
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING TASK VECTORS IN IN-CONTEXT
LEARNING: EMERGENCE, FUNCTIONALITY, AND LIM-
ITATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Task vector is a compelling mechanism for accelerating inference in in-context
learning (ICL) by distilling task-specific information into a single, reusable rep-
resentation. Despite their empirical success, the underlying principles governing
their emergence and functionality remain unclear. This work proposes the Task
Vectors as Representative Demonstrations conjecture, positing that task vectors
encode single in-context demonstrations distilled from the original ones. We pro-
vide both theoretical and empirical support for this conjecture. First, we show that
task vectors naturally emerge in linear transformers trained on triplet-formatted
prompts through loss landscape analysis. Next, we predict the failure of task vec-
tors in representing high-rank mappings and confirm this on practical LLMs. Our
findings are further validated through saliency analyses and parameter visualiza-
tion, suggesting an enhancement of task vectors by injecting multiple ones into
few-shot prompts. Together, our results advance the understanding of task vectors
and shed light on the mechanisms underlying ICL in transformer-based models.

1 INTRODUCTION

In-context learning (ICL) is a core capability of large language models (LLMs), allowing them to
perform new tasks without parameter updates by conditioning on a few input-output examples in the
prompt (Brown et al., 2020). Unlike traditional training, ICL relies on attention-based mechanisms
to infer task structure directly from context. This surprising generalization ability has led to growing
interest in uncovering the principles of learning purely from contextual examples (Xie et al., 2022;
Chan et al., 2022; Dai et al., 2023; Shen et al., 2024; Deutch et al., 2024).

A recent work investigates the task vector method (Hendel et al., 2023) (concurrent works include
function vectors (Todd et al., 2024) and in-context vectors (Liu et al., 2024)), a technique that distills
underlying task information from ICL demonstrations into a single vector. Typically, ICL prompts
are structured as sequences of triplets, each encoding a semantic mapping, in addition to a query at
the end (e.g., “hot→ cold, up→ down, dark→”). Task vectors are then extracted from the hidden
states of the last (→) token. Once obtained, these vectors can be injected into new zero-shot prompts
(e.g., “big→”), enabling the model to generalize to unseen inputs in a zero-shot fashion.

Task vectors naturally emerge even in small transformer models trained from scratch (Yang et al.,
2025), suggesting that their formation is a general property of attention-based architectures. Recent
studies further demonstrate that task vectors can be enhanced by aggregating hidden states across
multiple layers and arrow tokens (Li et al., 2024). Beyond language models, task vectors are also
effective in large-scale visual (Hojel et al., 2024) and multi-modal (Huang et al., 2024) models.

Despite their empirical effectiveness, the underlying mechanism of task vectors, especially how they
emerge, function, and encode task information, remains poorly understood. This paper takes a step
toward unveiling the principles behind it by introducing the following conjecture:

Conjecture (Task Vectors as Representative Demonstrations)
The injected task vector facilitates zero-shot inference by encoding a single

representative demonstration, distilled from the original in-context examples.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

hot up down dark→ → → →cold day night

light

big →

small

Preprocessing Stage

Predict & Output

Task Vector Formation

Weighted Summation

(a) (b)

Figure 1: Overview of task vector and our main conjecture. (a) Task vector emerges during ICL by
distilling from the preceding in-context demonstrations. (b) It can then be injected into zero-shot
prompts and functions as a single, representative demonstration, facilitating efficient prediction.

An intuitive illustration is provided in Figure 1. In the following sections, we validate this conjecture
through various empirical and theoretical perspectives. These analyses comprehensively explain
how task vectors naturally emerge within attention-based model architectures, effectively encode
task-related information, and facilitate inference in zero-shot prompts. Our work advances the un-
derstanding of the underlying mechanisms behind ICL, clarifying both the efficacy and limitations
of task vectors in transformer-based LLMs. The highlights of this paper are as follows:

• Theoretical Justification in Linear-Attention Models: We theoretically characterize the critical
points of linear-attention models and demonstrate how they solve random linear regression tasks
through embedding concatenation and gradient descent. With a triplet-formatted input prompt
structure, task vectors naturally emerge at arrow tokens as weighted summations of the in-context
demonstrations, potentially enhancing robustness under representational perturbations by redun-
dantly encoding task information. Empirically, the learned linear model parameters closely align
with the predicted structure and successfully replicate the task vector mechanism.

• Empirical Verification in Practical LLMs: We visualize the information flow in LLMs with
saliency analysis and observe patterns consistent with linear models, suggesting they share similar
underlying mechanisms. According to our conjecture, inference with task vectors is analogous
to 1-shot ICL, which is inherently limited to rank-one meta-predictors under the gradient descent
perspective. To validate this, we introduce a series of bijection tasks that are provably unsolvable
by rank-one predictors, and empirically confirm this failure in real-world transformers. Building
on these insights, we enhance the standard task vector method by injecting multiple vectors into
few-shot prompts, resulting in consistent performance gains across a range of ICL tasks.

1.1 RELATED WORKS

Theory of ICL. Recent analyses have shown that attention layers can simulate gradient-descent
algorithms for regression tasks (Garg et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2023; Wu
et al., 2024). Other works study generalization and sample complexity (Xie et al., 2022; Chan et al.,
2022; Shen et al., 2024; Von Oswald et al., 2023b; Deutch et al., 2024). These works reveal the
inductive bias of attention but leave open how abstract task representations are formed or encoded.

Task Vector Mechanism. Multiple recent works identified the mechanism of task vectors during
ICL inference (Hendel et al., 2023; Todd et al., 2024; Liu et al., 2024). These vectors emerge in the
pretraining stage of LLMs (Yang et al., 2025) and extend beyond text to vision (Hojel et al., 2024)
and multimodal (Huang et al., 2024) models. Despite the effectiveness, their underlying mechanism
remains poorly understood. A concurrent work (Bu et al., 2025) interprets them via a word2vec-like
additive scheme, but is limited to simple additive tasks, single-token prompts, and 1-layer models.
In contrast, our analysis extends to pairwise or triplet prompts and multi-layer attention.

A more comprehensive discussion of the related works can be found in Appendix A.2.

2 SETTING: LINEAR REGRESSION WITH LINEAR-ATTENTION MODELS

Notations: We write [n] = {1, · · · , n}. The Hadamard product is denoted by ◦, and the Kronecker
product by ⊗. The identity matrix of dimension n is denoted by In, while 0n and 0m×n represent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

zero vectors or matrices of the corresponding dimensions. Subscripts are omitted when the dimen-
sions are clear from context. We defineM(M) =

{
Λ ∈ Rdim(M)

∣∣ Λ = M ◦A, A ∈ Rdim(M)
}

as
the set of masked matrices induced by mask M . For a general matrix A, the element at the i-th row
and j-th column is denoted by Ai,j , and the sub-block from rows i to k and columns j to l is denoted
by Ai:k,j:l. diag(A1, · · · , An) represents the block-diagonal matrix constructed by {Ai}ni=1.

Random Linear Regression: Following works (Garg et al., 2022; Von Oswald et al., 2023a; Ahn
et al., 2023; Wu et al., 2024), we consider training linear transformers on random instances of linear
regression. Let {xi}n+1

i=1 , where xi ∈ Rd, denote covariates drawn i.i.d. from distribution Px, and
let {wi}di=1, where wi ∈ Rd, denote coefficients drawn i.i.d. from distribution Pw. Define the
coefficient matrix W = [w1 · · · wd]⊤ ∈ Rd×d. The responses are then generated as yi = Wxi

for i ∈ [n+1]. We denote by X,Y ∈ Rd×n the matrices whose columns are xi and yi, respectively.
The query covariate and response are denoted by xtest = xn+1 and ytest = yn+1 respectively.

Linear Self-Attention Model: Following prior works (Von Oswald et al., 2023a; Ahn et al., 2023;
Wu et al., 2024), we consider transformers composed of linear self-attention layers. Let Z0 ∈
R2d×dp denote the input matrix constructed from X , Y and xtest but excluding ytest, where dp
denotes the number of tokens and varies across prompt structures. The model is defined by stacking
L attention blocks with skip connections, where the l-th layer is expressed as:

Zl = Zl−1 +
1
n AttnVl,Ql

(Zl−1), AttnV,Q(Z) = V ZM
(
Z⊤QZ

)
. (1)

Here, the trainable parameters are {Vl, Ql}Ll=1, where Vl ∈ R2d×2d denotes the projection and value
matrices, and Ql ∈ R2d×2d denotes the query and key matrices. Following the work (Ahn et al.,
2023), we adopt a masking matrix M = diag(Idp−1, 0) to prevent attention from earlier tokens to
the final one. The output of the model is defined as TF

(
Z0; {Vl, Ql}Ll=1

)
= (ZL)(d+1:2d),dp

(i.e.,
the latter half of the last column). This definition aligns with the structure of the input Z0, which
will be further discussed in subsequent sections. During training, the parameters are optimized to
minimize the expected ICL risk over random linear regression instances:

L
(
{Vl, Ql}Ll=1

)
= EZ0,W

∥∥TF(Z0; {Vl, Ql}Ll=1

)
+Wxtest

∥∥2
2
. (2)

3 EMERGENCE OF TASK VECTORS IN LINEAR-ATTENTION MODELS

Firstly, we present theoretical evidence that task vectors naturally arise in simple linear transformers.
Specifically, we analyze the loss landscape of the in-context risk, focusing on the properties of its
critical points. As a startup, recall the standard linear regression setup (Ahn et al., 2023; Wu et al.,
2024), where the (xi, yi) pairs for each demonstration are concatenated to form the input prompt:

Z0 =

[
X xtest

Y 0

]
=

[
x1 x2 · · · xn xtest

y1 y2 · · · yn 0

]
∈ R2d×dp , dp = n+ 1. (3)

According to existing analyses (Ahn et al., 2023; Zhang et al., 2024; Mahankali et al., 2024), each
attention layer in this setting performs one step of gradient descent on the learned coefficient ma-
trix. Specifically, the theoretically optimal single-layer (possibly nonlinear) attention (Katharopou-
los et al., 2020) implements the following predictive function (Ahn et al., 2023) when the covariates
are drawn from Px = N (0, Id), by selecting V1 ∝ diag(0d×d, Id) and Q1 ∝ diag(Id, 0d×d):

TF(Z0; (V1, Q1)) = − 1
nY σ(X)⊤σ(xtest), where σ : Rd 7→ Rr is a kernel function. (4)

Here, we abbreviate [σ(x1) · · · σ(xn)] as σ(X). This model employs W ′ ∝ Y σ(X)⊤ as an
estimate of W , yielding prediction ŷtest = W ′σ(xtest). This paper considers alternative settings
more reflective of practical scenarios, where xi and yi are separated as distinct tokens. As noted
(Zuo et al., 2025), such separation necessitates the usage of position encodings for bi-directional
attention. Following prior analysis (Kazemnejad et al., 2023), we assume that position encodings
are appended to the input tokens, and reformulate the layer-wise update rule of self-attention as:

AttnV,Q(Z) = V ZM
[
Z⊤ P⊤]Q [Z

P

]
, where P ∈ Rdp×dp . (5)

For analytical tractability, we take P = Idp as one-hot position encodings. Following previous work
(Ahn et al., 2023) (see Appendix A.3 for more explanation), we further impose that:

Vl = diag(Al, Bl), Ql = diag(Cl, 0d×d, Dl), where Al, Bl, Cl ∈ Rd×d, Dl ∈ Rdp×dp . (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

These parameterizations ensure that the projection and attention operations act independently on the
covariate, response, and positional components of the input. This structural decoupling is essential
for understanding how the transformer identifies the dependency between each (xi, yi) pair and
revealing the actual optimization algorithm being executed by the model. The proofs for the main
theoretical results in this paper are available in Appendix D.

3.1 WARM-UP: LEARNING WITH PAIRWISE DEMONSTRATIONS

We begin by analyzing the optimization of linear transformers on pairwise demonstrations. Follow-
ing previous approach (Garg et al., 2022; Wibisono & Wang, 2023; Xing et al., 2024), we decompose
each demonstration in eq. (3) into a pair of tokens Zi

0 =
[
xi 0
0 yi

]
∈ R2d×2 to better reflect the prac-

tical ICL prompt structure:

Z0 =
[
Z1
0 · · · Zn

0 Ztest
0

]
=

[
x1 0 · · · xn 0 xtest 0
0 y1 · · · 0 yn 0 0

]
, dp = 2n+ 2. (7)

The following theorem suggests that certain critical points of the in-context risk effectively solve
the regression problem by first concatenating each pair of (xi, yi) into the same tokens, and then
executing a variant of the gradient descent algorithm to compute the prediction. To simplify notation,
we denote A = {Al}Ll=1 (similarly for B, C, and D) and present:
Theorem 1 (Critical Points; Pairwise Demonstrations). Assume that Px = N (0,Σ) and Pw =
N (0,Σ−1) with Σ ∈ Rd×d satisfying Σ ≻ 0. Define SI ,SΣ ⊂ Rd×d and SP ⊂ Rdp×dp as
SI = {λId | λ ∈ R}, SΣ =

{
λΣ−1

∣∣ λ ∈ R
}
, SP =

{
diag(In ⊗ Λ1,Λ2)

∣∣ Λ1,Λ2 ∈ R2×2
}
.

Consider optimizing an L-layer transformer under parameter configuration in eq. (6), we have

infA,B∈SL
I , C∈SL

Σ , D∈SL
P

∑
H∈A∪B∪C∪D

∥∥∇HL
(
{Vl, Ql}Ll=1

)∥∥2
F
= 0.

To understand the behavior of these critical points within a self-attention layer, we fix Σ = Id and
take Al, Bl = Id, Cl = −λId, and Dl = diag(In ⊗ Λ1,Λ2). Let the first and last d rows of Zl be
denoted by Xl and Yl, respectively. Under these settings, the update rule of each layer becomes:

Zl = Zl−1 − λZl−1MX⊤
l−1Xl−1 +

[
Z1
l−1Λ1 · · · Zn

l−1Λ1 Ztest
l−1 diag(1, 0)Λ2

]
. (8)

The above update can be decomposed into the following two distinct components:

• Gradient Descent: The first component, Zl ← Zl−1 − λZl−1MX⊤
l−1Xl−1, implements the

GD++ algorithm (Von Oswald et al., 2023a). This variant enhances convergence speed over stan-
dard gradient descent by improving the condition number of X⊤

l−1Xl−1. Notably, this operation
modifies only Xl but not Yl for the first layer, as implied by the structure of Ql (eq. (6)).

• Embedding Concatenation: The second component, Zi
l ← Zi

l−1 + Zi
l−1Λ1 for i ∈ [n], mixes

each pair of (xi, yi) tokens. Given that xi and yi tokens are initially linearly separable as in
our formulation, this operation concatenates each (xi, yi) pair, thereby transforming pairwise
demonstrations into the original single-token format. For the query token Ztest

l , this operation
copies xtest into the final token, reconstructing the structure in eq. (3), where each non-final token
directly concatenates (xi, yi) of a demonstration, and the final token contains only xtest.

In summary, our analysis reveals that for pairwise demonstrations, the first attention layer leverages
position encodings to distinguish between covariate and response tokens, subsequently concate-
nating them to form a single-token prompt structure. The remaining layers then apply the GD++
algorithm, mirroring the learning dynamics on single-token demonstrations. As a result, an L-layer
linear transformer allocates one layer for embedding concatenation and utilizes the remaining
L−1 layers to perform gradient descent. In Figure 2a, we visualize the learned Dl weights under
the setting of Theorem 1, and observe that they closely match the critical point structure of SP .

3.2 EMERGENCE OF TASK VECTORS WITH TRIPLET DEMONSTRATIONS

Next, to better reflect the prompt structure of practical ICL, we insert additional zero tokens between
each pair of (xi, yi) to simulate the arrow (→) tokens. This reformulates each demonstration as a
triplet (xi,→, yi), enabling us to analyze the critical points with these triplet demonstrations:

Z0 =

[
x1 0 0 · · · xn 0 0 xtest 0 0
0 0 y1 · · · 0 0 yn 0 0 0

]
, dp = 3n+ 3. (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2

1

0

1

2

(a) Dl (Pairwise)

2

1

0

1

2

(b) Dl (Triplet)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(c) Λ4Λ
⊤
4

Figure 2: Visualization of learned Dl weights. (a) Pairwise demonstrations yield a block-diagonal
structure aligned with Theorem 1. (b) Triplet demonstrations yield a richer structure aligned with
Theorem 2. (c) The learned matrix Λ4 has nearly orthonormal rows as suggested by Proposition 3.

Theorem 2 (Critical Points; Triplet Demonstrations). Assume that Px = N (0,Σ) and Pw =
N (0,Σ−1) with Σ ∈ Rd×d satisfying Σ ≻ 0. Define SI ,SΣ ⊂ Rd×d and SP ⊂ Rdp×dp as

SI = {λId | λ ∈ R}, SΣ =
{
λΣ−1

∣∣ λ ∈ R
}
,

SP =
{
diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3 + Λ4 ⊗ Λ5

∣∣∣
Λ1,Λ2 ∈M

(
1 0 1
0 0 0
1 0 1

)
,Λ3 ∈M

(
0 0 0
0 1 0
0 0 0

)
,Λ4 ∈ R(n+1)×(n+1),Λ5 ∈M

(
0 1 0
0 0 0
0 1 0

)}
.

Consider optimizing an L-layer transformer under parameter configuration in eq. (6), we have

infA,B∈SL
I , C∈SL

Σ , D∈SL
P

∑
H∈A∪B∪C∪D

∥∥∇HL
(
{Vl, Ql}Ll=1

)∥∥2
F
= 0.

To analyze the behavior of each attention layer, we note that the critical points for the matrices Al,
Bl, and Cl remain consistent with Theorem 1, thereby implementing the GD++ algorithm. For the
matrix Dl, we decompose its structure into three distinct components:

• Embedding Concatenation: The first component, diag(In⊗Λ1,Λ2), mixes each pair of (xi, yi)
tokens, effectively concatenating them — analogous to the operation analyzed in the previous
section. This converts all non-arrow tokens into single-token demonstrations.

• Self Magnification: The second component, In+1 ⊗ Λ3, scales the embeddings corresponding
to each arrow (→) token by a fixed constant and adds them back to themselves.

• Task Vector Formation: The third component, Λ4⊗Λ5, performs a weighted summation across
all demonstrations in the prompt. This operation is central to the emergence of task vectors. Let
[β1 · · · βn+1] ∈ Rn×(n+1) denote the first n rows of Λ4 (we will soon show that the last row
of Λ4 converges to zero), the first self-attention layer then outputs n + 1 linear combinations of
the demonstrations as the hidden states for the arrow tokens, expressed as zitv = [α1Xβi

α2Y βi
] for

i ∈ [n + 1], where α1, α2 ∈ R are the two non-zero entries of Λ5. These vectors can then be
injected into zero-shot prompts and function as single-token demonstrations.

This mechanism provides strong theoretical evidence for our main conjecture, demonstrating that
task vectors naturally emerge from the pretraining stage of linear-attention transformers on
triplet-formatted prompts. Notably, the structure of SP closely aligns with our visualization of
Dl in Figure 2b, confirming our theoretical analysis. We now further investigate the structure of the
weight matrix Λ4, and present the following result:
Proposition 3 (Optimal Task Vector Weights). Assume Px, Pw = N (0, Id). Consider optimiz-
ing a 2-layer linear-attention transformer with triplet demonstrations and parameter configuration
given in eq. (6), and assume C1 = 0d×d. Let

D1 = diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3 + Λ4 ⊗ Λ5 ∈ SP
be any minimizer of the in-context risk L

(
{Vl, Ql}Ll=1

)
, we then have Λ4 ∈ SU , where

SU =
{
Λ
∣∣ ΛΛ⊤ = λ diag(In, 0), λ ∈ R

}
.

This result suggests that the optimal Λ4 weight matrix satisfies two key properties: (1) the last row
is zero, and (2) the first n rows are mutually orthonormal. These conditions imply that the learned

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

x1 → y1 x2 → y2 x3 → y3 xtest→

x1 → y1 x2 → y2 x3 → y3 xtest→

(a) Saliency Map (l = 10)

x1 → y1 x2 → y2 x3 → y3 xtest→

x1 → y1 x2 → y2 x3 → y3 xtest→

(b) Saliency Map (l = 12)

1 5 10
i

1.2

1.4

1.6

‖z
−
i

tv
−
z t

v
‖

0.10

0.15

0.20

0.25

β
i

(c) Task Vector Weights

Figure 3: Visualizations on Llama-7B: (1) saliency matrices as bipartite graphs between layer l ()
and l + 1 (), edge widths indicate saliency magnitude; (2) variations in the extracted task vector
after perturbing the i-th demonstration () and the optimal task vector weights () obtained by
optimizing Proposition 5. (a) Each yi token attends to its corresponding (xi, yi) pair, reflecting
embedding concatenation. (b) The final (→) token attends broadly to all yi tokens, indicating task
vector formation. This occurs just before the optimal injection layer (l = 13). (c) The predicted task
vector weights closely match the trend of empirical results, validating our theoretical model.

weight vectors β1, · · · , βn+1 are likely to be distinct. Therefore, the n + 1 task vectors produce
diverse linear combinations of the demonstrations, thereby enriching the representation within the
input prompt. This implication is verified in Figure 2c. While task vectors are typically extracted
from the final arrow (→) token in standard usage, here we consider all arrow tokens as task vectors
as bi-directional attention allows each to aggregate information from the full prompt.

4 PREDICTED FAILURE OF TASK VECTORS ON BIJECTION TASKS

We then present an empirical observation that supports our conjecture. Consider the setting where
task vectors are injected into zero-shot prompts. Based on our prior analysis, the injected task vector
ztv is formed as a weighted summation of the original demonstrations. As a result, we show that the
injected prompt reconstructs the single-token structure in eq. (3) with only 1 demonstration:

Z0 = [ztest ztv 0] =

[
xtest xtv 0
0 ytv 0

]
=

[
xtest α1Xβ 0
0 α2Y β 0

]
∈ R2d×3, (10)

where the weight vector β ∈ Rn comes from the last column of Λ4, and the weights α1, α2 come
from Λ5 (see our discussion after Theorem 2). After the first layer, the Λ2 matrix of SP moves
xtest to the last token, reducing the prompt to a single-shot, single-token demonstration. Ac-
cording to the optimal single-layer transformer (eq. (4)), the estimated coefficient matrix is now
W ′ = α1α2Y β(Xβ)⊤, which is rank-one. Therefore, task vectors are inherently limited in their
expressiveness: they can only replicate 1-shot ICL, which is restricted to rank-one coefficient matri-
ces. This implication also naturally extends to multi-layer transformers.

While our analysis is conducted on linear-attention transformers, we demonstrate that similar learn-
ing patterns also emerge within practical LLMs. Specifically, we visualize the layer-wise informa-
tion flow between tokens using saliency maps (Wang et al., 2023), where the saliency score for each
attention matrix is computed as S(Al) =

∑
h |Al,h · ∂L/∂Al,h|, Al,h denotes the attention matrix

of the h-th head at layer l, and L is the ICL loss (i.e., the cross-entropy loss for predicting ytest).
As demonstrated in Figures 3a and 3b, the saliency maps reveal certain patterns matching the ones
of embedding concatenation and weighted summation. This suggests that real-world transformers
implement a similar algorithm to solve ICL tasks and, consequently, inherit the same expressiveness
limitation. The full saliency score maps are given in Appendix B.5.

To verify this, we construct a specialized class of ICL tasks, named bijection tasks. Specifically,
given a bijective mapping from domain X to codomain Y , one can combine it with its inverse
mapping to form a new task that maps X ∪Y onto itself. For instance, combining the “to uppercase”
task with its inverse ”to lowercase” yields a bijection task that maps each letter to its opposite case,
and a valid ICL prompt takes the form: “a→ A, B→ b, c→ C, D→”. Note that this differs from
task superposition (Xiong et al., 2024), as each input corresponds to a unique, well-defined output.
We then establish a key limitation of rank-one coefficient matrices in addressing such tasks:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the accuracies of many-shot ICL and task vector on bijection tasks (Llama-
7B, n = 10). We use gray text to indicate accuracies lower than 60%.

Task Domain X Domain Y Example
X → Y Y → X X ↔ Y

ICL TV ICL TV ICL TV

To Upper {a, · · · , z} {A, · · · , Z} a → A 1.00 0.91 1.00 0.99 1.00 0.55

Translation
English French hello → bonjour 0.83 0.84 0.82 0.70 0.54 0.35
English Italian hello → ciao 0.84 0.78 0.82 0.74 0.70 0.47
English Spanish hello → hola 0.92 0.88 0.89 0.75 0.64 0.43

Linguistic

Present Gerund go → going 0.99 0.95 1.00 0.97 0.80 0.41
Present Past go → went 0.98 0.91 0.99 0.96 0.52 0.33
Present Past Perfect go → gone 0.82 0.82 0.94 0.65 0.55 0.33
Singular Plural dog → dogs 0.88 0.78 0.94 0.89 0.76 0.51

Copy {a, · · · , z, A, · · · , Z} A → A - - 1.00 0.98
Antonym Adjectives happy → sad 0.89 0.83 - 0.83 0.73

Proposition 4. Let x, y ∈ Rd be non-zero vectors. Then the following are equivalent: (1) There
exists a rank-one matrix W ∈ Rd×d such that y = Wx and x = Wy; (2) x = y or x = −y.

This result highlights that rank-one coefficient matrices cannot solve general bijection tasks, and
are restricted to two special cases: the identity mapping (x = y), or the negation mapping (x =
−y). We further verify this implication in real-world LLMs: in Table 1, both ICL and task vectors
perform well on the original tasks and their inverses. But for bijection tasks, while ICL preserves
performance in many cases, the task vector method consistently fails, confusing examples from the
two domains and yielding near-random predictions (50%) (e.g., in “To Upper”, task vectors predict
the correct letter but fail to distinguish between uppercase and lowercase. See Appendix B.4 for
further results). The only exceptions are Copy and Antonym, the special cases in Proposition 4.

Together, these findings empirically validate our main conjecture: the task vector approach, which
is restricted to one-shot ICL, is limited to rank-one mappings and cannot solve general ICL
tasks (e.g., bijection tasks). While a variety of ICL tasks have been explored to assess the capabili-
ties of task vectors (Hendel et al., 2023; Todd et al., 2024; Li et al., 2024), the fundamental limitation
of task vectors in addressing these bijection tasks has not been previously identified.

5 FURTHER DISCUSSIONS

Effect of Causal Attention and Dropout. While task vectors naturally emerge in linear attention,
their embeddings do not directly help minimize the ICL risk, as evidenced by the identical perfor-
mance between pairwise and triplet formatted prompts (Figures 4a and 4b). Instead, we show that
task vectors do contribute to optimization under token-wise dropout, acting as redundancies for in-
context demonstrations that may be randomly dropped during training. This redundancy ensures
that essential task information is preserved to facilitate inference despite partial context loss.
Proposition 5. Under the same settings as Proposition 3, consider adding token-wise dropouts Ol:

Zl = Zl−1Ol +
1
n AttnVl,Ql

(Zl−1)Ol, where Ol = diag(o1l , · · · , o
dp

l), oil
i.i.d.∼ Bern(p).

Then any minimizer Λ4 of the in-context risk L
(
{Vl, Ql}Ll=1

)
satisfies (Λ4)n+1,: = 0 and:

(Λ4)1:n,: ∝ argmin
Λ

c1∥Λ∥44+c2
∑n

i=1
∥Λi,:∥42+c3

∑n+1

j=1
∥Λ:,j∥42+c4

∥∥ΛΛ⊤∥∥2
F
, s.t. ∥Λ∥2F = 1.

where c1, · · · , c4 are non-negative constants depending on Vl, Ql, and p.

This result suggests that dropout introduces additional higher-order regularization on the task vector
weights, encouraging them to distribute more uniformly across demonstrations. Furthermore, when
considering causal attention (i.e., enforcing Λ4 to be upper-triangular), it induces a decaying weight
pattern from later to earlier demonstrations, which exactly matches the practical behavior observed
in practical transformer models (as evidenced in Figure 3c).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 10 15 20 25 30
n

10−2

10−1

100

101

IC
L

R
is

k

S (L = 1)

P (L = 2)

T (L = 2)

S (L = 2)

(a) Single- vs. Multi-Token (L = 2)

5 10 15 20 25 30
n

10−5

10−3

10−1

101

IC
L

R
is

k

S (L = 2)

P (L = 3)

T (L = 3)

S (L = 3)

(b) Single- vs. Multi-Token (L = 3)

2 3
L

0.0

0.1

0.2

0.3

0.4

IC
L

R
is

k

ICL (n = 1)

Task Vector

(c) ICL vs. TV

Figure 4: (a, b) Comparison of the best ICL risk achieved using single (S), pairwise (P), and triplet
(T) formatted prompts. (c) Performance comparison between 1-shot ICL and task vector.

Decoding the Vocabulary of Task Vectors. Multiple prior works (Hendel et al., 2023; Todd et al.,
2024) have observed an interesting phenomenon that, when task vectors are directly decoded through
the final classification layer, the top tokens often belong to the output space of the current task (see
Table 4 in the Appendix). Our theoretical analysis provides a natural explanation for this: assuming
a 2d-dimensional hidden state space partitioned into input (xi) and output (yi) halves, the output
half of task vectors then encodes weighted summations of yi. Since the final prediction relies on the
output half, decoding a task vector yields a combination of yi, which is likely lying in the output
space. This observation suggests that practical LLMs adopt a similar hidden-state partition.

Extra EOS Tokens. In our previous analysis, we consistently imposed an additional zero token at
the end of the input prompt. While this token can be interpreted as an EOS token in practical models,
such a design choice is uncommon in standard ICL tasks. We justify this modeling decision with:
Proposition 6 (Informal). Given any L-layer, 1-head, d-dimensional linear-attention model with
EOS, there exists an equivalent L-layer, 2-head, 2d-dimensional model operating without EOS.

This equivalence suggests that the same learning dynamics can be realized through multi-head ar-
chitectures without relying on explicit EOS tokens. Specifically, the first head is dedicated to task
vector formation, while the other handles ICL prediction. This separation allows the model to retain
the functional role of the EOS token implicitly within its hidden states.

6 EXPERIMENTAL STUDIES

6.1 SYNTHETIC RESULTS WITH RANDOM LINEAR REGRESSION

In this section, we validate our critical points analysis with synthetic linear regression tasks. Specif-
ically, we examine the achievable ICL risk of linear-attention models with single-token (eq. (3)),
pairwise (eq. (7)), and triplet (eq. (9)) demonstrations. We set the input dimension to d = 4 and
Px = Pw = N (0, Id). For each setting, we train multiple models with different random seeds and
report the minimum ICL risk achieved as a proxy for the global optimum. The comparative results
across different numbers of layers L and demonstration formats are shown in Figures 4a and 4b.

These results support our theoretical analysis: when trained with pairwise or triplet demonstrations,
the model recovers the GD++ algorithm similar to the single-token case. Notably, the performance
of L-layer models with pairwise (P) and triplet (T) demonstrations closely aligns, indicating a shared
underlying learning pattern. Moreover, their performance consistently lies between that of single-
token (S) case L-layer and (L− 1)-layer models. The observed improvement over the (L− 1)-layer
single-token baselines comes from the additional GD++ performed solely on xi tokens in the first
layer, effectively acting as a “half-step” of gradient descent.

We then reproduce the task vector method in linear models. Specifically, we extract the hidden
state of the final (→) token from triplet demonstrations after the first layer, and inject this vector
into zero-shot prompts consisting of xtest only. To simulate the effect of layer normalization, we
normalize the task vectors before inference and the output vectors before ICL risk evaluation. As
shown in Figure 4c, the performance of task vectors is highly related to that of standard 1-shot ICL.
This validates our conjecture that the injected task vector effectively acts as a single demonstration.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Accuracy comparison between few-shot ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Llama-13B with n = 10.

Method Knowledge Algorithmic Translation Linguistic Bijection Average

0-shot Baseline 6.90 ± 2.08 15.60 ± 1.72 7.00 ± 1.65 12.44 ± 1.74 8.27 ± 1.33 10.28 ± 0.98
TaskV 68.80 ± 2.66 86.20 ± 1.61 73.53 ± 0.91 85.24 ± 1.80 50.67 ± 2.32 72.26 ± 1.01

1-shot
Baseline 69.50 ± 3.86 73.67 ± 1.56 57.80 ± 2.01 56.22 ± 1.57 44.76 ± 2.44 58.11 ± 0.63
TaskV 79.50 ± 2.35 88.47 ± 0.75 80.67 ± 2.56 89.11 ± 0.84 60.44 ± 2.07 78.79 ± 0.77
TaskV-M 81.30 ± 2.80 89.53 ± 0.65 80.13 ± 2.14 88.71 ± 0.62 61.78 ± 0.96 79.34 ± 0.37

2-shot
Baseline 78.80 ± 3.30 85.07 ± 1.37 75.67 ± 2.64 76.80 ± 1.18 56.49 ± 2.87 72.92 ± 0.59
TaskV 84.60 ± 2.11 88.40 ± 0.68 84.33 ± 0.92 90.13 ± 0.92 62.44 ± 2.16 80.82 ± 0.42
TaskV-M 85.70 ± 1.63 89.27 ± 1.10 84.13 ± 1.15 89.64 ± 0.86 64.49 ± 2.02 81.48 ± 0.37

3-shot
Baseline 86.20 ± 2.69 88.07 ± 1.06 80.00 ± 1.67 84.04 ± 1.19 62.18 ± 1.52 78.51 ± 0.42
TaskV 90.20 ± 2.23 88.67 ± 0.89 86.27 ± 2.31 92.31 ± 0.48 66.53 ± 0.94 83.53 ± 0.41
TaskV-M 90.30 ± 1.50 89.87 ± 0.83 86.07 ± 2.17 92.36 ± 0.72 68.13 ± 0.76 84.15 ± 0.52

4-shot
Baseline 84.80 ± 2.06 88.07 ± 0.61 83.27 ± 1.82 88.89 ± 1.91 67.16 ± 1.47 81.52 ± 0.66
TaskV 88.70 ± 1.69 89.53 ± 1.34 86.27 ± 1.08 92.76 ± 0.54 70.44 ± 1.35 84.66 ± 0.39
TaskV-M 89.60 ± 1.43 91.00 ± 1.01 87.20 ± 0.62 92.36 ± 1.44 72.53 ± 0.94 85.64 ± 0.29

6.2 ENHANCING THE TASK VECTOR METHOD

We further explore an enhancement to the original task vector method. According to our previous
analysis, a single injected task vector may not provide sufficient information for inference on com-
plex tasks (e.g., bijection tasks). Moreover, in linear-attention models, each (→) token functions
as an individual in-context demonstration during the gradient descent phase and thus contributes
equally to the ICL risk. Motivated by this, we extend the standard task vector method, which modi-
fies only the final arrow token, and propose a multi-vector variant that injects into every single arrow
token in few-shot prompts. This enriched injection scheme enables the model to leverage multiple
new demonstrations, thereby providing a more informative and distributed context for prediction.

We compare our multi-vector injection strategy (TaskV-M) against standard N -shot ICL (Baseline)
and the original task vector method (TaskV). Note that Baseline uses few-shot ICL and TaskV is in-
jecting into few-shot prompts, which are different from the settings in Table 1 which uses many-shot
prompts for ICL and zero-shot prompts for task vectors. For each N -shot prompt, we generate N+1
distinct ICL prompts to produce N + 1 task vectors, which are then used to replace the embeddings
of all arrow tokens in the input. For each task, performance is evaluated over 50 randomly sampled
prompts, with mean accuracy and standard deviation reported across 5 independent trials. The final
results, summarized in Table 2, span a diverse set of ICL task types, showing that TaskV-M consis-
tently outperforms TaskV, especially the challenging bijection tasks. While the improvement is not
dramatic, we believe that the current results sufficiently demonstrate the potential of multi-vector
injection, thereby providing insights for the design of future ICL or task vector methods.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

This paper proposes a plausible explanation for the emergence and functionality of task vectors in
ICL. We support this conjecture with both empirical observations and theoretical analysis, demon-
strating how task vectors naturally arise under ICL-style training prompts, and why this method
inherently fails on general ICL tasks beyond rank-one mappings. Our work provides a new perspec-
tive on the underlying mechanisms and offers a promising direction for interpreting intermediate
hidden states in modern transformer-based language models.

While our analysis provides new insights into the emergence and functionality of task vectors, it
is primarily conducted on simplified linear-attention transformers and synthetic tasks, which may
not fully capture the complexity of real-world LLMs. Moreover, our theoretical framework focuses
solely on critical point analysis, and there is still a lack of convergence guarantee or sample com-
plexity analysis to fully understand the learning dynamics during model pretraining.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Future directions of this work may include: (1) extending the current theoretical framework to causal
and multimodal settings; (2) exploring how richer architectures (e.g., non-linear attention) or train-
ing objectives (e.g., auto-regressive loss) influence the behavior of task vectors; (3) synthesizing
orthogonal enhancements of the task vector method (e.g., function vectors (Todd et al., 2024) and
in-context vectors (Liu et al., 2024)), and extending to more complex reasoning tasks.

ETHICS STATEMENT

This work advances the theoretical understanding of in-context learning and task vector mecha-
nisms, which can lead to more efficient and interpretable language models. By enabling faster
inference through task vectors, it may reduce the computational cost and energy consumption of
large-scale deployment, thereby making AI systems more accessible and environmentally sustain-
able. Improved interpretability could also enhance trust and transparency in AI applications across
education, healthcare, and other socially beneficial domains.

As task vector methods improve efficiency and transferability, they may also be misused to repli-
cate or extract functionality from proprietary models without authorization, raising concerns around
model intellectual property. Additionally, while interpretability is often framed as a benefit, deeper
insights into model internals could be exploited to engineer adversarial inputs or extract sensitive
training data. Careful consideration and mitigation strategies are essential to ensure that such work
aligns with the broader goals of safe and beneficial AI.

REPRODUCIBILITY STATEMENT

We provide complete proofs for our main theoretical results in Appendices C and D, experimental
details about the dataset and implementation in Appendix B, and full source codes to reproduce our
experimental results in the supplementary materials.

USAGE OF LLMS

We used LLMs only to improve grammar and polish academic writing. All technical ideas, proofs,
experiments, and conclusions were entirely conceived and verified by the authors.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614–45650, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.
Provable in-context vector arithmetic via retrieving task concepts. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
DbUmeNnNpt.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in neural information processing systems, 35:18878–18891, 2022.

10

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=DbUmeNnNpt
https://openreview.net/forum?id=DbUmeNnNpt

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
gpt learn in-context? language models secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 4005–4019, 2023.

Gilad Deutch, Nadav Magar, Tomer Natan, and Guy Dar. In-context learning and gradient descent
revisited. In Proceedings of the 2024 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp. 1017–1028, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Seungwook Han, Jinyeop Song, Jeff Gore, and Pulkit Agrawal. Emergence and effectiveness of task
vectors in in-context learning: An encoder decoder perspective. In Forty-second International
Conference on Machine Learning, 2025.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 9318–9333, 2023.

Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, and Amir Bar. Finding visual task
vectors. In European Conference on Computer Vision, pp. 257–273. Springer, 2024.

Brandon Huang, Chancharik Mitra, Leonid Karlinsky, Assaf Arbelle, Trevor Darrell, and Roei
Herzig. Multimodal task vectors enable many-shot multimodal in-context learning. Advances
in Neural Information Processing Systems, 37:22124–22153, 2024.

Joonseong Kang, Soojeong Lee, Subeen Park, Sumin Park, Taero Kim, Jihee Kim, Ryunyi
Lee, and Kyungwoo Song. Adaptive task vectors for large language models. arXiv preprint
arXiv:2506.03426, 2025.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36:24892–24928, 2023.

Dongfang Li, Xinshuo Hu, Zetian Sun, Baotian Hu, Min Zhang, et al. In-context learning state vector
with inner and momentum optimization. Advances in Neural Information Processing Systems, 37:
7797–7820, 2024.

Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. In International Conference on
Machine Learning, pp. 32287–32307. PMLR, 2024.

Grace Luo, Trevor Darrell, and Amir Bar. Vision-language models create cross-modal task repre-
sentations. In Forty-second International Conference on Machine Learning, 2025.

Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One step of gradient descent is prov-
ably the optimal in-context learner with one layer of linear self-attention. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=8p3fu56lKc.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
style vector arithmetic. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 5030–5047, 2024.

Yingzhe Peng, Xinting Hu, Jiawei Peng, Xin Geng, Xu Yang, et al. Live: Learnable in-context
vector for visual question answering. Advances in Neural Information Processing Systems, 37:
9773–9800, 2024.

11

https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=8p3fu56lKc

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Position: Do pretrained transformers learn
in-context by gradient descent? In Proceedings of the 41st International Conference on Machine
Learning, pp. 44712–44740. PMLR, 2024.

Pavel Tikhonov, Ivan Oseledets, and Elena Tutubalina. One task vector is not enough: A large-scale
study for in-context learning. arXiv preprint arXiv:2505.23911, 2025.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023a.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023b.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
words are anchors: An information flow perspective for understanding in-context learning. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
9840–9855, 2023.

Kevin Christian Wibisono and Yixin Wang. On the role of unstructured training data in transformers’
in-context learning capabilities. In NeurIPS 2023 Workshop on Mathematics of Modern Machine
Learning, 2023.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=vSh5ePa0ph.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=RdJVFCHjUMI.

Yue Xing, Xiaofeng Lin, Chenheng Xu, Namjoon Suh, Qifan Song, and Guang Cheng. Theoret-
ical understanding of in-context learning in shallow transformers with unstructured data. arXiv
preprint arXiv:2402.00743, 2024.

Zheyang Xiong, Ziyang Cai, John Cooper, Albert Ge, Vasilis Papageorgiou, Zack Sifakis, Angeliki
Giannou, Ziqian Lin, Liu Yang, Saurabh Agarwal, et al. Everything everywhere all at once: Llms
can in-context learn multiple tasks in superposition. arXiv preprint arXiv:2410.05603, 2024.

Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert Nowak. Task vectors in
in-context learning: Emergence, formation, and benefit. arXiv preprint arXiv:2501.09240, 2025.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Chunsheng Zuo, Pavel Guerzhoy, and Michael Guerzhoy. Position information emerges in causal
transformers without positional encodings via similarity of nearby embeddings. In Proceedings
of the 31st International Conference on Computational Linguistics, pp. 9418–9430, 2025.

12

https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=vSh5ePa0ph
https://openreview.net/forum?id=vSh5ePa0ph
https://openreview.net/forum?id=RdJVFCHjUMI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL DISCUSSIONS

A.1 SUMMARY OF MATHEMATICAL NOTATIONS

Table 3: Summary of key mathematical notations used throughout the paper.

Notation Description
n Number of demonstrations in the input prompt
L Number of transformer layers
d Dimension of covariate and response embeddings
dp Prompt length (depends on demonstration structure)
AttnV,Q Linear-attention layer with parameter V , Q
TF Linear-attention model by stacking linear-attention layers

xi ∈ Rd Covariate (input) of the i-th demonstration
yi ∈ Rd Response (output) of the i-th demonstration
X,Y ∈ Rd×n Matrices of covariates and responses for n demonstrations
xtest, ytest Query covariate and ground-truth response
wj ∈ Rd j-th regression coefficient vector
W ∈ Rd×d Coefficient matrix, W = [w1, · · · , wd]

⊤

Z0 ∈ R2d×dp Input prompt embeddings before the transformer
Zl ∈ R2d×dp Hidden states after the l-th layer
P ∈ Rdp×dp Positional encoding matrix
Vl, Ql Value and key-query matrices of the l-th attention layer
Al, Bl, Cl, Dl Block components of Vl, Ql in layer l
Λk Sub-block matrices of Dl used in critical point analysis

L In-context learning loss (ICL risk)
M(M) Set of masked matrices with binary mask M
SI ,SΣ,SP Structured sets of matrices defining critical points
ztv Task vector extracted from an arrow (→) token
β ∈ Rn Weight vector for task vector formation

A.2 ADDITIONAL RELATED WORKS

In-Context Learning in Attention-based LLMs. The ability of LLMs to learn from examples
provided in the input prompt, without updating parameters, has attracted wide attention since the
discovery of ICL in GPT-3 (Brown et al., 2020). A growing body of theoretical work has sought
to explain this phenomenon. Early analyses show that transformer attention layers can implement
gradient descent–like algorithms over linear regression objectives (Garg et al., 2022; Akyürek et al.,
2023; Von Oswald et al., 2023a; Ahn et al., 2023; Wu et al., 2024), while others investigate sam-
ple complexity and generalization behavior (Xie et al., 2022; Chan et al., 2022; Shen et al., 2024;
Von Oswald et al., 2023b; Deutch et al., 2024). These works collectively suggest that ICL is closely
tied to the inductive biases of the attention mechanism, but do not fully explain how higher-level
abstractions of tasks are formed or encoded in LLMs.

The Task Vector Method in ICL. Task vectors have recently been proposed as an abstraction of
ICL demonstrations into compact hidden-state representations. Hendel et al. (2023) introduced task
vectors as hidden states extracted from the last arrow token in triplet prompts, enabling zero-shot
transfer by injecting them into new contexts. Concurrent works developed similar notions, such as
function vectors (Todd et al., 2024) and in-context vectors (Liu et al., 2024). These studies show
that task vectors accelerate inference and sometimes match the effectiveness of ICL with fewer
demonstrations. However, they remain largely empirical, without a clear theoretical explanation of
how or why such vectors encode task information.

Subsequent research has expanded the scope and utility of task vectors. Yang et al. (2025) demon-
strates that task vectors naturally emerge even in small transformers trained from scratch with syn-
thetic data, suggesting that their formation is an inherent property of attention-based architectures.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Top 20 tokens with the highest output probability by decoding the task vector, results from
(Hendel et al., 2023). We underline the tokens in the output space of the current task.

Model Task Tokens

GPT-J 6B

Prev Letter b, c, v, g, s, name, i, ro, n, j, d, t,
A, ai, com, m, ust, test, active, k

French to English other, name, the, true, is, social,
s, active, time, car, type, money, F,
force, a, public, heart, one, ms, life

Present to Gerund getting, storing, working, moving,
playing, doing, making, driving,
shooting, picking, being, sending,
putting, selling, watching, changing,
taking, collecting, feeding, reading

Country to Capital London, Paris, New, West, Berlin, South,
Tokyo, San, Chicago, City, Moscow,
Jerusalem, Amsterdam, Philadelphia,
East, Madrid, Vienna, Beijing, Mexico,
Germany

Li et al. (2024) shows that aggregating hidden states across layers and multiple arrow tokens leads
to stronger task representations. Kang et al. (2025) proposes to generate task vectors conditioned on
each input query. Beyond text, task vectors have also been applied in vision (Hojel et al., 2024; Peng
et al., 2024) and multimodal models (Huang et al., 2024; Luo et al., 2025), where they enable flex-
ible transfer across modalities. Han et al. (2025) connects the performance of task vectors by task
decodability, defined by the similarity between task vectors from different ICL tasks. These works
highlight the empirical utility of task vectors but stop short of explaining their inner mechanisms.

Explaining the Task Vector Method. Task vectors were initially conjectured to encapsulate the
complete knowledge of the current task (Hendel et al., 2023). However, this view fails to account
for their inconsistent performance across tasks of varying complexity. Empirical observations fur-
ther suggest that directly decoding task vectors typically yields tokens from the task output space
(Todd et al., 2024), rather than explicit task descriptions (Merullo et al., 2024). Concurrent work
by Bu et al. (2025) analyzes the learning dynamics of 1-layer transformers with ICL-style prompts,
explaining the utility of task vectors through a word2vec-like scheme (i.e., the existence of a vector
zt for task t such that y ≈ zt + x for all input-output pairs (x, y)). While insightful, this characteri-
zation is restricted to additive translation tasks, single-token prompts, and single-layer architectures,
limiting its generality. By contrast, our analysis encompasses richer prompt structures, including
pairwise and triplet formats that better reflect practical ICL settings. Moreover, our critical point
characterization extends beyond 1-layer models, and our linear regression formulation captures a
broader spectrum of ICL tasks. Complementing our findings, Tikhonov et al. (2025) independently
shows that standard task vectors lack sufficient expressiveness for complex ICL tasks, reinforcing
our conclusion that task vectors are fundamentally constrained by rank-one mappings.

A.3 JUSTIFICATION OF THE BLOCK-DIAGONAL ASSUMPTION

In our main analysis, we impose an assumption on the trainable parameters of linear-attention lay-
ers, such that the Vl and Ql matrices are block-diagonal in eq. (6). This block-diagonal formulation
is a widely adopted assumption in theoretical studies of ICL for transformer models, as it facilitates
tractable analysis (Ahn et al., 2023; Mahankali et al., 2024; Wu et al., 2024; Zhang et al., 2024). Prior
work by Ahn et al. (2023) demonstrates that the global minimizer of single-layer linear-attention
transformers indeed exhibits such a block-diagonal structure. Although finding exact solutions for
multi-layer transformers is more involved, it is reasonable to conjecture that similar structural pat-
terns hold. Empirically, we observe that when optimizing the full matrices, gradient-based training
also tends to converge to block-diagonal solutions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Intuitively, given the high dimensionality of hidden states in modern LLMs, it is plausible to assume
that the xi and yi components can be projected into orthogonal or nearly orthogonal subspaces
when mixed in the hidden state space. This motivates a decomposition of the projection matrices Vl

and Ql into two separate parts that operate independently on xi and yi, which can be equivalently
formulated as the block-diagonal structures.

A.4 INSEPARABLE COVARIATES AND RESPONSES

In our main analysis, we assume that xi and yi embeddings are linearly separable, allowing the
addition xi + yi to act a concatenation operation. However, recognizing that this assumption does
not generally hold for real-world transformers, we extend our analysis to the following setting, where
xi and yi are no longer linearly separable. While this still imposes a 2d-dimensional requirement
on the hidden space, such a constraint is easily satisfied in practical transformers, given the high
dimensionality of their internal representations.

Z0 =

[
0 0 · · · 0 0 0 0
x1 y1 · · · xn yn xtest 0

]
∈ R(2d)×(2n+2). (11)

We slightly modify the sparsity constraints for the first layer, and require (D0)2i,: = 0 for i ∈ [n+1]:

V0 =

[
0 A0

0d×d 0

]
, Q0 =

[
02d×2d 0

0 D0

]
, where A0 ∈ Rd×d, D0 ∈ Rdp×dp . (12)

With these conditions, we are ready to establish the critical points for inseparable demonstrations.
Note that V0 and Q0 do not involve B0 and C0, so the sequences B and C have size L− 1.
Theorem 7. Under the same settings as Theorem 1, define SI ,SΣ ⊂ Rd×d and SP ⊂ Rdp×dp as

SI = {λId | λ ∈ R}, SΣ =
{
λΣ−1

∣∣ λ ∈ R
}
, SP =

{
diag(In ⊗ Λ1,Λ2)

∣∣ Λ1,Λ2 ∈ R2×2
}
.

Consider optimizing an L-layer linear transformer with inseparable pairwise demonstrations and
parameter configuration given in eq. (12) for the first layer and eq. (6) for the remaining layers, then

infA∈SL
I , B∈SL−1

I , C∈SL−1
Σ , D∈SL

P

∑
H∈A∪B∪C∪D

∥∥∇HL
(
{Vl, Ql}Ll=1

)∥∥2
F
= 0.

This result suggests that for inseparable demonstrations, the first layer performs a functionally simi-
lar concatenation operation by “moving” the embedding of each xi to the corresponding yi position.
This enables the model to reconstruct the single-token structure without linear separability.

A.5 LAST TASK VECTOR WEIGHTS THE MOST

While our analysis of linear-attention models suggests that each formed task vector (i.e., the hidden
state at each arrow token) contributes equally to the final prediction, this assumption does not fully
hold in practical LLMs. As demonstrated by the conflicting tasks experiment in (Hendel et al.,
2023), injecting a task vector from task B into an ICL prompt designed for task A causes the model
to predominantly perform task B. This behavior indicates that LLMs largely rely on the last arrow
token to determine the task identity. We attribute this to the causal attention mechanism used in
practical LLMs, which is not captured by our current theoretical analysis. In causal attention, only
the final arrow token can aggregate information from the entire preceding context, making it the
most informative and influential for prediction. This explains why our multi-vector strategy offers
modest, though consistent, performance gains. The improvement suggests that intermediate arrow
tokens do participate in the inference process, albeit less effectively. Enhancing how LLMs utilize
information from all arrow tokens remains a promising direction for improving task vector accuracy
and robustness.

B EXPERIMENT DETAILS AND ADDITIONAL RESULTS

In this section, we present experiment details and additional results not included in the main text due
to space limitations. Our experiments are conducted on an A100 40G GPU. It takes around 30 GPU
hours to fully reproduce our results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.1 SYNTHETIC EXPERIMENTS ON LINEAR-ATTENTION MODELS

We consider training linear-attention models on random linear regression instances. We take embed-
ding dimension d = 4, and the distributions for generating xi and wi are both Px = Pw = N (0, Id).
We optimize the ICL risk for L-layer linear-attention models with n in-context demonstrations using
AdamW, where L ∈ [3] and n ∈ [5, 30]. Each gradient step is computed from a batch size of 1000.
We additionally apply ℓ1 regularization to simplify the found solutions. For training efficiency and
stability, we restrict the Al, Bl, and Cl matrices to SI during training, and initialize Dl ∈ Rdp×dp

with i.i.d. Gaussian matrices. For each case, we train 40 models with different random seeds, and
report the minimum achieved ICL risk to approximate the global minimum.

To reproduce the task vector mechanism, we focus on models trained with triplet-formatted prompts.
The training procedure is identical to the above. For inference, we restrict Pw to rank-one coefficient
matrices, by letting W = w1w

⊤
2 , where w1, w2 ∼ N (0, Id). We first generate normal ICL prompts

to generate task vectors as the hidden states of the last arrow token after the first attention layer,
and then inject them into zero-shot prompts after normalization. The final outputs ŷtest are taken
as the output of these injected zero-shot prompts after being processed with the same transformer
model. We compute the final risk as E

∥∥∥ ŷtest

∥ŷtest∥ + ytest

∥ytest∥

∥∥∥ to simulate the layer normalization blocks
in practical LLMs. The reported scores are averaged for n ∈ [5, 30].

B.2 EXPERIMENTS ON PRACTICAL LLMS

Datasets. Following the settings of the original task vector method (Hendel et al., 2023), our study
covers 33 tasks in 5 categories. The detailed description for each task is provided in Table 5.

Prompt Template. The template used to construct ICL demonstrations is “Example:{xi} → {yi},
where xi and yi are subsequently replaced by the input and output of the semantic mapping. For
the query part, yi is omitted from the prompt. After concatenating each demonstration with “\n”, an
example of the full input prompt is:

Example:{x1} → {y1}\n · · ·Example:{xn} → {yn}\nExample:{xtest} → (13)

Evaluation. To evaluate the N -shot performance, we generate 50× (N +1) i.i.d. prompts for each
task with number of demonstrations n = 10 for task vector extraction. The hidden states of the
last→ token, which is also literally the last token in the prompt, are recorded for every layer in the
transformer. Thereafter, we generate another 50 i.i.d. prompts with N demonstrations, where xtest

is selected to be distinct from the previous chosen ones. The final accuracy is measured by whether
the next word predicted matches the expected answer. The performance of the standard ICL method
(Baseline) is acquired by inferring without interference. For the task vector method (TaskV) and our
multi-vector variant (TaskV-M), the extracted task vectors are injected to replace the hidden states
of the arrow→ tokens at a specified layer l. For TaskV, only the last arrow token is injected, while
for TaskV-M, each of the N + 1 arrow tokens is injected with the N + 1 extracted task vectors for
the same task. The performance is reported for the layer l ∈ L achieving the highest accuracy. For
each case, the mean and standard deviation are evaluated through 5 independent trials.

Additional Results. Besides Llama-13B, we also observe consistent accuracy improvement of our
TaskV-M method on the Pythia-12B model, as reported in Table 6.

While the performance gains of TaskV-M over TaskV are not dramatic across all ICL tasks, the
goal of TaskV-M is not to surpass state-of-the-art ICL techniques but to demonstrate that the task
vector framework can be systematically extended by injecting multiple vectors simultaneously. This
is especially valuable for complex tasks that inherently require higher-rank representations. Our
results on bijection tasks clearly validate this motivation: TaskV-M yields notable improvements
over the standard TaskV method. For other simpler tasks, the marginal gains from TaskV-M suggest
that the expressiveness of W may not be the primary performance bottleneck. We believe these
insights facilitate the design of future ICL and task vector methods.

B.3 ANOTHER MULTI-VECTOR INJECTION VARIANT

In our main experiments, we implement TaskV-M by extracting N + 1 task vectors from the same
number of different prompts. Another possible implementation for TaskV-M is to extract multiple

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Descriptions of the tasks used in our empirical studies.

Category Task Example Description

Knowledge

Contry to Capital France → Paris Output the capital city of the given country.
Person to Language Macron → French Output the native language of the given person.
Location to Continent Paris → Europe Output the corresponding continent of the given

location.
Religion Saladin → Muslim Output the associated religion of the given lo-

cation or person.

Algorithmic

List First [a,b,c] → a Output the first item in the given list.
List Last [a,b,c] → c Output the last item in the given list.
Next Letter a → b Output the next letter of the given letter in the

alphabet.
Prev Letter b → a Output the previous letter of the given letter in

the alphabet.
To Upper a → A Output the corresponding uppercase letter of

the given lowercase letter.
To Lower A → a Output the corresponding lowercase letter of

the given uppercase letter.

Translation

English to French hello → bonjour Translate the given word in English to French.
English to Italian hello → ciao Translate the given word in English to Italian.
English to Spanish hello → hola Translate the given word in English to Spanish.
French to English bonjour → hello Translate the given word in French to English.
Italian to English ciao → hello Translate the given word in Italian to English.
Spanish to English hola → hello Translate the given word in Spanish to English.

Linguistic

Present to Gerund go → going Output the corresponding gerund form of the
given verb in present simple tense.

Present to Past go → went Output the corresponding past simple form of
the given verb in present simple tense.

Present to Past Perfect go → gone Output the corresponding past perfect form of
the given verb in present simple tense.

Gerund to Present going → go Output the corresponding present simple form
of the given verb in gerund form.

Past to Present went → go Output the corresponding present simple form
of the given verb in past simple tense.

Past Perfect to Present gone → go Output the corresponding present simple form
of the given verb in past perfect tense.

Singular to Plural dog → dogs Output the corresponding plural form of the
given noun in singular form.

Plural to Singular dogs → dog Output the corresponding singular form of the
given noun in plural form.

Antonym happy → sad Output the antonym of the given adjective.

Bijection

To Upper & Lower a ↔ A Output the given letter in uppercase if it is in
lowercase, and vice versa.

English & French hello ↔ bonjour Translate the given word to French if it is in
English, and vice versa.

English & Italian hello ↔ ciao Translate the given word to Italian if it is in En-
glish, and vice versa.

English & Spanish hello ↔ hola Translate the given word to Spanish if it is in
English, and vice versa.

Present & Gerund go ↔ going Output the given verb in gerund form if it is in
present simple tense, and vice versa.

Present & Past go ↔ went Output the given verb in past simple form if it
is in present simple tense, and vice versa.

Present & Past Perfect go ↔ gone Output the given verb in past perfect form if it
is in present simple tense, and vice versa.

Singular & Plural dog ↔ dogs Output the given noun in plural form if it is in
singular form, and vice versa.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Accuracy comparison between standard ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Pythia-12B with n = 10.

Method Knowledge Algorithmic Translation Linguistic Bijection Average

0-shot Baseline 6.60 ± 1.59 14.07 ± 1.45 8.60 ± 0.68 12.53 ± 1.57 10.31 ± 0.70 10.82 ± 0.48
TaskV 63.30 ± 2.62 84.73 ± 1.22 62.07 ± 0.98 82.58 ± 1.22 42.27 ± 0.92 66.40 ± 0.96

1-shot
Baseline 61.80 ± 5.45 72.80 ± 1.15 43.27 ± 2.92 57.07 ± 1.15 41.91 ± 2.83 53.95 ± 1.02
TaskV 76.40 ± 2.40 84.20 ± 1.05 71.47 ± 1.41 87.16 ± 2.04 53.11 ± 2.37 73.59 ± 0.79
TaskV-M 77.70 ± 2.52 83.73 ± 1.37 71.00 ± 1.48 86.80 ± 1.59 53.87 ± 2.90 73.68 ± 0.90

2-shot
Baseline 70.30 ± 3.71 82.13 ± 0.54 60.80 ± 1.81 81.16 ± 1.57 50.76 ± 2.17 68.41 ± 0.64
TaskV 80.30 ± 2.46 87.00 ± 1.63 76.13 ± 3.77 89.33 ± 0.70 58.67 ± 2.44 77.41 ± 0.50
TaskV-M 81.60 ± 1.56 86.47 ± 0.40 77.27 ± 2.53 89.51 ± 0.88 59.24 ± 2.48 77.87 ± 0.76

3-shot
Baseline 77.60 ± 2.40 81.87 ± 0.81 68.13 ± 2.02 86.31 ± 1.93 55.73 ± 1.60 73.20 ± 0.31
TaskV 84.00 ± 2.76 86.33 ± 1.17 79.53 ± 2.27 92.00 ± 0.67 58.76 ± 1.53 79.06 ± 0.67
TaskV-M 85.40 ± 2.31 87.07 ± 1.18 78.13 ± 1.86 92.84 ± 0.68 59.56 ± 1.27 79.54 ± 0.35

4-shot
Baseline 78.40 ± 1.83 82.73 ± 0.44 72.40 ± 1.24 88.89 ± 1.25 57.91 ± 1.46 75.46 ± 0.64
TaskV 83.80 ± 1.12 87.60 ± 1.81 80.20 ± 2.39 92.18 ± 0.96 59.38 ± 0.47 79.59 ± 0.62
TaskV-M 84.30 ± 1.50 88.13 ± 0.81 80.00 ± 2.67 91.87 ± 1.25 60.31 ± 0.86 79.87 ± 0.51

Table 7: Accuracy comparison between few-shot ICL (Baseline), the task vector method (TaskV),
the multi-vector method (TaskV-M), and the single-prompt variant (TaskV-MS). The experiment is
conducted on Llama-13B with n = 10.

Method Knowledge Algorithmic Translation Linguistic Bijection Average

0-shot Baseline 6.90 ± 2.08 15.60 ± 1.72 7.00 ± 1.65 12.44 ± 1.74 8.27 ± 1.33 10.28 ± 0.98
TaskV 68.80 ± 2.66 86.20 ± 1.61 73.53 ± 0.91 85.24 ± 1.80 50.67 ± 2.32 72.26 ± 1.01

1-shot
Baseline 69.50 ± 3.86 73.67 ± 1.56 57.80 ± 2.01 56.22 ± 1.57 44.76 ± 2.44 58.11 ± 0.63
TaskV 79.50 ± 2.35 88.47 ± 0.75 80.67 ± 2.56 89.11 ± 0.84 60.44 ± 2.07 78.79 ± 0.77
TaskV-M 81.30 ± 2.80 89.53 ± 0.65 80.13 ± 2.14 88.71 ± 0.62 61.78 ± 0.96 79.34 ± 0.37
TaskV-MS 80.90 ± 3.10 88.40 ± 0.93 80.13 ± 2.54 88.89 ± 0.73 61.11 ± 1.31 78.96 ± 0.43

2-shot
Baseline 78.80 ± 3.30 85.07 ± 1.37 75.67 ± 2.64 76.80 ± 1.18 56.49 ± 2.87 72.92 ± 0.59
TaskV 84.60 ± 2.11 88.40 ± 0.68 84.33 ± 0.92 90.13 ± 0.92 62.44 ± 2.16 80.82 ± 0.42
TaskV-M 85.70 ± 1.63 89.27 ± 1.10 84.13 ± 1.15 89.64 ± 0.86 64.49 ± 2.02 81.48 ± 0.37
TaskV-MS 84.40 ± 2.13 89.53 ± 0.98 84.67 ± 1.73 90.18 ± 1.39 64.49 ± 2.30 81.61 ± 0.80

3-shot
Baseline 86.20 ± 2.69 88.07 ± 1.06 80.00 ± 1.67 84.04 ± 1.19 62.18 ± 1.52 78.51 ± 0.42
TaskV 90.20 ± 2.23 88.67 ± 0.89 86.27 ± 2.31 92.31 ± 0.48 66.53 ± 0.94 83.53 ± 0.41
TaskV-M 90.30 ± 1.50 89.87 ± 0.83 86.07 ± 2.17 92.36 ± 0.72 68.13 ± 0.76 84.15 ± 0.52
TaskV-MS 90.60 ± 2.20 89.47 ± 0.78 86.20 ± 1.89 91.91 ± 0.87 67.69 ± 1.40 83.91 ± 0.45

4-shot
Baseline 84.80 ± 2.06 88.07 ± 0.61 83.27 ± 1.82 88.89 ± 1.91 67.16 ± 1.47 81.52 ± 0.66
TaskV 88.70 ± 1.69 89.53 ± 1.34 86.27 ± 1.08 92.76 ± 0.54 70.44 ± 1.35 84.66 ± 0.39
TaskV-M 89.60 ± 1.43 91.00 ± 1.01 87.20 ± 0.62 92.36 ± 1.44 72.53 ± 0.94 85.64 ± 0.29
TaskV-MS 90.10 ± 1.39 90.67 ± 1.10 87.00 ± 1.17 92.22 ± 0.92 72.09 ± 1.46 85.45 ± 0.26

task vectors from each arrow token in a single few-shot prompt simultaneously. We name this alter-
native approach as TaskV-MS. As discussed in Proposition 3, the task vector weights that emerge at
each arrow token are approximately orthonormal, suggesting they encode distinct information sub-
sets and can be simultaneously injected to enhance model performance (e.g., by increasing the rank
of the induced coefficient matrix W). Table 7 shows a comparison between the current multi-vector
method (TaskV-M) and this single-prompt variant (TaskV-MS).

While TaskV-MS also delivers strong performance, it slightly underperforms TaskV-M. We believe
this is due to the causal attention mechanism in real LLMs, where earlier arrow tokens can only
aggregate information from a subset of demonstrations. Nonetheless, TaskV-MS is a promising
alternative for accelerating inference.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Comparison of the accuracies of n-shot ICL and task vector on bijection tasks (n = 10).
We use gray text to indicate accuracies lower than 60%.

Task GPT-J Pythia-6.9B Pythia-12B Llama-7B Llama-13B Qwen3-8B Llama3-8B

ICL TV ICL TV ICL TV ICL TV ICL TV ICL TV ICL TV

Lower↔ Upper 1.00 0.08 0.90 0.28 0.96 0.24 1.00 0.55 1.00 0.58 1.00 0.56 1.00 0.38

English↔ French 0.64 0.50 0.38 0.28 0.52 0.28 0.54 0.35 0.64 0.32 0.84 0.48 0.66 0.42
English↔ Italian 0.68 0.56 0.62 0.48 0.60 0.56 0.70 0.47 0.72 0.44 0.68 0.36 0.70 0.36
English↔ Spanish 0.70 0.52 0.62 0.56 0.66 0.56 0.64 0.43 0.84 0.56 0.70 0.32 0.72 0.32

Present↔ Gerund 0.64 0.36 0.44 0.32 0.40 0.22 0.80 0.41 0.74 0.26 0.72 0.34 0.94 0.52
Present↔ Past 0.60 0.38 0.48 0.36 0.54 0.16 0.52 0.33 0.68 0.44 0.78 0.42 0.90 0.58
Present↔ Perfect 0.46 0.14 0.38 0.24 0.46 0.28 0.55 0.33 0.54 0.42 0.66 0.42 0.78 0.50
Singular↔ Plural 0.66 0.50 0.56 0.28 0.44 0.28 0.76 0.51 0.80 0.52 0.84 0.58 0.88 0.58

Antonym 0.86 0.78 0.76 0.66 0.76 0.70 0.83 0.73 0.78 0.72 0.82 0.74 0.82 0.76

Table 9: Comparison of the accuracies of n-shot ICL and task vector on bijection tasks (n = 20).
We use gray text to indicate accuracies lower than 60%.

Task GPT-J Pythia-6.9B Pythia-12B Llama-7B Llama-13B Qwen3-8B Llama3-8B

ICL TV ICL TV ICL TV ICL TV ICL TV ICL TV ICL TV

Lower↔ Upper 1.00 0.12 1.00 0.32 0.94 0.38 1.00 0.48 1.00 0.60 1.00 0.58 1.00 0.36

English↔ French 0.74 0.54 0.44 0.40 0.52 0.40 0.52 0.34 0.58 0.34 0.58 0.30 0.74 0.28
English↔ Italian 0.62 0.54 0.66 0.46 0.68 0.48 0.78 0.50 0.74 0.48 0.76 0.38 0.76 0.32
English↔ Spanish 0.80 0.58 0.54 0.38 0.56 0.40 0.78 0.58 0.84 0.58 0.66 0.32 0.86 0.40

Present↔ Gerund 0.54 0.26 0.54 0.22 0.46 0.14 0.84 0.44 0.94 0.38 0.88 0.28 0.98 0.52
Present↔ Past 0.66 0.26 0.54 0.30 0.58 0.28 0.72 0.30 0.76 0.44 0.74 0.40 1.00 0.48
Present↔ Perfect 0.42 0.18 0.44 0.20 0.46 0.24 0.48 0.30 0.52 0.48 0.80 0.44 0.90 0.48
Singular↔ Plural 0.64 0.40 0.62 0.36 0.52 0.28 0.80 0.52 0.94 0.42 0.86 0.60 0.92 0.60

Antonym 0.84 0.76 0.84 0.70 0.90 0.82 0.90 0.84 0.90 0.84 0.84 0.74 0.84 0.76

B.4 FURTHER RESULTS ON BIJECTION TASKS

Here, we extend the results from Table 1 that illustrate the failure of task vectors on bijection tasks
across a broader range of LLMs and varying numbers of input demonstrations. We keep the same
experimental settings as Table 1 while increasing the number of demonstrations to n ∈ {10, 20},
and report the results for 7 distinct LLMs: GPT-J, Pythia-6.9B, Pythia-12B, Llama-7B, Llama-
13B, Qwen3-8B and Llama3-8B. As shown in Tables 8 and 9, the task vector method results in a
significant performance drop compared to the standard ICL on bijection tasks. These results further
support our claims that:

• Task vectors systematically fail on bijection tasks, even when further increasing the number
of demonstrations in the prompt.

• The failure is consistent across multiple model architectures, validating that the issue stems
from a fundamental expressiveness limitation rather than model-specific artifacts.

B.5 FULL SALIENCY ANALYSIS RESULTS

In the main text, we reported a simplified version of the saliency map due to space limitations,
focusing only on the demonstration tokens xi, →, yi. In Figure 5, we report the full saliency map
covering every token in the prompt. Here, “B” stands for the [BOS] token, and “E” stands for the
word “Example”. Please refer to eq. (13) for further details about the structure of the input prompt.
As can be seen, the highlighted saliency weights exhibit clear patterns of embedding concatenation
and weighted summation. It can also be observed that latter demonstrations weigh more for task
vector formation (i.e., saliency magnitudes for latter yi tokens are larger in Figure 5b).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B E : x1 → y1 \n E : x2 → y2 \n E : x3 → y3 \n E : x4 → y4 \n E : x5 → y5 \n E : x6 → y6 \n E : x7 → y7 \n E : x8 → y8 \n E : x9 → y9 \n E : x10→ y10 \n E : xtest→

B E : x1 → y1 \n E : x2 → y2 \n E : x3 → y3 \n E : x4 → y4 \n E : x5 → y5 \n E : x6 → y6 \n E : x7 → y7 \n E : x8 → y8 \n E : x9 → y9 \n E : x10→ y10 \n E : xtest→

(a) Full Saliency Map (l = 10)

B E : x1 → y1 \n E : x2 → y2 \n E : x3 → y3 \n E : x4 → y4 \n E : x5 → y5 \n E : x6 → y6 \n E : x7 → y7 \n E : x8 → y8 \n E : x9 → y9 \n E : x10→ y10 \n E : xtest→

B E : x1 → y1 \n E : x2 → y2 \n E : x3 → y3 \n E : x4 → y4 \n E : x5 → y5 \n E : x6 → y6 \n E : x7 → y7 \n E : x8 → y8 \n E : x9 → y9 \n E : x10→ y10 \n E : xtest→

(b) Full Saliency Map (l = 12)

Figure 5: Visualization of full saliency matrices as bipartite graphs between layer l () and l + 1
(), edge widths indicate saliency magnitude (Llama-7B, n = 10). (a) Each yi token attends to its
corresponding (xi, yi) pair, reflecting embedding concatenation. (b) The final (→) token attends
broadly to all yi tokens, indicating task vector formation.

C AUXILIARY LEMMAS

Lemma 8 (Proposed in (Ahn et al., 2023)). Given positive objective function f(A) taking parame-
ters A = {Ai}ni=1, where Ai ∈ Rdi×di . Let S = Πn

i=1Si ⊂ Πn
i=1Rdi×di be a predefined parameter

subspace. Define Ã(t, Ri) = {A1, · · · , Ai + tRi, · · · , An} given i ∈ [1, n], Ri ∈ Rdi×di and
t ∈ R. If for any A ∈ S and Ri ∈ Rdi×di , there exists R̃i ∈ Si such that

d

dt
f
(
Ã(t, R̃i)

)∣∣∣∣
t=0

≤ d

dt
f
(
Ã(t, Ri)

)∣∣∣∣
t=0

,

then we have

inf
A∈S

n∑
i=1

∥∇Ai
f(A)∥2F = 0.

Proof. This lemma is proved as part of the main theorems in (Ahn et al., 2023). We rearrange
the proof here to accommodate arbitrary function of matrices. Firstly, notice that for any R =
{Ri}ni=1 ∈ Πn

i=1Rdi×di ,
n∑

i=1

d

dt
f
(
Ã(t, Ri)

)∣∣∣∣
t=0

=
d

dt
f(A+ tR)

∣∣∣∣
t=0

.

Therefore, the provided precondition is equivalent to stating that for any A ∈ S and R ∈
Πn

i=1Rdi×di , there exists R̃ ∈ S such that:

d

dt
f
(
A+ tR̃

)∣∣∣∣
t=0

≤ d

dt
f(A+ tR)

∣∣∣∣
t=0

.

Let R = −∇Af(A), we then have

d

dt
f(A+ tR)

∣∣∣∣
t=0

=

〈
df(A− t∇Af(A))

d(A− t∇Af(A))
,
d(A− t∇Af(A))

t

〉∣∣∣∣
t=0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

= ⟨∇Af(A),−∇Af(A)⟩ = −∥∇Af(A)∥2F .

If the infimum of ∥∇Af(A)∥2F is not zero but some positive value p, then the S-constrained gradient
flow induced by R̃ will lead to unbounded descent:

d

dt
f
(
A+ tR̃

)∣∣∣∣
t=0

≤ −p.

This contradicts the fact that f(A) ≥ 0 and concludes the proof.

The following lemma is an extension of Lemma 5 in (Ahn et al., 2023) by accommodating mul-
tivariate y samples as well as enabling a wider range of demonstration and transformer parameter
configurations.
Lemma 9. Let x1, · · · , xn+1 be i.i.d. samples from an input distribution, and let W be sampled
independently of {xi}n+1

i=1 . Let Z0 ∈ R(2d)×N , where N ∈ Z, be constructed of form

Z0 =

[
∗ · · · ∗ ∗
∗ · · · ∗ 0d

]
∈ R(2d)×N ,

where the ∗ parts can be arbitrarily constructed from {xi}n+1
i=1 and W . Let Z̃0 be defined as replac-

ing the zero part of Z0 by yn+1:

Z̃0 =

[
∗ · · · ∗ ∗
∗ · · · ∗ yn+1

]
∈ R(2d)×N .

Let Z̃l be the output of the l-th layer of the linear transformer, and let X̃l, Ỹl ∈ Rd×N be the first
and last d rows of Z̃l, respectively. Suppose that the {Ql}Ll=1 matrices are of form

Ql =

[∗︸︷︷︸
d columns

0(2d+dp)×d ∗︸︷︷︸
dp columns

]
,

Then the in-context risk of this L-layer linear transformer is equivalent to

L
(
{Vl, Ql}Ll=1

)
= EZ̃0,W

[
tr
(
(IN −M)Ỹ ⊤

L ỸL(IN −M)
)]

. (14)

Proof. Let the Vl and Ql matrices be represented as:

Vl =

[
V 1
l

V 2
l

]
, Ql =

[
Q1

l 0 Q2
l

]
,

where V 1
l , V

2
l ∈ Rd×2d, Q1

l ∈ R(2d+dp)×d, Q2
l ∈ R(2d+dp)×dp . Then the update rule in eq. (5) can

be rephrased as

Xl = Xl−1 +
1

n
V 1
l Zl−1M

[
Z⊤
l−1, P

](
Q1

lXl−1 +Q2
l P
)
,

Yl = Yl−1 +
1

n
V 2
l Zl−1M

[
Z⊤
l−1, P

](
Q1

lXl−1 +Q2
l P
)
.

Let ∆Z = Z̃0 − Z0, i.e. an all-zero matrix except that the last half of the last column is yn+1. Let
∆X and ∆Y be its first and last d rows respectively, then ∆X = 0 and ∆Y = [0 · · · 0 yn+1].
Note that Z̃l = Zl +∆Z holds for l = 0 trivially. Now suppose it holds for some l = k − 1, then

X̃k = X̃k−1 +
1

n
V 1
k Z̃k−1M

[
Z̃⊤
k−1, P

](
Q1

kX̃k−1 +Q2
kP
)

= Xk−1 +
1

n
V 1
k Zk−1M

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)

+
1

n
V 1
k ∆ZM

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)

+
1

n
V 1
k Zk−1M

[
∆⊤

Z , 0dp×dp

](
Q1

kXk−1 +Q2
kP
)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

+
1

n
V 1
k ∆ZM

[
∆⊤

Z , 0dp×dp

](
Q1

kXk−1 +Q2
kP
)

= Xk−1 +
1

n
V 1
k Zk−1M

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)
= Xk,

where the last step holds by noticing that ∆ZM = 0. Similarly, one can prove that

Ỹk = Yk−1 +∆Y +
1

n
V 2
k Zk−1M

[
Z⊤
k−1, P

](
Q1

kXk−1 +Q2
kP
)
= Yk +∆Y .

Therefore, it holds that for any l ∈ [1, L], Z̃l = Zl +∆Z . Recall the in-context risk in eq. (2):

L
(
{Vl, Ql}Ll=1

)
= EZ0,W

∥∥(ZL)(d+1:2d),N + yn+1

∥∥2
2

= EZ0,W ∥(YL +∆Y)(IN −M)∥22
= EZ̃0,W

[
tr
(
(IN −M)Ỹ ⊤

L ỸL(IN −M)
)]

.

The proof is complete.

D PROOF OF THEORETICAL RESULTS

D.1 PROOF OF PROPOSITION 4

Proof. We will first prove sufficiency. Let W = ab⊤ be a rank-one matrix, where a, b ∈ Rd. The
given conditions imply that x = Wy = WWx = ab⊤ab⊤x, we then have b⊤x = b⊤ab⊤ab⊤x =
(b⊤a)2b⊤x. Since b⊤x ̸= 0, we can conclude that b⊤a = ±1. Then, x = ab⊤ab⊤x = ±ab⊤x =
±y.

To prove the necessity, it suffices to show that selecting W = xx⊤/∥x∥22 when x = y satisfies the
given conditions (alternatively, select W = −xx⊤/∥x∥22 when x = −y).

D.2 PROOF OF THEOREM 1

Proof. To enhance the readability of the notations in this proof, we will drop the constant 1
n factor

in linear attention. Furthermore, we will simplify Z̃0, X̃0 and Ỹ0 in Lemma 9 as Z0, X0 and Y0

respectively. This results in different definitions compared to the original ones, but we will not refer
to the original definitions in the remainder of this proof.

Z0 =

[
X0

Y0

]
=

[
x1 0 · · · xn 0 xtest 0
0 y1 · · · 0 yn 0 ytest

]
∈ R(2d)×(2n+2).

Let Zl be the output of the l-th layer of the transformer, and let Xl, Yl ∈ Rd×(2n+2) denote the first
and last d rows of Zl, respectively. Under the constraint in eq. (6), we can verify that

Xl = Xl−1 +AlXl−1M(X⊤
l−1ClXl−1 +Dl),

Yl = Yl−1 +BlYl−1M(X⊤
l−1ClXl−1 +Dl).

(15)

In the following analysis, we will use f(A ← B) to denote the result of the function f of A when
replacing the value of A with B. Additionally, we denote f(A ← B ∗ A) as f(A

∗←− B) for any
operator ∗. Therefore, f(A +←− B) = f(A ← A+ B). We also denote f(A

×←− B) = f(A ← BA)

and f(A
⋄←− B) = f(A← AB) for convenience.

Our goal is proving that, for any E ∈ A ∪ B ∪ C ∪D and an arbitrary matrix R ∈ Rd×d (Rdp×dp

for D), there exists R̃ ∈ SI (SΣ for C, SP for D) such that

d

dt
L(E +←− tR̃)

∣∣∣∣
t=0

≤ d

dt
L(E +←− tR)

∣∣∣∣
t=0

. (16)

Let X0 = [0, x1, · · · , 0, xtest] be a function of X0, we then have Y0 = WX0. Let U⊥ ∈ Rd×d be a
uniformly sampled random orthonormal matrix, and let UΣ = Σ1/2U⊥Σ

−1/2. One can verify that

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

U−1
Σ = Σ1/2U⊤

⊥Σ−1/2. By applying Lemma 9 and the fact that X0
d
= UΣX0, we have that for any

given matrix R,

d

dt
L(E +←− tR)

∣∣∣∣
t=0

=
d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (E
+←− tR)YL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(E

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,U⊥

[
tr

(
(I −M)Y ⊤

L (X0
×←− UΣ)

d

dt
YL(X0

×←− UΣ, E
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
.

Next, we will show that eq. (16) holds for each one of Ai, Bi, Ci, Di for any i ∈ [1, L].

1. Equation (16) holds for Ai.

We first show that for any l ∈ [1, L], the following equations hold:

Xl(X0
×←− UΣ) = UΣXl, (17)

d

dt
Xl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

. (18)

It is straightforward to verify that eq. (17) holds for l = 0. Now suppose that eq. (17) holds for some
l = k − 1, we then have

Xk(X0
×←− UΣ)

= Xk−1(X0
×←− UΣ) +AlXk−1(X0

×←− UΣ)M
(
X⊤

k−1(X0
×←− UΣ)ClXk−1(X0

×←− UΣ) +Dl

)
= UΣXk−1 +AlUΣXk−1M

(
X⊤

k−1U
⊤
Σ ClUΣXk−1 +Dl

)
= UΣ

(
Xk−1 +AlXk−1M

(
X⊤

k−1ClXk−1 +Dl

))
= UΣXk,

where the third equality follows by noticing that when Al = alId and Cl = clΣ
−1, we have

AlUΣ = UΣAl and U⊤
Σ ClUΣ = Cl. This concludes the proof of eq. (17).

We now turn to the proof of eq. (18). Notice that when l < i, we naturally have

d

dt
Xl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

= 0.

When l = i, it is easy to verify that

d

dt
Xl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= RUΣXl−1M(X⊤
l−1U

⊤
Σ ClUΣXl−1 +Dl)

= UΣ · U−1
Σ RUΣM(X⊤

l−1ClXl−1 +Dl)

= UΣ
d

dt
Xl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

.

Now suppose that eq. (18) holds for some l = k − 1 ≥ i, one can verify that:

d

dt
Xk(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

=
d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

+
d

dt
AkXk−1(X0

×←− UΣ, Ai
+←− tR)M

·
(
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)CkXk−1(X0
×←− UΣ, Ai

+←− tR) +Dk

)∣∣∣∣
t=0

=
d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

+Ak
d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

M
(
X⊤

k−1(X0
×←− UΣ)CkXk−1(X0

×←− UΣ) +Dk

)
+AkXk−1(X0

×←− UΣ)M
d

dt
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)

∣∣∣∣
t=0

CkXk−1(X0
×←− UΣ)

+AkXk−1(X0
×←− UΣ)MX⊤

k−1(X0
×←− UΣ)Ck

d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

+ UΣAk
d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

M
(
X⊤

k−1CkXk−1 +Dk

)
+ UΣAkXk−1M

d

dt
X⊤

k−1(Ai
+←− tU−1

Σ RUΣ)

∣∣∣∣
t=0

CkXk−1

+ UΣAkXk−1MX⊤
k−1Ck

d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

= UΣ
d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

+ UΣ
d

dt
AkXk−1(Ai

+←− tU−1
Σ RUΣ)M

·
(
X⊤

k−1(Ai
+←− tU−1

Σ RUΣ)CkXk−1(Ai
+←− tU−1

Σ RUΣ) +Dk

)∣∣∣∣
t=0

= UΣ
d

dt
Xk(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

.

This completes the proof of eq. (18).

Under the condition that Bl = blId for some bl ∈ R, we can simplify eq. (15) as

Yl = Yl−1 + blYl−1M(X⊤
l−1ClXl−1 +Dl)

= Yl−1

(
I + blM(X⊤

l−1ClXl−1 +Dl)
)

= Y0

l∏
j=1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
.

Define Gl = X0

∏l
j=1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
, then it satisfies that Yl = WGl. We are

ready to prove that similar results to eqs. (17) and (18) also hold for Gl, l ∈ [1, L]:

Gl(X0
×←− UΣ) = UΣGl, (19)

d

dt
Gl(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Gl(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

. (20)

Notice that eq. (19) holds trivially for l = 0 as G0 = X0. Now suppose that eq. (19) holds for some
l = k − 1, we then have

Gk(X0
×←− UΣ) = Gk−1(X0

×←− UΣ)
(
I + bkM(X⊤

k−1(X0
×←− UΣ)CkXk−1(X0

×←− UΣ) +Dk)
)

= UΣGk−1

(
I + bkM(X⊤

k−1CkXk−1 +Dk)
)
= UΣGk.

This concludes eq. (19). As for eq. (20), notice that both sides equal 0 when l ≤ i. Now suppose
that eq. (20) holds for some l = k − 1 ≥ i, we then have:

d

dt
Gk(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

=
d

dt
Gk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

+
d

dt
bkGk−1(X0

×←− UΣ, Ai
+←− tR)M

·
(
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)CkXk−1(X0
×←− UΣ, Ai

+←− tR) +Dk

)∣∣∣∣
t=0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

=
d

dt
Gk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

+ bk
d

dt
Gk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

M
(
X⊤

k−1(X0
×←− UΣ)CkXk−1(X0

×←− UΣ) +Dk

)
+ bkGk−1(X0

×←− UΣ)M
d

dt
X⊤

k−1(X0
×←− UΣ, Ai

+←− tR)

∣∣∣∣
t=0

CkXk−1(X0
×←− UΣ)

+ bkGk−1(X0
×←− UΣ)MX⊤

k−1(X0
×←− UΣ)Ck

d

dt
Xk−1(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Gk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

+ bkUΣ
d

dt
Gk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

M
(
X⊤

k−1CkXk−1 +Dk

)
+ bkUΣGk−1M

d

dt
X⊤

k−1(Ai
+←− tU−1

Σ RUΣ)

∣∣∣∣
t=0

CkXk−1

+ bkUΣGk−1MX⊤
k−1Ck

d

dt
Xk−1(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

= UΣ
d

dt
Gk(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

.

This concludes the proof of eq. (20). Consider the in-context risk:

d

dt
L(Ai

+←− tR)

∣∣∣∣
t=0

= 2EX0,W,U⊥

[
tr

(
(I −M)Y ⊤

L (X0
×←− UΣ)

d

dt
YL(X0

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,U⊥

[
tr

(
(I −M)G⊤

LU
⊤
Σ W⊤WUΣ

d

dt
GL(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
EU⊥

[
GL(Ai

+←− tU−1
Σ RUΣ)

]∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ai

+←− EU⊥

[
tU−1

Σ RUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ai

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (Ai
+←− trId)YL(Ai

+←− trId)(I −M)
)]∣∣∣∣

t=0

=
d

dt
L(Ai

+←− trId)

∣∣∣∣
t=0

,

where r = EU⊥ [U
−1
Σ RUΣ] =

1
d tr
(
Σ−1/2RΣ1/2

)
, and we used the fact that U⊤

Σ Σ−1UΣ = Σ−1,

and d
dtGL(Ai

+←− tR)
∣∣∣
t=0

is affine in R. This concludes that eq. (16) holds for Ai, i ∈ [1, L].

2. Equation (16) holds for Bi.

From the recursive expressions in eq. (15), we can conclude that the values of Xl do not depend on
Bi. Therefore, we naturally have

Xl(Bi
+←− tR) = Xl. (21)

Next, we would like to show that for any l ∈ [1, L],

EW

[
W⊤ d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

]
= Σ−1 d

dt
Gl(bi

+←− t tr(R))

∣∣∣∣
t=0

. (22)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

When l < i, we can easily verify eq. (22) since both sides equal 0. When l = i, we can get

EW

[
W⊤ d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

]
= EW

[
W⊤RYl−1M

(
X⊤

l−1ClXl−1 +Dl

)]
= EW

[
W⊤RW

]
Gl−1M

(
X⊤

l−1ClXl−1 +Dl

)
= tr(R)Σ−1Gl−1M

(
X⊤

l−1ClXl−1 +Dl

)
= Σ−1 d

dt
Gl(bi

+←− t tr(R))

∣∣∣∣
t=0

.

Suppose that eq. (22) holds for some l = k − 1 ≥ i. One can then verify

EW

[
W⊤ d

dt
Yk(Bi

+←− tR)

∣∣∣∣
t=0

]
= EW

[
W⊤ d

dt
Yk−1(Bi

+←− tR)
(
I + bkM(X⊤

k−1CkXk−1 +Dk)
)∣∣∣∣

t=0

]
= EW

[
W⊤ d

dt
Yk−1(Bi

+←− tR)

∣∣∣∣
t=0

](
I + bkM(X⊤

k−1CkXk−1 +Dk)
)

= Σ−1 d

dt
Gk−1(bi

+←− t tr(R))

∣∣∣∣
t=0

(
I + bkM(X⊤

k−1CkXk−1 +Dk)
)

= Σ−1 d

dt
Gk(bi

+←− t tr(R))

∣∣∣∣
t=0

.

The proof of eq. (22) is complete. Now, look at the in-context risk, we have

d

dt
L(Bi

+←− tR)

∣∣∣∣
t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Bi

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)G⊤

L EW

[
W⊤ d

dt
YL(Bi

+←− tR)

∣∣∣∣
t=0

]
(I −M)

)]
= 2EX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(bi

+←− t tr(R))

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Bi

+←− t tr(R)Id)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
L(Bi

+←− t tr(R)Id)

∣∣∣∣
t=0

.

This concludes that eq. (16) holds for Bi, i ∈ [1, L].

3. Equation (16) holds for Ci.

Similar to the Ai case, we will first prove that for any l ∈ [1, L],

d

dt
Xl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

. (23)

The equation above holds trivially for l < i. For the case l = i, we have

d

dt
Xl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= AjXl−1(X0
×←− UΣ)MX⊤

l−1(X0
×←− UΣ)RXl−1(X0

×←− UΣ)

= UΣAjXl−1MX⊤
l−1U

⊤
Σ RUΣXl−1 = UΣ

d

dt
Xl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

.

One can conclude the proof of eq. (23) through a similar reduction as eq. (18) for l > i layers. Next,
we establish the corresponding result for Gl:

d

dt
Gl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
Gl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

. (24)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

This equation holds trivially for l < i. When taking l = i, we can verify that

d

dt
Gl(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

= blGl−1(X0
×←− UΣ)MX⊤

l−1(X0
×←− UΣ)RXl−1(X0

×←− UΣ)

= blUΣGl−1(X0
×←− UΣ)MX⊤

l−1U
⊤
Σ RUΣXl−1

= UΣ
d

dt
Gl(Ci

+←− tU⊤
Σ RUΣ)

∣∣∣∣
t=0

.

For l > i layers, one can follow similar reductions as eq. (20) to finish the proof. We then consider
the in-context risk:

d

dt
L(Ci

+←− tR)

∣∣∣∣
t=0

= 2EX0,W,U⊥

[
tr

(
(I −M)Y ⊤

L (X0
×←− UΣ)

d

dt
YL(X0

×←− UΣ, Ci
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,U⊥

[
tr

(
(I −M)G⊤

LU
⊤
Σ W⊤WUΣ

d

dt
GL(Ci

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
EU⊥

[
GL(Ci

+←− tU⊤
Σ RUΣ)

]∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ci

+←− trΣ−1)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (Ci
+←− trΣ−1)YL(Ci

+←− trΣ−1)(I −M)
)]∣∣∣∣

t=0

=
d

dt
L(Ci

+←− trΣ−1)

∣∣∣∣
t=0

,

where r = EU⊥ [U
⊤
Σ RUΣ] =

1
d tr
(
Σ1/2RΣ1/2

)
. This concludes that eq. (16) holds for Ci.

4. Equation (16) holds for Di.

Let Up ∈ Rn×n be a uniformly sampled permutation matrix, i.e., a binary matrix that has exactly
one 1 entry in each row and column with all other entries 0. Let U◦ = diag(Up ⊗ I2, I2) ∈
R(2n+2)×(2n+2). One can verify that by multiplying X0U◦, it is equal to shuffling the first n 2-
column sub-blocks of X0 and keeping the last 2 columns unchanged.

Then, consider a matrix Uξ = diag(ξ1, . . . , ξn+1) ∈ R(n+1)×(n+1) where ξi
i.i.d.∼ Unif{±1}, i.e., a

diagonal matrix with random ±1 entries. Let U± = Uξ ⊗ I2 ∈ R(2n+2)×(2n+2). Thus, U± = U⊤
±

and X0U± is randomly flipping the sign of each 2-column sub-block in X0.

We are going to prove that for any l ∈ [1, L], recalling that f(A ⋄←− B) = f(A← AB),

Xl(X0
⋄←− U±U◦) = XlU±U◦, (25)

Gl(X0
⋄←− U±U◦) = GlU±U◦. (26)

Equation (25) holds trivially for l = 0. When eq. (25) holds for some l = k − 1, we can verify that

Xk(X0
⋄←− U±U◦)

= Xk−1U±U◦ +AkXk−1U±U◦M
(
U⊤
◦ U⊤

±X⊤
k−1CkXk−1U±U◦ +Dk

)
= Xk−1U±U◦ +AkXk−1U±U◦MU⊤

◦ U⊤
±
(
X⊤

k−1CkXk−1 + U±U◦DkU
⊤
◦ U⊤

±
)
U±U◦

= Xk−1U±U◦ +AkXk−1M
(
X⊤

k−1CkXk−1 +Dk

)
U±U◦

=
(
Xk−1 +AkXk−1M

(
X⊤

k−1CkXk−1 +Dk

))
U±U◦ = XkU±U◦.

It uses the fact that there exists some D1
i , D

2
i ∈ R2×2 such that Di = diag(In ⊗ D1

i , D
2
i), so

shuffling the first n 2 × 2 diagonal sub-blocks of Di does not change the matrix, and we have
U◦DiU

⊤
◦ = Di. Similarly, we have U±DkU

⊤
± = Dk. This concludes eq. (25), and eq. (26) could

be acquired similarly.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Next, we will establish the following equalities for Xl and Gl:

d

dt
Xl(X0

⋄←− U±U◦, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Xl(Di

+←− tU±U◦RU⊤
◦ U⊤

±)

∣∣∣∣
t=0

U±U◦, (27)

d

dt
Gl(X0

⋄←− U±U◦, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Gl(Di

+←− tU±U◦RU⊤
◦ U⊤

±)

∣∣∣∣
t=0

U±U◦. (28)

The proof follows by similar reductions as proving eqs. (18) and (20).

Finally, we consider the in-context risk under the permutation of Up and Uξ. Since each pair of

(xi, yi) is equivalently sampled from Gaussian distributions, we have X0
d
= X0U±U◦. Therefore,

d

dt
L(Di

+←− tR)

∣∣∣∣
t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Di

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,W,Up,Uξ

[
tr

(
(I−M)Y ⊤

L (X0
⋄←− U±U◦)

d

dt
YL(X0

⋄←− U±U◦, Di
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0,Up,Uξ

[
tr

(
(I−M)U⊤

◦ U⊤
±G⊤

LΣ
−1 d

dt
GL(Di

+←− tU±U◦RU⊤
◦ U⊤

±)

∣∣∣∣
t=0

U±U◦(I−M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
EUp,Uξ

[
GL(Di

+←− tU±U
⊤
◦ RU◦U±)

]∣∣∣∣
t=0

(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Di

+←− tR̃)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
L(Di

+←− tR̃)

∣∣∣∣
t=0

,

where R̃ = EUp,Uξ
[U±U

⊤
◦ RU◦U±] = diag(In ⊗R1, R2), R1 = 1

n

∑n
j=1 Rj , R2 = Rn+1, and Rj

is the j-th 2×2 diagonal block of R. The 4th equality uses the fact that tr[(I −M)A(I −M)] is ex-
tracting the right-bottom element of A, so it should be equal to tr

[
(I −M)U⊤

◦ U⊤
±AU±U◦(I −M)

]
for any matrix A. This concludes that eq. (16) holds for Di.

Till now, we have proved that eq. (16) holds for each one of Ai, Bi, Ci, Di. The proof of the whole
theorem is then completed by applying Lemma 8.

D.3 PROOF OF THEOREM 2

Proof. In this proof, we follow the same notations as the proof of Theorem 1, where the constant 1
n

factor is dropped and Z̃0, X̃0, Ỹ0 are simplified as Z0, X0, Y0 respectively.

Z0 =

[
x1 0 0 · · · xn 0 0 xtest 0 0
0 0 y1 · · · 0 0 yn 0 0 ytest

]
∈ R(2d)×(3n+3). (29)

Let Zl ∈ R2d×(3n+3) be the l-th layer’s output and let Xl, Yl ∈ Rd×(3n+3) be its first and last d
rows. Our goal is to prove that, for any E ∈ A ∪ B ∪ C ∪ D and an arbitrary matrix R ∈ Rd×d

(Rdp×dpforD), there exists R̃ ∈ SI (SΣ for C, SP for D) such that

d

dt
L(E +←− tR̃)

∣∣∣∣
t=0

≤ d

dt
L(E +←− tR)

∣∣∣∣
t=0

. (30)

The proofs of eq. (30) for Ai, Bi and Ci are identical with the proof of Theorem 1 so we omit them.
We will be focusing on Di for the rest of the proof.

Let Us
p ∈ Rn×n and U t

p ∈ R(n+1)×(n+1) be uniformly sampled permutation matrices. Let
Us
◦ = diag(Us

p , 1) ⊗ diag(1, 0, 1) and U t
◦ = U t

p ⊗ diag(0, 1, 0). Therefore, X0U
s
◦ is shuf-

fling the 1-st and 3-rd columns among each 3-column sub-block of X0 (except for the last 3-
column sub-block), and X0U

s
◦ is shuffling the 2-nd column among each 3-column sub-block. Next,

let Us
ξ , U

t
ξ ∈ R(n+1)×(n+1) be diagonal matrices with uniformly sampled ±1 entries. Define

Us
± = Us

ξ ⊗diag(1, 0, 1) and U t
± = U t

ξ ⊗diag(0, 1, 0). It can then be verified that X0U
s
±U

t
±

d
= X0.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

To simplify the notations, let U≡ denote Us
±U

t
±U

s
◦U

t
◦. We will focus on a subset of SP :

S ′P =
{
diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3

∣∣∣ Λ1,Λ2 ∈M
(

1 0 1
0 0 0
1 0 1

)
,Λ3 ∈M

(
0 0 0
0 1 0
0 0 0

)}
.

Assume Dk = diag(In ⊗ Λ1,Λ2) + In+1 ⊗ Λ3 ∈ S ′P as defined above, one can verify that it is
a block-diagonal matrix constructed from the same 3 × 3 sub-blocks, and thus is invariant under
U≡DkU

⊤
≡ . We will then prove that for any l ∈ [1, L],

Xl(X0
⋄←− U≡) = XlU≡, (31)

Gl(X0
⋄←− U≡) = GlU≡, (32)

d

dt
Xl(X0

⋄←− U≡, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Xl(Di

+←− tU≡RU⊤
≡)

∣∣∣∣
t=0

U≡, (33)

d

dt
Gl(X0

⋄←− U≡, Di
+←− tR)

∣∣∣∣
t=0

=
d

dt
Gl(Di

+←− tU≡RU⊤
≡)

∣∣∣∣
t=0

U≡. (34)

These results can be acquired by similar proofs as eqs. (25) to (28). We then consider the in-context
risk under the permutations of U≡. Similarly, we have X0

d
= X0U≡ and

d

dt
L(Di

+←− tR)

∣∣∣∣
t=0

= 2EX0,W

[
tr

(
(I −M)Y ⊤

L

d

dt
YL(Di

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0,U≡

[
tr

(
(I −M)G⊤

L (X0
⋄←− U≡)Σ

−1 d

dt
GL(X0

⋄←− U≡, Di
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2dEX0,U≡

[
tr

(
(I −M)U⊤

≡G⊤
LΣ

−1 d

dt
GL(Di

+←− tU≡RU⊤
≡)

∣∣∣∣
t=0

U≡(I −M)

)]
= 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Di

+←− tEU≡

[
U≡RU⊤

≡
]
)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
L(Di

+←− tR̃)

∣∣∣∣
t=0

.

Let Rj be the j-th 3 × 3 diagonal block of R, then R1 = 1
n

∑n
j=1 Rj ◦

(
1 0 1
0 0 0
1 0 1

)
, R2 = Rn+1 ◦(

1 0 1
0 0 0
1 0 1

)
, R3 = 1

n+1

∑n+1
j=1 Rj◦

(
0 0 0
0 1 0
0 0 0

)
and R̃ = EU≡

[
U≡RU⊤

≡
]
= diag(In⊗R1, R2)+In+1⊗R3.

This indicates that eq. (30) holds for each Di ∈ S ′P , and thus the proof of the whole theorem
completes by applying Lemma 8 and noticing that S ′P ⊂ SP .

D.4 PROOF OF THEOREM 7

Proof. We keep the same notations as the proof of Theorem 1, dropping the 1
n factor and simplifying

X̃0, Ỹ0, Z̃0 as X0, Y0, Z0, as follows:

Z0 =

[
0 0 · · · 0 0 0 0
x1 y1 · · · xn yn xtest ytest

]
∈ R(2d)×(2n+2). (35)

Note that we now have X0 and Y0 containing both xi and yi. Define

X = [x1 0 · · · xn 0 xtest 0] ,

X = [0 x1 · · · 0 xn 0 xtest] ,

Y = [0 y1 · · · 0 yn 0 ytest] .

we then have Y0 = X + Y = X +WX . From the parameter configuration in eq. (12), the update
rule of the first attention layer is

X1 = A1Y0MD1 = A1XMD1, Y1 = Y0 = X +WX. (36)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

The update rule for the following layers is the same as eq. (15). We are going to prove that, for any
E ∈ A ∪ B ∪ C ∪D and an arbitrary matrix R ∈ Rd×d (Rdp×dp for D), there exists R̃ ∈ SI (SΣ
for C, SP for D) such that

d

dt
L(E +←− tR̃)

∣∣∣∣
t=0

≤ d

dt
L(E +←− tR)

∣∣∣∣
t=0

. (37)

Similarly to Theorem 1, we uniformly sample U⊥ ∈ Rd×d as an orthonormal random matrix, and
let UΣ = Σ1/2U⊥Σ

−1/2. Under the condition that Bl = blId for some bl ∈ R, we have

Yl = Y1

l∏
j=2

(
I + bjM

(
X⊤

j−1CjXj−1 +Dj

))
.

Let Fl = X
∏l

j=2

(
I+bjM

(
X⊤

j−1CjXj−1+Dj

))
, Gl =

X
∏l

j=2

(
I+bjM

(
X⊤

j−1CjXj−1+Dj

))
, we then have Yl = Fl +WGl. According to Lemma 9,

d

dt
L(E +←− tR)

∣∣∣∣
t=0

=
d

dt
EX0,W

[
tr
(
(I −M)Y ⊤

L (E
+←− tR)YL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

=
d

dt
EX0,W

[
tr
(
(I −M)F⊤

L (E
+←− tR)FL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

+
d

dt
EX0,W

[
tr
(
(I −M)G⊤

L (E
+←− tR)W⊤WGL(E

+←− tR)(I −M)
)]∣∣∣∣

t=0

= 2EX0

[
tr

(
(I −M)F⊤

L

d

dt
FL(E

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(E

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
.

Next, we will show that eq. (37) holds for each one of Ai, Bi, Ci, Di for any i ∈ [1, L].

1. Equation (37) holds for Ai.

One can easily verify that eqs. (17) and (18) still hold. Furthermore, eqs. (19) and (20) hold for both
Fl and Gl. With these observations, we can then verify

d

dt
L(Ai

+←− tR)

∣∣∣∣
t=0

= 2EX0,U⊥

[
tr

(
(I −M)F⊤

L (X
×←− UΣ)

d

dt
FL(X

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0,U⊥

[
tr

(
(I −M)G⊤

L (X
×←− UΣ)Σ

−1 d

dt
GL(X

×←− UΣ, Ai
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0,U⊥

[
tr

(
(I −M)F⊤

L U⊤
Σ UΣ

d

dt
FL(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0,U⊥

[
tr

(
(I −M)G⊤

LU
⊤
Σ Σ−1UΣ

d

dt
GL(Ai

+←− tU−1
Σ RUΣ)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)F⊤

L

d

dt
FL(Ai

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+ 2dEX0

[
tr

(
(I −M)G⊤

LΣ
−1 d

dt
GL(Ai

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
L(Ai

+←− trId)

∣∣∣∣
t=0

,

where r = EU⊥ [U
−1
Σ RUΣ] =

1
d tr
(
Σ−1/2RΣ1/2

)
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

2. Equation (37) holds for Bi.

From the definition of Fl and Gl, we can verify that
d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

= R(Fi−1 +WGi−1)M(X⊤
i−1CiXi−1 +Di)

l∏
j=i+1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
.

Define

F i
l =

(
Fi−1 +BiFi−1M(X⊤

i−1CiXi−1 +Di)
) l∏
j=i+1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
,

Gi
l =

(
WGi−1 +BiWGi−1M(X⊤

i−1CiXi−1 +Di)
) l∏
j=i+1

(
I + bjM(X⊤

j−1CjXj−1 +Dj)
)
,

We then have
d

dt
Yl(Bi

+←− tR)

∣∣∣∣
t=0

=
d

dt
F i

l(Bi
+←− tR)

∣∣∣∣
t=0

+
d

dt
Gi

l(Bi
+←− tR)

∣∣∣∣
t=0

.

Similar to eqs. (20) and (22), we can prove that
d

dt
F i

l(X0
×←− UΣ, Bi

+←− tR)

∣∣∣∣
t=0

= UΣ
d

dt
F i

l(Bi
+←− tU−1

Σ RUΣ)

∣∣∣∣
t=0

,

EW

[
W⊤ d

dt
Gi

l(Bi
+←− tR)

∣∣∣∣
t=0

]
= Σ−1 d

dt
Gi

l(Bi
+←− t tr(R)Id)

∣∣∣∣
t=0

.

Without loss of generality, we assume that r = 1
d tr
(
Σ−1/2RΣ1/2

)
≤ 1

d tr(R), and let γ =
rd/ tr(R) ≤ 1. Then, one can verify that

d

dt
L(Bi

+←− tR)

∣∣∣∣
t=0

= 2EX0,U⊥

[
tr

(
(I −M)F⊤

l (X
×←− UΣ)

d

dt
F i

l(X
×←− UΣ, Bi

+←− tR)

∣∣∣∣
t=0

(I −M)

)]
+ 2EX0,W

[
tr

(
(I −M)G⊤

l W
⊤ d

dt
Gi

l(Bi
+←− tR)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)F⊤

l

d

dt
F i

l(Bi
+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+ 2EX0

[
tr

(
(I −M)G⊤

l Σ
−1 d

dt
Gi

l(Bi
+←− t tr(R)Id)

∣∣∣∣
t=0

(I −M)

)]
= 2EX0

[
tr

(
(I −M)F⊤

l

d

dt
Fl(Bi

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+

1

γ
2dEX0

[
tr

(
(I −M)G⊤

l Σ
−1 d

dt
Gl(Bi

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
=

(
1

γ
− 1

)
2dEX0

[
tr

(
(I −M)G⊤

l Σ
−1 d

dt
Gl(Bi

+←− trId)

∣∣∣∣
t=0

(I −M)

)]
+

d

dt
L(Bi

+←− trId)

∣∣∣∣
t=0

≥ d

dt
L(Bi

+←− trId)

∣∣∣∣
t=0

.

The last inequality assumes the positivity of the term involving Gl. Otherwise, one can simply flip
the numerator and denominator of γ and scale the derivative of Fl instead of Gl to yield an additional
positive term besides the risk term to finish the proof.

3. Equation (37) holds for Ci, Di.

Similarly, one can verify that eqs. (23) and (24) still hold (also eqs. (25) to (28)), and finish the proof
by following the same reductions as Theorem 1 with Fl and Gl.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D.5 PROOF OF PROPOSITION 3

Proof. Let Al = alId, Bl = blId, Cl = clId and Dl = diag(In⊗D1
l , D

2
l)+In+1⊗D3

l +D4
l⊗D5

l for
l ∈ [1, 2]. Let Zl ∈ R2d×(3n+3) be the output of the l-th attention layer, and let Xl, Yl ∈ Rd×(3n+3)

be its first and last d rows respectively. Note that Yl in this proof does not contain ytest.

Let D1
1 =

(
dx
x 0 dy

x
0 0 0
dx
y 0 dy

y

)
, D2

1 =
(

sx 0 sy
0 0 0
0 0 0

)
(note that the last row of D2

1 is masked out by M , so we

simply set it to 0), and D5
1 =

(0 tx 0
0 0 0
0 ty 0

)
. We use D as an abbreviation for D4

1 , and use di,j to denote

the elements in D. One can verify that

X1 = X0 + a1X0M
(
diag(In ⊗D1

1, D
2
1) + In+1 ⊗D3

1 +D4
1 ⊗D5

1

)
=

[(1 + a1d
x
x)x1 a1tx

∑n+1
i=1 di,1xi a1d

y
xx1

· · ·
(1 + a1d

x
x)xn a1tx

∑n+1
i=1 di,nxi a1d

y
xxn

(1 + a1d
x
x)xtest a1tx

∑n+1
i=1 di,n+1xi a1d

y
xxtest]

.

Similarly, we have

Y1 = Y0 + b1Y0M
(
diag(In ⊗D1

1, D
2
1) + In+1 ⊗D3

1 +D4
1 ⊗D5

1

)
=

[b1d
x
yy1 b1ty

∑n
i=1 di,1yi (1 + b1d

y
y)y1

· · ·
b1d

x
yyn b1ty

∑n
i=1 di,nyi (1 + b1d

y
y)yn

0 b1ty
∑n

i=1 di,n+1yi 0]

.

By the definition of linear attention, we can show that

TF(Z0; {Vl, Ql}2l=1) = (Y2)3n+3 = b2Y1M
(
c2X

⊤
1 (X1)3n+3 + (D2)3n+3

)
= b2c2a1d

y
x

(
3n+2∑
i=1

(Y1)i(X1)
⊤
i

)
xtest.

Define ∆X1 = [0 a1txdn+1,1xtest 0 · · · 0 a1txdn+1,n+1xtest 0], and let X1 = X1 −
∆X1, then TF(Z0; {Vl, Ql}2l=1) = TF(Z0; {Vl, Ql}2l=1, X1 ← X1) + TF(Z0; {Vl, Ql}2l=1, X1 ←
∆X1). Let b1dxy(1 + a1d

x
x) + (1 + b1d

x
y)a1d

x
x = a, b1tya1tx = b, b2c2a1dyx = c, we then have

TF(Z0; {Vl, Ql}2l=1, X1 ← X1) = c

a

n∑
i=1

yix
⊤
i + b

n+1∑
i=1

 n∑
j=1

dj,iyj

 n∑
j=1

dj,ix
⊤
j

xtest

= c

a

n∑
i=1

yix
⊤
i + b

n∑
j=1

n∑
k=1

(
n+1∑
i=1

dj,idk,i

)
yjx

⊤
k

xtest, (38)

TF(Z0; {Vl, Ql}2l=1, X1 ← ∆X1) = bc

n+1∑
i=1

n∑
j=1

dj,iyjdn+1,ix
⊤
testxtest

= bc

n∑
j=1

(
n+1∑
i=1

dj,idn+1,i

)
yjx

⊤
testxtest. (39)

Now consider the in-context risk,

L(V,Q) = EZ0,W ∥TF(Z0; {V,Q}) +Wxtest∥22
= EZ0,W

[
(TF(Z0; {V,Q}) +Wxtest)

⊤
(TF(Z0; {V,Q}) +Wxtest)

]
= EZ0,W

[(
TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)⊤(
TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)]
+ 2EZ0,W

[
TF(Z0; {V,Q}, X1 ← ∆X1)

⊤(TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)]
+ EZ0,W

[
TF(Z0; {V,Q}, X1 ← ∆X1)

⊤ TF(Z0; {V,Q}, X1 ← ∆X1)
]
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

In the equation above, the 3-rd part is always positive. We then examine the second part:

EZ0,W

[
TF(Z0; {V,Q}, X1 ← ∆X1)

⊤(TF(Z0; {V,Q}, X1 ← X1) +Wxtest

)]
= EZ0,W

[
x⊤
testxtestv1xtest + x⊤

testxtestv2xtest

]
= 0,

where v1=bc
∑n

j=1

(∑n+1
i=1 dj,idn+1,i

)
y⊤j c
(
a
∑n

i=1 yix
⊤
i +b

∑n
j=1

∑n
k=1

(∑n+1
i=1 dj,idk,i

)
yjx

⊤
k

)
and v2 = bc

∑n
j=1

(∑n+1
i=1 dj,idn+1,i

)
y⊤j W are independent of xtest. Therefore, L(V,Q) attains

its minimum only if TF(Z0; {V,Q}, X1 ← ∆X1) = 0, implying dn+1,i = 0 for i ∈ [1, n+ 1].

In the following analysis, we will assume that the last row of D is 0, and let M ∈ Rn×(n+1) be
the first n rows of D. Additionally, we will drop the c factor in eq. (38), since its position could be
substituted by a and b. We then define W̃ = a

∑n
i=1 yix

⊤
i + b

∑n
j=1

∑n
k=1

(∑n+1
i=1 dj,idk,i

)
yjx

⊤
k ,

X = [x1 · · · xn] and Y = [y1 · · · yn]. One can verify that

W̃ = aY X⊤ + bY MM⊤X⊤ = aWXX⊤ + bWXMM⊤X⊤. (40)

Furthermore, the in-context risk could be expanded as

L(V,Q) = EZ0,W

∥∥∥W̃xtest +Wxtest

∥∥∥2
2
= EZ0,W

[
x⊤
test(W̃ +W)⊤(W̃ +W)xtest

]
= EZ0,W

[
tr
(
(W̃ +W)⊤(W̃ +W)

)]
= EZ0,W

[
tr
(
W̃⊤W̃

)
+ 2 tr

(
W⊤W̃

)
+ tr

(
W⊤W

)]
.

We will use the identity EX [XAX⊤XBX⊤] =
(
tr(A) tr(B) + tr

(
AB⊤)+ d tr(AB)

)
Id for any

A,B ∈ Rn×n, which can be acquired by expanding each element and applying Isserlis’ theorem.
Let T1 = tr

(
MM⊤) and T2 = tr

(
MM⊤MM⊤), then

EZ0,W

[
tr
(
(aWXX⊤ + bWXMM⊤X⊤)⊤(aWXX⊤ + bWXMM⊤X⊤)

)]
= EZ0,W

[
a2 tr

(
XX⊤W⊤WXX⊤)+ 2ab tr

(
XX⊤W⊤WXMM⊤X⊤)]

+ EZ0,W

[
b2 tr

(
XMM⊤X⊤W⊤WXMM⊤X⊤)]

= dEZ0

[
a2 tr

(
XX⊤XX⊤)+ 2ab tr

(
XX⊤XMM⊤X⊤)+ b2 tr

(
XMM⊤X⊤XMM⊤X⊤)]

= a2d2n(n+ 1 + d) + 2abd2(n+ 1 + d)T1 + b2d2(T 2
1 + (1 + d)T2).

Simultaneously, we can verify that EZ0,W [tr
(
W⊤W

)
] = d2 and

EZ0,W

[
tr
(
W⊤W̃

)]
= EZ0,W

[
aW⊤WXX⊤ + bW⊤WXMM⊤X⊤] = ad2n+ bd2T1.

Combining the results above, we aim to find the optimal a, b,M that minimize

1

d2
L(V,Q) = c0 + c1T1 + c2T

2
1 + c3T2,

where

c0 = a2n(n+ 1 + d) + 1 + 2an, c1 = 2ab(n+ 1 + d) + 2b,

c2 = b2, c3 = b2(1 + d).

Since c3 ≥ 0, to minimize L(V,Q) we need to minimize T2. Given that MM⊤ is symmetric, we
denote its n eigenvalues as λi, i ∈ [1, n]. Then by Cauchy–Schwarz inequality,

tr
(
MM⊤MM⊤) = n∑

i=1

λ2
i ≥

1

n

(
n∑

i=1

λi

)2

=
1

n
tr2(MM⊤).

Therefore, L(V,Q) is minimized only if the inequality above holds with equality, which implies
that λi = λj for any i ̸= j. This concludes the proof by showing that there exists λ ∈ R such that
MM⊤ = λId, and thus DD⊤ = diag(λId, 0).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

D.6 PROOF OF PROPOSITION 5

Proof. We will continue from eqs. (38) and (39). After applying token-wise dropout, we have

TF(Z0; {Vl, Ql}2l=1, X1 ← X1) =

n∑
i=1

(ao3i−2
2 + bo3i2)o3i−2

1 o3i1 yix
⊤
i o

3n+1
1 o3n+3

2 xtest

+ c

n∑
j=1

n∑
k=1

(
n+1∑
i=1

o3i−1
2 dj,idk,i

)
o3j1 o3k−2

1 yjx
⊤
k o

3n+1
1 o3n+3

2 xtest, (41)

TF(Z0; {Vl, Ql}2l=1, X1 ← ∆X1) = co3n+3
2

n∑
j=1

(
n+1∑
i=1

dj,idn+1,i

)
o3j1 o3n+1

1 yjx
⊤
testxtest,

where a = b2c2a1d
y
xb1d

x
y(1 + a1d

x
x), b = b2c2a1d

y
x(1 + b1d

x
y)a1d

x
x and c = b2c2a1d

y
xb1tya1tx.

One can verify that our previous analysis about TF(Z0; {Vl, Ql}2l=1, X1 ← ∆X1) still holds and
we thus have dn+1,: = 0. We then define:

O1
l = diag(o1l , · · · , o3n−2

l) ∈ Rn×n, O2
l = diag(o3l , · · · , o3nl) ∈ Rn×n, for l ∈ [2],

O3
2 = diag(o22, · · · , o3n+2

2) ∈ R(n+1)×(n+1).

By defining

W̃ =

n∑
i=1

(ao3i−2
2 + bo3i2)o3i−2

1 o3i1 yix
⊤
i + c

n∑
j=1

n∑
k=1

(
n+1∑
i=1

o3i−1
2 dj,idk,i

)
o3j1 o3k−2

1 yjx
⊤
k ,

One can verify that

W̃ = A+B + C ≜ aY O2
1O

1
2O

1
1X

⊤ + bY O2
1O

2
2O

1
1X

⊤ + cY O2
1MO3

2M
⊤O1

1X
⊤.

Then, we will compute the expectation of each term in the following decomposition:

L(V,Q) = EZ0,W

[
tr
(
W̃⊤W̃

)
+ 2 tr

(
W⊤W̃

)
+ tr

(
W⊤W

)]
,

Specifically, let T1 = tr
(
MM⊤), T2 = tr

(
MM⊤MM⊤), T3 = ∥M∥44, T4 =

∑n
i=1 ∥Mi,:∥42,

T5 =
∑n+1

j=1 ∥M:,j∥42, we then have

E[tr
(
A⊤A

)
] = a2d2(np3 + n(n− 1)p6 + (1 + d)np3),

E[tr
(
B⊤B

)
] = b2d2(np3 + n(n− 1)p6 + (1 + d)np3),

E[tr
(
C⊤C

)
] = c2d2(p6T 2

1 + (1 + d)(p4 − p6)T4 + (1 + d)(p5 − p6)T5

+ (1 + d)(p3 − p4 − p5 + p6)T3 + (p3 − p4)T4 + p4T2 + dp6T2),

E[tr
(
A⊤B

)
] = abd2(np4 + n(n− 1)p6 + (1 + d)np4),

E[tr
(
A⊤C

)
] = acd2((p4 + (n− 1)p6)T1 + (1 + d)p4T1),

E[tr
(
B⊤C

)
] = bcd2((p4 + (n− 1)p6)T1 + (1 + d)p4T1),

E[tr
(
W⊤A

)
] = ad2np3, E[tr

(
W⊤B

)
] = bd2np3, E[tr

(
W⊤C

)
] = cd2p3T1.

Summarizing our analysis above, minM L(V,Q) is equivalent to:
min
M

{
c0 + c1T1 + c2T2 + c3T3 + c4T4 + c5T5 + c6T

2
1

}
,

where
c0 = 1 + n(2 + d)p3(a2 + b2) + 2np3(a+ b) + 2n(2 + d)p4ab+ n(n− 1)p6(a+ b)2,

c1 = 2(a+ b)c(p4 + (n− 1)p6 + (1 + d)p4) + 2cp3,

c2 = c2(p4 + dp6),

c3 = c2(1 + d)(p3 − p4 − p5 + p6),

c4 = c2((1 + d)(p4 − p6) + (p3 − p4)),

c5 = c2(1 + d)(p5 − p6),

c6 = c2p6.

It is easy to verify that c2, c3, c4, c5, c6 ≥ 0.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

D.7 PROOF OF PROPOSITION 6

Proposition 6 (Restate). Let dp denote the number of non-EOS tokens. Given any L-layer, single-
head, d-dimensional linear-attention transformer with EOS tokens:

TF
(
Z0; {Vl, Ql, Pl}l∈[L]

)
= (ZL):,dp+1, (Z0):,dp+1 = 0,

where

Zl ∈ Rd×(dp+1), Vl, Ql ∈ Rd×d, Pl ∈ R(dp+1)×(dp+1),

Zl = Zl−1 + VlZl−1M(Z⊤
l−1QlZ

⊤
l−1 + Pl), M = diag(Idp , 0).

There exists an L-layer, two-head, 2d-dimensional linear-attention transformer operating without
EOS tokens:

TF
(
Z0; {V h

l , Q
h
l , P

h
l }l∈[L],h∈[2]

)
= (ZL)d:2d,dp

,

where

Zl ∈ R2d×dp , V h
l , Q

h
l ∈ R2d×2d, Ph

l ∈ Rdp×dp ,

Zl = Zl−1 +

2∑
h=1

V h
l Zl−1(Z

⊤
l−1Q

h
l Z

⊤
l−1 + Ph

l).

Such that for any Z ∈ Rd×dp , by letting Z0 = [Z 0] and Z0 =

[
Z
0

]
, we have

TF
(
Z0; {Vl, Ql, Pl}l∈[L]

)
= TF

(
Z0; {V h

l , Q
h
l , P

h
l }l∈[L],h∈[2]

)
.

Proof. We construct V h
l , Qh

l , and Ph
l as follows:

V 1
l =

[
Vl 0
0 0

]
, Q1

l =

[
Ql 0
0 0

]
, P 1

l = (Pl)1:dp,1:dp ,

V 2
l =

[
0 0
Vl 0

]
, Q2

l =

[
0 Ql

0 0

]
, P 2

l =
[
0 (Pl):,dp+1

]
.

We will show that for any l ∈ [L], it satisfies Zl =

[
(Zl):,(1:dp−1) (Zl):,dp

0 (Zl):,dp+1

]
. One can verify

that it holds trivially for l = 0. Then, suppose it holds for some l = k − 1, we have

Zk = Zk−1 + V 1
kZk−1(Z

⊤
k−1Q

1
kZ

⊤
k−1 + P 1

k) + V 2
kZk−1(Z

⊤
k−1Q

2
kZ

⊤
k−1 + P 2

k)

= Zk−1 +

[
Vk(Zk−1):,1:dp

(
(Zk−1)

⊤
:,1:dp

Qk(Zk−1):,1:dp
+ (Pk)1:dp,1:dp

)
0

]

+

[
0

Vk(Zk−1):,1:dp

] ([
0 (Zk−1)

⊤
:,1:dp

Qk(Zk−1):,dp+1

]
+
[
0 (Pk):,dp+1

])
= Zk−1 +

[
VkZk−1M

(
Z⊤
k−1Qk(Zk−1):,1:dp

+ (Pk):,1:dp

)
0

]
+

[
0 0
0 VkZk−1M

(
Z⊤
k−1Qk(Zk−1):,dp+1 + (Pk):,dp+1

)]
=

[
(Zk):,1:dp

0

]
+

[
0 0
0 (Zk):,dp+1

]
.

The proof is complete.

35

	Introduction
	Related Works

	Setting: Linear Regression with Linear-Attention Models
	Emergence of Task Vectors in Linear-Attention Models
	Warm-up: Learning with Pairwise Demonstrations
	Emergence of Task Vectors with Triplet Demonstrations

	Predicted Failure of Task Vectors on Bijection Tasks
	Further Discussions
	Experimental Studies
	Synthetic Results with Random Linear Regression
	Enhancing the Task Vector Method

	Conclusion, Limitations, and Future Works
	Additional Discussions
	Summary of Mathematical Notations
	Additional Related Works
	Justification of the Block-Diagonal Assumption
	Inseparable Covariates and Responses
	Last Task Vector Weights the Most

	Experiment Details and Additional Results
	Synthetic Experiments on Linear-Attention Models
	Experiments on Practical LLMs
	Another Multi-Vector Injection Variant
	Further Results on Bijection Tasks
	Full Saliency Analysis Results

	Auxiliary Lemmas
	Proof of Theoretical Results
	Proof of Proposition 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 7
	Proof of Proposition 3
	Proof of Proposition 5
	Proof of Proposition 6

