

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING TASK VECTORS IN IN-CONTEXT LEARNING: EMERGENCE, FUNCTIONALITY, AND LIM- ITATIONS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Task vector is a compelling mechanism for accelerating inference in in-context learning (ICL) by distilling task-specific information into a single, reusable representation. Despite their empirical success, the underlying principles governing their emergence and functionality remain unclear. This work proposes the *Task Vectors as Representative Demonstrations* conjecture, positing that task vectors encode single in-context demonstrations distilled from the original ones. We provide both theoretical and empirical support for this conjecture. First, we show that task vectors naturally emerge in linear transformers trained on triplet-formatted prompts through loss landscape analysis. Next, we predict the failure of task vectors in representing high-rank mappings and confirm this on practical LLMs. Our findings are further validated through saliency analyses and parameter visualization, suggesting an enhancement of task vectors by injecting multiple ones into few-shot prompts. Together, our results advance the understanding of task vectors and shed light on the mechanisms underlying ICL in transformer-based models.

## 1 INTRODUCTION

In-context learning (ICL) is a core capability of large language models (LLMs), allowing them to perform new tasks without parameter updates by conditioning on a few input-output examples in the prompt (Brown et al., 2020). Unlike traditional training, ICL relies on attention-based mechanisms to infer task structure directly from context. This surprising generalization ability has led to growing interest in uncovering the principles of learning purely from contextual examples (Xie et al., 2022; Chan et al., 2022; Dai et al., 2023; Shen et al., 2024; Deutch et al., 2024).

A recent work investigates the task vector method (Hendel et al., 2023) (concurrent works include function vectors (Todd et al., 2024) and in-context vectors (Liu et al., 2024)), a technique that distills underlying task information from ICL demonstrations into a single vector. Typically, ICL prompts are structured as sequences of triplets, each encoding a semantic mapping, in addition to a query at the end (e.g., “*hot* → *cold*, *up* → *down*, *dark* → ”). Task vectors are then extracted from the hidden states of the last (→) token. Once obtained, these vectors can be injected into new zero-shot prompts (e.g., “*big* → ”), enabling the model to generalize to unseen inputs in a zero-shot fashion.

Task vectors naturally emerge even in small transformer models trained from scratch (Yang et al., 2025), suggesting that their formation is a general property of attention-based architectures. Recent studies further demonstrate that task vectors can be enhanced by aggregating hidden states across multiple layers and arrow tokens (Li et al., 2024). Beyond language models, task vectors are also effective in large-scale visual (Hojel et al., 2024) and multi-modal (Huang et al., 2024) models.

Despite their empirical effectiveness, the underlying mechanism of task vectors, especially how they emerge, function, and encode task information, remains poorly understood. This paper takes a step toward unveiling the principles behind it by introducing the following conjecture:

### Conjecture (Task Vectors as Representative Demonstrations)

*The injected task vector facilitates zero-shot inference by encoding a single representative demonstration, distilled from the original in-context examples.*



Figure 1: Overview of task vector and our main conjecture. (a) Task vector emerges during ICL by distilling from the preceding in-context demonstrations. (b) It can then be injected into zero-shot prompts and functions as a single, representative demonstration, facilitating efficient prediction.

An intuitive illustration is provided in Figure 1. In the following sections, we validate this conjecture through various empirical and theoretical perspectives. These analyses comprehensively explain how task vectors naturally emerge within attention-based model architectures, effectively encode task-related information, and facilitate inference in zero-shot prompts. Our work advances the understanding of the underlying mechanisms behind ICL, clarifying both the efficacy and limitations of task vectors in transformer-based LLMs. The highlights of this paper are as follows:

- **Theoretical Justification in Linear-Attention Models:** We theoretically characterize the critical points of linear-attention models and demonstrate how they solve random linear regression tasks through embedding concatenation and gradient descent. With a triplet-formatted input prompt structure, task vectors naturally emerge at arrow tokens as weighted summations of the in-context demonstrations, potentially enhancing robustness under representational perturbations by redundantly encoding task information. Empirically, the learned linear model parameters closely align with the predicted structure and successfully replicate the task vector mechanism.
- **Empirical Verification in Practical LLMs:** We visualize the information flow in LLMs with saliency analysis and observe patterns consistent with linear models, suggesting they share similar underlying mechanisms. According to our conjecture, inference with task vectors is analogous to 1-shot ICL, which is inherently limited to rank-one meta-predictors under the gradient descent perspective. To validate this, we introduce a series of bijection tasks that are provably unsolvable by rank-one predictors, and empirically confirm this failure in real-world transformers. Building on these insights, we enhance the standard task vector method by injecting multiple vectors into few-shot prompts, resulting in consistent performance gains across a range of ICL tasks.

## 1.1 RELATED WORKS

**Theory of ICL.** Recent analyses have shown that attention layers can simulate gradient-descent algorithms for regression tasks (Garg et al., 2022; Von Oswald et al., 2023a; Ahn et al., 2023; Wu et al., 2024). Other works study generalization and sample complexity (Xie et al., 2022; Chan et al., 2022; Shen et al., 2024; Von Oswald et al., 2023b; Deutch et al., 2024). These works reveal the inductive bias of attention but leave open how abstract task representations are formed or encoded.

**Task Vector Mechanism.** Multiple recent works identified the mechanism of task vectors during ICL inference (Hendel et al., 2023; Todd et al., 2024; Liu et al., 2024). These vectors emerge in the pretraining stage of LLMs (Yang et al., 2025) and extend beyond text to vision (Hojel et al., 2024) and multimodal (Huang et al., 2024) models. Despite the effectiveness, their underlying mechanism remains poorly understood. A concurrent work (Bu et al., 2025) interprets them via a word2vec-like additive scheme, but is limited to simple additive tasks, single-token prompts, and 1-layer models. In contrast, our analysis extends to pairwise or triplet prompts and multi-layer attention.

A more comprehensive discussion of the related works can be found in Appendix A.2.

## 2 SETTING: LINEAR REGRESSION WITH LINEAR-ATTENTION MODELS

**Notations:** We write  $[n] = \{1, \dots, n\}$ . The Hadamard product is denoted by  $\circ$ , and the Kronecker product by  $\otimes$ . The identity matrix of dimension  $n$  is denoted by  $I_n$ , while  $0_n$  and  $0_{m \times n}$  represent

108 zero vectors or matrices of the corresponding dimensions. Subscripts are omitted when the dimensions  
 109 are clear from context. We define  $\mathcal{M}(M) = \{\Lambda \in \mathbb{R}^{\dim(M)} \mid \Lambda = M \circ A, A \in \mathbb{R}^{\dim(M)}\}$  as  
 110 the set of masked matrices induced by mask  $M$ . For a general matrix  $A$ , the element at the  $i$ -th row  
 111 and  $j$ -th column is denoted by  $A_{i,j}$ , and the sub-block from rows  $i$  to  $k$  and columns  $j$  to  $l$  is denoted  
 112 by  $A_{i:k,j:l}$ .  $\text{diag}(A_1, \dots, A_n)$  represents the block-diagonal matrix constructed by  $\{A_i\}_{i=1}^n$ .

113 **Random Linear Regression:** Following works (Garg et al., 2022; Von Oswald et al., 2023a; Ahn  
 114 et al., 2023; Wu et al., 2024), we consider training linear transformers on random instances of linear  
 115 regression. Let  $\{x_i\}_{i=1}^{n+1}$ , where  $x_i \in \mathbb{R}^d$ , denote covariates drawn i.i.d. from distribution  $P_x$ , and  
 116 let  $\{w_i\}_{i=1}^d$ , where  $w_i \in \mathbb{R}^d$ , denote coefficients drawn i.i.d. from distribution  $P_w$ . Define the  
 117 coefficient matrix  $W = [w_1 \dots w_d]^\top \in \mathbb{R}^{d \times d}$ . The responses are then generated as  $y_i = Wx_i$   
 118 for  $i \in [n+1]$ . We denote by  $X, Y \in \mathbb{R}^{d \times n}$  the matrices whose columns are  $x_i$  and  $y_i$ , respectively.  
 119 The query covariate and response are denoted by  $x_{\text{test}} = x_{n+1}$  and  $y_{\text{test}} = y_{n+1}$  respectively.  
 120

121 **Linear Self-Attention Model:** Following prior works (Von Oswald et al., 2023a; Ahn et al., 2023;  
 122 Wu et al., 2024), we consider transformers composed of linear self-attention layers. Let  $Z_0 \in$   
 123  $\mathbb{R}^{2d \times d_p}$  denote the input matrix constructed from  $X, Y$  and  $x_{\text{test}}$  but excluding  $y_{\text{test}}$ , where  $d_p$   
 124 denotes the number of tokens and varies across prompt structures. The model is defined by stacking  
 125  $L$  attention blocks with skip connections, where the  $l$ -th layer is expressed as:  
 126

$$Z_l = Z_{l-1} + \frac{1}{n} \text{Attn}_{V_l, Q_l}(Z_{l-1}), \quad \text{Attn}_{V, Q}(Z) = V Z M (Z^\top Q Z). \quad (1)$$

127 Here, the trainable parameters are  $\{V_l, Q_l\}_{l=1}^L$ , where  $V_l \in \mathbb{R}^{2d \times 2d}$  denotes the projection and value  
 128 matrices, and  $Q_l \in \mathbb{R}^{2d \times 2d}$  denotes the query and key matrices. Following the work (Ahn et al.,  
 129 2023), we adopt a masking matrix  $M = \text{diag}(I_{d_p-1}, 0)$  to prevent attention from earlier tokens to  
 130 the final one. The output of the model is defined as  $\text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^L) = (Z_L)_{(d+1:2d), d_p}$  (i.e.,  
 131 the latter half of the last column). This definition aligns with the structure of the input  $Z_0$ , which  
 132 will be further discussed in subsequent sections. During training, the parameters are optimized to  
 133 minimize the expected ICL risk over random linear regression instances:  
 134

$$\mathcal{L}(\{V_l, Q_l\}_{l=1}^L) = \mathbb{E}_{Z_0, W} \|\text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^L) + Wx_{\text{test}}\|_2^2. \quad (2)$$

### 3 EMERGENCE OF TASK VECTORS IN LINEAR-ATTENTION MODELS

135 Firstly, we present theoretical evidence that task vectors naturally arise in simple linear transformers.  
 136 Specifically, we analyze the loss landscape of the in-context risk, focusing on the properties of its  
 137 critical points. As a startup, recall the standard linear regression setup (Ahn et al., 2023; Wu et al.,  
 138 2024), where the  $(x_i, y_i)$  pairs for each demonstration are concatenated to form the input prompt:  
 139

$$Z_0 = \begin{bmatrix} X & x_{\text{test}} \\ Y & 0 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n & x_{\text{test}} \\ y_1 & y_2 & \dots & y_n & 0 \end{bmatrix} \in \mathbb{R}^{2d \times d_p}, \quad d_p = n + 1. \quad (3)$$

140 According to existing analyses (Ahn et al., 2023; Zhang et al., 2024; Mahankali et al., 2024), each  
 141 attention layer in this setting performs one step of gradient descent on the learned coefficient  
 142 matrix. Specifically, the theoretically optimal single-layer (possibly nonlinear) attention (Katharopoulos  
 143 et al., 2020) implements the following predictive function (Ahn et al., 2023) when the covariates  
 144 are drawn from  $P_x = \mathcal{N}(0, I_d)$ , by selecting  $V_1 \propto \text{diag}(0_{d \times d}, I_d)$  and  $Q_1 \propto \text{diag}(I_d, 0_{d \times d})$ :  
 145

$$\text{TF}(Z_0; (V_1, Q_1)) = -\frac{1}{n} Y \sigma(X)^\top \sigma(x_{\text{test}}), \quad \text{where } \sigma : \mathbb{R}^d \mapsto \mathbb{R}^r \text{ is a kernel function.} \quad (4)$$

146 Here, we abbreviate  $[\sigma(x_1) \dots \sigma(x_n)]$  as  $\sigma(X)$ . This model employs  $W' \propto Y \sigma(X)^\top$  as an  
 147 estimate of  $W$ , yielding prediction  $\hat{y}_{\text{test}} = W' \sigma(x_{\text{test}})$ . This paper considers alternative settings  
 148 more reflective of practical scenarios, where  $x_i$  and  $y_i$  are separated as distinct tokens. As noted  
 149 (Zuo et al., 2025), such separation necessitates the usage of position encodings for bi-directional  
 150 attention. Following prior analysis (Kazemnejad et al., 2023), we assume that position encodings  
 151 are appended to the input tokens, and reformulate the layer-wise update rule of self-attention as:  
 152

$$\text{Attn}_{V, Q}(Z) = V Z M [Z^\top \quad P^\top] Q \begin{bmatrix} Z \\ P \end{bmatrix}, \quad \text{where } P \in \mathbb{R}^{d_p \times d_p}. \quad (5)$$

153 For analytical tractability, we take  $P = I_{d_p}$  as one-hot position encodings. Following previous work  
 154 (Ahn et al., 2023) (see Appendix A.3 for more explanation), we further impose that:  
 155

$$V_l = \text{diag}(A_l, B_l), \quad Q_l = \text{diag}(C_l, 0_{d \times d}, D_l), \quad \text{where } A_l, B_l, C_l \in \mathbb{R}^{d \times d}, D_l \in \mathbb{R}^{d_p \times d_p}. \quad (6)$$

162 These parameterizations ensure that the projection and attention operations act independently on the  
 163 covariate, response, and positional components of the input. This structural decoupling is essential  
 164 for understanding how the transformer identifies the dependency between each  $(x_i, y_i)$  pair and  
 165 revealing the actual optimization algorithm being executed by the model. The proofs for the main  
 166 theoretical results in this paper are available in Appendix D.  
 167

### 168 3.1 WARM-UP: LEARNING WITH PAIRWISE DEMONSTRATIONS

170 We begin by analyzing the optimization of linear transformers on pairwise demonstrations. Following  
 171 previous approach (Garg et al., 2022; Wibisono & Wang, 2023; Xing et al., 2024), we decompose  
 172 each demonstration in eq. (3) into a pair of tokens  $Z_0^i = \begin{bmatrix} x_i & 0 \\ 0 & y_i \end{bmatrix} \in \mathbb{R}^{2d \times 2}$  to better reflect the practical  
 173 ICL prompt structure:

$$174 \quad Z_0 = [Z_0^1 \quad \dots \quad Z_0^n \quad Z_0^{\text{test}}] = \begin{bmatrix} x_1 & 0 & \dots & x_n & 0 & x_{\text{test}} & 0 \\ 0 & y_1 & \dots & 0 & y_n & 0 & 0 \end{bmatrix}, \quad d_p = 2n + 2. \quad (7)$$

176 The following theorem suggests that certain critical points of the in-context risk effectively solve  
 177 the regression problem by first concatenating each pair of  $(x_i, y_i)$  into the same tokens, and then  
 178 executing a variant of the gradient descent algorithm to compute the prediction. To simplify notation,  
 179 we denote  $A = \{A_l\}_{l=1}^L$  (similarly for  $B, C$ , and  $D$ ) and present:

180 **Theorem 1 (Critical Points; Pairwise Demonstrations).** *Assume that  $P_x = \mathcal{N}(0, \Sigma)$  and  $P_w =$*   
 181  *$\mathcal{N}(0, \Sigma^{-1})$  with  $\Sigma \in \mathbb{R}^{d \times d}$  satisfying  $\Sigma \succ 0$ . Define  $\mathcal{S}_I, \mathcal{S}_\Sigma \subset \mathbb{R}^{d \times d}$  and  $\mathcal{S}_P \subset \mathbb{R}^{d_p \times d_p}$  as*

$$182 \quad \mathcal{S}_I = \{\lambda I_d \mid \lambda \in \mathbb{R}\}, \quad \mathcal{S}_\Sigma = \{\lambda \Sigma^{-1} \mid \lambda \in \mathbb{R}\}, \quad \mathcal{S}_P = \{\text{diag}(I_n \otimes \Lambda_1, \Lambda_2) \mid \Lambda_1, \Lambda_2 \in \mathbb{R}^{2 \times 2}\}.$$

183 Consider optimizing an  $L$ -layer transformer under parameter configuration in eq. (6), we have

$$184 \quad \inf_{A, B \in \mathcal{S}_I^L, C \in \mathcal{S}_\Sigma^L, D \in \mathcal{S}_P^L} \sum_{H \in A \cup B \cup C \cup D} \|\nabla_H \mathcal{L}(\{V_l, Q_l\}_{l=1}^L)\|_F^2 = 0.$$

186 To understand the behavior of these critical points within a self-attention layer, we fix  $\Sigma = I_d$  and  
 187 take  $A_l, B_l = I_d$ ,  $C_l = -\lambda I_d$ , and  $D_l = \text{diag}(I_n \otimes \Lambda_1, \Lambda_2)$ . Let the first and last  $d$  rows of  $Z_l$  be  
 188 denoted by  $X_l$  and  $Y_l$ , respectively. Under these settings, the update rule of each layer becomes:

$$189 \quad Z_l = Z_{l-1} - \lambda Z_{l-1} M X_{l-1}^\top X_{l-1} + [Z_{l-1}^1 \Lambda_1 \quad \dots \quad Z_{l-1}^n \Lambda_1 \quad Z_{l-1}^{\text{test}} \text{diag}(1, 0) \Lambda_2]. \quad (8)$$

190 The above update can be decomposed into the following two distinct components:

- 192 **Gradient Descent:** The first component,  $Z_l \leftarrow Z_{l-1} - \lambda Z_{l-1} M X_{l-1}^\top X_{l-1}$ , implements the  
 193 GD++ algorithm (Von Oswald et al., 2023a). This variant enhances convergence speed over stan-  
 194 dard gradient descent by improving the condition number of  $X_{l-1}^\top X_{l-1}$ . Notably, this operation  
 195 modifies only  $X_l$  but not  $Y_l$  for the first layer, as implied by the structure of  $Q_l$  (eq. (6)).
- 196 **Embedding Concatenation:** The second component,  $Z_l^i \leftarrow Z_{l-1}^i + Z_{l-1}^i \Lambda_1$  for  $i \in [n]$ , mixes  
 197 each pair of  $(x_i, y_i)$  tokens. Given that  $x_i$  and  $y_i$  tokens are initially linearly separable as in  
 198 our formulation, this operation concatenates each  $(x_i, y_i)$  pair, thereby *transforming pairwise*  
 199 *demonstrations into the original single-token format*. For the query token  $Z_l^{\text{test}}$ , this operation  
 200 copies  $x_{\text{test}}$  into the final token, reconstructing the structure in eq. (3), where each non-final token  
 201 directly concatenates  $(x_i, y_i)$  of a demonstration, and the final token contains only  $x_{\text{test}}$ .

202 In summary, our analysis reveals that for pairwise demonstrations, the first attention layer leverages  
 203 position encodings to distinguish between covariate and response tokens, subsequently concate-  
 204 nating them to form a single-token prompt structure. The remaining layers then apply the GD++  
 205 algorithm, mirroring the learning dynamics on single-token demonstrations. As a result, **an  $L$ -layer**  
**linear transformer allocates one layer for embedding concatenation and utilizes the remaining**  
 **$L - 1$  layers to perform gradient descent**. In Figure 2a, we visualize the learned  $D_l$  weights under  
 206 the setting of Theorem 1, and observe that they closely match the critical point structure of  $\mathcal{S}_P$ .  
 207

### 209 3.2 EMERGENCE OF TASK VECTORS WITH TRIPLET DEMONSTRATIONS

211 Next, to better reflect the prompt structure of practical ICL, we insert additional zero tokens between  
 212 each pair of  $(x_i, y_i)$  to simulate the arrow ( $\rightarrow$ ) tokens. This reformulates each demonstration as a  
 213 triplet  $(x_i, \rightarrow, y_i)$ , enabling us to analyze the critical points with these triplet demonstrations:

$$214 \quad Z_0 = \begin{bmatrix} x_1 & 0 & 0 & \dots & x_n & 0 & 0 & x_{\text{test}} & 0 & 0 \\ 0 & 0 & y_1 & \dots & 0 & 0 & y_n & 0 & 0 & 0 \end{bmatrix}, \quad d_p = 3n + 3. \quad (9)$$



Figure 2: Visualization of learned  $D_l$  weights. (a) Pairwise demonstrations yield a block-diagonal structure aligned with Theorem 1. (b) Triplet demonstrations yield a richer structure aligned with Theorem 2. (c) The learned matrix  $\Lambda_4$  has nearly orthonormal rows as suggested by Proposition 3.

**Theorem 2 (Critical Points; Triplet Demonstrations).** Assume that  $P_x = \mathcal{N}(0, \Sigma)$  and  $P_w = \mathcal{N}(0, \Sigma^{-1})$  with  $\Sigma \in \mathbb{R}^{d \times d}$  satisfying  $\Sigma \succ 0$ . Define  $\mathcal{S}_I, \mathcal{S}_\Sigma \subset \mathbb{R}^{d \times d}$  and  $\mathcal{S}_P \subset \mathbb{R}^{d_p \times d_p}$  as

$$\mathcal{S}_I = \{\lambda I_d \mid \lambda \in \mathbb{R}\}, \quad \mathcal{S}_\Sigma = \{\lambda \Sigma^{-1} \mid \lambda \in \mathbb{R}\},$$

$$\mathcal{S}_P = \left\{ \text{diag}(I_n \otimes \Lambda_1, \Lambda_2) + I_{n+1} \otimes \Lambda_3 + \Lambda_4 \otimes \Lambda_5 \mid \Lambda_1, \Lambda_2 \in \mathcal{M}\left(\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{smallmatrix}\right), \Lambda_3 \in \mathcal{M}\left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right), \Lambda_4 \in \mathbb{R}^{(n+1) \times (n+1)}, \Lambda_5 \in \mathcal{M}\left(\begin{smallmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{smallmatrix}\right) \right\}.$$

Consider optimizing an  $L$ -layer transformer under parameter configuration in eq. (6), we have

$$\inf_{A, B \in \mathcal{S}_I^L, C \in \mathcal{S}_\Sigma^L, D \in \mathcal{S}_P^L} \sum_{H \in A \cup B \cup C \cup D} \|\nabla_H \mathcal{L}(\{V_l, Q_l\}_{l=1}^L)\|_F^2 = 0.$$

To analyze the behavior of each attention layer, we note that the critical points for the matrices  $A_l$ ,  $B_l$ , and  $C_l$  remain consistent with Theorem 1, thereby implementing the GD++ algorithm. For the matrix  $D_l$ , we decompose its structure into three distinct components:

- **Embedding Concatenation:** The first component,  $\text{diag}(I_n \otimes \Lambda_1, \Lambda_2)$ , mixes each pair of  $(x_i, y_i)$  tokens, effectively concatenating them — analogous to the operation analyzed in the previous section. This converts all non-arrow tokens into single-token demonstrations.
- **Self Magnification:** The second component,  $I_{n+1} \otimes \Lambda_3$ , scales the embeddings corresponding to each arrow ( $\rightarrow$ ) token by a fixed constant and adds them back to themselves.
- **Task Vector Formation:** The third component,  $\Lambda_4 \otimes \Lambda_5$ , performs a weighted summation across all demonstrations in the prompt. This operation is central to the emergence of task vectors. Let  $[\beta_1 \dots \beta_{n+1}] \in \mathbb{R}^{n \times (n+1)}$  denote the first  $n$  rows of  $\Lambda_4$  (we will soon show that the last row of  $\Lambda_4$  converges to zero), the first self-attention layer then outputs  $n+1$  linear combinations of the demonstrations as the hidden states for the arrow tokens, expressed as  $z_{\text{tv}}^i = [\alpha_1 X \beta_i \alpha_2 Y \beta_i]$  for  $i \in [n+1]$ , where  $\alpha_1, \alpha_2 \in \mathbb{R}$  are the two non-zero entries of  $\Lambda_5$ . These vectors can then be injected into zero-shot prompts and function as single-token demonstrations.

This mechanism provides strong theoretical evidence for our main conjecture, demonstrating that **task vectors naturally emerge from the pretraining stage of linear-attention transformers on triplet-formatted prompts**. Notably, the structure of  $\mathcal{S}_P$  closely aligns with our visualization of  $D_l$  in Figure 2b, confirming our theoretical analysis. We now further investigate the structure of the weight matrix  $\Lambda_4$ , and present the following result:

**Proposition 3 (Optimal Task Vector Weights).** Assume  $P_x, P_w = \mathcal{N}(0, I_d)$ . Consider optimizing a 2-layer linear-attention transformer with triplet demonstrations and parameter configuration given in eq. (6), and assume  $C_1 = 0_{d \times d}$ . Let

$$D_1 = \text{diag}(I_n \otimes \Lambda_1, \Lambda_2) + I_{n+1} \otimes \Lambda_3 + \Lambda_4 \otimes \Lambda_5 \in \mathcal{S}_P$$

be any minimizer of the in-context risk  $\mathcal{L}(\{V_l, Q_l\}_{l=1}^L)$ , we then have  $\Lambda_4 \in \mathcal{S}_U$ , where

$$\mathcal{S}_U = \{\Lambda \mid \Lambda \Lambda^\top = \lambda \text{diag}(I_n, 0), \lambda \in \mathbb{R}\}.$$

This result suggests that the optimal  $\Lambda_4$  weight matrix satisfies two key properties: (1) the last row is zero, and (2) the first  $n$  rows are mutually orthonormal. These conditions imply that the learned



Figure 3: Visualizations on Llama-7B: (1) saliency matrices as bipartite graphs between layer  $l$  (●) and  $l + 1$  (●), edge widths indicate saliency magnitude; (2) variations in the extracted task vector after perturbing the  $i$ -th demonstration (■) and the optimal task vector weights (—) obtained by optimizing Proposition 5. (a) Each  $y_i$  token attends to its corresponding  $(x_i, y_i)$  pair, reflecting embedding concatenation. (b) The final ( $\rightarrow$ ) token attends broadly to all  $y_i$  tokens, indicating task vector formation. This occurs just before the optimal injection layer ( $l = 13$ ). (c) The predicted task vector weights closely match the trend of empirical results, validating our theoretical model.

weight vectors  $\beta_1, \dots, \beta_{n+1}$  are likely to be distinct. Therefore, the  $n + 1$  task vectors produce diverse linear combinations of the demonstrations, thereby enriching the representation within the input prompt. This implication is verified in Figure 2c. While task vectors are typically extracted from the final arrow ( $\rightarrow$ ) token in standard usage, here we consider all arrow tokens as task vectors as bi-directional attention allows each to aggregate information from the full prompt.

#### 4 PREDICTED FAILURE OF TASK VECTORS ON BIJECTION TASKS

We then present an empirical observation that supports our conjecture. Consider the setting where task vectors are injected into zero-shot prompts. Based on our prior analysis, the injected task vector  $z_{tv}$  is formed as a weighted summation of the original demonstrations. As a result, we show that the injected prompt reconstructs the single-token structure in eq. (3) with only 1 demonstration:

$$Z_0 = [z_{\text{test}} \ z_{\text{tv}} \ 0] = \begin{bmatrix} x_{\text{test}} & x_{\text{tv}} & 0 \\ 0 & y_{\text{tv}} & 0 \end{bmatrix} = \begin{bmatrix} x_{\text{test}} & \alpha_1 X \beta & 0 \\ 0 & \alpha_2 Y \beta & 0 \end{bmatrix} \in \mathbb{R}^{2d \times 3}, \quad (10)$$

where the weight vector  $\beta \in \mathbb{R}^n$  comes from the last column of  $\Lambda_4$ , and the weights  $\alpha_1, \alpha_2$  come from  $\Lambda_5$  (see our discussion after Theorem 2). After the first layer, the  $\Lambda_2$  matrix of  $S_P$  moves  $x_{\text{test}}$  to the last token, reducing the prompt to a single-shot, single-token demonstration. According to the optimal single-layer transformer (eq. (4)), the estimated coefficient matrix is now  $W' = \alpha_1 \alpha_2 Y \beta (X \beta)^\top$ , which is rank-one. Therefore, task vectors are inherently limited in their expressiveness: *they can only replicate 1-shot ICL, which is restricted to rank-one coefficient matrices.* This implication also naturally extends to multi-layer transformers.

While our analysis is conducted on linear-attention transformers, we demonstrate that similar learning patterns also emerge within practical LLMs. Specifically, we visualize the layer-wise information flow between tokens using saliency maps (Wang et al., 2023), where the saliency score for each attention matrix is computed as  $S(A_l) = \sum_h |A_{l,h} \cdot \partial \mathcal{L} / \partial A_{l,h}|$ ,  $A_{l,h}$  denotes the attention matrix of the  $h$ -th head at layer  $l$ , and  $\mathcal{L}$  is the ICL loss (i.e., the cross-entropy loss for predicting  $y_{\text{test}}$ ). As demonstrated in Figures 3a and 3b, the saliency maps reveal certain patterns matching the ones of embedding concatenation and weighted summation. This suggests that real-world transformers implement a similar algorithm to solve ICL tasks and, consequently, inherit the same expressiveness limitation. The full saliency score maps are given in Appendix B.5.

To verify this, we construct a specialized class of ICL tasks, named bijection tasks. Specifically, given a bijective mapping from domain  $\mathcal{X}$  to codomain  $\mathcal{Y}$ , one can combine it with its inverse mapping to form a new task that maps  $\mathcal{X} \cup \mathcal{Y}$  onto itself. For instance, combining the “to uppercase” task with its inverse “to lowercase” yields a bijection task that maps each letter to its opposite case, and a valid ICL prompt takes the form: “ $a \rightarrow A, B \rightarrow b, c \rightarrow C, D \rightarrow$ ”. Note that this differs from task superposition (Xiong et al., 2024), as each input corresponds to a unique, well-defined output. We then establish a key limitation of rank-one coefficient matrices in addressing such tasks:

324  
325 Table 1: Comparison of the accuracies of **many-shot** ICL and task vector on bijection tasks (Llama-  
326 7B,  $n = 10$ ). We use gray text to indicate accuracies lower than 60%.

| 327<br>328 Task | 329 Domain $\mathcal{X}$       | 330 Domain $\mathcal{Y}$ | 331 Example         | 332 $\mathcal{X} \rightarrow \mathcal{Y}$ |          | 333 $\mathcal{Y} \rightarrow \mathcal{X}$ |          | 334 $\mathcal{X} \leftrightarrow \mathcal{Y}$ |          |
|-----------------|--------------------------------|--------------------------|---------------------|-------------------------------------------|----------|-------------------------------------------|----------|-----------------------------------------------|----------|
|                 |                                |                          |                     | 335 ICL                                   | 336 TV   | 337 ICL                                   | 338 TV   | 339 ICL                                       | 340 TV   |
| To Upper        | $\{a, \dots, z\}$              | $\{A, \dots, Z\}$        | a → A               | 1.00                                      | 0.91     | 1.00                                      | 0.99     | 1.00                                          | 0.55     |
| 341 Translation | 342 English                    | 343 French               | 344 hello → bonjour | 345 0.83                                  | 346 0.84 | 347 0.82                                  | 348 0.70 | 349 0.54                                      | 350 0.35 |
|                 | 351 English                    | 352 Italian              | 353 hello → ciao    | 354 0.84                                  | 355 0.78 | 356 0.82                                  | 357 0.74 | 358 0.70                                      | 359 0.47 |
|                 | 360 English                    | 361 Spanish              | 362 hello → hola    | 363 0.92                                  | 364 0.88 | 365 0.89                                  | 366 0.75 | 367 0.64                                      | 368 0.43 |
| 369 Linguistic  | 370 Present                    | 371 Gerund               | 372 go → going      | 373 0.99                                  | 374 0.95 | 375 1.00                                  | 376 0.97 | 377 0.80                                      | 378 0.41 |
|                 | 379 Present                    | 380 Past                 | 381 go → went       | 382 0.98                                  | 383 0.91 | 384 0.99                                  | 385 0.96 | 386 0.52                                      | 387 0.33 |
|                 | 388 Present                    | 389 Past Perfect         | 390 go → gone       | 391 0.82                                  | 392 0.82 | 393 0.94                                  | 394 0.65 | 395 0.55                                      | 396 0.33 |
|                 | 397 Singular                   | 398 Plural               | 399 dog → dogs      | 400 0.88                                  | 401 0.78 | 402 0.94                                  | 403 0.89 | 404 0.76                                      | 405 0.51 |
| 406 Copy        | $\{a, \dots, z, A, \dots, Z\}$ |                          | A → A               | -                                         | -        | -                                         | -        | 1.00                                          | 0.98     |
| 407 Antonym     |                                | 408 Adjectives           | 409 happy → sad     | 410 0.89                                  | 411 0.83 | 412 -                                     | 413 -    | 414 0.83                                      | 415 0.73 |

341 **Proposition 4.** Let  $x, y \in \mathbb{R}^d$  be non-zero vectors. Then the following are equivalent: (1) There  
342 exists a rank-one matrix  $W \in \mathbb{R}^{d \times d}$  such that  $y = Wx$  and  $x = Wy$ ; (2)  $x = y$  or  $x = -y$ .

343 This result highlights that *rank-one coefficient matrices cannot solve general bijection tasks*, and  
344 are restricted to two special cases: the identity mapping ( $x = y$ ), or the negation mapping ( $x =$   
345  $-y$ ). We further verify this implication in real-world LLMs: in Table 1, both ICL and task vectors  
346 perform well on the original tasks and their inverses. But for bijection tasks, while ICL preserves  
347 performance in many cases, the task vector method consistently fails, confusing examples from the  
348 two domains and yielding near-random predictions (50%) (e.g., in “To Upper”, task vectors predict  
349 the correct letter but fail to distinguish between uppercase and lowercase. See Appendix B.4 for  
350 further results). The only exceptions are Copy and Antonym, the special cases in Proposition 4.

351 Together, these findings empirically validate our main conjecture: **the task vector approach, which**  
352 **is restricted to one-shot ICL, is limited to rank-one mappings and cannot solve general ICL**  
353 **tasks (e.g., bijection tasks).** While a variety of ICL tasks have been explored to assess the capabili-  
354 ties of task vectors (Hendel et al., 2023; Todd et al., 2024; Li et al., 2024), the fundamental limitation  
355 of task vectors in addressing these bijection tasks has not been previously identified.

## 357 5 FURTHER DISCUSSIONS

359 **Effect of Causal Attention and Dropout.** While task vectors naturally emerge in linear attention,  
360 their embeddings do not directly help minimize the ICL risk, as evidenced by the identical perfor-  
361 mance between pairwise and triplet formatted prompts (Figures 4a and 4b). Instead, we show that  
362 task vectors do contribute to optimization under token-wise dropout, acting as redundancies for in-  
363 context demonstrations that may be randomly dropped during training. This redundancy ensures  
364 that essential task information is preserved to facilitate inference despite partial context loss.

365 **Proposition 5.** Under the same settings as Proposition 3, consider adding token-wise dropouts  $O_l$ :

$$367 Z_l = Z_{l-1} O_l + \frac{1}{n} \text{Attn}_{V_l, Q_l}(Z_{l-1}) O_l, \quad \text{where } O_l = \text{diag}(o_l^1, \dots, o_l^{d_p}), o_l^i \stackrel{i.i.d.}{\sim} \text{Bern}(p).$$

368 Then any minimizer  $\Lambda_4$  of the in-context risk  $\mathcal{L}(\{V_l, Q_l\}_{l=1}^L)$  satisfies  $(\Lambda_4)_{n+1,:} = 0$  and:

$$370 (\Lambda_4)_{1:n,:} \propto \arg \min_{\Lambda} c_1 \|\Lambda\|_4^4 + c_2 \sum_{i=1}^n \|\Lambda_{i,:}\|_2^4 + c_3 \sum_{j=1}^{n+1} \|\Lambda_{:,j}\|_2^4 + c_4 \|\Lambda \Lambda^\top\|_F^2, \quad \text{s.t. } \|\Lambda\|_F^2 = 1.$$

372 where  $c_1, \dots, c_4$  are non-negative constants depending on  $V_l$ ,  $Q_l$ , and  $p$ .

374 This result suggests that dropout introduces additional higher-order regularization on the task vector  
375 weights, encouraging them to distribute more uniformly across demonstrations. Furthermore, when  
376 considering causal attention (i.e., enforcing  $\Lambda_4$  to be upper-triangular), it induces a decaying weight  
377 pattern from later to earlier demonstrations, which exactly matches the practical behavior observed  
378 in practical transformer models (as evidenced in Figure 3c).



Figure 4: (a, b) Comparison of the best ICL risk achieved using single (S), pairwise (P), and triplet (T) formatted prompts. (c) Performance comparison between 1-shot ICL and task vector.

**Decoding the Vocabulary of Task Vectors.** Multiple prior works (Hendel et al., 2023; Todd et al., 2024) have observed an interesting phenomenon that, when task vectors are directly decoded through the final classification layer, the top tokens often belong to the output space of the current task (see Table 4 in the Appendix). Our theoretical analysis provides a natural explanation for this: assuming a  $2d$ -dimensional hidden state space partitioned into input ( $x_i$ ) and output ( $y_i$ ) halves, the output half of task vectors then encodes weighted summations of  $y_i$ . Since the final prediction relies on the output half, decoding a task vector yields a combination of  $y_i$ , which is likely lying in the output space. This observation suggests that practical LLMs adopt a similar hidden-state partition.

**Extra EOS Tokens.** In our previous analysis, we consistently imposed an additional zero token at the end of the input prompt. While this token can be interpreted as an EOS token in practical models, such a design choice is uncommon in standard ICL tasks. We justify this modeling decision with:

**Proposition 6 (Informal).** *Given any  $L$ -layer, 1-head,  $d$ -dimensional linear-attention model with EOS, there exists an equivalent  $L$ -layer, 2-head,  $2d$ -dimensional model operating without EOS.*

This equivalence suggests that the same learning dynamics can be realized through multi-head architectures without relying on explicit EOS tokens. Specifically, the first head is dedicated to task vector formation, while the other handles ICL prediction. This separation allows the model to retain the functional role of the EOS token implicitly within its hidden states.

## 6 EXPERIMENTAL STUDIES

### 6.1 SYNTHETIC RESULTS WITH RANDOM LINEAR REGRESSION

In this section, we validate our critical points analysis with synthetic linear regression tasks. Specifically, we examine the achievable ICL risk of linear-attention models with single-token (eq. (3)), pairwise (eq. (7)), and triplet (eq. (9)) demonstrations. We set the input dimension to  $d = 4$  and  $P_x = P_w = \mathcal{N}(0, I_d)$ . For each setting, we train multiple models with different random seeds and report the minimum ICL risk achieved as a proxy for the global optimum. The comparative results across different numbers of layers  $L$  and demonstration formats are shown in Figures 4a and 4b.

These results support our theoretical analysis: when trained with pairwise or triplet demonstrations, the model recovers the GD++ algorithm similar to the single-token case. Notably, the performance of  $L$ -layer models with pairwise (P) and triplet (T) demonstrations closely aligns, indicating a shared underlying learning pattern. Moreover, their performance consistently lies between that of single-token (S) case  $L$ -layer and  $(L - 1)$ -layer models. The observed improvement over the  $(L - 1)$ -layer single-token baselines comes from the additional GD++ performed solely on  $x_i$  tokens in the first layer, effectively acting as a “half-step” of gradient descent.

We then reproduce the task vector method in linear models. Specifically, we extract the hidden state of the final ( $\rightarrow$ ) token from triplet demonstrations after the first layer, and inject this vector into zero-shot prompts consisting of  $x_{\text{test}}$  only. To simulate the effect of layer normalization, we normalize the task vectors before inference and the output vectors before ICL risk evaluation. **As shown in Figure 4c, the performance of task vectors is highly related to that of standard 1-shot ICL.** This validates our conjecture that the injected task vector effectively acts as a single demonstration.

432 Table 2: Accuracy comparison between **few-shot** ICL (Baseline), the task vector method (TaskV),  
 433 and our strategy (TaskV-M). The experiment is conducted on Llama-13B with  $n = 10$ .

| 435 | Method | Knowledge | Algorithmic                        | Translation                        | Linguistic                         | Bijection                          | Average                            |                                    |
|-----|--------|-----------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 436 | 0-shot | Baseline  | $6.90 \pm 2.08$                    | $15.60 \pm 1.72$                   | $7.00 \pm 1.65$                    | $12.44 \pm 1.74$                   | $8.27 \pm 1.33$                    | $10.28 \pm 0.98$                   |
|     |        | TaskV     | <b><math>68.80 \pm 2.66</math></b> | <b><math>86.20 \pm 1.61</math></b> | <b><math>73.53 \pm 0.91</math></b> | <b><math>85.24 \pm 1.80</math></b> | <b><math>50.67 \pm 2.32</math></b> | <b><math>72.26 \pm 1.01</math></b> |
| 438 | 1-shot | Baseline  | $69.50 \pm 3.86$                   | $73.67 \pm 1.56$                   | $57.80 \pm 2.01$                   | $56.22 \pm 1.57$                   | $44.76 \pm 2.44$                   | $58.11 \pm 0.63$                   |
|     |        | TaskV     | $79.50 \pm 2.35$                   | $88.47 \pm 0.75$                   | <b><math>80.67 \pm 2.56</math></b> | <b><math>89.11 \pm 0.84</math></b> | $60.44 \pm 2.07$                   | $78.79 \pm 0.77$                   |
|     |        | TaskV-M   | <b><math>81.30 \pm 2.80</math></b> | <b><math>89.53 \pm 0.65</math></b> | $80.13 \pm 2.14$                   | $88.71 \pm 0.62$                   | <b><math>61.78 \pm 0.96</math></b> | <b><math>79.34 \pm 0.37</math></b> |
| 441 | 2-shot | Baseline  | $78.80 \pm 3.30$                   | $85.07 \pm 1.37$                   | $75.67 \pm 2.64$                   | $76.80 \pm 1.18$                   | $56.49 \pm 2.87$                   | $72.92 \pm 0.59$                   |
|     |        | TaskV     | $84.60 \pm 2.11$                   | $88.40 \pm 0.68$                   | <b><math>84.33 \pm 0.92</math></b> | <b><math>90.13 \pm 0.92</math></b> | $62.44 \pm 2.16$                   | $80.82 \pm 0.42$                   |
|     |        | TaskV-M   | <b><math>85.70 \pm 1.63</math></b> | <b><math>89.27 \pm 1.10</math></b> | $84.13 \pm 1.15$                   | $89.64 \pm 0.86$                   | <b><math>64.49 \pm 2.02</math></b> | <b><math>81.48 \pm 0.37</math></b> |
| 444 | 3-shot | Baseline  | $86.20 \pm 2.69$                   | $88.07 \pm 1.06$                   | $80.00 \pm 1.67$                   | $84.04 \pm 1.19$                   | $62.18 \pm 1.52$                   | $78.51 \pm 0.42$                   |
|     |        | TaskV     | $90.20 \pm 2.23$                   | $88.67 \pm 0.89$                   | <b><math>86.27 \pm 2.31</math></b> | $92.31 \pm 0.48$                   | $66.53 \pm 0.94$                   | $83.53 \pm 0.41$                   |
|     |        | TaskV-M   | <b><math>90.30 \pm 1.50</math></b> | <b><math>89.87 \pm 0.83</math></b> | $86.07 \pm 2.17$                   | <b><math>92.36 \pm 0.72</math></b> | <b><math>68.13 \pm 0.76</math></b> | <b><math>84.15 \pm 0.52</math></b> |
| 447 | 4-shot | Baseline  | $84.80 \pm 2.06$                   | $88.07 \pm 0.61$                   | $83.27 \pm 1.82$                   | $88.89 \pm 1.91$                   | $67.16 \pm 1.47$                   | $81.52 \pm 0.66$                   |
|     |        | TaskV     | $88.70 \pm 1.69$                   | $89.53 \pm 1.34$                   | $86.27 \pm 1.08$                   | <b><math>92.76 \pm 0.54</math></b> | $70.44 \pm 1.35$                   | $84.66 \pm 0.39$                   |
|     |        | TaskV-M   | <b><math>89.60 \pm 1.43</math></b> | <b><math>91.00 \pm 1.01</math></b> | <b><math>87.20 \pm 0.62</math></b> | $92.36 \pm 1.44$                   | <b><math>72.53 \pm 0.94</math></b> | <b><math>85.64 \pm 0.29</math></b> |

## 451 6.2 ENHANCING THE TASK VECTOR METHOD

452 We further explore an enhancement to the original task vector method. According to our previous  
 453 analysis, a single injected task vector may not provide sufficient information for inference on complex  
 454 tasks (e.g., bijection tasks). Moreover, in linear-attention models, each ( $\rightarrow$ ) token functions  
 455 as an individual in-context demonstration during the gradient descent phase and thus contributes  
 456 equally to the ICL risk. Motivated by this, we extend the standard task vector method, which modi-  
 457 fies only the final arrow token, and propose a multi-vector variant that injects into every single arrow  
 458 token in few-shot prompts. This enriched injection scheme enables the model to leverage multiple  
 459 new demonstrations, thereby providing a more informative and distributed context for prediction.

460 We compare our multi-vector injection strategy (TaskV-M) against standard  $N$ -shot ICL (Baseline)  
 461 and the original task vector method (TaskV). Note that Baseline uses few-shot ICL and TaskV is in-  
 462 jecting into few-shot prompts, which are different from the settings in Table 1 which uses many-shot  
 463 prompts for ICL and zero-shot prompts for task vectors. For each  $N$ -shot prompt, we generate  $N+1$   
 464 distinct ICL prompts to produce  $N+1$  task vectors, which are then used to replace the embeddings  
 465 of all arrow tokens in the input. For each task, performance is evaluated over 50 randomly sampled  
 466 prompts, with mean accuracy and standard deviation reported across 5 independent trials. The final  
 467 results, summarized in Table 2, span a diverse set of ICL task types, showing that TaskV-M consis-  
 468 tently outperforms TaskV, especially the challenging bijection tasks. While the improvement is not  
 469 dramatic, we believe that the current results sufficiently demonstrate the potential of multi-vector  
 470 injection, thereby providing insights for the design of future ICL or task vector methods.

## 473 7 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

475 This paper proposes a plausible explanation for the emergence and functionality of task vectors in  
 476 ICL. We support this conjecture with both empirical observations and theoretical analysis, demon-  
 477 strating how task vectors naturally arise under ICL-style training prompts, and why this method  
 478 inherently fails on general ICL tasks beyond rank-one mappings. Our work provides a new perspec-  
 479 tive on the underlying mechanisms and offers a promising direction for interpreting intermediate  
 480 hidden states in modern transformer-based language models.

482 While our analysis provides new insights into the emergence and functionality of task vectors, it  
 483 is primarily conducted on simplified linear-attention transformers and synthetic tasks, which may  
 484 not fully capture the complexity of real-world LLMs. Moreover, our theoretical framework focuses  
 485 solely on critical point analysis, and there is still a lack of convergence guarantee or sample com-  
 486 plexity analysis to fully understand the learning dynamics during model pretraining.

486 Future directions of this work may include: (1) extending the current theoretical framework to causal  
 487 and multimodal settings; (2) exploring how richer architectures (e.g., non-linear attention) or training  
 488 objectives (e.g., auto-regressive loss) influence the behavior of task vectors; **(3) synthesizing  
 489 orthogonal enhancements of the task vector method (e.g., function vectors (Todd et al., 2024) and  
 490 in-context vectors (Liu et al., 2024)), and extending to more complex reasoning tasks.**  
 491

## 492 ETHICS STATEMENT

493 This work advances the theoretical understanding of in-context learning and task vector mechanisms,  
 494 which can lead to more efficient and interpretable language models. By enabling faster inference  
 495 through task vectors, it may reduce the computational cost and energy consumption of  
 496 large-scale deployment, thereby making AI systems more accessible and environmentally sustainable.  
 497 Improved interpretability could also enhance trust and transparency in AI applications across  
 498 education, healthcare, and other socially beneficial domains.

499 As task vector methods improve efficiency and transferability, they may also be misused to replicate  
 500 or extract functionality from proprietary models without authorization, raising concerns around  
 501 model intellectual property. Additionally, while interpretability is often framed as a benefit, deeper  
 502 insights into model internals could be exploited to engineer adversarial inputs or extract sensitive  
 503 training data. Careful consideration and mitigation strategies are essential to ensure that such work  
 504 aligns with the broader goals of safe and beneficial AI.

## 507 REPRODUCIBILITY STATEMENT

508 We provide complete proofs for our main theoretical results in Appendices C and D, experimental  
 509 details about the dataset and implementation in Appendix B, and full source codes to reproduce our  
 510 experimental results in the supplementary materials.

## 514 USAGE OF LLMs

515 We used LLMs only to improve grammar and polish academic writing. All technical ideas, proofs,  
 516 experiments, and conclusions were entirely conceived and verified by the authors.

## 519 REFERENCES

520 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement  
 521 preconditioned gradient descent for in-context learning. *Advances in Neural Information  
 522 Processing Systems*, 36:45614–45650, 2023.

523 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning  
 524 algorithm is in-context learning? investigations with linear models. In *The Eleventh International  
 525 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=0g0X4H8yN4I>.

526 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,  
 527 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are  
 528 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

529 Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.  
 530 Provable in-context vector arithmetic via retrieving task concepts. In *Forty-second International  
 531 Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=DbUmeNnNpt>.

532 Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,  
 533 James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning  
 534 in transformers. *Advances in neural information processing systems*, 35:18878–18891, 2022.

540 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can  
 541 gpt learn in-context? language models secretly perform gradient descent as meta-optimizers. In  
 542 *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 4005–4019, 2023.

543

544 Gilad Deutch, Nadav Magar, Tomer Natan, and Guy Dar. In-context learning and gradient descent  
 545 revisited. In *Proceedings of the 2024 Conference of the North American Chapter of the Associa-  
 546 tion for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*,  
 547 pp. 1017–1028, 2024.

548 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn  
 549 in-context? a case study of simple function classes. *Advances in Neural Information Processing  
 550 Systems*, 35:30583–30598, 2022.

551 Seungwook Han, Jinyeop Song, Jeff Gore, and Pulkit Agrawal. Emergence and effectiveness of task  
 552 vectors in in-context learning: An encoder decoder perspective. In *Forty-second International  
 553 Conference on Machine Learning*, 2025.

554 Roei Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In *Findings  
 555 of the Association for Computational Linguistics: EMNLP 2023*, pp. 9318–9333, 2023.

556

557 Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, and Amir Bar. Finding visual task  
 558 vectors. In *European Conference on Computer Vision*, pp. 257–273. Springer, 2024.

559

560 Brandon Huang, Chancharik Mitra, Leonid Karlinsky, Assaf Arbelle, Trevor Darrell, and Roei  
 561 Herzig. Multimodal task vectors enable many-shot multimodal in-context learning. *Advances  
 562 in Neural Information Processing Systems*, 37:22124–22153, 2024.

563

564 Joonseong Kang, Soojeong Lee, Subeen Park, Sumin Park, Taero Kim, Jihee Kim, Ryunyi  
 565 Lee, and Kyungwoo Song. Adaptive task vectors for large language models. *arXiv preprint  
 566 arXiv:2506.03426*, 2025.

567

568 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are  
 569 rnns: Fast autoregressive transformers with linear attention. In *International conference on ma-  
 570 chine learning*, pp. 5156–5165. PMLR, 2020.

571

572 Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva  
 573 Reddy. The impact of positional encoding on length generalization in transformers. *Advances  
 574 in Neural Information Processing Systems*, 36:24892–24928, 2023.

575

576 Dongfang Li, Xinshuo Hu, Zetian Sun, Baotian Hu, Min Zhang, et al. In-context learning state vector  
 577 with inner and momentum optimization. *Advances in Neural Information Processing Systems*, 37:  
 578 7797–7820, 2024.

579

580 Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. In-context vectors: Making in context learning  
 581 more effective and controllable through latent space steering. In *International Conference on  
 582 Machine Learning*, pp. 32287–32307. PMLR, 2024.

583

584 Grace Luo, Trevor Darrell, and Amir Bar. Vision-language models create cross-modal task repre-  
 585 sentations. In *Forty-second International Conference on Machine Learning*, 2025.

586

587 Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One step of gradient descent is prov-  
 588 ably the optimal in-context learner with one layer of linear self-attention. In *The Twelfth Interna-  
 589 tional Conference on Learning Representations*, 2024. URL [https://openreview.net/  
 590 forum?id=8p3fu561Kc](https://openreview.net/forum?id=8p3fu561Kc).

591

592 Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-  
 593 style vector arithmetic. In *Proceedings of the 2024 Conference of the North American Chapter of  
 594 the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long  
 595 Papers)*, pp. 5030–5047, 2024.

596

597 Yingzhe Peng, Xinting Hu, Jiawei Peng, Xin Geng, Xu Yang, et al. Live: Learnable in-context  
 598 vector for visual question answering. *Advances in Neural Information Processing Systems*, 37:  
 599 9773–9800, 2024.

594 Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Position: Do pretrained transformers learn  
 595 in-context by gradient descent? In *Proceedings of the 41st International Conference on Machine*  
 596 *Learning*, pp. 44712–44740. PMLR, 2024.

597 Pavel Tikhonov, Ivan Oseledets, and Elena Tutubalina. One task vector is not enough: A large-scale  
 598 study for in-context learning. *arXiv preprint arXiv:2505.23911*, 2025.

600 Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.  
 601 Function vectors in large language models. In *The Twelfth International Conference on Learning*  
 602 *Representations*, 2024. URL <https://openreview.net/forum?id=AwyxtyMwaG>.

603 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-  
 604 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient  
 605 descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023a.

606 Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyyvind  
 607 Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.  
 608 Uncovering mesa-optimization algorithms in transformers. *arXiv preprint arXiv:2309.05858*,  
 609 2023b.

610 Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label  
 611 words are anchors: An information flow perspective for understanding in-context learning. In  
 612 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.  
 613 9840–9855, 2023.

614 Kevin Christian Wibisono and Yixin Wang. On the role of unstructured training data in transformers'  
 615 in-context learning capabilities. In *NeurIPS 2023 Workshop on Mathematics of Modern Machine*  
 616 *Learning*, 2023.

617 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.  
 618 How many pretraining tasks are needed for in-context learning of linear regression? In  
 619 *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=vSh5ePa0ph>.

620 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context  
 621 learning as implicit bayesian inference. In *International Conference on Learning Representations*,  
 622 2022. URL <https://openreview.net/forum?id=RdJVFCHjUMI>.

623 Yue Xing, Xiaofeng Lin, Chenheng Xu, Namjoon Suh, Qifan Song, and Guang Cheng. Theoretical  
 624 understanding of in-context learning in shallow transformers with unstructured data. *arXiv*  
 625 *preprint arXiv:2402.00743*, 2024.

626 Zheyang Xiong, Ziyang Cai, John Cooper, Albert Ge, Vasilis Papageorgiou, Zack Sifakis, Angeliki  
 627 Giannou, Ziqian Lin, Liu Yang, Saurabh Agarwal, et al. Everything everywhere all at once: Llms  
 628 can in-context learn multiple tasks in superposition. *arXiv preprint arXiv:2410.05603*, 2024.

629 Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert Nowak. Task vectors in  
 630 in-context learning: Emergence, formation, and benefit. *arXiv preprint arXiv:2501.09240*, 2025.

631 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.  
 632 *Journal of Machine Learning Research*, 25(49):1–55, 2024.

633 Chunsheng Zuo, Pavel Guerzhoy, and Michael Guerzhoy. Position information emerges in causal  
 634 transformers without positional encodings via similarity of nearby embeddings. In *Proceedings*  
 635 *of the 31st International Conference on Computational Linguistics*, pp. 9418–9430, 2025.

636

637

638

639

640

641

642

643

644

645

646

647

648 **A ADDITIONAL DISCUSSIONS**  
649650 **A.1 SUMMARY OF MATHEMATICAL NOTATIONS**  
651652 Table 3: Summary of key mathematical notations used throughout the paper.  
653

| 654 <b>Notation</b>                                      | 655 <b>Description</b>                                          |
|----------------------------------------------------------|-----------------------------------------------------------------|
| 656 $n$                                                  | 657 Number of demonstrations in the input prompt                |
| 658 $L$                                                  | 659 Number of transformer layers                                |
| 660 $d$                                                  | 661 Dimension of covariate and response embeddings              |
| 662 $d_p$                                                | 663 Prompt length (depends on demonstration structure)          |
| 664 $\text{Attn}_{V,Q}$                                  | 665 Linear-attention layer with parameter $V, Q$                |
| 666 $\text{TF}$                                          | 667 Linear-attention model by stacking linear-attention layers  |
| 668 $x_i \in \mathbb{R}^d$                               | 669 Covariate (input) of the $i$ -th demonstration              |
| 670 $y_i \in \mathbb{R}^d$                               | 671 Response (output) of the $i$ -th demonstration              |
| 672 $X, Y \in \mathbb{R}^{d \times n}$                   | 673 Matrices of covariates and responses for $n$ demonstrations |
| 674 $x_{\text{test}}, y_{\text{test}}$                   | 675 Query covariate and ground-truth response                   |
| 676 $w_j \in \mathbb{R}^d$                               | 677 $j$ -th regression coefficient vector                       |
| 678 $W \in \mathbb{R}^{d \times d}$                      | 679 Coefficient matrix, $W = [w_1, \dots, w_d]^{\top}$          |
| 680 $Z_0 \in \mathbb{R}^{2d \times d_p}$                 | 681 Input prompt embeddings before the transformer              |
| 682 $Z_l \in \mathbb{R}^{2d \times d_p}$                 | 683 Hidden states after the $l$ -th layer                       |
| 684 $P \in \mathbb{R}^{d_p \times d_p}$                  | 685 Positional encoding matrix                                  |
| 686 $V_l, Q_l$                                           | 687 Value and key-query matrices of the $l$ -th attention layer |
| 688 $A_l, B_l, C_l, D_l$                                 | 689 Block components of $V_l, Q_l$ in layer $l$                 |
| 690 $\Lambda_k$                                          | 691 Sub-block matrices of $D_l$ used in critical point analysis |
| 692 $\mathcal{L}$                                        | 693 In-context learning loss (ICL risk)                         |
| 694 $\mathcal{M}(M)$                                     | 695 Set of masked matrices with binary mask $M$                 |
| 696 $\mathcal{S}_I, \mathcal{S}_{\Sigma}, \mathcal{S}_P$ | 697 Structured sets of matrices defining critical points        |
| 698 $z_{\text{tv}}$                                      | 699 Task vector extracted from an arrow ( $\rightarrow$ ) token |
| 700 $\beta \in \mathbb{R}^n$                             | 701 Weight vector for task vector formation                     |

680 **A.2 ADDITIONAL RELATED WORKS**  
681

682 **In-Context Learning in Attention-based LLMs.** The ability of LLMs to learn from examples  
683 provided in the input prompt, without updating parameters, has attracted wide attention since the  
684 discovery of ICL in GPT-3 (Brown et al., 2020). A growing body of theoretical work has sought  
685 to explain this phenomenon. Early analyses show that transformer attention layers can implement  
686 gradient descent-like algorithms over linear regression objectives (Garg et al., 2022; Akyürek et al.,  
687 2023; Von Oswald et al., 2023a; Ahn et al., 2023; Wu et al., 2024), while others investigate sam-  
688 ple complexity and generalization behavior (Xie et al., 2022; Chan et al., 2022; Shen et al., 2024;  
689 Von Oswald et al., 2023b; Deutch et al., 2024). These works collectively suggest that ICL is closely  
690 tied to the inductive biases of the attention mechanism, but do not fully explain how higher-level  
691 abstractions of tasks are formed or encoded in LLMs.

692 **The Task Vector Method in ICL.** Task vectors have recently been proposed as an abstraction of  
693 ICL demonstrations into compact hidden-state representations. Hendel et al. (2023) introduced task  
694 vectors as hidden states extracted from the last arrow token in triplet prompts, enabling zero-shot  
695 transfer by injecting them into new contexts. Concurrent works developed similar notions, such as  
696 function vectors (Todd et al., 2024) and in-context vectors (Liu et al., 2024). These studies show  
697 that task vectors accelerate inference and sometimes match the effectiveness of ICL with fewer  
698 demonstrations. However, they remain largely empirical, without a clear theoretical explanation of  
699 how or why such vectors encode task information.

700 Subsequent research has expanded the scope and utility of task vectors. Yang et al. (2025) demon-  
701 strates that task vectors naturally emerge even in small transformers trained from scratch with syn-  
thetic data, suggesting that their formation is an inherent property of attention-based architectures.

702 Table 4: Top 20 tokens with the highest output probability by decoding the task vector, results from  
 703 (Hendel et al., 2023). We underline the tokens in the output space of the current task.  
 704

| 705 <b>Model</b>                                                                                                                                                                                                                                                                                                                             | 706 <b>Task</b>                                                                                                                                                                                                                                                                                                                       | 707 <b>Tokens</b>                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723<br>724<br>725<br>726<br>727<br>728<br>729<br>730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>749<br>750<br>751<br>752<br>753<br>754<br>755 | 709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723<br>724<br>725<br>726<br>727<br>728<br>729<br>730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>749<br>750<br>751<br>752<br>753<br>754<br>755 | 709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723<br>724<br>725<br>726<br>727<br>728<br>729<br>730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>749<br>750<br>751<br>752<br>753<br>754<br>755 |
|                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                       | 709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723<br>724<br>725<br>726<br>727<br>728<br>729<br>730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>749<br>750<br>751<br>752<br>753<br>754<br>755 |
|                                                                                                                                                                                                                                                                                                                                              | 712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723<br>724<br>725<br>726<br>727<br>728<br>729<br>730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>749<br>750<br>751<br>752<br>753<br>754<br>755                      | 712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723<br>724<br>725<br>726<br>727<br>728<br>729<br>730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>749<br>750<br>751<br>752<br>753<br>754<br>755                      |
|                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                       | 712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723<br>724<br>725<br>726<br>727<br>728<br>729<br>730<br>731<br>732<br>733<br>734<br>735<br>736<br>737<br>738<br>739<br>740<br>741<br>742<br>743<br>744<br>745<br>746<br>747<br>748<br>749<br>750<br>751<br>752<br>753<br>754<br>755                      |

Li et al. (2024) shows that aggregating hidden states across layers and multiple arrow tokens leads to stronger task representations. Kang et al. (2025) proposes to generate task vectors conditioned on each input query. Beyond text, task vectors have also been applied in vision (Hojel et al., 2024; Peng et al., 2024) and multimodal models (Huang et al., 2024; Luo et al., 2025), where they enable flexible transfer across modalities. Han et al. (2025) connects the performance of task vectors by task decodability, defined by the similarity between task vectors from different ICL tasks. These works highlight the empirical utility of task vectors but stop short of explaining their inner mechanisms.

**Explaining the Task Vector Method.** Task vectors were initially conjectured to encapsulate the complete knowledge of the current task (Hendel et al., 2023). However, this view fails to account for their inconsistent performance across tasks of varying complexity. Empirical observations further suggest that directly decoding task vectors typically yields tokens from the task output space (Todd et al., 2024), rather than explicit task descriptions (Merullo et al., 2024). Concurrent work by Bu et al. (2025) analyzes the learning dynamics of 1-layer transformers with ICL-style prompts, explaining the utility of task vectors through a word2vec-like scheme (i.e., the existence of a vector  $z_t$  for task  $t$  such that  $y \approx z_t + x$  for all input-output pairs  $(x, y)$ ). While insightful, this characterization is restricted to additive translation tasks, single-token prompts, and single-layer architectures, limiting its generality. By contrast, our analysis encompasses richer prompt structures, including pairwise and triplet formats that better reflect practical ICL settings. Moreover, our critical point characterization extends beyond 1-layer models, and our linear regression formulation captures a broader spectrum of ICL tasks. Complementing our findings, Tikhonov et al. (2025) independently shows that standard task vectors lack sufficient expressiveness for complex ICL tasks, reinforcing our conclusion that task vectors are fundamentally constrained by rank-one mappings.

### A.3 JUSTIFICATION OF THE BLOCK-DIAGONAL ASSUMPTION

In our main analysis, we impose an assumption on the trainable parameters of linear-attention layers, such that the  $V_l$  and  $Q_l$  matrices are block-diagonal in eq. (6). This block-diagonal formulation is a widely adopted assumption in theoretical studies of ICL for transformer models, as it facilitates tractable analysis (Ahn et al., 2023; Mahankali et al., 2024; Wu et al., 2024; Zhang et al., 2024). Prior work by Ahn et al. (2023) demonstrates that the global minimizer of single-layer linear-attention transformers indeed exhibits such a block-diagonal structure. Although finding exact solutions for multi-layer transformers is more involved, it is reasonable to conjecture that similar structural patterns hold. Empirically, we observe that when optimizing the full matrices, gradient-based training also tends to converge to block-diagonal solutions.

756 Intuitively, given the high dimensionality of hidden states in modern LLMs, it is plausible to assume  
 757 that the  $x_i$  and  $y_i$  components can be projected into orthogonal or nearly orthogonal subspaces  
 758 when mixed in the hidden state space. This motivates a decomposition of the projection matrices  $V_l$   
 759 and  $Q_l$  into two separate parts that operate independently on  $x_i$  and  $y_i$ , which can be equivalently  
 760 formulated as the block-diagonal structures.

#### 762 A.4 INSEPARABLE COVARIATES AND RESPONSES

764 In our main analysis, we assume that  $x_i$  and  $y_i$  embeddings are linearly separable, allowing the  
 765 addition  $x_i + y_i$  to act a concatenation operation. However, recognizing that this assumption does  
 766 not generally hold for real-world transformers, we extend our analysis to the following setting, where  
 767  $x_i$  and  $y_i$  are no longer linearly separable. While this still imposes a  $2d$ -dimensional requirement  
 768 on the hidden space, such a constraint is easily satisfied in practical transformers, given the high  
 769 dimensionality of their internal representations.

$$770 \quad Z_0 = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ x_1 & y_1 & \cdots & x_n & y_n & x_{\text{test}} & 0 \end{bmatrix} \in \mathbb{R}^{(2d) \times (2n+2)}. \quad (11)$$

772 We slightly modify the sparsity constraints for the first layer, and require  $(D_0)_{2i,:} = 0$  for  $i \in [n+1]$ :

$$774 \quad V_0 = \begin{bmatrix} 0 & A_0 \\ 0_{d \times d} & 0 \end{bmatrix}, \quad Q_0 = \begin{bmatrix} 0_{2d \times 2d} & 0 \\ 0 & D_0 \end{bmatrix}, \quad \text{where } A_0 \in \mathbb{R}^{d \times d}, D_0 \in \mathbb{R}^{d_p \times d_p}. \quad (12)$$

777 With these conditions, we are ready to establish the critical points for inseparable demonstrations.  
 778 Note that  $V_0$  and  $Q_0$  do not involve  $B_0$  and  $C_0$ , so the sequences  $B$  and  $C$  have size  $L - 1$ .

779 **Theorem 7.** *Under the same settings as Theorem 1, define  $\mathcal{S}_I, \mathcal{S}_\Sigma \subset \mathbb{R}^{d \times d}$  and  $\mathcal{S}_P \subset \mathbb{R}^{d_p \times d_p}$  as*

$$780 \quad \mathcal{S}_I = \{\lambda I_d \mid \lambda \in \mathbb{R}\}, \quad \mathcal{S}_\Sigma = \{\lambda \Sigma^{-1} \mid \lambda \in \mathbb{R}\}, \quad \mathcal{S}_P = \{\text{diag}(I_n \otimes \Lambda_1, \Lambda_2) \mid \Lambda_1, \Lambda_2 \in \mathbb{R}^{2 \times 2}\}.$$

782 Consider optimizing an  $L$ -layer linear transformer with inseparable pairwise demonstrations and  
 783 parameter configuration given in eq. (12) for the first layer and eq. (6) for the remaining layers, then

$$784 \quad \inf_{A \in \mathcal{S}_I^L, B \in \mathcal{S}_I^{L-1}, C \in \mathcal{S}_\Sigma^{L-1}, D \in \mathcal{S}_P^L} \sum_{H \in A \cup B \cup C \cup D} \|\nabla_H \mathcal{L}(\{V_l, Q_l\}_{l=1}^L)\|_F^2 = 0.$$

787 This result suggests that for inseparable demonstrations, the first layer performs a functionally similar  
 788 concatenation operation by “moving” the embedding of each  $x_i$  to the corresponding  $y_i$  position.  
 789 This enables the model to reconstruct the single-token structure without linear separability.

#### 790 A.5 LAST TASK VECTOR WEIGHTS THE MOST

792 While our analysis of linear-attention models suggests that each formed task vector (i.e., the hidden  
 793 state at each arrow token) contributes equally to the final prediction, this assumption does not fully  
 794 hold in practical LLMs. As demonstrated by the conflicting tasks experiment in (Hendel et al.,  
 795 2023), injecting a task vector from task  $B$  into an ICL prompt designed for task  $A$  causes the model  
 796 to predominantly perform task  $B$ . This behavior indicates that LLMs largely rely on the last arrow  
 797 token to determine the task identity. We attribute this to the causal attention mechanism used in  
 798 practical LLMs, which is not captured by our current theoretical analysis. In causal attention, only  
 799 the final arrow token can aggregate information from the entire preceding context, making it the  
 800 most informative and influential for prediction. This explains why our multi-vector strategy offers  
 801 modest, though consistent, performance gains. The improvement suggests that intermediate arrow  
 802 tokens do participate in the inference process, albeit less effectively. Enhancing how LLMs utilize  
 803 information from all arrow tokens remains a promising direction for improving task vector accuracy  
 804 and robustness.

## 806 B EXPERIMENT DETAILS AND ADDITIONAL RESULTS

808 In this section, we present experiment details and additional results not included in the main text due  
 809 to space limitations. Our experiments are conducted on an A100 40G GPU. It takes around 30 GPU  
 hours to fully reproduce our results.

810 B.1 SYNTHETIC EXPERIMENTS ON LINEAR-ATTENTION MODELS  
811

812 We consider training linear-attention models on random linear regression instances. We take embedding  
813 dimension  $d = 4$ , and the distributions for generating  $x_i$  and  $w_i$  are both  $P_x = P_w = \mathcal{N}(0, I_d)$ .  
814 We optimize the ICL risk for  $L$ -layer linear-attention models with  $n$  in-context demonstrations using  
815 AdamW, where  $L \in [3]$  and  $n \in [5, 30]$ . Each gradient step is computed from a batch size of 1000.  
816 We additionally apply  $\ell_1$  regularization to simplify the found solutions. For training efficiency and  
817 stability, we restrict the  $A_l$ ,  $B_l$ , and  $C_l$  matrices to  $\mathcal{S}_l$  during training, and initialize  $D_l \in \mathbb{R}^{d_p \times d_p}$   
818 with i.i.d. Gaussian matrices. For each case, we train 40 models with different random seeds, and  
819 report the minimum achieved ICL risk to approximate the global minimum.

820 To reproduce the task vector mechanism, we focus on models trained with triplet-formatted prompts.  
821 The training procedure is identical to the above. For inference, we restrict  $P_w$  to rank-one coefficient  
822 matrices, by letting  $W = w_1 w_2^\top$ , where  $w_1, w_2 \sim \mathcal{N}(0, I_d)$ . We first generate normal ICL prompts  
823 to generate task vectors as the hidden states of the last arrow token after the first attention layer,  
824 and then inject them into zero-shot prompts after normalization. The final outputs  $\hat{y}_{\text{test}}$  are taken  
825 as the output of these injected zero-shot prompts after being processed with the same transformer  
826 model. We compute the final risk as  $\mathbb{E} \left\| \frac{\hat{y}_{\text{test}}}{\|\hat{y}_{\text{test}}\|} + \frac{y_{\text{test}}}{\|y_{\text{test}}\|} \right\|$  to simulate the layer normalization blocks  
827 in practical LLMs. The reported scores are averaged for  $n \in [5, 30]$ .

829 B.2 EXPERIMENTS ON PRACTICAL LLMs  
830

831 **Datasets.** Following the settings of the original task vector method (Hendel et al., 2023), our study  
832 covers 33 tasks in 5 categories. The detailed description for each task is provided in Table 5.

833 **Prompt Template.** The template used to construct ICL demonstrations is “Example: $\{x_i\} \rightarrow \{y_i\}$ ,  
834 where  $x_i$  and  $y_i$  are subsequently replaced by the input and output of the semantic mapping. For  
835 the query part,  $y_i$  is omitted from the prompt. After concatenating each demonstration with “\n”, an  
836 example of the full input prompt is:

$$\text{Example:}\{x_1\} \rightarrow \{y_1\} \backslash \text{n} \cdots \text{Example:}\{x_n\} \rightarrow \{y_n\} \backslash \text{n} \text{Example:}\{x_{\text{test}}\} \rightarrow \quad (13)$$

837 **Evaluation.** To evaluate the  $N$ -shot performance, we generate  $50 \times (N + 1)$  i.i.d. prompts for each  
838 task with number of demonstrations  $n = 10$  for task vector extraction. The hidden states of the  
839 last  $\rightarrow$  token, which is also literally the last token in the prompt, are recorded for every layer in the  
840 transformer. Thereafter, we generate another 50 i.i.d. prompts with  $N$  demonstrations, where  $x_{\text{test}}$   
841 is selected to be distinct from the previous chosen ones. The final accuracy is measured by whether  
842 the next word predicted matches the expected answer. The performance of the standard ICL method  
843 (Baseline) is acquired by inferring without interference. For the task vector method (TaskV) and our  
844 multi-vector variant (TaskV-M), the extracted task vectors are injected to replace the hidden states  
845 of the arrow  $\rightarrow$  tokens at a specified layer  $l$ . For TaskV, only the last arrow token is injected, while  
846 for TaskV-M, each of the  $N + 1$  arrow tokens is injected with the  $N + 1$  extracted task vectors for  
847 the same task. The performance is reported for the layer  $l \in L$  achieving the highest accuracy. For  
848 each case, the mean and standard deviation are evaluated through 5 independent trials.

849 **Additional Results.** Besides Llama-13B, we also observe consistent accuracy improvement of our  
850 TaskV-M method on the Pythia-12B model, as reported in Table 6.

851 While the performance gains of TaskV-M over TaskV are not dramatic across all ICL tasks, the  
852 goal of TaskV-M is not to surpass state-of-the-art ICL techniques but to demonstrate that the task  
853 vector framework can be systematically extended by injecting multiple vectors simultaneously. This  
854 is especially valuable for complex tasks that inherently require higher-rank representations. Our  
855 results on bijection tasks clearly validate this motivation: TaskV-M yields notable improvements  
856 over the standard TaskV method. For other simpler tasks, the marginal gains from TaskV-M suggest  
857 that the expressiveness of  $W$  may not be the primary performance bottleneck. We believe these  
858 insights facilitate the design of future ICL and task vector methods.

860 B.3 ANOTHER MULTI-VECTOR INJECTION VARIANT  
861

862 In our main experiments, we implement TaskV-M by extracting  $N + 1$  task vectors from the same  
863 number of different prompts. Another possible implementation for TaskV-M is to extract multiple

864

865

866

867

868

869

Table 5: Descriptions of the tasks used in our empirical studies.

| Category    | Task                    | Example          | Description                                                                                  |
|-------------|-------------------------|------------------|----------------------------------------------------------------------------------------------|
| Knowledge   | Country to Capital      | France → Paris   | Output the capital city of the given country.                                                |
|             | Person to Language      | Macron → French  | Output the native language of the given person.                                              |
|             | Location to Continent   | Paris → Europe   | Output the corresponding continent of the given location.                                    |
|             | Religion                | Saladin → Muslim | Output the associated religion of the given location or person.                              |
| Algorithmic | List First              | [a,b,c] → a      | Output the first item in the given list.                                                     |
|             | List Last               | [a,b,c] → c      | Output the last item in the given list.                                                      |
|             | Next Letter             | a → b            | Output the next letter of the given letter in the alphabet.                                  |
|             | Prev Letter             | b → a            | Output the previous letter of the given letter in the alphabet.                              |
|             | To Upper                | a → A            | Output the corresponding uppercase letter of the given lowercase letter.                     |
| Translation | To Lower                | A → a            | Output the corresponding lowercase letter of the given uppercase letter.                     |
|             | English to French       | hello → bonjour  | Translate the given word in English to French.                                               |
|             | English to Italian      | hello → ciao     | Translate the given word in English to Italian.                                              |
|             | English to Spanish      | hello → hola     | Translate the given word in English to Spanish.                                              |
|             | French to English       | bonjour → hello  | Translate the given word in French to English.                                               |
| Linguistic  | Italian to English      | ciao → hello     | Translate the given word in Italian to English.                                              |
|             | Spanish to English      | hola → hello     | Translate the given word in Spanish to English.                                              |
|             | Present to Gerund       | go → going       | Output the corresponding gerund form of the given verb in present simple tense.              |
|             | Present to Past         | go → went        | Output the corresponding past simple form of the given verb in present simple tense.         |
|             | Present to Past Perfect | go → gone        | Output the corresponding past perfect form of the given verb in present simple tense.        |
| Bijection   | Gerund to Present       | going → go       | Output the corresponding present simple form of the given verb in gerund form.               |
|             | Past to Present         | went → go        | Output the corresponding present simple form of the given verb in past simple tense.         |
|             | Past Perfect to Present | gone → go        | Output the corresponding present simple form of the given verb in past perfect tense.        |
|             | Singular to Plural      | dog → dogs       | Output the corresponding plural form of the given noun in singular form.                     |
|             | Plural to Singular      | dogs → dog       | Output the corresponding singular form of the given noun in plural form.                     |
| Antonym     | Antonym                 | happy → sad      | Output the antonym of the given adjective.                                                   |
|             | To Upper & Lower        | a ↔ A            | Output the given letter in uppercase if it is in lowercase, and vice versa.                  |
|             | English & French        | hello ↔ bonjour  | Translate the given word to French if it is in English, and vice versa.                      |
|             | English & Italian       | hello ↔ ciao     | Translate the given word to Italian if it is in English, and vice versa.                     |
|             | English & Spanish       | hello ↔ hola     | Translate the given word to Spanish if it is in English, and vice versa.                     |
| Bijection   | Present & Gerund        | go ↔ going       | Output the given verb in gerund form if it is in present simple tense, and vice versa.       |
|             | Present & Past          | go ↔ went        | Output the given verb in past simple form if it is in present simple tense, and vice versa.  |
|             | Present & Past Perfect  | go ↔ gone        | Output the given verb in past perfect form if it is in present simple tense, and vice versa. |
|             | Singular & Plural       | dog ↔ dogs       | Output the given noun in plural form if it is in singular form, and vice versa.              |

916

917

918  
919  
920  
Table 6: Accuracy comparison between standard ICL (Baseline), the task vector method (TaskV),  
921 and our strategy (TaskV-M). The experiment is conducted on Pythia-12B with  $n = 10$ .

| Method |          | Knowledge               | Algorithmic             | Translation             | Linguistic              | Bijection               | Average                 |
|--------|----------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0-shot | Baseline | 6.60 $\pm$ 1.59         | 14.07 $\pm$ 1.45        | 8.60 $\pm$ 0.68         | 12.53 $\pm$ 1.57        | 10.31 $\pm$ 0.70        | 10.82 $\pm$ 0.48        |
|        | TaskV    | <b>63.30</b> $\pm$ 2.62 | <b>84.73</b> $\pm$ 1.22 | <b>62.07</b> $\pm$ 0.98 | <b>82.58</b> $\pm$ 1.22 | <b>42.27</b> $\pm$ 0.92 | <b>66.40</b> $\pm$ 0.96 |
| 1-shot | Baseline | 61.80 $\pm$ 5.45        | 72.80 $\pm$ 1.15        | 43.27 $\pm$ 2.92        | 57.07 $\pm$ 1.15        | 41.91 $\pm$ 2.83        | 53.95 $\pm$ 1.02        |
|        | TaskV    | 76.40 $\pm$ 2.40        | <b>84.20</b> $\pm$ 1.05 | <b>71.47</b> $\pm$ 1.41 | <b>87.16</b> $\pm$ 2.04 | 53.11 $\pm$ 2.37        | 73.59 $\pm$ 0.79        |
|        | TaskV-M  | <b>77.70</b> $\pm$ 2.52 | 83.73 $\pm$ 1.37        | 71.00 $\pm$ 1.48        | 86.80 $\pm$ 1.59        | <b>53.87</b> $\pm$ 2.90 | <b>73.68</b> $\pm$ 0.90 |
| 2-shot | Baseline | 70.30 $\pm$ 3.71        | 82.13 $\pm$ 0.54        | 60.80 $\pm$ 1.81        | 81.16 $\pm$ 1.57        | 50.76 $\pm$ 2.17        | 68.41 $\pm$ 0.64        |
|        | TaskV    | 80.30 $\pm$ 2.46        | <b>87.00</b> $\pm$ 1.63 | 76.13 $\pm$ 3.77        | 89.33 $\pm$ 0.70        | 58.67 $\pm$ 2.44        | 77.41 $\pm$ 0.50        |
|        | TaskV-M  | <b>81.60</b> $\pm$ 1.56 | 86.47 $\pm$ 0.40        | <b>77.27</b> $\pm$ 2.53 | <b>89.51</b> $\pm$ 0.88 | <b>59.24</b> $\pm$ 2.48 | <b>77.87</b> $\pm$ 0.76 |
| 3-shot | Baseline | 77.60 $\pm$ 2.40        | 81.87 $\pm$ 0.81        | 68.13 $\pm$ 2.02        | 86.31 $\pm$ 1.93        | 55.73 $\pm$ 1.60        | 73.20 $\pm$ 0.31        |
|        | TaskV    | 84.00 $\pm$ 2.76        | 86.33 $\pm$ 1.17        | <b>79.53</b> $\pm$ 2.27 | 92.00 $\pm$ 0.67        | 58.76 $\pm$ 1.53        | 79.06 $\pm$ 0.67        |
|        | TaskV-M  | <b>85.40</b> $\pm$ 2.31 | <b>87.07</b> $\pm$ 1.18 | 78.13 $\pm$ 1.86        | <b>92.84</b> $\pm$ 0.68 | <b>59.56</b> $\pm$ 1.27 | <b>79.54</b> $\pm$ 0.35 |
| 4-shot | Baseline | 78.40 $\pm$ 1.83        | 82.73 $\pm$ 0.44        | 72.40 $\pm$ 1.24        | 88.89 $\pm$ 1.25        | 57.91 $\pm$ 1.46        | 75.46 $\pm$ 0.64        |
|        | TaskV    | 83.80 $\pm$ 1.12        | 87.60 $\pm$ 1.81        | <b>80.20</b> $\pm$ 2.39 | <b>92.18</b> $\pm$ 0.96 | 59.38 $\pm$ 0.47        | 79.59 $\pm$ 0.62        |
|        | TaskV-M  | <b>84.30</b> $\pm$ 1.50 | <b>88.13</b> $\pm$ 0.81 | 80.00 $\pm$ 2.67        | 91.87 $\pm$ 1.25        | <b>60.31</b> $\pm$ 0.86 | <b>79.87</b> $\pm$ 0.51 |

938  
939  
940  
Table 7: Accuracy comparison between few-shot ICL (Baseline), the task vector method (TaskV),  
941 the multi-vector method (TaskV-M), and the single-prompt variant (TaskV-MS). The experiment is  
942 conducted on Llama-13B with  $n = 10$ .

| Method |          | Knowledge               | Algorithmic             | Translation             | Linguistic              | Bijection               | Average                 |
|--------|----------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0-shot | Baseline | 6.90 $\pm$ 2.08         | 15.60 $\pm$ 1.72        | 7.00 $\pm$ 1.65         | 12.44 $\pm$ 1.74        | 8.27 $\pm$ 1.33         | 10.28 $\pm$ 0.98        |
|        | TaskV    | <b>68.80</b> $\pm$ 2.66 | <b>86.20</b> $\pm$ 1.61 | <b>73.53</b> $\pm$ 0.91 | <b>85.24</b> $\pm$ 1.80 | <b>50.67</b> $\pm$ 2.32 | <b>72.26</b> $\pm$ 1.01 |
| 1-shot | Baseline | 69.50 $\pm$ 3.86        | 73.67 $\pm$ 1.56        | 57.80 $\pm$ 2.01        | 56.22 $\pm$ 1.57        | 44.76 $\pm$ 2.44        | 58.11 $\pm$ 0.63        |
|        | TaskV    | 79.50 $\pm$ 2.35        | 88.47 $\pm$ 0.75        | <b>80.67</b> $\pm$ 2.56 | <b>89.11</b> $\pm$ 0.84 | 60.44 $\pm$ 2.07        | 78.79 $\pm$ 0.77        |
|        | TaskV-M  | <b>81.30</b> $\pm$ 2.80 | <b>89.53</b> $\pm$ 0.65 | 80.13 $\pm$ 2.14        | 88.71 $\pm$ 0.62        | <b>61.78</b> $\pm$ 0.96 | <b>79.34</b> $\pm$ 0.37 |
|        | TaskV-MS | 80.90 $\pm$ 3.10        | 88.40 $\pm$ 0.93        | 80.13 $\pm$ 2.54        | 88.89 $\pm$ 0.73        | 61.11 $\pm$ 1.31        | 78.96 $\pm$ 0.43        |
| 2-shot | Baseline | 78.80 $\pm$ 3.30        | 85.07 $\pm$ 1.37        | <b>75.67</b> $\pm$ 2.64 | 76.80 $\pm$ 1.18        | 56.49 $\pm$ 2.87        | 72.92 $\pm$ 0.59        |
|        | TaskV    | 84.60 $\pm$ 2.11        | 88.40 $\pm$ 0.68        | 84.33 $\pm$ 0.92        | 90.13 $\pm$ 0.92        | 62.44 $\pm$ 2.16        | 80.82 $\pm$ 0.42        |
|        | TaskV-M  | <b>85.70</b> $\pm$ 1.63 | 89.27 $\pm$ 1.10        | 84.13 $\pm$ 1.15        | 89.64 $\pm$ 0.86        | <b>64.49</b> $\pm$ 2.02 | 81.48 $\pm$ 0.37        |
|        | TaskV-MS | 84.40 $\pm$ 2.13        | <b>89.53</b> $\pm$ 0.98 | <b>84.67</b> $\pm$ 1.73 | <b>90.18</b> $\pm$ 1.39 | <b>64.49</b> $\pm$ 2.30 | <b>81.61</b> $\pm$ 0.80 |
| 3-shot | Baseline | 86.20 $\pm$ 2.69        | 88.07 $\pm$ 1.06        | 80.00 $\pm$ 1.67        | 84.04 $\pm$ 1.19        | 62.18 $\pm$ 1.52        | 78.51 $\pm$ 0.42        |
|        | TaskV    | 90.20 $\pm$ 2.23        | 88.67 $\pm$ 0.89        | <b>86.27</b> $\pm$ 2.31 | 92.31 $\pm$ 0.48        | 66.53 $\pm$ 0.94        | 83.53 $\pm$ 0.41        |
|        | TaskV-M  | 90.30 $\pm$ 1.50        | <b>89.87</b> $\pm$ 0.83 | 86.07 $\pm$ 2.17        | <b>92.36</b> $\pm$ 0.72 | <b>68.13</b> $\pm$ 0.76 | <b>84.15</b> $\pm$ 0.52 |
|        | TaskV-MS | <b>90.60</b> $\pm$ 2.20 | 89.47 $\pm$ 0.78        | 86.20 $\pm$ 1.89        | 91.91 $\pm$ 0.87        | 67.69 $\pm$ 1.40        | 83.91 $\pm$ 0.45        |
| 4-shot | Baseline | 84.80 $\pm$ 2.06        | 88.07 $\pm$ 0.61        | 83.27 $\pm$ 1.82        | 88.89 $\pm$ 1.91        | 67.16 $\pm$ 1.47        | 81.52 $\pm$ 0.66        |
|        | TaskV    | 88.70 $\pm$ 1.69        | 89.53 $\pm$ 1.34        | 86.27 $\pm$ 1.08        | <b>92.76</b> $\pm$ 0.54 | 70.44 $\pm$ 1.35        | 84.66 $\pm$ 0.39        |
|        | TaskV-M  | 89.60 $\pm$ 1.43        | <b>91.00</b> $\pm$ 1.01 | <b>87.20</b> $\pm$ 0.62 | 92.36 $\pm$ 1.44        | <b>72.53</b> $\pm$ 0.94 | <b>85.64</b> $\pm$ 0.29 |
|        | TaskV-MS | <b>90.10</b> $\pm$ 1.39 | 90.67 $\pm$ 1.10        | 87.00 $\pm$ 1.17        | 92.22 $\pm$ 0.92        | 72.09 $\pm$ 1.46        | 85.45 $\pm$ 0.26        |

959  
960  
961  
962  
task vectors from each arrow token in a single few-shot prompt simultaneously. We name this alternative approach as TaskV-MS. As discussed in Proposition 3, the task vector weights that emerge at each arrow token are approximately orthonormal, suggesting they encode distinct information subsets and can be simultaneously injected to enhance model performance (e.g., by increasing the rank of the induced coefficient matrix  $W$ ). Table 7 shows a comparison between the current multi-vector method (TaskV-M) and this single-prompt variant (TaskV-MS).

963  
964  
965  
966  
967  
968  
969  
970  
971  
While TaskV-MS also delivers strong performance, it slightly underperforms TaskV-M. We believe this is due to the causal attention mechanism in real LLMs, where earlier arrow tokens can only aggregate information from a subset of demonstrations. Nonetheless, TaskV-MS is a promising alternative for accelerating inference.

972 Table 8: Comparison of the accuracies of  $n$ -shot ICL and task vector on bijection tasks ( $n = 10$ ).  
 973 We use gray text to indicate accuracies lower than 60%.

| Task                              | GPT-J |      | Pythia-6.9B |      | Pythia-12B |      | Llama-7B |      | Llama-13B |      | Qwen3-8B |      | Llama3-8B |      |
|-----------------------------------|-------|------|-------------|------|------------|------|----------|------|-----------|------|----------|------|-----------|------|
|                                   | ICL   | TV   | ICL         | TV   | ICL        | TV   | ICL      | TV   | ICL       | TV   | ICL      | TV   | ICL       | TV   |
| Lower $\leftrightarrow$ Upper     | 1.00  | 0.08 | 0.90        | 0.28 | 0.96       | 0.24 | 1.00     | 0.55 | 1.00      | 0.58 | 1.00     | 0.56 | 1.00      | 0.38 |
| English $\leftrightarrow$ French  | 0.64  | 0.50 | 0.38        | 0.28 | 0.52       | 0.28 | 0.54     | 0.35 | 0.64      | 0.32 | 0.84     | 0.48 | 0.66      | 0.42 |
| English $\leftrightarrow$ Italian | 0.68  | 0.56 | 0.62        | 0.48 | 0.60       | 0.56 | 0.70     | 0.47 | 0.72      | 0.44 | 0.68     | 0.36 | 0.70      | 0.36 |
| English $\leftrightarrow$ Spanish | 0.70  | 0.52 | 0.62        | 0.56 | 0.66       | 0.56 | 0.64     | 0.43 | 0.84      | 0.56 | 0.70     | 0.32 | 0.72      | 0.32 |
| Present $\leftrightarrow$ Gerund  | 0.64  | 0.36 | 0.44        | 0.32 | 0.40       | 0.22 | 0.80     | 0.41 | 0.74      | 0.26 | 0.72     | 0.34 | 0.94      | 0.52 |
| Present $\leftrightarrow$ Past    | 0.60  | 0.38 | 0.48        | 0.36 | 0.54       | 0.16 | 0.52     | 0.33 | 0.68      | 0.44 | 0.78     | 0.42 | 0.90      | 0.58 |
| Present $\leftrightarrow$ Perfect | 0.46  | 0.14 | 0.38        | 0.24 | 0.46       | 0.28 | 0.55     | 0.33 | 0.54      | 0.42 | 0.66     | 0.42 | 0.78      | 0.50 |
| Singular $\leftrightarrow$ Plural | 0.66  | 0.50 | 0.56        | 0.28 | 0.44       | 0.28 | 0.76     | 0.51 | 0.80      | 0.52 | 0.84     | 0.58 | 0.88      | 0.58 |
| Antonym                           | 0.86  | 0.78 | 0.76        | 0.66 | 0.76       | 0.70 | 0.83     | 0.73 | 0.78      | 0.72 | 0.82     | 0.74 | 0.82      | 0.76 |

985  
 986 Table 9: Comparison of the accuracies of  $n$ -shot ICL and task vector on bijection tasks ( $n = 20$ ).  
 987 We use gray text to indicate accuracies lower than 60%.

| Task                              | GPT-J |      | Pythia-6.9B |      | Pythia-12B |      | Llama-7B |      | Llama-13B |      | Qwen3-8B |      | Llama3-8B |      |
|-----------------------------------|-------|------|-------------|------|------------|------|----------|------|-----------|------|----------|------|-----------|------|
|                                   | ICL   | TV   | ICL         | TV   | ICL        | TV   | ICL      | TV   | ICL       | TV   | ICL      | TV   | ICL       | TV   |
| Lower $\leftrightarrow$ Upper     | 1.00  | 0.12 | 1.00        | 0.32 | 0.94       | 0.38 | 1.00     | 0.48 | 1.00      | 0.60 | 1.00     | 0.58 | 1.00      | 0.36 |
| English $\leftrightarrow$ French  | 0.74  | 0.54 | 0.44        | 0.40 | 0.52       | 0.40 | 0.52     | 0.34 | 0.58      | 0.34 | 0.58     | 0.30 | 0.74      | 0.28 |
| English $\leftrightarrow$ Italian | 0.62  | 0.54 | 0.66        | 0.46 | 0.68       | 0.48 | 0.78     | 0.50 | 0.74      | 0.48 | 0.76     | 0.38 | 0.76      | 0.32 |
| English $\leftrightarrow$ Spanish | 0.80  | 0.58 | 0.54        | 0.38 | 0.56       | 0.40 | 0.78     | 0.58 | 0.84      | 0.58 | 0.66     | 0.32 | 0.86      | 0.40 |
| Present $\leftrightarrow$ Gerund  | 0.54  | 0.26 | 0.54        | 0.22 | 0.46       | 0.14 | 0.84     | 0.44 | 0.94      | 0.38 | 0.88     | 0.28 | 0.98      | 0.52 |
| Present $\leftrightarrow$ Past    | 0.66  | 0.26 | 0.54        | 0.30 | 0.58       | 0.28 | 0.72     | 0.30 | 0.76      | 0.44 | 0.74     | 0.40 | 1.00      | 0.48 |
| Present $\leftrightarrow$ Perfect | 0.42  | 0.18 | 0.44        | 0.20 | 0.46       | 0.24 | 0.48     | 0.30 | 0.52      | 0.48 | 0.80     | 0.44 | 0.90      | 0.48 |
| Singular $\leftrightarrow$ Plural | 0.64  | 0.40 | 0.62        | 0.36 | 0.52       | 0.28 | 0.80     | 0.52 | 0.94      | 0.42 | 0.86     | 0.60 | 0.92      | 0.60 |
| Antonym                           | 0.84  | 0.76 | 0.84        | 0.70 | 0.90       | 0.82 | 0.90     | 0.84 | 0.90      | 0.84 | 0.84     | 0.74 | 0.84      | 0.76 |

#### B.4 FURTHER RESULTS ON BIJECTION TASKS

1001  
 1002 Here, we extend the results from Table 1 that illustrate the failure of task vectors on bijection tasks  
 1003 across a broader range of LLMs and varying numbers of input demonstrations. We keep the same  
 1004 experimental settings as Table 1 while increasing the number of demonstrations to  $n \in \{10, 20\}$ ,  
 1005 and report the results for 7 distinct LLMs: GPT-J, Pythia-6.9B, Pythia-12B, Llama-7B, Llama-  
 1006 13B, Qwen3-8B and Llama3-8B. As shown in Tables 8 and 9, the task vector method results in a  
 1007 significant performance drop compared to the standard ICL on bijection tasks. These results further  
 1008 support our claims that:

- 1011 Task vectors systematically fail on bijection tasks, even when further increasing the number  
 1012 of demonstrations in the prompt.
- 1013
- 1014 The failure is consistent across multiple model architectures, validating that the issue stems  
 1015 from a fundamental expressiveness limitation rather than model-specific artifacts.

#### B.5 FULL SALIENCY ANALYSIS RESULTS

1018 In the main text, we reported a simplified version of the saliency map due to space limitations,  
 1019 focusing only on the demonstration tokens  $x_i, \rightarrow, y_i$ . In Figure 5, we report the full saliency map  
 1020 covering every token in the prompt. Here, “B” stands for the [BOS] token, and “E” stands for the  
 1021 word “Example”. Please refer to eq. (13) for further details about the structure of the input prompt.  
 1022 As can be seen, the highlighted saliency weights exhibit clear patterns of embedding concatenation  
 1023 and weighted summation. It can also be observed that latter demonstrations weigh more for task  
 1024 vector formation (i.e., saliency magnitudes for latter  $y_i$  tokens are larger in Figure 5b).



Figure 5: Visualization of full saliency matrices as bipartite graphs between layer  $l$  (●) and  $l + 1$  (●), edge widths indicate saliency magnitude (Llama-7B,  $n = 10$ ). (a) Each  $y_i$  token attends to its corresponding  $(x_i, y_i)$  pair, reflecting embedding concatenation. (b) The final ( $\rightarrow$ ) token attends broadly to all  $y_i$  tokens, indicating task vector formation.

## C AUXILIARY LEMMAS

**Lemma 8** (Proposed in (Ahn et al., 2023)). *Given positive objective function  $f(A)$  taking parameters  $A = \{A_i\}_{i=1}^n$ , where  $A_i \in \mathbb{R}^{d_i \times d_i}$ . Let  $\mathcal{S} = \Pi_{i=1}^n \mathcal{S}_i \subset \Pi_{i=1}^n \mathbb{R}^{d_i \times d_i}$  be a predefined parameter subspace. Define  $\tilde{A}(t, R_i) = \{A_1, \dots, A_i + tR_i, \dots, A_n\}$  given  $i \in [1, n]$ ,  $R_i \in \mathbb{R}^{d_i \times d_i}$  and  $t \in \mathbb{R}$ . If for any  $A \in \mathcal{S}$  and  $R_i \in \mathbb{R}^{d_i \times d_i}$ , there exists  $\tilde{R}_i \in \mathcal{S}_i$  such that*

$$\frac{d}{dt} f(\tilde{A}(t, \tilde{R}_i)) \Big|_{t=0} \leq \frac{d}{dt} f(\tilde{A}(t, R_i)) \Big|_{t=0},$$

then we have

$$\inf_{A \in \mathcal{S}} \sum_{i=1}^n \|\nabla_{A_i} f(A)\|_F^2 = 0.$$

*Proof.* This lemma is proved as part of the main theorems in (Ahn et al., 2023). We rearrange the proof here to accommodate arbitrary function of matrices. Firstly, notice that for any  $R = \{R_i\}_{i=1}^n \in \Pi_{i=1}^n \mathbb{R}^{d_i \times d_i}$ ,

$$\sum_{i=1}^n \frac{d}{dt} f(\tilde{A}(t, R_i)) \Big|_{t=0} = \frac{d}{dt} f(A + tR) \Big|_{t=0}.$$

Therefore, the provided precondition is equivalent to stating that for any  $A \in \mathcal{S}$  and  $R \in \Pi_{i=1}^n \mathbb{R}^{d_i \times d_i}$ , there exists  $\tilde{R} \in \mathcal{S}$  such that:

$$\frac{d}{dt} f(A + t\tilde{R}) \Big|_{t=0} \leq \frac{d}{dt} f(A + tR) \Big|_{t=0}.$$

Let  $R = -\nabla_A f(A)$ , we then have

$$\frac{d}{dt} f(A + tR) \Big|_{t=0} = \left\langle \frac{df(A - t\nabla_A f(A))}{d(A - t\nabla_A f(A))}, \frac{d(A - t\nabla_A f(A))}{t} \right\rangle \Big|_{t=0}$$

$$= \langle \nabla_A f(A), -\nabla_A f(A) \rangle = -\|\nabla_A f(A)\|_F^2.$$

If the infimum of  $\|\nabla_A f(A)\|_F^2$  is not zero but some positive value  $p$ , then the  $\mathcal{S}$ -constrained gradient flow induced by  $\tilde{R}$  will lead to unbounded descent:

$$\frac{d}{dt} f(A + t\tilde{R}) \Big|_{t=0} \leq -p.$$

This contradicts the fact that  $f(A) \geq 0$  and concludes the proof.  $\square$

The following lemma is an extension of Lemma 5 in (Ahn et al., 2023) by accommodating multivariate  $y$  samples as well as enabling a wider range of demonstration and transformer parameter configurations.

**Lemma 9.** *Let  $x_1, \dots, x_{n+1}$  be i.i.d. samples from an input distribution, and let  $W$  be sampled independently of  $\{x_i\}_{i=1}^{n+1}$ . Let  $Z_0 \in \mathbb{R}^{(2d) \times N}$ , where  $N \in \mathbb{Z}$ , be constructed of form*

$$Z_0 = \begin{bmatrix} * & \dots & * & * \\ * & \dots & * & 0_d \end{bmatrix} \in \mathbb{R}^{(2d) \times N},$$

where the  $*$  parts can be arbitrarily constructed from  $\{x_i\}_{i=1}^{n+1}$  and  $W$ . Let  $\tilde{Z}_0$  be defined as replacing the zero part of  $Z_0$  by  $y_{n+1}$ :

$$\tilde{Z}_0 = \begin{bmatrix} * & \dots & * & * \\ * & \dots & * & y_{n+1} \end{bmatrix} \in \mathbb{R}^{(2d) \times N}.$$

Let  $\tilde{Z}_l$  be the output of the  $l$ -th layer of the linear transformer, and let  $\tilde{X}_l, \tilde{Y}_l \in \mathbb{R}^{d \times N}$  be the first and last  $d$  rows of  $\tilde{Z}_l$ , respectively. Suppose that the  $\{Q_l\}_{l=1}^L$  matrices are of form

$$Q_l = \begin{bmatrix} \underbrace{*}_{d \text{ columns}} & 0_{(2d+d_p) \times d} & \underbrace{*}_{d_p \text{ columns}} \end{bmatrix},$$

Then the in-context risk of this  $L$ -layer linear transformer is equivalent to

$$\mathcal{L}(\{V_l, Q_l\}_{l=1}^L) = \mathbb{E}_{\tilde{Z}_0, W} \left[ \text{tr} \left( (I_N - M) \tilde{Y}_L^\top \tilde{Y}_L (I_N - M) \right) \right]. \quad (14)$$

*Proof.* Let the  $V_l$  and  $Q_l$  matrices be represented as:

$$V_l = \begin{bmatrix} V_l^1 \\ V_l^2 \end{bmatrix}, \quad Q_l = \begin{bmatrix} Q_l^1 & 0 & Q_l^2 \end{bmatrix},$$

where  $V_l^1, V_l^2 \in \mathbb{R}^{d \times 2d}$ ,  $Q_l^1 \in \mathbb{R}^{(2d+d_p) \times d}$ ,  $Q_l^2 \in \mathbb{R}^{(2d+d_p) \times d_p}$ . Then the update rule in eq. (5) can be rephrased as

$$\begin{aligned} X_l &= X_{l-1} + \frac{1}{n} V_l^1 Z_{l-1} M [Z_{l-1}^\top, P] (Q_l^1 X_{l-1} + Q_l^2 P), \\ Y_l &= Y_{l-1} + \frac{1}{n} V_l^2 Z_{l-1} M [Z_{l-1}^\top, P] (Q_l^1 X_{l-1} + Q_l^2 P). \end{aligned}$$

Let  $\Delta_Z = \tilde{Z}_0 - Z_0$ , i.e. an all-zero matrix except that the last half of the last column is  $y_{n+1}$ . Let  $\Delta_X$  and  $\Delta_Y$  be its first and last  $d$  rows respectively, then  $\Delta_X = 0$  and  $\Delta_Y = [0 \quad \dots \quad 0 \quad y_{n+1}]$ . Note that  $\tilde{Z}_l = Z_l + \Delta_Z$  holds for  $l = 0$  trivially. Now suppose it holds for some  $l = k - 1$ , then

$$\begin{aligned} \tilde{X}_k &= \tilde{X}_{k-1} + \frac{1}{n} V_k^1 \tilde{Z}_{k-1} M [\tilde{Z}_{k-1}^\top, P] (Q_k^1 \tilde{X}_{k-1} + Q_k^2 P) \\ &= X_{k-1} + \frac{1}{n} V_k^1 Z_{k-1} M [Z_{k-1}^\top, P] (Q_k^1 X_{k-1} + Q_k^2 P) \\ &\quad + \frac{1}{n} V_k^1 \Delta_Z M [\Delta_Z^\top, P] (Q_k^1 X_{k-1} + Q_k^2 P) \\ &\quad + \frac{1}{n} V_k^1 Z_{k-1} M [\Delta_Z^\top, P] (Q_k^1 X_{k-1} + Q_k^2 P) \end{aligned}$$

$$\begin{aligned}
& + \frac{1}{n} V_k^1 \Delta_Z M [\Delta_Z^\top, 0_{d_p \times d_p}] (Q_k^1 X_{k-1} + Q_k^2 P) \\
& = X_{k-1} + \frac{1}{n} V_k^1 Z_{k-1} M [Z_{k-1}^\top, P] (Q_k^1 X_{k-1} + Q_k^2 P) = X_k,
\end{aligned}$$

where the last step holds by noticing that  $\Delta_Z M = 0$ . Similarly, one can prove that

$$\tilde{Y}_k = Y_{k-1} + \Delta_Y + \frac{1}{n} V_k^2 Z_{k-1} M [Z_{k-1}^\top, P] (Q_k^1 X_{k-1} + Q_k^2 P) = Y_k + \Delta_Y.$$

Therefore, it holds that for any  $l \in [1, L]$ ,  $\tilde{Z}_l = Z_l + \Delta_Z$ . Recall the in-context risk in eq. (2):

$$\begin{aligned}
\mathcal{L}(\{V_l, Q_l\}_{l=1}^L) &= \mathbb{E}_{Z_0, W} \|(Z_L)_{(d+1:2d), N} + y_{n+1}\|_2^2 \\
&= \mathbb{E}_{Z_0, W} \|(Y_L + \Delta_Y)(I_N - M)\|_2^2 \\
&= \mathbb{E}_{\tilde{Z}_0, W} [\text{tr}((I_N - M)\tilde{Y}_L^\top \tilde{Y}_L(I_N - M))].
\end{aligned}$$

The proof is complete.  $\square$

## D PROOF OF THEORETICAL RESULTS

### D.1 PROOF OF PROPOSITION 4

*Proof.* We will first prove sufficiency. Let  $W = ab^\top$  be a rank-one matrix, where  $a, b \in \mathbb{R}^d$ . The given conditions imply that  $x = Wy = WWx = ab^\top ab^\top x$ , we then have  $b^\top x = b^\top ab^\top ab^\top x = (b^\top a)^2 b^\top x$ . Since  $b^\top x \neq 0$ , we can conclude that  $b^\top a = \pm 1$ . Then,  $x = ab^\top ab^\top x = \pm ab^\top x = \pm y$ .

To prove the necessity, it suffices to show that selecting  $W = xx^\top / \|x\|_2^2$  when  $x = y$  satisfies the given conditions (alternatively, select  $W = -xx^\top / \|x\|_2^2$  when  $x = -y$ ).  $\square$

### D.2 PROOF OF THEOREM 1

*Proof.* To enhance the readability of the notations in this proof, we will drop the constant  $\frac{1}{n}$  factor in linear attention. Furthermore, we will simplify  $\tilde{Z}_0$ ,  $\tilde{X}_0$  and  $\tilde{Y}_0$  in Lemma 9 as  $Z_0$ ,  $X_0$  and  $Y_0$  respectively. This results in different definitions compared to the original ones, but we will not refer to the original definitions in the remainder of this proof.

$$Z_0 = \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} = \begin{bmatrix} x_1 & 0 & \cdots & x_n & 0 & x_{\text{test}} & 0 \\ 0 & y_1 & \cdots & 0 & y_n & 0 & y_{\text{test}} \end{bmatrix} \in \mathbb{R}^{(2d) \times (2n+2)}.$$

Let  $Z_l$  be the output of the  $l$ -th layer of the transformer, and let  $X_l, Y_l \in \mathbb{R}^{d \times (2n+2)}$  denote the first and last  $d$  rows of  $Z_l$ , respectively. Under the constraint in eq. (6), we can verify that

$$\begin{aligned}
X_l &= X_{l-1} + A_l X_{l-1} M (X_{l-1}^\top C_l X_{l-1} + D_l), \\
Y_l &= Y_{l-1} + B_l Y_{l-1} M (X_{l-1}^\top C_l X_{l-1} + D_l).
\end{aligned} \tag{15}$$

In the following analysis, we will use  $f(A \leftarrow B)$  to denote the result of the function  $f$  of  $A$  when replacing the value of  $A$  with  $B$ . Additionally, we denote  $f(A \leftarrow B * A)$  as  $f(A \overset{*}{\leftarrow} B)$  for any operator  $*$ . Therefore,  $f(A \overset{+}{\leftarrow} B) = f(A \leftarrow A + B)$ . We also denote  $f(A \overset{\times}{\leftarrow} B) = f(A \leftarrow BA)$  and  $f(A \overset{\diamond}{\leftarrow} B) = f(A \leftarrow AB)$  for convenience.

Our goal is proving that, for any  $E \in A \cup B \cup C \cup D$  and an arbitrary matrix  $R \in \mathbb{R}^{d \times d}$  ( $\mathbb{R}^{d_p \times d_p}$  for  $D$ ), there exists  $\tilde{R} \in \mathcal{S}_I$  ( $\mathcal{S}_\Sigma$  for  $C$ ,  $\mathcal{S}_P$  for  $D$ ) such that

$$\frac{d}{dt} \mathcal{L}(E \overset{\pm}{\leftarrow} t\tilde{R}) \Big|_{t=0} \leq \frac{d}{dt} \mathcal{L}(E \overset{+}{\leftarrow} tR) \Big|_{t=0}. \tag{16}$$

Let  $\bar{X}_0 = [0, x_1, \dots, 0, x_{\text{test}}]$  be a function of  $X_0$ , we then have  $Y_0 = W\bar{X}_0$ . Let  $U_\perp \in \mathbb{R}^{d \times d}$  be a uniformly sampled random orthonormal matrix, and let  $U_\Sigma = \Sigma^{1/2} U_\perp \Sigma^{-1/2}$ . One can verify that

1188  $U_\Sigma^{-1} = \Sigma^{1/2} U_\perp^\top \Sigma^{-1/2}$ . By applying Lemma 9 and the fact that  $X_0 \stackrel{d}{=} U_\Sigma X_0$ , we have that for any  
 1189 given matrix  $R$ ,  
 1190

$$\begin{aligned} 1191 \quad & \frac{d}{dt} \mathcal{L}(E \overset{\pm}{\leftarrow} tR) \Big|_{t=0} \\ 1192 \quad &= \frac{d}{dt} \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^\top (E \overset{\pm}{\leftarrow} tR) Y_L (E \overset{\pm}{\leftarrow} tR) (I - M) \right) \right] \Big|_{t=0} \\ 1193 \quad &= 2 \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^\top \frac{d}{dt} Y_L (E \overset{\pm}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1194 \quad &= 2 \mathbb{E}_{X_0, W, U_\perp} \left[ \text{tr} \left( (I - M) Y_L^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) \frac{d}{dt} Y_L (X_0 \overset{\times}{\leftarrow} U_\Sigma, E \overset{\pm}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right]. \end{aligned}$$

1200 Next, we will show that eq. (16) holds for each one of  $A_i, B_i, C_i, D_i$  for any  $i \in [1, L]$ .  
 1201

### 1202 1. Equation (16) holds for $A_i$ .

1203 We first show that for any  $l \in [1, L]$ , the following equations hold:  
 1204

$$1205 \quad X_l(X_0 \overset{\times}{\leftarrow} U_\Sigma) = U_\Sigma X_l, \quad (17)$$

$$1206 \quad \frac{d}{dt} X_l(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} = U_\Sigma \frac{d}{dt} X_l(A_i \overset{\pm}{\leftarrow} tU_\Sigma^{-1} R U_\Sigma) \Big|_{t=0}. \quad (18)$$

1209 It is straightforward to verify that eq. (17) holds for  $l = 0$ . Now suppose that eq. (17) holds for some  
 1210  $l = k - 1$ , we then have  
 1211

$$\begin{aligned} 1212 \quad & X_k(X_0 \overset{\times}{\leftarrow} U_\Sigma) \\ 1213 \quad &= X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) + A_l X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) M \left( X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) C_l X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) + D_l \right) \\ 1214 \quad &= U_\Sigma X_{k-1} + A_l U_\Sigma X_{k-1} M \left( X_{k-1}^\top U_\Sigma^\top C_l U_\Sigma X_{k-1} + D_l \right) \\ 1215 \quad &= U_\Sigma \left( X_{k-1} + A_l X_{k-1} M \left( X_{k-1}^\top C_l X_{k-1} + D_l \right) \right) = U_\Sigma X_k, \end{aligned}$$

1218 where the third equality follows by noticing that when  $A_l = a_l I_d$  and  $C_l = c_l \Sigma^{-1}$ , we have  
 1219  $A_l U_\Sigma = U_\Sigma A_l$  and  $U_\Sigma^\top C_l U_\Sigma = C_l$ . This concludes the proof of eq. (17).  
 1220

We now turn to the proof of eq. (18). Notice that when  $l < i$ , we naturally have  
 1221

$$1222 \quad \frac{d}{dt} X_l(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} = U_\Sigma \frac{d}{dt} X_l(A_i \overset{\pm}{\leftarrow} tU_\Sigma^{-1} R U_\Sigma) \Big|_{t=0} = 0.$$

1224 When  $l = i$ , it is easy to verify that  
 1225

$$\begin{aligned} 1226 \quad & \frac{d}{dt} X_l(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} = R U_\Sigma X_{l-1} M \left( X_{l-1}^\top U_\Sigma^\top C_l U_\Sigma X_{l-1} + D_l \right) \\ 1227 \quad &= U_\Sigma \cdot U_\Sigma^{-1} R U_\Sigma M \left( X_{l-1}^\top C_l X_{l-1} + D_l \right) \\ 1228 \quad &= U_\Sigma \frac{d}{dt} X_l(A_i \overset{\pm}{\leftarrow} tU_\Sigma^{-1} R U_\Sigma) \Big|_{t=0}. \end{aligned}$$

1232 Now suppose that eq. (18) holds for some  $l = k - 1 \geq i$ , one can verify that:  
 1233

$$\begin{aligned} 1234 \quad & \frac{d}{dt} X_k(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} \\ 1235 \quad &= \frac{d}{dt} X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} + \frac{d}{dt} A_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) M \\ 1236 \quad & \cdot \left( X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) C_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) + D_k \right) \Big|_{t=0} \\ 1237 \quad &= \frac{d}{dt} X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} \end{aligned}$$

$$\begin{aligned}
& + A_k \frac{d}{dt} X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} M \left( X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) C_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) + D_k \right) \\
& + A_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) M \frac{d}{dt} X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} C_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) \\
& + A_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) M X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) C_k \frac{d}{dt} X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \\
& = U_\Sigma \frac{d}{dt} X_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} \\
& + U_\Sigma A_k \frac{d}{dt} X_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} M \left( X_{k-1}^\top C_k X_{k-1} + D_k \right) \\
& + U_\Sigma A_k X_{k-1} M \frac{d}{dt} X_{k-1}^\top (A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} C_k X_{k-1} \\
& + U_\Sigma A_k X_{k-1} M X_{k-1}^\top C_k \frac{d}{dt} X_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} \\
& = U_\Sigma \frac{d}{dt} X_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} + U_\Sigma \frac{d}{dt} A_k X_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) M \\
& \cdot \left( X_{k-1}^\top (A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) C_k X_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) + D_k \right) \Big|_{t=0} \\
& = U_\Sigma \frac{d}{dt} X_k(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0}.
\end{aligned}$$

This completes the proof of eq. (18).

Under the condition that  $B_l = b_l I_d$  for some  $b_l \in \mathbb{R}$ , we can simplify eq. (15) as

$$\begin{aligned}
Y_l &= Y_{l-1} + b_l Y_{l-1} M (X_{l-1}^\top C_l X_{l-1} + D_l) \\
&= Y_{l-1} (I + b_l M (X_{l-1}^\top C_l X_{l-1} + D_l)) \\
&= Y_0 \prod_{j=1}^l (I + b_j M (X_{j-1}^\top C_j X_{j-1} + D_j)).
\end{aligned}$$

Define  $G_l = \bar{X}_0 \prod_{j=1}^l (I + b_j M (X_{j-1}^\top C_j X_{j-1} + D_j))$ , then it satisfies that  $Y_l = W G_l$ . We are ready to prove that similar results to eqs. (17) and (18) also hold for  $G_l$ ,  $l \in [1, L]$ :

$$G_l(X_0 \overset{\times}{\leftarrow} U_\Sigma) = U_\Sigma G_l, \quad (19)$$

$$\frac{d}{dt} G_l(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} = U_\Sigma \frac{d}{dt} G_l(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0}. \quad (20)$$

Notice that eq. (19) holds trivially for  $l = 0$  as  $G_0 = \bar{X}_0$ . Now suppose that eq. (19) holds for some  $l = k - 1$ , we then have

$$\begin{aligned}
G_k(X_0 \overset{\times}{\leftarrow} U_\Sigma) &= G_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) \left( I + b_k M (X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) C_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) + D_k) \right) \\
&= U_\Sigma G_{k-1} (I + b_k M (X_{k-1}^\top C_k X_{k-1} + D_k)) = U_\Sigma G_k.
\end{aligned}$$

This concludes eq. (19). As for eq. (20), notice that both sides equal 0 when  $l \leq i$ . Now suppose that eq. (20) holds for some  $l = k - 1 \geq i$ , we then have:

$$\begin{aligned}
& \frac{d}{dt} G_k(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \\
&= \frac{d}{dt} G_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} + \frac{d}{dt} b_k G_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) M \\
& \cdot \left( X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) C_k X_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) + D_k \right) \Big|_{t=0}
\end{aligned}$$

$$\begin{aligned}
&= \frac{d}{dt} G_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \\
&\quad + b_k \frac{d}{dt} G_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} M \left( X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) C_k X_{k-1} (X_0 \overset{\times}{\leftarrow} U_\Sigma) + D_k \right) \\
&\quad + b_k G_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) M \frac{d}{dt} X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} C_k X_{k-1} (X_0 \overset{\times}{\leftarrow} U_\Sigma) \\
&\quad + b_k G_{k-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) M X_{k-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) C_k \frac{d}{dt} X_{k-1} (X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \\
&= U_\Sigma \frac{d}{dt} G_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} \\
&\quad + b_k U_\Sigma \frac{d}{dt} G_{k-1}(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} M \left( X_{k-1}^\top C_k X_{k-1} + D_k \right) \\
&\quad + b_k U_\Sigma G_{k-1} M \frac{d}{dt} X_{k-1}^\top (A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} C_k X_{k-1} \\
&\quad + b_k U_\Sigma G_{k-1} M X_{k-1}^\top C_k \frac{d}{dt} X_{k-1} (A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} \\
&= U_\Sigma \frac{d}{dt} G_k(A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0}.
\end{aligned}$$

This concludes the proof of eq. (20). Consider the in-context risk:

$$\begin{aligned}
&\frac{d}{dt} \mathcal{L}(A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \\
&= 2 \mathbb{E}_{X_0, W, U_\perp} \left[ \text{tr} \left( (I - M) Y_L^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) \frac{d}{dt} Y_L (X_0 \overset{\times}{\leftarrow} U_\Sigma, A_i \overset{+}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\
&= 2 \mathbb{E}_{X_0, W, U_\perp} \left[ \text{tr} \left( (I - M) G_L^\top U_\Sigma^\top W^\top W U_\Sigma \frac{d}{dt} G_L (A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0} (I - M) \right) \right] \\
&= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} \mathbb{E}_{U_\perp} \left[ G_L (A_i \overset{+}{\leftarrow} tU_\Sigma^{-1} RU_\Sigma) \right] \Big|_{t=0} (I - M) \right) \right] \\
&= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} G_L (A_i \overset{+}{\leftarrow} \mathbb{E}_{U_\perp} [tU_\Sigma^{-1} RU_\Sigma]) \Big|_{t=0} (I - M) \right) \right] \\
&= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} G_L (A_i \overset{+}{\leftarrow} \text{tr} I_d) \Big|_{t=0} (I - M) \right) \right] \\
&= \frac{d}{dt} \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^\top (A_i \overset{+}{\leftarrow} \text{tr} I_d) Y_L (A_i \overset{+}{\leftarrow} \text{tr} I_d) (I - M) \right) \right] \Big|_{t=0} \\
&= \frac{d}{dt} \mathcal{L}(A_i \overset{+}{\leftarrow} \text{tr} I_d) \Big|_{t=0},
\end{aligned}$$

where  $r = \mathbb{E}_{U_\perp} [U_\Sigma^{-1} RU_\Sigma] = \frac{1}{d} \text{tr}(\Sigma^{-1/2} R \Sigma^{1/2})$ , and we used the fact that  $U_\Sigma^\top \Sigma^{-1} U_\Sigma = \Sigma^{-1}$ , and  $\frac{d}{dt} G_L (A_i \overset{+}{\leftarrow} tR) \Big|_{t=0}$  is affine in  $R$ . This concludes that eq. (16) holds for  $A_i, i \in [1, L]$ .

## 2. Equation (16) holds for $B_i$ .

From the recursive expressions in eq. (15), we can conclude that the values of  $X_l$  do not depend on  $B_i$ . Therefore, we naturally have

$$X_l(B_i \overset{+}{\leftarrow} tR) = X_l. \quad (21)$$

Next, we would like to show that for any  $l \in [1, L]$ ,

$$\mathbb{E}_W \left[ W^\top \frac{d}{dt} Y_l(B_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \right] = \Sigma^{-1} \frac{d}{dt} G_l(b_i \overset{+}{\leftarrow} t \text{tr}(R)) \Big|_{t=0}. \quad (22)$$

1350 When  $l < i$ , we can easily verify eq. (22) since both sides equal 0. When  $l = i$ , we can get  
 1351

$$\begin{aligned} 1352 \mathbb{E}_W \left[ W^\top \frac{d}{dt} Y_l(B_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \right] &= \mathbb{E}_W [W^\top R Y_{l-1} M (X_{l-1}^\top C_l X_{l-1} + D_l)] \\ 1353 &= \mathbb{E}_W [W^\top RW] G_{l-1} M (X_{l-1}^\top C_l X_{l-1} + D_l) \\ 1354 &= \text{tr}(R) \Sigma^{-1} G_{l-1} M (X_{l-1}^\top C_l X_{l-1} + D_l) \\ 1355 &= \Sigma^{-1} \frac{d}{dt} G_l(b_i \overset{+}{\leftarrow} t \text{tr}(R)) \Big|_{t=0}. \\ 1356 \\ 1357 \\ 1358 \end{aligned}$$

1359 Suppose that eq. (22) holds for some  $l = k - 1 \geq i$ . One can then verify  
 1360

$$\begin{aligned} 1361 \mathbb{E}_W \left[ W^\top \frac{d}{dt} Y_k(B_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \right] &= \mathbb{E}_W \left[ W^\top \frac{d}{dt} Y_{k-1}(B_i \overset{+}{\leftarrow} tR) (I + b_k M (X_{k-1}^\top C_k X_{k-1} + D_k)) \Big|_{t=0} \right] \\ 1362 &= \mathbb{E}_W \left[ W^\top \frac{d}{dt} Y_{k-1}(B_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \right] (I + b_k M (X_{k-1}^\top C_k X_{k-1} + D_k)) \\ 1363 &= \Sigma^{-1} \frac{d}{dt} G_{k-1}(b_i \overset{+}{\leftarrow} t \text{tr}(R)) \Big|_{t=0} (I + b_k M (X_{k-1}^\top C_k X_{k-1} + D_k)) \\ 1364 &= \Sigma^{-1} \frac{d}{dt} G_k(b_i \overset{+}{\leftarrow} t \text{tr}(R)) \Big|_{t=0}. \\ 1365 \\ 1366 \\ 1367 \\ 1368 \\ 1369 \\ 1370 \\ 1371 \\ 1372 \end{aligned}$$

1373 The proof of eq. (22) is complete. Now, look at the in-context risk, we have  
 1374

$$\begin{aligned} 1375 \frac{d}{dt} \mathcal{L}(B_i \overset{+}{\leftarrow} tR) \Big|_{t=0} &= 2 \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^\top \frac{d}{dt} Y_L(B_i \overset{+}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1376 &= 2 \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \mathbb{E}_W \left[ W^\top \frac{d}{dt} Y_L(B_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \right] (I - M) \right) \right] \\ 1377 &= 2 \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} G_L(b_i \overset{+}{\leftarrow} t \text{tr}(R)) \Big|_{t=0} (I - M) \right) \right] \\ 1378 &= 2 \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^\top \frac{d}{dt} Y_L(B_i \overset{+}{\leftarrow} t \text{tr}(R) I_d) \Big|_{t=0} (I - M) \right) \right] \\ 1379 &= \frac{d}{dt} \mathcal{L}(B_i \overset{+}{\leftarrow} t \text{tr}(R) I_d) \Big|_{t=0}. \\ 1380 \\ 1381 \\ 1382 \\ 1383 \\ 1384 \\ 1385 \end{aligned}$$

1386 This concludes that eq. (16) holds for  $B_i, i \in [1, L]$ .  
 1387

### 3. Equation (16) holds for $C_i$ .

1388 Similar to the  $A_i$  case, we will first prove that for any  $l \in [1, L]$ ,  
 1389

$$\frac{d}{dt} X_l(X_0 \overset{\times}{\leftarrow} U_\Sigma, C_i \overset{+}{\leftarrow} tR) \Big|_{t=0} = U_\Sigma \frac{d}{dt} X_l(C_i \overset{+}{\leftarrow} tU_\Sigma^\top R U_\Sigma) \Big|_{t=0}. \quad (23)$$

1390 The equation above holds trivially for  $l < i$ . For the case  $l = i$ , we have  
 1391

$$\begin{aligned} 1392 \frac{d}{dt} X_l(X_0 \overset{\times}{\leftarrow} U_\Sigma, C_i \overset{+}{\leftarrow} tR) \Big|_{t=0} &= A_j X_{l-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) M X_{l-1}^\top (X_0 \overset{\times}{\leftarrow} U_\Sigma) R X_{l-1}(X_0 \overset{\times}{\leftarrow} U_\Sigma) \\ 1393 &= U_\Sigma A_j X_{l-1} M X_{l-1}^\top U_\Sigma^\top R U_\Sigma X_{l-1} = U_\Sigma \frac{d}{dt} X_l(C_i \overset{+}{\leftarrow} tU_\Sigma^\top R U_\Sigma) \Big|_{t=0}. \\ 1394 \\ 1395 \\ 1396 \\ 1397 \\ 1398 \\ 1399 \\ 1400 \\ 1401 \\ 1402 \end{aligned}$$

1403 One can conclude the proof of eq. (23) through a similar reduction as eq. (18) for  $l > i$  layers. Next, we establish the corresponding result for  $G_l$ :

$$\frac{d}{dt} G_l(X_0 \overset{\times}{\leftarrow} U_\Sigma, C_i \overset{+}{\leftarrow} tR) \Big|_{t=0} = U_\Sigma \frac{d}{dt} G_l(C_i \overset{+}{\leftarrow} tU_\Sigma^\top R U_\Sigma) \Big|_{t=0}. \quad (24)$$

1404 This equation holds trivially for  $l < i$ . When taking  $l = i$ , we can verify that  
 1405

$$\begin{aligned} \frac{d}{dt} G_l(X_0 \overset{\diamond}{\leftarrow} U_\Sigma, C_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} &= b_l G_{l-1}(X_0 \overset{\diamond}{\leftarrow} U_\Sigma) M X_{l-1}^\top (X_0 \overset{\diamond}{\leftarrow} U_\Sigma) R X_{l-1} (X_0 \overset{\diamond}{\leftarrow} U_\Sigma) \\ &= b_l U_\Sigma G_{l-1}(X_0 \overset{\diamond}{\leftarrow} U_\Sigma) M X_{l-1}^\top U_\Sigma^\top R U_\Sigma X_{l-1} \\ &= U_\Sigma \frac{d}{dt} G_l(C_i \overset{\pm}{\leftarrow} tU_\Sigma^\top R U_\Sigma) \Big|_{t=0}. \end{aligned}$$

1412 For  $l > i$  layers, one can follow similar reductions as eq. (20) to finish the proof. We then consider  
 1413 the in-context risk:

$$\begin{aligned} \frac{d}{dt} \mathcal{L}(C_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} &= 2 \mathbb{E}_{X_0, W, U_\perp} \left[ \text{tr} \left( (I - M) Y_L^\top (X_0 \overset{\diamond}{\leftarrow} U_\Sigma) \frac{d}{dt} Y_L(X_0 \overset{\diamond}{\leftarrow} U_\Sigma, C_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ &= 2 \mathbb{E}_{X_0, W, U_\perp} \left[ \text{tr} \left( (I - M) G_L^\top U_\Sigma^\top W^\top W U_\Sigma \frac{d}{dt} G_L(C_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ &= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} \mathbb{E}_{U_\perp} \left[ G_L(C_i \overset{\pm}{\leftarrow} tU_\Sigma^\top R U_\Sigma) \right] \Big|_{t=0} (I - M) \right) \right] \\ &= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} G_L(C_i \overset{\pm}{\leftarrow} tR \Sigma^{-1}) \Big|_{t=0} (I - M) \right) \right] \\ &= \frac{d}{dt} \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^\top (C_i \overset{\pm}{\leftarrow} tR \Sigma^{-1}) Y_L(C_i \overset{\pm}{\leftarrow} tR \Sigma^{-1}) (I - M) \right) \right] \Big|_{t=0} \\ &= \frac{d}{dt} \mathcal{L}(C_i \overset{\pm}{\leftarrow} tR \Sigma^{-1}) \Big|_{t=0}, \end{aligned}$$

1431 where  $r = \mathbb{E}_{U_\perp} [U_\Sigma^\top R U_\Sigma] = \frac{1}{d} \text{tr}(\Sigma^{1/2} R \Sigma^{1/2})$ . This concludes that eq. (16) holds for  $C_i$ .  
 1432

#### 4. Equation (16) holds for $D_i$ .

1434 Let  $U_p \in \mathbb{R}^{n \times n}$  be a uniformly sampled permutation matrix, i.e., a binary matrix that has exactly  
 1435 one 1 entry in each row and column with all other entries 0. Let  $U_\circ = \text{diag}(U_p \otimes I_2, I_2) \in$   
 1436  $\mathbb{R}^{(2n+2) \times (2n+2)}$ . One can verify that by multiplying  $X_0 U_\circ$ , it is equal to shuffling the first  $n$  2-  
 1437 column sub-blocks of  $X_0$  and keeping the last 2 columns unchanged.

1438 Then, consider a matrix  $U_\xi = \text{diag}(\xi_1, \dots, \xi_{n+1}) \in \mathbb{R}^{(n+1) \times (n+1)}$  where  $\xi_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}\{\pm 1\}$ , i.e., a  
 1439 diagonal matrix with random  $\pm 1$  entries. Let  $U_\pm = U_\xi \otimes I_2 \in \mathbb{R}^{(2n+2) \times (2n+2)}$ . Thus,  $U_\pm = U_\pm^\top$   
 1440 and  $X_0 U_\pm$  is randomly flipping the sign of each 2-column sub-block in  $X_0$ .  
 1441

1442 We are going to prove that for any  $l \in [1, L]$ , recalling that  $f(A \overset{\diamond}{\leftarrow} B) = f(A \leftarrow AB)$ ,  
 1443

$$X_l(X_0 \overset{\diamond}{\leftarrow} U_\pm U_\circ) = X_l U_\pm U_\circ, \quad (25)$$

$$G_l(X_0 \overset{\diamond}{\leftarrow} U_\pm U_\circ) = G_l U_\pm U_\circ. \quad (26)$$

1446 Equation (25) holds trivially for  $l = 0$ . When eq. (25) holds for some  $l = k - 1$ , we can verify that  
 1447

$$\begin{aligned} X_k(X_0 \overset{\diamond}{\leftarrow} U_\pm U_\circ) &= X_{k-1} U_\pm U_\circ + A_k X_{k-1} U_\pm U_\circ M (U_\circ^\top U_\pm^\top X_{k-1}^\top C_k X_{k-1} U_\pm U_\circ + D_k) \\ &= X_{k-1} U_\pm U_\circ + A_k X_{k-1} U_\pm U_\circ M U_\circ^\top U_\pm^\top (X_{k-1}^\top C_k X_{k-1} + U_\pm U_\circ D_k U_\circ^\top U_\pm^\top) U_\pm U_\circ \\ &= X_{k-1} U_\pm U_\circ + A_k X_{k-1} M (X_{k-1}^\top C_k X_{k-1} + D_k) U_\pm U_\circ \\ &= (X_{k-1} + A_k X_{k-1} M (X_{k-1}^\top C_k X_{k-1} + D_k)) U_\pm U_\circ = X_k U_\pm U_\circ. \end{aligned}$$

1455 It uses the fact that there exists some  $D_i^1, D_i^2 \in \mathbb{R}^{2 \times 2}$  such that  $D_i = \text{diag}(I_n \otimes D_i^1, D_i^2)$ , so  
 1456 shuffling the first  $n$   $2 \times 2$  diagonal sub-blocks of  $D_i$  does not change the matrix, and we have  
 1457  $U_\circ D_i U_\circ^\top = D_i$ . Similarly, we have  $U_\pm D_k U_\pm^\top = D_k$ . This concludes eq. (25), and eq. (26) could  
 be acquired similarly.

1458 Next, we will establish the following equalities for  $X_l$  and  $G_l$ :

$$1460 \quad \frac{d}{dt} X_l(X_0 \overset{\diamond}{\leftarrow} U_{\pm} U_{\circ}, D_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} = \frac{d}{dt} X_l(D_i \overset{\pm}{\leftarrow} tU_{\pm} U_{\circ} R U_{\circ}^{\top} U_{\pm}^{\top}) \Big|_{t=0} U_{\pm} U_{\circ}, \quad (27)$$

$$1462 \quad \frac{d}{dt} G_l(X_0 \overset{\diamond}{\leftarrow} U_{\pm} U_{\circ}, D_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} = \frac{d}{dt} G_l(D_i \overset{\pm}{\leftarrow} tU_{\pm} U_{\circ} R U_{\circ}^{\top} U_{\pm}^{\top}) \Big|_{t=0} U_{\pm} U_{\circ}. \quad (28)$$

1464 The proof follows by similar reductions as proving eqs. (18) and (20).

1466 Finally, we consider the in-context risk under the permutation of  $U_p$  and  $U_{\xi}$ . Since each pair of  
1467  $(x_i, y_i)$  is equivalently sampled from Gaussian distributions, we have  $X_0 \overset{d}{=} X_0 U_{\pm} U_{\circ}$ . Therefore,  
1468

$$\begin{aligned} 1469 \quad & \frac{d}{dt} \mathcal{L}(D_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} \\ 1470 \quad &= 2 \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^{\top} \frac{d}{dt} Y_L(D_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1471 \quad &= 2 \mathbb{E}_{X_0, W, U_p, U_{\xi}} \left[ \text{tr} \left( (I - M) Y_L^{\top} (X_0 \overset{\diamond}{\leftarrow} U_{\pm} U_{\circ}) \frac{d}{dt} Y_L(X_0 \overset{\diamond}{\leftarrow} U_{\pm} U_{\circ}, D_i \overset{\pm}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1472 \quad &= 2d \mathbb{E}_{X_0, U_p, U_{\xi}} \left[ \text{tr} \left( (I - M) U_{\circ}^{\top} U_{\pm}^{\top} G_L^{\top} \Sigma^{-1} \frac{d}{dt} G_L(D_i \overset{\pm}{\leftarrow} tU_{\pm} U_{\circ} R U_{\circ}^{\top} U_{\pm}^{\top}) \Big|_{t=0} U_{\pm} U_{\circ} (I - M) \right) \right] \\ 1473 \quad &= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^{\top} \Sigma^{-1} \frac{d}{dt} \mathbb{E}_{U_p, U_{\xi}} \left[ G_L(D_i \overset{\pm}{\leftarrow} tU_{\pm} U_{\circ}^{\top} R U_{\circ} U_{\pm}) \right] \Big|_{t=0} (I - M) \right) \right] \\ 1474 \quad &= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^{\top} \Sigma^{-1} \frac{d}{dt} G_L(D_i \overset{\pm}{\leftarrow} t\tilde{R}) \Big|_{t=0} (I - M) \right) \right] = \frac{d}{dt} \mathcal{L}(D_i \overset{\pm}{\leftarrow} t\tilde{R}) \Big|_{t=0}, \end{aligned}$$

1483 where  $\tilde{R} = \mathbb{E}_{U_p, U_{\xi}} [U_{\pm} U_{\circ}^{\top} R U_{\circ} U_{\pm}] = \text{diag}(I_n \otimes R^1, R^2)$ ,  $R^1 = \frac{1}{n} \sum_{j=1}^n R_j$ ,  $R^2 = R_{n+1}$ , and  $R_j$   
1484 is the  $j$ -th  $2 \times 2$  diagonal block of  $R$ . The 4th equality uses the fact that  $\text{tr}[(I - M) A (I - M)]$  is ex-  
1485 tracting the right-bottom element of  $A$ , so it should be equal to  $\text{tr}[(I - M) U_{\circ}^{\top} U_{\pm}^{\top} A U_{\pm} U_{\circ} (I - M)]$   
1486 for any matrix  $A$ . This concludes that eq. (16) holds for  $D_i$ .

1487 Till now, we have proved that eq. (16) holds for each one of  $A_i, B_i, C_i, D_i$ . The proof of the whole  
1488 theorem is then completed by applying Lemma 8.  $\square$

### 1490 D.3 PROOF OF THEOREM 2

1492 *Proof.* In this proof, we follow the same notations as the proof of Theorem 1, where the constant  $\frac{1}{n}$   
1493 factor is dropped and  $\tilde{Z}_0, \tilde{X}_0, \tilde{Y}_0$  are simplified as  $Z_0, X_0, Y_0$  respectively.

$$1495 \quad Z_0 = \begin{bmatrix} x_1 & 0 & 0 & \cdots & x_n & 0 & 0 & x_{\text{test}} & 0 & 0 \\ 0 & 0 & y_1 & \cdots & 0 & 0 & y_n & 0 & 0 & y_{\text{test}} \end{bmatrix} \in \mathbb{R}^{(2d) \times (3n+3)}. \quad (29)$$

1498 Let  $Z_l \in \mathbb{R}^{2d \times (3n+3)}$  be the  $l$ -th layer's output and let  $X_l, Y_l \in \mathbb{R}^{d \times (3n+3)}$  be its first and last  $d$   
1499 rows. Our goal is to prove that, for any  $E \in A \cup B \cup C \cup D$  and an arbitrary matrix  $R \in \mathbb{R}^{d \times d}$   
1500 ( $\mathbb{R}^{d_p \times d_p}$  for  $D$ ), there exists  $\tilde{R} \in \mathcal{S}_I$  ( $\mathcal{S}_{\Sigma}$  for  $C$ ,  $\mathcal{S}_P$  for  $D$ ) such that

$$1502 \quad \frac{d}{dt} \mathcal{L}(E \overset{\pm}{\leftarrow} t\tilde{R}) \Big|_{t=0} \leq \frac{d}{dt} \mathcal{L}(E \overset{\pm}{\leftarrow} tR) \Big|_{t=0}. \quad (30)$$

1504 The proofs of eq. (30) for  $A_i, B_i$  and  $C_i$  are identical with the proof of Theorem 1 so we omit them.  
1505 We will be focusing on  $D_i$  for the rest of the proof.

1506 Let  $U_p^s \in \mathbb{R}^{n \times n}$  and  $U_p^t \in \mathbb{R}^{(n+1) \times (n+1)}$  be uniformly sampled permutation matrices. Let  
1507  $U_{\circ}^s = \text{diag}(U_p^s, 1) \otimes \text{diag}(1, 0, 1)$  and  $U_{\circ}^t = U_p^t \otimes \text{diag}(0, 1, 0)$ . Therefore,  $X_0 U_{\circ}^s$  is shuf-  
1508 fling the 1-st and 3-rd columns among each 3-column sub-block of  $X_0$  (except for the last 3-  
1509 column sub-block), and  $X_0 U_{\circ}^t$  is shuffling the 2-nd column among each 3-column sub-block. Next,  
1510 let  $U_{\xi}^s, U_{\xi}^t \in \mathbb{R}^{(n+1) \times (n+1)}$  be diagonal matrices with uniformly sampled  $\pm 1$  entries. Define  
1511  $U_{\pm}^s = U_{\xi}^s \otimes \text{diag}(1, 0, 1)$  and  $U_{\pm}^t = U_{\xi}^t \otimes \text{diag}(0, 1, 0)$ . It can then be verified that  $X_0 U_{\pm}^s U_{\pm}^t \overset{d}{=} X_0$ .

1512 To simplify the notations, let  $U_{\equiv}$  denote  $U_{\pm}^s U_{\pm}^t U_{\circ}^s U_{\circ}^t$ . We will focus on a subset of  $\mathcal{S}_P$ :  
1513

$$1514 \quad \mathcal{S}'_P = \left\{ \text{diag}(I_n \otimes \Lambda_1, \Lambda_2) + I_{n+1} \otimes \Lambda_3 \mid \Lambda_1, \Lambda_2 \in \mathcal{M}\left(\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{smallmatrix}\right), \Lambda_3 \in \mathcal{M}\left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right) \right\}.$$

1516 Assume  $D_k = \text{diag}(I_n \otimes \Lambda_1, \Lambda_2) + I_{n+1} \otimes \Lambda_3 \in \mathcal{S}'_P$  as defined above, one can verify that it is  
1517 a block-diagonal matrix constructed from the same  $3 \times 3$  sub-blocks, and thus is invariant under  
1518  $U_{\equiv} D_k U_{\equiv}^{\top}$ . We will then prove that for any  $l \in [1, L]$ ,

$$1519 \quad X_l(X_0 \overset{\diamond}{\leftarrow} U_{\equiv}) = X_l U_{\equiv}, \quad (31)$$

$$1521 \quad G_l(X_0 \overset{\diamond}{\leftarrow} U_{\equiv}) = G_l U_{\equiv}, \quad (32)$$

$$1522 \quad \frac{d}{dt} X_l(X_0 \overset{\diamond}{\leftarrow} U_{\equiv}, D_i \overset{+}{\leftarrow} tR) \Big|_{t=0} = \frac{d}{dt} X_l(D_i \overset{+}{\leftarrow} tU_{\equiv} R U_{\equiv}^{\top}) \Big|_{t=0} U_{\equiv}, \quad (33)$$

$$1525 \quad \frac{d}{dt} G_l(X_0 \overset{\diamond}{\leftarrow} U_{\equiv}, D_i \overset{+}{\leftarrow} tR) \Big|_{t=0} = \frac{d}{dt} G_l(D_i \overset{+}{\leftarrow} tU_{\equiv} R U_{\equiv}^{\top}) \Big|_{t=0} U_{\equiv}. \quad (34)$$

1527 These results can be acquired by similar proofs as eqs. (25) to (28). We then consider the in-context  
1528 risk under the permutations of  $U_{\equiv}$ . Similarly, we have  $X_0 \overset{d}{=} X_0 U_{\equiv}$  and  
1529

$$\begin{aligned} 1530 \quad & \frac{d}{dt} \mathcal{L}(D_i \overset{+}{\leftarrow} tR) \Big|_{t=0} \\ 1531 \quad &= 2 \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^{\top} \frac{d}{dt} Y_L(D_i \overset{+}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1532 \quad &= 2d \mathbb{E}_{X_0, U_{\equiv}} \left[ \text{tr} \left( (I - M) G_L^{\top} (X_0 \overset{\diamond}{\leftarrow} U_{\equiv}) \Sigma^{-1} \frac{d}{dt} G_L(X_0 \overset{\diamond}{\leftarrow} U_{\equiv}, D_i \overset{+}{\leftarrow} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1533 \quad &= 2d \mathbb{E}_{X_0, U_{\equiv}} \left[ \text{tr} \left( (I - M) U_{\equiv}^{\top} G_L^{\top} \Sigma^{-1} \frac{d}{dt} G_L(D_i \overset{+}{\leftarrow} tU_{\equiv} R U_{\equiv}^{\top}) \Big|_{t=0} U_{\equiv} (I - M) \right) \right] \\ 1534 \quad &= 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^{\top} \Sigma^{-1} \frac{d}{dt} G_L(D_i \overset{+}{\leftarrow} t \mathbb{E}_{U_{\equiv}} [U_{\equiv} R U_{\equiv}^{\top}]) \Big|_{t=0} (I - M) \right) \right] \\ 1535 \quad &= \frac{d}{dt} \mathcal{L}(D_i \overset{+}{\leftarrow} t\tilde{R}) \Big|_{t=0}. \end{aligned}$$

1544 Let  $R_j$  be the  $j$ -th  $3 \times 3$  diagonal block of  $R$ , then  $R^1 = \frac{1}{n} \sum_{j=1}^n R_j \circ \left(\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{smallmatrix}\right)$ ,  $R^2 = R_{n+1} \circ \left(\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{smallmatrix}\right)$ ,  $R^3 = \frac{1}{n+1} \sum_{j=1}^{n+1} R_j \circ \left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right)$  and  $\tilde{R} = \mathbb{E}_{U_{\equiv}} [U_{\equiv} R U_{\equiv}^{\top}] = \text{diag}(I_n \otimes R^1, R^2) + I_{n+1} \otimes R^3$ .  
1545 This indicates that eq. (30) holds for each  $D_i \in \mathcal{S}'_P$ , and thus the proof of the whole theorem  
1546 completes by applying Lemma 8 and noticing that  $\mathcal{S}'_P \subset \mathcal{S}_P$ .  $\square$   
1547

#### 1550 D.4 PROOF OF THEOREM 7

1552 *Proof.* We keep the same notations as the proof of Theorem 1, dropping the  $\frac{1}{n}$  factor and simplifying  
1553  $\tilde{X}_0, \tilde{Y}_0, \tilde{Z}_0$  as  $X_0, Y_0, Z_0$ , as follows:

$$1555 \quad Z_0 = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ x_1 & y_1 & \cdots & x_n & y_n & x_{\text{test}} & y_{\text{test}} \end{bmatrix} \in \mathbb{R}^{(2d) \times (2n+2)}. \quad (35)$$

1557 Note that we now have  $X_0$  and  $Y_0$  containing both  $x_i$  and  $y_i$ . Define

$$1559 \quad X = [x_1 \ 0 \ \cdots \ x_n \ 0 \ x_{\text{test}} \ 0],$$

$$1560 \quad \bar{X} = [0 \ x_1 \ \cdots \ 0 \ x_n \ 0 \ x_{\text{test}}],$$

$$1562 \quad Y = [0 \ y_1 \ \cdots \ 0 \ y_n \ 0 \ y_{\text{test}}].$$

1563 we then have  $Y_0 = X + Y = X + W\bar{X}$ . From the parameter configuration in eq. (12), the update  
1564 rule of the first attention layer is

$$1565 \quad X_1 = A_1 Y_0 M D_1 = A_1 X M D_1, \quad Y_1 = Y_0 = X + W\bar{X}. \quad (36)$$

1566 The update rule for the following layers is the same as eq. (15). We are going to prove that, for any  
 1567  $E \in A \cup B \cup C \cup D$  and an arbitrary matrix  $R \in \mathbb{R}^{d \times d}$  ( $\mathbb{R}^{d_p \times d_p}$  for  $D$ ), there exists  $\tilde{R} \in \mathcal{S}_I$  ( $\mathcal{S}_\Sigma$   
 1568 for  $C, \mathcal{S}_P$  for  $D$ ) such that  
 1569

$$1570 \frac{d}{dt} \mathcal{L}(E \xleftarrow{+} t\tilde{R}) \Big|_{t=0} \leq \frac{d}{dt} \mathcal{L}(E \xleftarrow{+} tR) \Big|_{t=0}. \quad (37)$$

$$1571$$

1572 Similarly to Theorem 1, we uniformly sample  $U_\perp \in \mathbb{R}^{d \times d}$  as an orthonormal random matrix, and  
 1573 let  $U_\Sigma = \Sigma^{1/2} U_\perp \Sigma^{-1/2}$ . Under the condition that  $B_l = b_l I_d$  for some  $b_l \in \mathbb{R}$ , we have  
 1574

$$1575 Y_l = Y_1 \prod_{j=2}^l (I + b_j M(X_{j-1}^\top C_j X_{j-1} + D_j)).$$

$$1576$$

$$1577$$

1578 Let  $F_l = X \prod_{j=2}^l (I + b_j M(X_{j-1}^\top C_j X_{j-1} + D_j))$ ,  $G_l = \bar{X} \prod_{j=2}^l (I + b_j M(X_{j-1}^\top C_j X_{j-1} + D_j))$ , we then have  $Y_l = F_l + W G_l$ . According to Lemma 9,  
 1579

$$1580 \begin{aligned} & \frac{d}{dt} \mathcal{L}(E \xleftarrow{+} tR) \Big|_{t=0} \\ &= \frac{d}{dt} \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) Y_L^\top (E \xleftarrow{+} tR) Y_L (E \xleftarrow{+} tR) (I - M) \right) \right] \Big|_{t=0} \\ &= \frac{d}{dt} \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) F_L^\top (E \xleftarrow{+} tR) F_L (E \xleftarrow{+} tR) (I - M) \right) \right] \Big|_{t=0} \\ &+ \frac{d}{dt} \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) G_L^\top (E \xleftarrow{+} tR) W^\top W G_L (E \xleftarrow{+} tR) (I - M) \right) \right] \Big|_{t=0} \\ &= 2 \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) F_L^\top \frac{d}{dt} F_L (E \xleftarrow{+} tR) \Big|_{t=0} (I - M) \right) \right] \\ &+ 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} G_L (E \xleftarrow{+} tR) \Big|_{t=0} (I - M) \right) \right]. \end{aligned}$$

$$1581$$

$$1582$$

$$1583$$

$$1584$$

$$1585$$

$$1586$$

$$1587$$

$$1588$$

$$1589$$

$$1590$$

$$1591$$

$$1592$$

$$1593$$

$$1594$$

1595 Next, we will show that eq. (37) holds for each one of  $A_i, B_i, C_i, D_i$  for any  $i \in [1, L]$ .  
 1596

### 1. Equation (37) holds for $A_i$ .

1598 One can easily verify that eqs. (17) and (18) still hold. Furthermore, eqs. (19) and (20) hold for both  
 1599  $F_l$  and  $G_l$ . With these observations, we can then verify

$$1600 \begin{aligned} & \frac{d}{dt} \mathcal{L}(A_i \xleftarrow{+} tR) \Big|_{t=0} \\ &= 2 \mathbb{E}_{X_0, U_\perp} \left[ \text{tr} \left( (I - M) F_L^\top (X \xleftarrow{+} U_\Sigma) \frac{d}{dt} F_L (X \xleftarrow{+} U_\Sigma, A_i \xleftarrow{+} tR) \Big|_{t=0} (I - M) \right) \right] \\ &+ 2d \mathbb{E}_{X_0, U_\perp} \left[ \text{tr} \left( (I - M) G_L^\top (X \xleftarrow{+} U_\Sigma) \Sigma^{-1} \frac{d}{dt} G_L (X \xleftarrow{+} U_\Sigma, A_i \xleftarrow{+} tR) \Big|_{t=0} (I - M) \right) \right] \\ &= 2 \mathbb{E}_{X_0, U_\perp} \left[ \text{tr} \left( (I - M) F_L^\top U_\Sigma^\top U_\Sigma \frac{d}{dt} F_L (A_i \xleftarrow{+} tU_\Sigma^{-1} R U_\Sigma) \Big|_{t=0} (I - M) \right) \right] \\ &+ 2d \mathbb{E}_{X_0, U_\perp} \left[ \text{tr} \left( (I - M) G_L^\top U_\Sigma^\top \Sigma^{-1} U_\Sigma \frac{d}{dt} G_L (A_i \xleftarrow{+} tU_\Sigma^{-1} R U_\Sigma) \Big|_{t=0} (I - M) \right) \right] \\ &= 2 \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) F_L^\top \frac{d}{dt} F_L (A_i \xleftarrow{+} tR I_d) \Big|_{t=0} (I - M) \right) \right] \\ &+ 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_L^\top \Sigma^{-1} \frac{d}{dt} G_L (A_i \xleftarrow{+} tR I_d) \Big|_{t=0} (I - M) \right) \right] \\ &= \frac{d}{dt} \mathcal{L}(A_i \xleftarrow{+} tR I_d) \Big|_{t=0}, \end{aligned}$$

$$1601$$

$$1602$$

$$1603$$

$$1604$$

$$1605$$

$$1606$$

$$1607$$

$$1608$$

$$1609$$

$$1610$$

$$1611$$

$$1612$$

$$1613$$

$$1614$$

$$1615$$

$$1616$$

$$1617$$

$$1618$$

$$1619$$

where  $r = \mathbb{E}_{U_\perp} [U_\Sigma^{-1} R U_\Sigma] = \frac{1}{d} \text{tr}(\Sigma^{-1/2} R \Sigma^{1/2})$ .

1620 **2. Equation (37) holds for  $B_i$ .**

1621 From the definition of  $F_l$  and  $G_l$ , we can verify that

$$\begin{aligned} 1623 \quad & \frac{d}{dt} Y_l(B_i \xleftarrow{+} tR) \Big|_{t=0} \\ 1624 \quad & = R(F_{i-1} + WG_{i-1})M(X_{i-1}^\top C_i X_{i-1} + D_i) \prod_{j=i+1}^l (I + b_j M(X_{j-1}^\top C_j X_{j-1} + D_j)). \end{aligned}$$

1625 Define

$$\begin{aligned} 1626 \quad & \bar{F}_l^i = (F_{i-1} + B_i F_{i-1} M(X_{i-1}^\top C_i X_{i-1} + D_i)) \prod_{j=i+1}^l (I + b_j M(X_{j-1}^\top C_j X_{j-1} + D_j)), \\ 1627 \quad & \bar{G}_l^i = (WG_{i-1} + B_i WG_{i-1} M(X_{i-1}^\top C_i X_{i-1} + D_i)) \prod_{j=i+1}^l (I + b_j M(X_{j-1}^\top C_j X_{j-1} + D_j)), \end{aligned}$$

1628 We then have

$$\frac{d}{dt} Y_l(B_i \xleftarrow{+} tR) \Big|_{t=0} = \frac{d}{dt} \bar{F}_l^i(B_i \xleftarrow{+} tR) \Big|_{t=0} + \frac{d}{dt} \bar{G}_l^i(B_i \xleftarrow{+} tR) \Big|_{t=0}.$$

1629 Similar to eqs. (20) and (22), we can prove that

$$\begin{aligned} 1630 \quad & \frac{d}{dt} \bar{F}_l^i(X_0 \xleftarrow{X} U_\Sigma, B_i \xleftarrow{+} tR) \Big|_{t=0} = U_\Sigma \frac{d}{dt} \bar{F}_l^i(B_i \xleftarrow{+} tU_\Sigma^{-1} RU_\Sigma) \Big|_{t=0}, \\ 1631 \quad & \mathbb{E}_W \left[ W^\top \frac{d}{dt} \bar{G}_l^i(B_i \xleftarrow{+} tR) \Big|_{t=0} \right] = \Sigma^{-1} \frac{d}{dt} \bar{G}_l^i(B_i \xleftarrow{+} t \text{tr}(R) I_d) \Big|_{t=0}. \end{aligned}$$

1632 Without loss of generality, we assume that  $r = \frac{1}{d} \text{tr}(\Sigma^{-1/2} R \Sigma^{1/2}) \leq \frac{1}{d} \text{tr}(R)$ , and let  $\gamma = rd/\text{tr}(R) \leq 1$ . Then, one can verify that

$$\begin{aligned} 1633 \quad & \frac{d}{dt} \mathcal{L}(B_i \xleftarrow{+} tR) \Big|_{t=0} \\ 1634 \quad & = 2 \mathbb{E}_{X_0, U_\perp} \left[ \text{tr} \left( (I - M) F_l^\top (X \xleftarrow{X} U_\Sigma) \frac{d}{dt} \bar{F}_l^i(X \xleftarrow{X} U_\Sigma, B_i \xleftarrow{+} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1635 \quad & + 2 \mathbb{E}_{X_0, W} \left[ \text{tr} \left( (I - M) G_l^\top W^\top \frac{d}{dt} \bar{G}_l^i(B_i \xleftarrow{+} tR) \Big|_{t=0} (I - M) \right) \right] \\ 1636 \quad & = 2 \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) F_l^\top \frac{d}{dt} \bar{F}_l^i(B_i \xleftarrow{+} t \text{tr} I_d) \Big|_{t=0} (I - M) \right) \right] \\ 1637 \quad & + 2 \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_l^\top \Sigma^{-1} \frac{d}{dt} \bar{G}_l^i(B_i \xleftarrow{+} t \text{tr}(R) I_d) \Big|_{t=0} (I - M) \right) \right] \\ 1638 \quad & = 2 \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) F_l^\top \frac{d}{dt} F_l(B_i \xleftarrow{+} t \text{tr} I_d) \Big|_{t=0} (I - M) \right) \right] \\ 1639 \quad & + \frac{1}{\gamma} 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_l^\top \Sigma^{-1} \frac{d}{dt} G_l(B_i \xleftarrow{+} t \text{tr} I_d) \Big|_{t=0} (I - M) \right) \right] \\ 1640 \quad & = \left( \frac{1}{\gamma} - 1 \right) 2d \mathbb{E}_{X_0} \left[ \text{tr} \left( (I - M) G_l^\top \Sigma^{-1} \frac{d}{dt} G_l(B_i \xleftarrow{+} t \text{tr} I_d) \Big|_{t=0} (I - M) \right) \right] \\ 1641 \quad & + \frac{d}{dt} \mathcal{L}(B_i \xleftarrow{+} t \text{tr} I_d) \Big|_{t=0} \geq \frac{d}{dt} \mathcal{L}(B_i \xleftarrow{+} t \text{tr} I_d) \Big|_{t=0}. \end{aligned}$$

1642 The last inequality assumes the positivity of the term involving  $G_l$ . Otherwise, one can simply flip the numerator and denominator of  $\gamma$  and scale the derivative of  $F_l$  instead of  $G_l$  to yield an additional positive term besides the risk term to finish the proof.

1643 **3. Equation (37) holds for  $C_i, D_i$ .**

1644 Similarly, one can verify that eqs. (23) and (24) still hold (also eqs. (25) to (28)), and finish the proof by following the same reductions as Theorem 1 with  $F_l$  and  $G_l$ .  $\square$

1674  
1675

## D.5 PROOF OF PROPOSITION 3

1676 *Proof.* Let  $A_l = a_l I_d$ ,  $B_l = b_l I_d$ ,  $C_l = c_l I_d$  and  $D_l = \text{diag}(I_n \otimes D_l^1, D_l^2) + I_{n+1} \otimes D_l^3 + D_l^4 \otimes D_l^5$  for  
1677  $l \in [1, 2]$ . Let  $Z_l \in \mathbb{R}^{2d \times (3n+3)}$  be the output of the  $l$ -th attention layer, and let  $X_l, Y_l \in \mathbb{R}^{d \times (3n+3)}$   
1678 be its first and last  $d$  rows respectively. Note that  $Y_l$  in this proof does not contain  $y_{\text{test}}$ .1679 Let  $D_1^1 = \begin{pmatrix} d_x^x & 0 & d_y^y \\ 0 & 0 & 0 \\ d_y^x & 0 & d_y^y \end{pmatrix}$ ,  $D_1^2 = \begin{pmatrix} s_x & 0 & s_y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  (note that the last row of  $D_1^2$  is masked out by  $M$ , so we  
1680 simply set it to 0), and  $D_1^5 = \begin{pmatrix} 0 & t_x & 0 \\ 0 & 0 & 0 \\ 0 & t_y & 0 \end{pmatrix}$ . We use  $D$  as an abbreviation for  $D_1^4$ , and use  $d_{i,j}$  to denote  
1681 the elements in  $D$ . One can verify that  
1682

1683
$$\begin{aligned} X_1 &= X_0 + a_1 X_0 M (\text{diag}(I_n \otimes D_1^1, D_1^2) + I_{n+1} \otimes D_1^3 + D_1^4 \otimes D_1^5) \\ &= \begin{bmatrix} (1 + a_1 d_x^x) x_1 & a_1 t_x \sum_{i=1}^{n+1} d_{i,1} x_i & a_1 d_x^y x_1 \\ \dots & & \dots \\ (1 + a_1 d_x^x) x_n & a_1 t_x \sum_{i=1}^{n+1} d_{i,n} x_i & a_1 d_x^y x_n \\ (1 + a_1 d_x^x) x_{\text{test}} & a_1 t_x \sum_{i=1}^{n+1} d_{i,n+1} x_i & a_1 d_x^y x_{\text{test}} \end{bmatrix}. \end{aligned}$$

1684 Similarly, we have  
1685

1686
$$\begin{aligned} Y_1 &= Y_0 + b_1 Y_0 M (\text{diag}(I_n \otimes D_1^1, D_1^2) + I_{n+1} \otimes D_1^3 + D_1^4 \otimes D_1^5) \\ &= \begin{bmatrix} b_1 d_y^x y_1 & b_1 t_y \sum_{i=1}^n d_{i,1} y_i & (1 + b_1 d_y^y) y_1 \\ \dots & & \dots \\ b_1 d_y^x y_n & b_1 t_y \sum_{i=1}^n d_{i,n} y_i & (1 + b_1 d_y^y) y_n \\ 0 & b_1 t_y \sum_{i=1}^n d_{i,n+1} y_i & 0 \end{bmatrix}. \end{aligned}$$

1687 By the definition of linear attention, we can show that  
1688

1689
$$\begin{aligned} \text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2) &= (Y_2)_{3n+3} = b_2 Y_1 M (c_2 X_1^\top (X_1)_{3n+3} + (D_2)_{3n+3}) \\ &= b_2 c_2 a_1 d_x^y \left( \sum_{i=1}^{3n+2} (Y_1)_i (X_1)_i^\top \right) x_{\text{test}}. \end{aligned}$$

1690 Define  $\Delta X_1 = [0 \ a_1 t_x d_{n+1,1} x_{\text{test}} \ 0 \ \dots \ 0 \ a_1 t_x d_{n+1,n+1} x_{\text{test}} \ 0]$ , and let  $\bar{X}_1 = X_1 - \Delta X_1$ , then  $\text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2) = \text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2, X_1 \leftarrow \bar{X}_1) + \text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2, X_1 \leftarrow \Delta X_1)$ . Let  $b_1 d_y^x (1 + a_1 d_x^x) + (1 + b_1 d_y^x) a_1 d_x^x = a$ ,  $b_1 t_y a_1 t_x = b$ ,  $b_2 c_2 a_1 d_x^y = c$ , we then have

1691
$$\begin{aligned} \text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2, X_1 \leftarrow \bar{X}_1) &= c \left( a \sum_{i=1}^n y_i x_i^\top + b \sum_{i=1}^{n+1} \left( \sum_{j=1}^n d_{j,i} y_j \right) \left( \sum_{j=1}^n d_{j,i} x_j^\top \right) \right) x_{\text{test}} \\ &= c \left( a \sum_{i=1}^n y_i x_i^\top + b \sum_{j=1}^n \sum_{k=1}^n \left( \sum_{i=1}^{n+1} d_{j,i} d_{k,i} \right) y_j x_k^\top \right) x_{\text{test}}, \quad (38) \end{aligned}$$

1692
$$\begin{aligned} \text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2, X_1 \leftarrow \Delta X_1) &= bc \sum_{i=1}^{n+1} \sum_{j=1}^n d_{j,i} y_j d_{n+1,i} x_{\text{test}}^\top x_{\text{test}} \\ &= bc \sum_{j=1}^n \left( \sum_{i=1}^{n+1} d_{j,i} d_{n+1,i} \right) y_j x_{\text{test}}^\top x_{\text{test}}. \quad (39) \end{aligned}$$

1693 Now consider the in-context risk,

1694
$$\begin{aligned} \mathcal{L}(V, Q) &= \mathbb{E}_{Z_0, W} \|\text{TF}(Z_0; \{V, Q\}) + W x_{\text{test}}\|_2^2 \\ &= \mathbb{E}_{Z_0, W} [(\text{TF}(Z_0; \{V, Q\}) + W x_{\text{test}})^\top (\text{TF}(Z_0; \{V, Q\}) + W x_{\text{test}})] \\ &= \mathbb{E}_{Z_0, W} [(\text{TF}(Z_0; \{V, Q\}), X_1 \leftarrow \bar{X}_1) + W x_{\text{test}})^\top (\text{TF}(Z_0; \{V, Q\}), X_1 \leftarrow \bar{X}_1) + W x_{\text{test}})] \\ &\quad + 2 \mathbb{E}_{Z_0, W} [\text{TF}(Z_0; \{V, Q\}), X_1 \leftarrow \Delta X_1)^\top (\text{TF}(Z_0; \{V, Q\}), X_1 \leftarrow \bar{X}_1) + W x_{\text{test}})] \\ &\quad + \mathbb{E}_{Z_0, W} [\text{TF}(Z_0; \{V, Q\}), X_1 \leftarrow \Delta X_1)^\top \text{TF}(Z_0; \{V, Q\}), X_1 \leftarrow \Delta X_1)]. \end{aligned}$$

1728 In the equation above, the 3-rd part is always positive. We then examine the second part:  
 1729

$$\begin{aligned} 1730 \quad & \mathbb{E}_{Z_0, W} [\text{TF}(Z_0; \{V, Q\}, X_1 \leftarrow \Delta X_1)^\top (\text{TF}(Z_0; \{V, Q\}, X_1 \leftarrow \bar{X}_1) + W x_{\text{test}})] \\ 1731 \quad & = \mathbb{E}_{Z_0, W} [x_{\text{test}}^\top x_{\text{test}} v_1 x_{\text{test}} + x_{\text{test}}^\top x_{\text{test}} v_2 x_{\text{test}}] = 0, \\ 1732 \end{aligned}$$

1733 where  $v_1 = bc \sum_{j=1}^n \left( \sum_{i=1}^{n+1} d_{j,i} d_{n+1,i} \right) y_j^\top c \left( a \sum_{i=1}^n y_i x_i^\top + b \sum_{j=1}^n \sum_{k=1}^n \left( \sum_{i=1}^{n+1} d_{j,i} d_{k,i} \right) y_j x_k^\top \right)$   
 1734 and  $v_2 = bc \sum_{j=1}^n \left( \sum_{i=1}^{n+1} d_{j,i} d_{n+1,i} \right) y_j^\top W$  are independent of  $x_{\text{test}}$ . Therefore,  $\mathcal{L}(V, Q)$  attains  
 1735 its minimum only if  $\text{TF}(Z_0; \{V, Q\}, X_1 \leftarrow \Delta X_1) = 0$ , implying  $d_{n+1,i} = 0$  for  $i \in [1, n+1]$ .  
 1736

1737 In the following analysis, we will assume that the last row of  $D$  is 0, and let  $M \in \mathbb{R}^{n \times (n+1)}$  be  
 1738 the first  $n$  rows of  $D$ . Additionally, we will drop the  $c$  factor in eq. (38), since its position could be  
 1739 substituted by  $a$  and  $b$ . We then define  $\tilde{W} = a \sum_{i=1}^n y_i x_i^\top + b \sum_{j=1}^n \sum_{k=1}^n \left( \sum_{i=1}^{n+1} d_{j,i} d_{k,i} \right) y_j x_k^\top$ ,  
 1740  $X = [x_1 \quad \cdots \quad x_n]$  and  $Y = [y_1 \quad \cdots \quad y_n]$ . One can verify that  
 1741

$$\tilde{W} = a Y X^\top + b Y M M^\top X^\top = a W X X^\top + b W X M M^\top X^\top. \quad (40)$$

1742 Furthermore, the in-context risk could be expanded as  
 1743

$$\begin{aligned} 1744 \quad \mathcal{L}(V, Q) &= \mathbb{E}_{Z_0, W} \left\| \tilde{W} x_{\text{test}} + W x_{\text{test}} \right\|_2^2 = \mathbb{E}_{Z_0, W} [x_{\text{test}}^\top (\tilde{W} + W)^\top (\tilde{W} + W) x_{\text{test}}] \\ 1745 \quad &= \mathbb{E}_{Z_0, W} [\text{tr}((\tilde{W} + W)^\top (\tilde{W} + W))] \\ 1746 \quad &= \mathbb{E}_{Z_0, W} [\text{tr}(\tilde{W}^\top \tilde{W}) + 2 \text{tr}(W^\top \tilde{W}) + \text{tr}(W^\top W)]. \\ 1747 \end{aligned}$$

1748 We will use the identity  $\mathbb{E}_X[XAX^\top XBX^\top] = (\text{tr}(A)\text{tr}(B) + \text{tr}(AB^\top) + d\text{tr}(AB))I_d$  for any  
 1749  $A, B \in \mathbb{R}^{n \times n}$ , which can be acquired by expanding each element and applying Isserlis' theorem.  
 1750 Let  $T_1 = \text{tr}(MM^\top)$  and  $T_2 = \text{tr}(MM^\top MM^\top)$ , then  
 1751

$$\begin{aligned} 1752 \quad & \mathbb{E}_{Z_0, W} [\text{tr}((a W X X^\top + b W X M M^\top X^\top)^\top (a W X X^\top + b W X M M^\top X^\top))] \\ 1753 \quad & = \mathbb{E}_{Z_0, W} [a^2 \text{tr}(X X^\top W^\top W X X^\top) + 2ab \text{tr}(X X^\top W^\top W X M M^\top X^\top)] \\ 1754 \quad & \quad + \mathbb{E}_{Z_0, W} [b^2 \text{tr}(X M M^\top X^\top W^\top W X M M^\top X^\top)] \\ 1755 \quad & = d \mathbb{E}_{Z_0} [a^2 \text{tr}(X X^\top X X^\top) + 2ab \text{tr}(X X^\top X M M^\top X^\top) + b^2 \text{tr}(X M M^\top X^\top X M M^\top X^\top)] \\ 1756 \quad & = a^2 d^2 n(n+1+d) + 2abd^2(n+1+d)T_1 + b^2 d^2(T_1^2 + (1+d)T_2). \\ 1757 \end{aligned}$$

1758 Simultaneously, we can verify that  $\mathbb{E}_{Z_0, W}[\text{tr}(W^\top W)] = d^2$  and  
 1759

$$\mathbb{E}_{Z_0, W} [\text{tr}(W^\top \tilde{W})] = \mathbb{E}_{Z_0, W} [a W^\top W X X^\top + b W^\top W X M M^\top X^\top] = ad^2 n + bd^2 T_1.$$

1760 Combining the results above, we aim to find the optimal  $a, b, M$  that minimize  
 1761

$$\frac{1}{d^2} \mathcal{L}(V, Q) = c_0 + c_1 T_1 + c_2 T_1^2 + c_3 T_2,$$

1762 where  
 1763

$$\begin{aligned} 1764 \quad c_0 &= a^2 n(n+1+d) + 1 + 2an, \quad c_1 = 2ab(n+1+d) + 2b, \\ 1765 \quad c_2 &= b^2, \quad c_3 = b^2(1+d). \\ 1766 \end{aligned}$$

1767 Since  $c_3 \geq 0$ , to minimize  $\mathcal{L}(V, Q)$  we need to minimize  $T_2$ . Given that  $MM^\top$  is symmetric, we  
 1768 denote its  $n$  eigenvalues as  $\lambda_i, i \in [1, n]$ . Then by Cauchy–Schwarz inequality,  
 1769

$$\text{tr}(MM^\top MM^\top) = \sum_{i=1}^n \lambda_i^2 \geq \frac{1}{n} \left( \sum_{i=1}^n \lambda_i \right)^2 = \frac{1}{n} \text{tr}^2(MM^\top).$$

1770 Therefore,  $\mathcal{L}(V, Q)$  is minimized only if the inequality above holds with equality, which implies  
 1771 that  $\lambda_i = \lambda_j$  for any  $i \neq j$ . This concludes the proof by showing that there exists  $\lambda \in \mathbb{R}$  such that  
 1772  $MM^\top = \lambda I_d$ , and thus  $DD^\top = \text{diag}(\lambda I_d, 0)$ .  $\square$   
 1773

1782 D.6 PROOF OF PROPOSITION 5  
17831784 *Proof.* We will continue from eqs. (38) and (39). After applying token-wise dropout, we have  
1785

1786 
$$\begin{aligned} \text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2, X_1 \leftarrow \bar{X}_1) &= \sum_{i=1}^n (ao_2^{3i-2} + bo_2^{3i}) o_1^{3i-2} o_1^{3i} y_i x_i^\top o_1^{3n+1} o_2^{3n+3} x_{\text{test}} \\ &+ c \sum_{j=1}^n \sum_{k=1}^n \left( \sum_{i=1}^{n+1} o_2^{3i-1} d_{j,i} d_{k,i} \right) o_1^{3j} o_1^{3k-2} y_j x_k^\top o_1^{3n+1} o_2^{3n+3} x_{\text{test}}, \end{aligned} \quad (41)$$
  
1787  
1788  
1789  
1790  
1791 
$$\text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2, X_1 \leftarrow \Delta X_1) = co_2^{3n+3} \sum_{j=1}^n \left( \sum_{i=1}^{n+1} d_{j,i} d_{n+1,i} \right) o_1^{3j} o_1^{3n+1} y_j x_{\text{test}}^\top x_{\text{test}},$$
  
1792  
1793

1794 where  $a = b_2 c_2 a_1 d_x^y b_1 d_y^x (1 + a_1 d_x^x)$ ,  $b = b_2 c_2 a_1 d_x^y (1 + b_1 d_y^x) a_1 d_x^x$  and  $c = b_2 c_2 a_1 d_x^y b_1 t_y a_1 t_x$ .  
1795 One can verify that our previous analysis about  $\text{TF}(Z_0; \{V_l, Q_l\}_{l=1}^2, X_1 \leftarrow \Delta X_1)$  still holds and  
1796 we thus have  $d_{n+1,:} = 0$ . We then define:  
1797

1798 
$$\begin{aligned} O_l^1 &= \text{diag}(o_l^1, \dots, o_l^{3n-2}) \in \mathbb{R}^{n \times n}, \quad O_l^2 = \text{diag}(o_l^3, \dots, o_l^{3n}) \in \mathbb{R}^{n \times n}, \quad \text{for } l \in [2], \\ O_2^3 &= \text{diag}(o_2^2, \dots, o_2^{3n+2}) \in \mathbb{R}^{(n+1) \times (n+1)}. \end{aligned}$$
  
1799

1800 By defining

1801 
$$\widetilde{W} = \sum_{i=1}^n (ao_2^{3i-2} + bo_2^{3i}) o_1^{3i-2} o_1^{3i} y_i x_i^\top + c \sum_{j=1}^n \sum_{k=1}^n \left( \sum_{i=1}^{n+1} o_2^{3i-1} d_{j,i} d_{k,i} \right) o_1^{3j} o_1^{3k-2} y_j x_k^\top,$$
  
1802  
1803

1804 One can verify that

1805 
$$\widetilde{W} = A + B + C \triangleq a Y O_1^2 O_2^1 O_1^1 X^\top + b Y O_1^2 O_2^2 O_1^1 X^\top + c Y O_1^2 M O_2^3 M^\top O_1^1 X^\top.$$
  
1806

1807 Then, we will compute the expectation of each term in the following decomposition:  
1808

1809 
$$\mathcal{L}(V, Q) = \mathbb{E}_{Z_0, W} \left[ \text{tr}(\widetilde{W}^\top \widetilde{W}) + 2 \text{tr}(W^\top \widetilde{W}) + \text{tr}(W^\top W) \right],$$
  
1810

1811 Specifically, let  $T_1 = \text{tr}(MM^\top)$ ,  $T_2 = \text{tr}(MM^\top MM^\top)$ ,  $T_3 = \|M\|_4^4$ ,  $T_4 = \sum_{i=1}^n \|M_{i,:}\|_2^4$ ,  
1812  $T_5 = \sum_{j=1}^{n+1} \|M_{:,j}\|_2^4$ , we then have  
1813

1814 
$$\begin{aligned} \mathbb{E}[\text{tr}(A^\top A)] &= a^2 d^2 (np^3 + n(n-1)p^6 + (1+d)np^3), \\ \mathbb{E}[\text{tr}(B^\top B)] &= b^2 d^2 (np^3 + n(n-1)p^6 + (1+d)np^3), \\ \mathbb{E}[\text{tr}(C^\top C)] &= c^2 d^2 (p^6 T_1^2 + (1+d)(p^4 - p^6) T_4 + (1+d)(p^5 - p^6) T_5 \\ &\quad + (1+d)(p^3 - p^4 - p^5 + p^6) T_3 + (p^3 - p^4) T_4 + p^4 T_2 + dp^6 T_2), \\ \mathbb{E}[\text{tr}(A^\top B)] &= abd^2 (np^4 + n(n-1)p^6 + (1+d)np^4), \\ \mathbb{E}[\text{tr}(A^\top C)] &= acd^2 ((p^4 + (n-1)p^6) T_1 + (1+d)p^4 T_1), \\ \mathbb{E}[\text{tr}(B^\top C)] &= bcd^2 ((p^4 + (n-1)p^6) T_1 + (1+d)p^4 T_1), \\ \mathbb{E}[\text{tr}(W^\top A)] &= ad^2 np^3, \quad \mathbb{E}[\text{tr}(W^\top B)] = bd^2 np^3, \quad \mathbb{E}[\text{tr}(W^\top C)] = cd^2 p^3 T_1. \end{aligned}$$
  
1815  
1816  
1817  
1818  
1819  
1820  
1821  
1822

1823 Summarizing our analysis above,  $\min_M \mathcal{L}(V, Q)$  is equivalent to:  
1824

1825 
$$\min_M \{c_0 + c_1 T_1 + c_2 T_2 + c_3 T_3 + c_4 T_4 + c_5 T_5 + c_6 T_1^2\},$$
  
1826

1827 where

1828 
$$\begin{aligned} c_0 &= 1 + n(2+d)p^3(a^2 + b^2) + 2np^3(a+b) + 2n(2+d)p^4ab + n(n-1)p^6(a+b)^2, \\ c_1 &= 2(a+b)c(p^4 + (n-1)p^6 + (1+d)p^4) + 2cp^3, \\ c_2 &= c^2(p^4 + dp^6), \\ c_3 &= c^2(1+d)(p^3 - p^4 - p^5 + p^6), \\ c_4 &= c^2((1+d)(p^4 - p^6) + (p^3 - p^4)), \\ c_5 &= c^2(1+d)(p^5 - p^6), \\ c_6 &= c^2 p^6. \end{aligned}$$
  
1829  
1830  
1831  
1832  
1833  
1834  
1835

1836 It is easy to verify that  $c_2, c_3, c_4, c_5, c_6 \geq 0$ .  $\square$

1836 D.7 PROOF OF PROPOSITION 6  
18371838 **Proposition 6** (Restate). *Let  $d_p$  denote the number of non-EOS tokens. Given any  $L$ -layer, single-  
1839 head,  $d$ -dimensional linear-attention transformer with EOS tokens:*

1840 
$$\text{TF}(Z_0; \{V_l, Q_l, P_l\}_{l \in [L]}) = (Z_L)_{:, d_p+1}, \quad (Z_0)_{:, d_p+1} = 0,$$
  
1841

1842 where

1843 
$$Z_l \in \mathbb{R}^{d \times (d_p+1)}, \quad V_l, Q_l \in \mathbb{R}^{d \times d}, \quad P_l \in \mathbb{R}^{(d_p+1) \times (d_p+1)},$$
  
1844  
1845 
$$Z_l = Z_{l-1} + V_l Z_{l-1} M (Z_{l-1}^\top Q_l Z_{l-1}^\top + P_l), \quad M = \text{diag}(I_{d_p}, 0).$$

1846 There exists an  $L$ -layer, two-head,  $2d$ -dimensional linear-attention transformer operating without  
1847 EOS tokens:

1848 
$$\text{TF}(\bar{Z}_0; \{\bar{V}_l^h, \bar{Q}_l^h, \bar{P}_l^h\}_{l \in [L], h \in [2]}) = (\bar{Z}_L)_{d:2d, d_p},$$
  
1849

1850 where

1851 
$$\bar{Z}_l \in \mathbb{R}^{2d \times d_p}, \quad \bar{V}_l^h, \bar{Q}_l^h \in \mathbb{R}^{2d \times 2d}, \quad \bar{P}_l^h \in \mathbb{R}^{d_p \times d_p},$$
  
1852  
1853 
$$\bar{Z}_l = \bar{Z}_{l-1} + \sum_{h=1}^2 \bar{V}_l^h \bar{Z}_{l-1} (\bar{Z}_{l-1}^\top \bar{Q}_l^h \bar{Z}_{l-1}^\top + \bar{P}_l^h).$$
  
1854

1855 Such that for any  $Z \in \mathbb{R}^{d \times d_p}$ , by letting  $Z_0 = [Z \ 0]$  and  $\bar{Z}_0 = \begin{bmatrix} Z \\ 0 \end{bmatrix}$ , we have  
1856  
1857

1858 
$$\text{TF}(Z_0; \{V_l, Q_l, P_l\}_{l \in [L]}) = \text{TF}(\bar{Z}_0; \{\bar{V}_l^h, \bar{Q}_l^h, \bar{P}_l^h\}_{l \in [L], h \in [2]}).$$
  
1859

1860 *Proof.* We construct  $\bar{V}_l^h$ ,  $\bar{Q}_l^h$ , and  $\bar{P}_l^h$  as follows:

1861  
1862 
$$\bar{V}_l^1 = \begin{bmatrix} V_l & 0 \\ 0 & 0 \end{bmatrix}, \quad \bar{Q}_l^1 = \begin{bmatrix} Q_l & 0 \\ 0 & 0 \end{bmatrix}, \quad \bar{P}_l^1 = (P_l)_{1:d_p, 1:d_p},$$
  
1863  
1864 
$$\bar{V}_l^2 = \begin{bmatrix} 0 & 0 \\ V_l & 0 \end{bmatrix}, \quad \bar{Q}_l^2 = \begin{bmatrix} 0 & Q_l \\ 0 & 0 \end{bmatrix}, \quad \bar{P}_l^2 = [0 \quad (P_l)_{:, d_p+1}].$$
  
1865  
1866

1867 We will show that for any  $l \in [L]$ , it satisfies  $\bar{Z}_l = \begin{bmatrix} (Z_l)_{:, (1:d_p-1)} & (Z_l)_{:, d_p} \\ 0 & (Z_l)_{:, d_p+1} \end{bmatrix}$ . One can verify  
1868 that it holds trivially for  $l = 0$ . Then, suppose it holds for some  $l = k - 1$ , we have  
1869

1870 
$$\begin{aligned} \bar{Z}_k &= \bar{Z}_{k-1} + \bar{V}_k^\top \bar{Z}_{k-1} (\bar{Z}_{k-1}^\top \bar{Q}_k^\top \bar{Z}_{k-1}^\top + \bar{P}_k^\top) + \bar{V}_k^\top \bar{Z}_{k-1} (\bar{Z}_{k-1}^\top \bar{Q}_k^\top \bar{Z}_{k-1}^\top + \bar{P}_k^\top) \\ 1871 &= \bar{Z}_{k-1} + \left[ V_k (Z_{k-1})_{:, 1:d_p} \left( (Z_{k-1})_{:, 1:d_p}^\top Q_k (Z_{k-1})_{:, 1:d_p} + (P_k)_{1:d_p, 1:d_p} \right) \right. \\ 1872 &\quad \left. + \begin{bmatrix} 0 \\ V_k (Z_{k-1})_{:, 1:d_p} \end{bmatrix} ([0 \quad (Z_{k-1})_{:, 1:d_p}^\top Q_k (Z_{k-1})_{:, d_p+1}] + [0 \quad (P_k)_{:, d_p+1}]) \right] \\ 1873 &= \bar{Z}_{k-1} + \left[ V_k Z_{k-1} M (Z_{k-1}^\top Q_k (Z_{k-1})_{:, 1:d_p} + (P_k)_{:, 1:d_p}) \right. \\ 1874 &\quad \left. + \begin{bmatrix} 0 \\ 0 \end{bmatrix} V_k Z_{k-1} M (Z_{k-1}^\top Q_k (Z_{k-1})_{:, d_p+1} + (P_k)_{:, d_p+1}) \right] \\ 1875 &= \begin{bmatrix} (Z_k)_{:, 1:d_p} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & (Z_k)_{:, d_p+1} \end{bmatrix}. \end{aligned}$$
  
1876  
1877  
1878  
1879  
1880  
1881  
1882  
1883

1884 The proof is complete. □  
1885  
1886  
1887  
1888  
1889