G.1 Evaluation Metrics

To quantitatively assess the alignment between the rankings derived from the voting rule, denoted as
σ′, and the ground truth ranking, σ∗, we use metrics described in the following subsections.

G.1.1 Pairwise hit rate

This metric evaluates the accuracy of the voting rule in identifying the correct relative order between
pairs of alternatives, focusing on pairs with an increasing distance in their positions in the ground
truth ranking:

Pairwise hit rate =
1

|P |
∑

(i,j)∈P

1((σ′(i) < σ′(j)) = (σ∗(i) < σ∗(j)))

where P represents the set of pairs determined by the difference in their positions in σ∗, and 1 is the
indicator function.

G.1.2 Top-t hit rate

The Top-t hit rate metric quantitatively assesses the accuracy of a ranking algorithm by measuring
the presence of the top-t elements from the ground truth ranking within the top-t elements of the
predicted ranking. The formula for calculating the Top-t hit rate for rankings up to a given t is given
by:

Top-t hit rate =
|Top-t elements in ground truth ∩ Top-t elements in predicted ranking|

t

G.1.3 Kendall-Tau Correlation Coefficient

The Kendall-Tau correlation coefficient is a measure of the ordinal association between two rankings:

τ(σ′, σ∗) =
2

n(n− 1)

∑
i<j

1((σ′(i)− σ′(j))(σ∗(i)− σ∗(j)) > 0)− 1

where n is the number of elements in the ranking.

G.1.4 Spearman’s ρ

The Spearman’s ρ or Spearman correlation coefficient between σ′ and σ∗ quantifies the rank correla-
tion:

ρ(σ′, σ∗) = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)

with di = σ′(i)− σ∗(i) representing the rank difference of each element i between σ′ and σ∗.

Bootstrapping. To ensure the robustness of our estimates, we used bootstrapping to approximate
the sampling distribution of various statistics. This method offers insights into the variance and bias of
our estimates without relying on the stringent assumptions required by traditional parametric methods.
Bootstrapping is particularly advantageous when the distribution of metric values is unknown or does
not conform to common distributional assumptions. After generating the bootstrapped distribution of
metric values, we calculated the 95% confidence interval for each metric. Reporting these intervals
alongside the metric values serves two purposes: it quantifies the uncertainty of our estimates,
providing a transparent measure of their statistical precision, and it enhances the credibility of our
findings by acknowledging the variability and potential error margins associated with our estimates.

G.2 Response-Time, Difficulty and Expressiveness

Here, we measure the response time, difficulty, and expressiveness of the elicitation formats we used
in our study.
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• Response Time: We measure the average response time spent by the participants on each
question for each elicitation format in our survey. This measure gives us an idea of the
cognitive load perceived for each elicitation format [38].

• Perceived Difficulty: In the review phase of our MTurk survey, we asked participants to
select from ‘Very Easy’, ‘Easy’, ‘Neutral’, ‘Difficult’, and ‘Very Difficult’ to subjectively
indicate the ease of answering questions within each elicitation format. This approach
provides a measure of the perceived difficulty associated with different elicitation formats.

• Perceived Expressiveness: In the review phase of our MTurk survey, we prompted partici-
pants to select from the options ‘Very Little’, ‘Little’, ‘Adequate’, ‘Significant’, and ‘Very
Significant’ to indicate the amount of information they could convey using each elicitation
format.
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Figure 8: The figure shows the average time spent by the participants on each tutorial and question for
different elicitation formats across all domains. As expected, the participants spent similar or more
time on the tutorial than on the questions. Additionally, the only elicitation format that has a statistical
significance for the Questions is Approval(3)-Rank, where more time is spent by the participants.
Thus, for all other elicitation formats, the participants face a similar cognitive complexity while
responding to the questions.

G.3 Missing Figures for Predicting the Ground-Truth Ranking
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Figure 9: The figure shows the difficulty (easier is better) and expressiveness (higher is better) of
different elicitation formats as reported by the participants. A higher percentage of participants found
the tasks to be relatively easy, indicating that they could answer questions effortlessly across all
elicitation formats. Conversely, they demonstrated similar expressiveness not strongly leaning to
either side of the scale.
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(a) Top-Top
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(b) Top-Approval(3)
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(c) Top-Rank
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(d) Approval(2)-Approval(2)
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(e) Rank-Top
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(f) Approval(3)-Rank

Figure 10: The plots show the Kendall-Tau Correlation between rankings derived from Common
Aggregation Rules (blue), Partial-SP(red), and Aggregated-SP(red) for Top-Top, Top-Approval(3),
Top-Rank, Approval(2)-Approval(2), Rank-Top, and Approval(3)-Rank elicitation formats
across Geography(G), Movies(M), and Paintings(P) domains. A high Kendall-Tau Correlation implies
higher pairwise alignment of alternatives between the ground-truth ranking and the aggregated ranking.
The usage of different aggregation rules for Partial-SP and Aggregated-SP has similar impact on the
outcome. However, the performance improves with an increase in information elicited as seen by the
high correlation and increases statistical difference between the conventional methods and proposed
methods. For example, Approval(2)-Approval(2) recovers ground-truth ranking more accurately
than Top-Top. Note: We see Schulze method in Rank-Top as it only works for preference data.
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(b) Top-Approval(3)
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(c) Top-Rank
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(d) Approval(2)-Approval(2)
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(e) Rank-Top
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(f) Approval(3)-Rank

Figure 11: The plots show the Spearman’s ρ Correlation between rankings derived from Common Ag-
gregation Rules (blue), Partial-SP(red), and Aggregated-SP(red) for Top-Top, Top-Approval(3),
Top-Rank, Approval(2)-Approval(2), Rank-Top, and Approval(3)-Rank elicitation formats
across Geography(G), Movies(M), and Paintings(P) domains. A high Spearman’s ρ Correlation
implies higher alignment between the ground-truth ranking and the aggregated ranking. The usage
of Maximin aggregation rule for Partial-SP and Aggregated-SP has a better impact on the outcome
as compared to other common aggregation rules. Additionally, the performance improves with an
increase in information elicited as seen by the high correlation and increases statistical difference
between the conventional methods and proposed methods. For example, Approval(3)-Rank recov-
ers ground-truth ranking more accurately than Top-Approval(3). Note: We see Schulze method in
Rank-Top as it only works for preference data.
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G.4 Missing Figures for Partial-SP
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(a) Top-Top
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(b) Top-Approval(3)
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(c) Top-Rank
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(d) Approval(2)-Approval(2)
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(e) Approval(3)-Rank
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(f) Rank-Top

5 10 15 20
Pairwise Distance

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

ct
 H

its

Mean Correct Hits Partial-SP
Mean Correct Hits Votes

(g) Rank-Rank

Figure 12: The figures show the effect of different elicitation formats for ground-truth recovery using
Copeland and Partial-SP using metric defined in Section G.1.1. The metric assesses the number of
pairs that were correctly predicted according to the aggregation rule based on their increasing dis-
tance in the ground-truth ranking. Comparable performance between Approval(2)-Approval(2),
Approval(3)-Rank, and Rank-Rank show that eliciting Approvals on half the size of the subset
recovers truth as good as eliciting Ranking over the subset.
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(a) Top-Top
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(b) Top-Approval(3)
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(c) Top-Rank

5 10 15 20
Top-t

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
 H

its

Mean Correct Hits Partial-SP
Mean Correct Hits Votes

(d) Approval(2)-Approval(2)
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(e) Approval(3)-Rank
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(f) Rank-Top
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(g) Rank-Rank

Figure 13: The figures show the effect of different elicitation formats for ground-truth recovery
using Copeland and Partial-SP using metric defined in Section G.1.2. We again observe comparable
performance between Approval(2)-Approval(2), Approval(3)-Rank, and Rank-Rank show
that eliciting Approvals on half the size of the subset recovers truth as good as eliciting Ranking over
the subset.
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G.5 Missing Figures for Aggregated-SP
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(a) Top-Top
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(b) Top-Approval(3)
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(c) Top-Rank
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(d) Approval(2)-Approval(2)
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(e) Approval(3)-Rank
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(f) Rank-Top
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(g) Rank-Rank

Figure 14: The figures show the effect of different elicitation formats for ground-truth recovery
using Maximin and Aggregated-SP using metric defined in Section G.1.1. Improved performance in
Approval(3)-Rank, and Rank-Rank are consistent with the observations made in Figure 12 except
for Approval(2)-Approval(2) where no statistical significance is observed.

G.6 Comparing Performance between Real and Simulated Data

Figure 16 shows the performance of Partial-SP with Copeland Aggregation on Real Data and
Simulated Data using metrics described in Section G.1.1 and G.1.2. In both of the metrics, we
observe similar trends across various pairwise distances, and top-t metrics.
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(a) Top-Top
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(b) Top-Approval(3)
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(c) Top-Rank
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(d) Approval(2)-Approval(2)
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(e) Approval(3)-Rank
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(f) Rank-Top
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(g) Rank-Rank

Figure 15: The figures show the effect of different elicitation formats for ground-truth recovery
using Maximin and Aggregated-SP using metric defined in Appendix G.1.2. Improved performance,
especially after t = 10, in Approval(2)-Approval(2), Approval(3)-Rank, and Rank-Rank are
consistent with the observations made in Figure 13.
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(a) Correct-Hits Vs Pairwise distance.
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(b) Correct Hits vs Top-t

Figure 16: Comparison of pairwise and Top-t hit rate for Copeland-Aggregated Partial-SP and
Copeland rule for Rank-Rank on Real and Simulated Data. Similar trends are noticed in real and
simulated data.
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H Missing Proofs

H.1 Proof of Theorem (1)

Proof. We first establish a lower bound on g(σ | σ′) for any σ, σ′.

g(σ | σ′) =
∑
σ̃

Prg(σ̃ | σ′)Prs(σ | σ̃) ≥ min
σ̃

Prs(σ | σ̃)
∑
σ̃

Prg(σ̃ | σ′) = min
σ̃

Prs(σ | σ̃)

Under the assumption of uniform prior we have,

Prs(σ | σ̃) =
∑
π:π▷σ̃

Pr(π)

Pr(σ̃)
Prs(σ | π)

=
1

(m− k)!

∑
π:π▷σ̃

Prs(σ
⋆ | π)

=
1

(m− k)!

∑
π:π▷σ̃

∑
π′:π′▷σ

Prs(π
′ | π)

=
1

(m− k)!

∑
π:π▷σ̃

∑
π′:π′▷σ

p ·
ϕ
d(π′,π)
E

Z(ϕE)
+ (1− p) ·

ϕ
d(π′,π)
NE

Z(ϕNE)

=
1

(m− k)!

∑
π:π▷σ̃

(
p · Z(ϕE ,m− k)

Z(ϕE)
· ϕd(σ,σ̃)

E + (1− p) · Z(ϕNE ,m− k)

Z(ϕNE)
· ϕd(σ,σ̃)

NE

)
= p · Z(ϕE ,m− k)

Z(ϕE)
· ϕd(σ,σ̃)

E + (1− p) · Z(ϕNE ,m− k)

Z(ϕNE)
· ϕd(σ,σ̃)

NE︸ ︷︷ ︸
:=µ

Here Z(ϕ,m− k) =
∑

τ :[m−k]→[m−k] ϕ
d(τ,τ⋆). Therefore, g(σ | σ′) ≥ κ for any σ, σ′.

We will first prove a multiplicative concentration inequality on the estimates ĝ(· | σ) for any
σ. Now fix any σ. By using lemma (1) we obtain that with probability at least 1 − δ1
maxσ′ |g(σ′ | σ)− ĝ(σ′ | σ)| ≤ log(1/δ1)

n2 . This implies that ĝ(σ′ | σ) ≥ g(σ′ | σ)− log(1/δ1)
n2 . Since

g(σ′ | σ) ≥ µ, in order to have ĝ(σ′ | σ) ≥ (1− ε)g(σ′ | σ) it is sufficient to have n ≥
√

log(1/δ1)
ε·µ .

Moreover, because of the fact that µ < 1, we also have ĝ(σ′ | σ) ≤ (1 + ε)g(σ′ | σ). Finally, we can
use union bound over all k! permutations σ and substituting δ1 = δ/(2 · k!) we obtain that as long as

the number of samples from each permutation σ is at least
√

k log(2k/δ)
ε·µ , we have

Pr (∀σ, σ′, (1− ε)g(σ′ | σ) ≤ ĝ(σ′ | σ) ≤ (1 + ε)g(σ′ | σ)) ≥ 1− δ

2

We now apply a similar concentration inequality for the frequency terms f(·). Since Prs(σ | σ⋆) ≥ µ
for any σ we have f(σ) ≥ κ. By an argument very similar to the previous paragraph we have that as

long as n ≥
√

log(2/δ)
ε·µ , we are guaranteed that (1− ε)f(σ) ≤ f̂(σ) ≤ (1 + ε)f(σ) with probability

at least 1− δ/2.

Now we provide a lower bound on the estimate V̂ (σ⋆).

V̂ (σ⋆) = f̂(σ⋆)
∑
σ′

ĝ(σ′ | σ⋆)

ĝ(σ⋆ | σ′)
≥ (1− ε)2

(1 + ε)
f(σ⋆)

∑
σ′

g(σ′ | σ⋆)

g(σ⋆ | σ′)
=

(1− ε)2

(1 + ε)
V (σ⋆)

We now provide an upper bound on V̂ (τ) for any τ ̸= σ⋆.

V̂ (τ) = f̂(τ)
∑
σ′

ĝ(σ′ | τ)
ĝ(τ | σ′)

≤ (1 + ε)2

(1− ε)
f(τ)

∑
σ′

g(σ′ | τ)
g(τ | σ′)

=
(1 + ε)2

(1− ε)
V (τ)
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We now use lemma (2) i.e. V (σ⋆) ≥ 2V (τ).

V̂ (σ⋆) ≥ (1− ε)2

(1 + ε)
V (σ⋆) ≥ 2(1− ε)2

(1 + ε)
V (τ) ≥ 2(1− ε)3

(1 + ε)3
V̂ (τ) > V̂ (τ)

as long as ε ≤
3√2−1
3√2+1

≈ 0.115. We substitute ε = 0.1. Finally, observe that we pick the outcome with

highest empirical prediction normalized vote V̂ (σ) and with probability at least 1− δ, the empirical
prediction normalized vote of σ⋆ will be the highest, and will be picked as the outcome.

Lemma 1 (Theorem 9 of [7]). Let X1, . . . , Xn be n be i.i.d. drawn from a discrete distribution
p = (p1, . . . , pk) and let p̂j = 1

n

∑n
i=1 1 {Xi = j}. Then we have

Pr

(
max
j∈[k]

|p̂j − pj | ≥
log(1/δ)

n2

)
≤ δ

H.2 Separation Lemma

Lemma 2. Assume uniform prior and assumption 1 holds. Then for any ground truth σ⋆ over subset
T of size k and any τ with d(τ, σ⋆) ≥ 1 we have, V (σ⋆) ≥ 2V (τ).

Proof. Using the definition of g(· | ·) we can establish the following lower and upper bounds.

g(σ | σ′) =
∑
σ̃

Prg(σ̃ | σ′)Prs(σ | σ̃) ≥ min
σ̃

Prs(σ | σ̃)
∑
σ̃

Prg(σ̃ | σ′) = min
σ̃

Prs(σ | σ̃)

g(σ | σ′) =
∑
σ̃

Prg(σ̃ | σ′)Prs(σ | σ̃) ≤
∑
σ̃

Prs(σ | σ̃)
∑
σ̃

Prg(σ̃ | σ′) =
∑
σ̃

Prs(σ | σ̃)

Now we can establish the following lower and upper bounds on the prediction-normalized vote.

V (σ) = f(σ)
∑
σ′

g(σ′ | σ)
g(σ | σ′)

≤ f(σ)

minσ̃ Prs(σ | σ̃)
∑
σ′

g(σ′ | σ) = f(σ)

minσ̃ Prs(σ | σ̃)

V (σ) = f(σ)
∑
σ′

g(σ′ | σ)
g(σ | σ′)

≥ f(σ)∑
σ̃ Prs(σ | σ̃)

∑
σ′

g(σ′ | σ) = f(σ)∑
σ̃ Prs(σ | σ̃)

Now consider a partial ranking τ such that d(τ, σ⋆) = 1. Then we have,

V (σ⋆) ≥ f(σ⋆)∑
σ̃ Prs(σ

⋆ | σ̃)
=

Prs(σ
⋆ | σ⋆)∑

σ̃ Prs(σ
⋆ | σ̃)

and

V (τ) ≤ f(τ)

minσ̃ Prs(τ | σ̃)
=

Prs(τ | σ⋆)

minσ̃ Prs(τ | σ̃)
Under the assumption of uniform prior we have,

Prs(σ
⋆ | σ̃) =

∑
π:π▷σ̃

Pr(π)

Pr(σ̃)
Prs(σ

⋆ | π)

=
1

(m− k)!

∑
π:π▷σ̃

Prs(σ
⋆ | π)

=
1

(m− k)!

∑
π:π▷σ̃

∑
π′:π′▷σ⋆

Prs(π
′ | π)

=
1

(m− k)!

∑
π:π▷σ̃

∑
π′:π′▷σ⋆

p ·
ϕ
d(π′,π)
E

Z(ϕE)
+ (1− p) ·

ϕ
d(π′,π)
NE

Z(ϕNE)

=
c(T )

(m− k)!

(
p ·

ϕ
d(σ̃,σ⋆)
E

Z(ϕE)
+ (1− p) ·

ϕ
d(σ̃,σ⋆)
NE

Z(ϕNE)

)
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Here c(T ) is a constant depending only on the subset T . Using the above identity we obtain the
following lower bound on V (σ⋆).

V (σ⋆) ≥
p · 1

Z(ϕE) + (1− p) · 1
Z(ϕNE)∑

σ̃ p ·
ϕ
d(σ̃,σ⋆)
E

Z(ϕE) + (1− p) · ϕ
d(σ̃,σ⋆)
NE

Z(ϕNE)

We can also obtain the following upper bound on V (τ).

V (τ) ≤
p · ϕE

Z(ϕE) + (1− p) · ϕNE

Z(ϕNE)

minσ̃ p ·
ϕ
d(σ̃,τ)
E

Z(ϕE) + (1− p) · ϕ
d(σ̃,τ)
NE

Z(ϕNE)

We now use the relationship p < (1− p) and ϕE < ϕNE to improve the bounds. We will also write
Z(ϕ, k) =

∑
σ̃ ϕ

d(σ̃,τ ).

V (σ⋆) ≥
2p

Z(ϕNE)

2(1−p)Z(ϕNE ,k)
Z(ϕE)

=
p

1− p

Z(ϕE)

Z(ϕNE)

1

Z(ϕNE , k)

V (τ) ≤
2 · (1−p)ϕNE

Z(ϕE)

2p · ϕ
k(k−1)/2
E

Z(ϕNE)

=
1− p

p

Z(ϕNE)

Z(ϕE)
ϕ
k(k−1)/2
E

Therefore, in order to have V (σ⋆) ≥ 2V (τ) we need the following inequality to hold.

p

1− p

Z(ϕE)

Z(ϕNE)

1

Z(ϕNE , k)
≥ 2 · 1− p

p

Z(ϕNE)

Z(ϕE)
ϕ
k(k−1)/2
E

I Screenshots from our MTurk Survey

Here, we provide screenshots of different phases of our MTurk survey.

Figure 17: Preview and Consent Form
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Figure 18: Tutorial for Rank-None Elicitation Format

Figure 19: Questions for Top-None and Top-Top Elicitation Format

Figure 20: Questions for Top - Approval(3) and Top-Rank Elicitation Format
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Figure 21: Questions for Approval(2) - Approval(2) and Approval(3) - Rank Elicitation Format

Figure 22: Questions for Rank-None and Rank-Top Elicitation Format

Figure 23: Question for Rank-Rank Elicitation Format and Survey Questions
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Figure 24: Difficulty and Expressiveness Questions
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The experiments can be run on any computer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The paper includes full text of instructions given to participants, screenshots,
and details of compensation for the crowdsourcing experiment conducted during research.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We have obtained IRB approval for the crowdsourcing experiment conducted
during research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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