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Abstract— Current developments in autonomous off-road
driving are steadily increasing performance through higher
speeds and more challenging, unstructured environments. How-
ever, this operating regime subjects the vehicle to larger
inertial effects, where consideration of higher-order states is
necessary to avoid failures such as rollovers or excessive impact
forces. Aggressive driving through Model Predictive Control
(MPC) in these conditions requires dynamics models that
accurately predict safety-critical information. This work aims
to empirically quantify this aggressive operating regime and
its effects on the performance of current models. We evaluate
three dynamics models of varying complexity on two distinct
off-road driving datasets: one simulated and the other real-
world. By conditioning trajectory data on higher-order states,
we show that model accuracy degrades with aggressiveness and
simpler models degrade faster. These models are also validated
across datasets, where accuracies over safety-critical states are
reported and provide benchmarks for future work.

I. INTRODUCTION

In off-road autonomous driving, Model Predictive Control
(MPC) is widely used for fast planning and control to
address problems such as obstacle avoidance or uneven
terrain. Historically, MPC has performed well in practice, ac-
commodating unknown and approximate dynamics through
frequent model prediction and re-optimization [1]–[4]. How-
ever, the effectiveness of this approach critically depends on
the accuracy of the model prediction step. Particularly in
unstructured environments, MPC methods often suffer due
to models that inadequately capture safety-critical dynamics
[2], [5]. Nonetheless, aggressive driving aims to maximize
system performance without inducing critical failure modes.
In unstructured off-road driving, uneven and nonplanar ter-
rain geometries can cause destabilizing impact forces, wheel
airtime, and loss of control [1], [6]. While driving slower can
prevent these failures, an understanding of vehicle dynamics
can mitigate them even at high speeds [1]. Prior works have
not extensively studied this regime for off-road driving.

The NATO Reference Mobility Model (NRMM) has been
historically used to characterize ground traversability and dif-
ficulty [7]–[9]. These models perform static two-dimensional
analyses over distinct ground shapes and provide estimates of
vertical accelerations and their effect on expected traversal
speeds. However, in the aggressive driving regime, speeds
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Fig. 1. This work evaluates dynamics models of varying complexity in
challenging and unstructured environments, both simulated (BeamNG, left)
and real (Washington, right).

change quickly, ground geometry varies as a continuum, and
inertial forces are exerted in all three dimensions.

In addition, factors such as complex steering mechanisms,
suspension, tire slippage, diverse driving conditions, and
deformable terrain can make analytical dynamics models
an extensive engineering effort. Recently, researchers have
employed learned dynamics models to address these issues
[3], [10], [11]. In these works, various model architectures
are validated against either positional or velocity errors in
both simulated and real environments. As the field advances
towards more aggressive driving and maneuvers, we stress
that validation on only these states is not sufficient.

Off-road driving, or traversability in general, is a complex
problem that fundamentally depends upon both perception
and control. For this work, we limit our scope, assuming
reliable perception, to better study aggressiveness for dy-
namics modeling. In the real world, we use [12] to achieve
this, while in simulation the perception is the ground truth
obtained directly from the simulator.

We demonstrate that off-road driving is an increasingly
difficult dynamics modeling problem in the aggressive
regime. Moreover, we provide results using analytic and
learned dynamics models on off-road driving datasets. Our
contributions are:

1) A quantitative study of Aggressiveness and its effect
on analytic (no-slip and slip) and learned dynamics
models for off-road driving.

2) Safety-critical evaluation of dynamics models on
simulated (BeamNG) and real (Washington) aggressive
driving data with steep slopes and banks, high speeds,
vegetation, and diverse terrain.

https://github.com/prl-mushr/BeamNGRL
https://github.com/prl-mushr/BeamNGRL
https://tinyurl.com/5n9y4akc


II. LITERATURE REVIEW

Aggressive control behavior has been previously explored
for on-road autonomous vehicles, small-scale off-road vehi-
cles, drones, and manipulators [13]–[16]. Interestingly, both
quantitative and qualitative definitions vary from one work
to the next. For instance, Mellinger et al. [15] suggest
trajectories that are momentarily unstable (due to some agile
maneuver) but recover to a stable state are aggressive. On the
other hand, [14] provides a rigorous definition for a small-
scale wheeled robot, proposing a safety region defined by
the stability limits of an LQR steering controller. All works
generally do agree on some fundamental characteristics of
aggressive control behavior: the autonomy operates at high
speeds, maintains safety, and can saturate actuators reliably.
We note that in the off-road setting, stability can be imprac-
tical to model due to highly nonlinear dynamics and diverse
conditions [1], [12], [16], [17].

Rather than studying stability conditions, failure modes
can instead be modeled. For instance, there is substantial
work in rollover prevention in the automotive safety testing
industry. Lateral force modeling is used to predict and
prevent rollover failures through metrics such as the static
stability factor, lateral load transfer ratio, and time to rollover
[18]–[20]. As proposed in [1], [6], modeling additional
components of acceleration and angular rates is critical to
failure prevention in the aggressive off-road regime. By more
rigorously defining this regime in this work, we study its
impact on various dynamics model classes.

Learning dynamics for robot modeling and optimal control
has also been extensively studied [21]. To make model
learning more tractable and efficient, prior work often takes
advantage of known holonomic constraints through hybrid
models that combine kinematic and learned functions. This
approach has been shown to demonstrate good experimental
results including complex applications like drifting for a
small-scale off-road platform [2]. Gibson et al. employ
an LSTM to learn a multi-step predictive model to be
used in optimal real-time sample-based control for multiple
environments [3]. However, the model is validated using
only positional and yaw accuracy. Maheshwari et al. [10]
learn a model that is trained on low-velocity data and
demonstrates generalization to higher-velocity test scenarios.
The authors also demonstrate the importance of predicting
slippage, showing a large divergence in aggressive flat turns
between a kinematic and learned model.

III. DYNAMICS MODELS

For car-like vehicles with Ackermann steering mecha-
nisms [22], there exist many models, such as the point
mass model, bicycle model, as well as the four-wheel
model [23]. Of these, we consider the bicycle model class.
Within this class, we consider the No-slip model, slip-based
models, and Terrain-conditioned models. These models at
their core describe body-frame rates, such as body frame
velocity, rotation rates, or accelerations. These accelerations
are then transformed into the world frame using the vehicle
orientation, and gravity and other inertial effects are added

Fig. 2. Illustration of the coordinate frame used by dynamics models

using the predicted or derived rotation rates. For brevity, we
refer the reader to the work by [24] which describes these
transformations and compensations in detail.

1) SE(3) no-slip based bicycle model: This model refers
to the no-slip approximate bicycle model with its velocities
and positions projected in 3D using the elevation map. Prior
works such as [1], [10] have also used such a model. Here:

V b
x = Vw, V

b
y = 0, V b

z = 0, ωz = V b
x ∗ tan(δ)/Lfr (1)

Where Vw represents the wheel speed, V b represents the
body frame velocity, ωz represents the body frame rotation
rate around the Z axis, δ represents the steering angle in
radians, and Lfr represents the wheelbase of the car.

2) SE(3) slip based approximate model: The slip-based
approximate model uses a single-track bicycle model as
described by [25], which considers non-planar surfaces, with
a simplified Pacejka tire model [26].

The body frame Forces F b
x , F

b
y , F

b
z and rotational acceler-

ation ω̇b
z are given by:

F b
x = Fxr + Fxf cos(δ)− Fyf sin(δ) +mg sin(θ)

F b
y = Fyr + Fyf cos(δ) + Fxf sin(δ) +mg sin(ϕ)

F b
z = m(g cosβ − Vxωy + Vyωx)

ω̇b
z = ((Fxf sin(δ) + Fyf cos(δ))Lf − FyrLr)/Jz

(2)

Where the terms denoted by F and L represent forces
and lengths respectively, described in Fig2, m represents
mass, and Jz represents the mass moment of inertia around
its Z axis. These lateral and longitudinal accelerations are
then used to update the body frame velocity V b, which is
transformed into the world frame to update the position. We
omit details regarding exact implementation for brevity and
refer the reader to prior works such as [24], [27] that have
also used such a model.

3) Terrain conditioned dynamics modeling: We consider
the approach presented in the work by [28] as our fully-
learned baseline. However, for simplicity, we do not re-
implement a probabilistic ensemble (PE) dynamics model
[29] and do not consider the history of the past states.
We believe this version represents the core idea and note
that it performs better than the analytical baselines. In this
approach, the model takes the patch of terrain directly under
the vehicle P , the vehicle’s intrinsic state and control inputs,



and learns to predict the change in velocity and rotation rates
for the next timestep by taking a single step loss on the
velocity and rotation rates.

∆V b,∆ωb = f(V b, ωb, ϕ, θ, P, δ, Vw) (3)

During execution, the predicted delta velocity and rotation
rates are integrated to obtain the velocity, orientation, and
position using the “Explicit Kinematic Layer” in [28].

IV. AGGRESSIVENESS

A. Definition

As prior works have corroborated qualitatively, aggressive-
ness is generally considered to be operating at the dynamic
limits of the vehicle [13], [15]–[17]. Following this intuition,
we define aggressive driving to be trajectories constrained
by these dynamic limits, or higher-order states (e.g. velocity,
acceleration, etc.). Let ẋmin and ẋmax be lower and upper
bounds on the differentiated state ẋt at time t.

τ :=
[
xt1 xt1 · · · xtH

]
(4)

s.t. ẋmin ⪯ ẋti ⪯ ẋmax, i = 1, . . . ,H (5)
τ = argmin

τ ′∈Φ
C(τ ′) (6)

where the cost function C(·) in (6) represents a combination
of competing objectives, such as moving toward a goal and/or
avoiding obstacles. In practice, this competing objective will
make (5) tight [1], [6], [16], [30]. Without assuming knowl-
edge about C(·), our primary interest is in box constraint (5).
These constraints represent fundamental constraints on the
system, be it mechanical or human tolerable limits. For off-
road driving, constraints must be placed on several higher-
order states to reliably maintain control and safety in the
aggressive regime. For example, lateral accelerations are
limited by the critical rollover acceleration [18]–[20] and
angular velocities and vertical accelerations are limited by
airtime and impact tolerances [1], [6].

B. Measuring Aggressiveness with Free Energy

Without inductive biases, expressive model classes gener-
ally require a diverse dataset that provides adequate coverage
of the relevant state space. However, there are a few com-
plications with seeking coverage of (5) outright; including
information about the geometry and semantics can result
in exploding dimensionality, parts of the constrained space
may not be reachable or observable at all, or the bounds
ẋmin and ẋmax may not be known or can be subject to
the data collection policy’s preferences. To evaluate whether
a trajectory τ improves coverage of our constrained state
space, we employ the free-energy function [31] to score τ
using its distance from D as determined by distributions pi,

E(τ) = −T · log
K∑
i

exp {(pi ◦ ϕ[i])(τ)/T} (7)

where T is the temperature hyperparameter
and ϕ : Rn×H → RK is a feature function
that captures the observed bounds, ϕ(τ) =

Fig. 3. Freeze-frames of aggressive trajectories in BeamNGRL dataset.

[
maxt ẋt[k1] mint ẋt[k1] . . . maxt ẋt[kd] mint ẋt[kd]

]
.

Note that we choose our state components through ki rather
than include all states to reduce feature space dimensionality
and noise.

V. EXPERIMENTATION

A. Aggressiveness and Dynamics Models

We perform a study of three classes of dynamics models
over trajectories quantified by our aggressiveness metric (7).
The initial dataset D contains roughly 2000 4-second trajec-
tories in which the vehicle drives over mildly uneven terrain,
at average speeds of 8± 1.5 m/s and vertical accelerations
of 9.8 ± 2.7 m/s2. We choose ki so that the feature vector
ϕ is conditioned on the entries of the acceleration vector.
Each pi is then fit to D using a Gaussian defined on the
feature space determined by ϕ[i]. This process allows us to
quantify the aggressiveness of additional trajectories relative
to D as outlined in section IV-B. The learned model is also
trained using D. The remainder of the dataset’s trajectories
is collected with speeds between 7 − 9 m/s, traversing
shallower and steeper slopes.

Each model f is validated on each of these trajectories
(on a held-out set for the learned model) with respect to the
ground truth trajectory and the maximum normed error over
the horizon (H-MNE). Explicitly,

MaxNormedErrorH(f, τ) = max
xgt
t ∈τgt

∥∥x′
t − xgt

t

∥∥ (8)

where x′
t is obtained from rolling out the model from the

ground truth initial state, i.e. x′
t = f(x′

t−1) for t = 1, . . . ,H
where x′

0 := xgt
0 . The maximum is taken over the horizon to

reflect the box constraints (5) as any violation anywhere is
safety-critical. The results of this experiment are shown in
fig. 4. With increasing energy (greater acceleration magni-
tudes), not only does the performance degrade but the per-
formance across models of varying complexity diverge. This
empirically confirms our intuition that aggressive driving is
a challenging modeling problem with a nontrivial range of
unmodeled dynamics.



TABLE I
MODEL PERFORMANCE ON DATASETS ACROSS STATES

H-Max Normed Error (H-MNE)

Dataset Model Accel. (m/s2) Ang. Vel. (rad/s) Velocity (m/s) Position (m) Roll (rad) Pitch (rad) Yaw (rad)

BeamNGRL
NoSlip3D 19.24 ± 13.97 1.89 ± 1.23 2.86 ± 2.05 22.20 ± 15.09 0.24 ± 0.15 0.23 ± 0.15 1.92 ± 1.93

Slip3D 7.98 ± 4.71 1.19 ± 0.88 3.27 ± 2.44 11.63 ± 8.80 0.20 ± 0.13 0.17 ± 0.13 1.41 ± 1.63

Learned 4.79 ± 1.62 0.61 ± 0.23 2.59 ± 1.10 10.39 ± 6.12 0.18 ± 0.14 0.16 ± 0.12 0.96 ± 1.45

Washington
NoSlip3D 7.30 ± 5.48 0.59 ± 0.45 8.25 ± 7.67 28.67 ± 24.82 0.18 ± 0.14 0.10 ± 0.08 0.71 ± 0.96

Slip3D 5.04 ± 2.06 0.34 ± 0.21 5.89 ± 3.68 16.51 ± 10.89 0.18 ± 0.14 0.08 ± 0.04 0.59 ± 0.76

Learned 4.57 ± 1.79 0.24 ± 0.15 2.19 ± 3.24 11.36 ± 10.89 0.18 ± 0.14 0.07 ± 0.05 0.40 ± 0.97

Fig. 4. Model performance on validation trajectories. Each marker
corresponds to the validation of a model on a single trajectory. A cubic
polynomial is fit to each model’s performance to show the general trend
over increasing Free Energy Values E(τ). Higher energy indicates more
out-of-distribution (more aggressive) relative to the initial dataset.

B. Model Learning with Aggressive Data

We evaluate the Learned model on two datasets, named
the BeamNGRL and Washington datasets. The BeamNGRL
dataset is released with this work and its collection process
is described in section V-A.

The Washington dataset is collected with a full-size Polaris
S4 1000 RZR equipped with IMU, GPS, visual odometry,
and a perception network [12] for terrain mapping. State
and sensor messages are synced, or linearly interpolated as
necessary, at a rate of 10 Hz to produce the dataset from
driving data with speeds up to 14 m/s. The time horizon
for each trajectory is 5 seconds. The dataset encompasses
diverse terrain geometries, ranging from flat surfaces to steep
inclines and to banking and twisting trails. Track indents,
ditches, and sharp elevation changes also occur alongside
these trails. Throughout the dataset, the vehicle additionally
interacts with grassy areas, dirt paths, trees, small rocks, logs,
bushes and regions densely populated with vegetation.

The timestep size for each trajectory in both datasets is
0.1 seconds. The results of the models are shown in Table I.
The numbers displayed are H-MNE errors computed through
(8). Vector states (i.e. acceleration, angular velocity, velocity,

position) are demarcated in bold text. It can be observed in
table I that with increasing model complexity, the errors go
down. It can also be observed that there exists a large gap
in position error between the NoSlip3D and Slip3D models
for the BeamNGRL dataset, implying that accounting for
wheel slippage addresses most of this error. The velocity
errors in the BeamNGRL dataset are higher for Slip3D than
for NoSlip3D due to the first-order integration of small
errors in acceleration. The learned model does not suffer
the same fate as Slip3D in velocity predictions due to lower
acceleration and angular velocity errors. Note that the errors
in velocity for the real dataset may be higher due to errors in
system identification, as we assume vehicle parameters such
as friction to be constant throughout the dataset. It is also
observed that the gap between the models is much smaller
for the Washington dataset than it is for the synthetic dataset
from BeamNG [32]. This is a consequence of the driving
in the synthetic dataset being far more aggressive, as there
are no safety concerns for the driver in the simulation. We
provide video demonstrations to show examples of simulated
low energy 1, medium energy2, and high energy3 driving.

VI. CONCLUSION

Using BeamNG, we collect a realistic and diverse ag-
gressive off-road driving dataset. This dataset is used in a
quantitative study on the effect of aggressiveness on models
with various modeled dynamics. An energy score condi-
tioned on higher-order states is proposed for quantifying the
aggressiveness of trajectories. Our results show that model
predictions degrade with increasing aggressiveness and that
simpler models degrade faster.

Next, we evaluate the performance of these dynamics
models on two different off-road datasets; the BeamNGRL
and the Washington dataset. Importantly, the models are
validated on their accuracy over higher-order states, which
are critical in the aggressive regime.

We acknowledge that the definitions and metrics provided
in this work can be further developed. For instance, semantic
or perceptual information (e.g. grass, dirt, gravel) is readily
available through state-of-the-art perception networks [12],
[33]. This information can better differentiate operating
regimes and improve the performance of dynamics models.
We aim to incorporate this in future work.

1https://tinyurl.com/knzy8kzn
2https://tinyurl.com/2p993ktu
3https://tinyurl.com/ynx8rbhx
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