Under review as a conference paper at ICLR 2026

UNDERSTANDING TASK VECTORS IN IN-CONTEXT
LEARNING: EMERGENCE, FUNCTIONALITY, AND LIM-
ITATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Task vector is a compelling mechanism for accelerating inference in in-context
learning (ICL) by distilling task-specific information into a single, reusable rep-
resentation. Despite their empirical success, the underlying principles governing
their emergence and functionality remain unclear. This work proposes the Task
Vectors as Representative Demonstrations conjecture, positing that task vectors
encode single in-context demonstrations distilled from the original ones. We pro-
vide both theoretical and empirical support for this conjecture. First, we show that
task vectors naturally emerge in linear transformers trained on triplet-formatted
prompts through loss landscape analysis. Next, we predict the failure of task vec-
tors in representing high-rank mappings and confirm this on practical LLMs. Our
findings are further validated through saliency analyses and parameter visualiza-
tion, suggesting an enhancement of task vectors by injecting multiple ones into
few-shot prompts. Together, our results advance the understanding of task vectors
and shed light on the mechanisms underlying ICL in transformer-based models.

1 INTRODUCTION

In-context learning (ICL) is a core capability of large language models (LLMs), allowing them to
perform new tasks without parameter updates by conditioning on a few input-output examples in the
prompt (Brown et al., 2020). Unlike traditional training, ICL relies on attention-based mechanisms
to infer task structure directly from context. This surprising generalization ability has led to growing
interest in uncovering the principles of learning purely from contextual examples (Xie et al., 2022}
Chan et al.| [2022; |Dai et al.| 2023 [Shen et al.| 2024} Deutch et al.| [2024).

A recent work investigates the task vector method (Hendel et al., [2023) (concurrent works include
function vectors (Todd et al.,|2024) and in-context vectors (Liu et al.,2024))), a technique that distills
underlying task information from ICL demonstrations into a single vector. Typically, ICL prompts
are structured as sequences of triplets, each encoding a semantic mapping, in addition to a query at
the end (e.g., “hot — cold, up — down, dark —). Task vectors are then extracted from the hidden
states of the last (—) token. Once obtained, these vectors can be injected into new zero-shot prompts
(e.g., “big — "), enabling the model to generalize to unseen inputs in a zero-shot fashion.

Task vectors naturally emerge even in small transformer models trained from scratch (Yang et al.,
2025)), suggesting that their formation is a general property of attention-based architectures. Recent
studies further demonstrate that task vectors can be enhanced by aggregating hidden states across
multiple layers and arrow tokens (Li et al., 2024). Beyond language models, task vectors are also
effective in large-scale visual (Hojel et al.,2024) and multi-modal (Huang et al.,[2024) models.

Despite their empirical effectiveness, the underlying mechanism of task vectors, especially how they
emerge, function, and encode task information, remains poorly understood. This paper takes a step
toward unveiling the principles behind it by introducing the following conjecture:

Conjecture (Task Vectors as Representative Demonstrations)

The injected task vector facilitates zero-shot inference by encoding a single
representative demonstration, distilled from the original in-context examples.

Under review as a conference paper at ICLR 2026

(a) light (b) sma11

Predict & Output [) D] Wﬂ%ﬁ Summation m

Task Vector Formation L D/ /B/ (] C]I /ﬁﬁ m/LD-@
€ u] oo oo 0

Preprocessing Stage

@0
[5 CHE)

hot = cold wup - down day - night dark

Figure 1: Overview of task vector and our main conjecture. (a) Task vector emerges during ICL by
distilling from the preceding in-context demonstrations. (b) It can then be injected into zero-shot
prompts and functions as a single, representative demonstration, facilitating efficient prediction.

An intuitive illustration is provided in Figure[T] In the following sections, we validate this conjecture
through various empirical and theoretical perspectives. These analyses comprehensively explain
how task vectors naturally emerge within attention-based model architectures, effectively encode
task-related information, and facilitate inference in zero-shot prompts. Our work advances the un-
derstanding of the underlying mechanisms behind ICL, clarifying both the efficacy and limitations
of task vectors in transformer-based LLMs. The highlights of this paper are as follows:

* Theoretical Justification in Linear-Attention Models: We theoretically characterize the critical
points of linear-attention models and demonstrate how they solve random linear regression tasks
through embedding concatenation and gradient descent. With a triplet-formatted input prompt
structure, task vectors naturally emerge at arrow tokens as weighted summations of the in-context
demonstrations, potentially enhancing robustness under representational perturbations by redun-
dantly encoding task information. Empirically, the learned linear model parameters closely align
with the predicted structure and successfully replicate the task vector mechanism.

e Empirical Verification in Practical LLMs: We visualize the information flow in LLMs with
saliency analysis and observe patterns consistent with linear models, suggesting they share similar
underlying mechanisms. According to our conjecture, inference with task vectors is analogous
to 1-shot ICL, which is inherently limited to rank-one meta-predictors under the gradient descent
perspective. To validate this, we introduce a series of bijection tasks that are provably unsolvable
by rank-one predictors, and empirically confirm this failure in real-world transformers. Building
on these insights, we enhance the standard task vector method by injecting multiple vectors into
few-shot prompts, resulting in consistent performance gains across a range of ICL tasks.

1.1 RELATED WORKS

Theory of ICL. Recent analyses have shown that attention layers can simulate gradient-descent
algorithms for regression tasks (Garg et al., [2022; |Von Oswald et al., 2023a; |Ahn et al., 2023; |Wu
et al.| [2024). Other works study generalization and sample complexity (Xie et al.,[2022;|Chan et al.,
2022; Shen et al., 2024; 'Von Oswald et al.| [2023b; |Deutch et al., [2024). These works reveal the
inductive bias of attention but leave open how abstract task representations are formed or encoded.

Task Vector Mechanism. Multiple recent works identified the mechanism of task vectors during
ICL inference (Hendel et al.,[2023} |Todd et al., 2024; [Liu et al., | 2024)). These vectors emerge in the
pretraining stage of LLMs (Yang et al., [2025) and extend beyond text to vision (Hojel et al., 2024)
and multimodal (Huang et al., 2024)) models. Despite the effectiveness, their underlying mechanism
remains poorly understood. A concurrent work (Bu et al.,[2025) interprets them via a word2vec-like
additive scheme, but is limited to simple additive tasks, single-token prompts, and 1-layer models.
In contrast, our analysis extends to pairwise or triplet prompts and multi-layer attention.

A more comprehensive discussion of the related works can be found in Appendix [A.2]

2 SETTING: LINEAR REGRESSION WITH LINEAR-ATTENTION MODELS

Notations: We write [n] = {1,--- ,n}. The Hadamard product is denoted by o, and the Kronecker
product by ®. The identity matrix of dimension n is denoted by I,,, while 0,, and 0,,,x,, represent

Under review as a conference paper at ICLR 2026

zero vectors or matrices of the corresponding dimensions Subscripts are omitted when the dimen-
sions are clear from context. We define M(M) = {A € R4 | A = Mo A, A€ Rd‘m(M)} as
the set of masked matrices induced by mask M For a general matrix A, the element at the ¢-th row
and j-th column is denoted by A; ;, and the sub-block from rows ¢ to k£ and columns j to [is denoted
by Aj.x ju. diag(Aq,--- , A,,) represents the block-diagonal matrix constructed by {A;}7- ;.

Random Linear Regression: Following works (Garg et al., 2022} |Von Oswald et al., [2023a; |/Ahn
et al.| [2023;|Wu et al.| [2024), we consider training linear transformers on random instances of linear
regression. Let {z; ?:11, where z; € R?, denote covariates drawn i.i.d. from distribution P,, and
let {w;}¢_,, where w; € RY, denote coefficients drawn i.i.d. from distribution P,. Define the
coefficient matrix W = [wy -+ wy] T € R4%d The responses are then generated as y; = Wx;
fori € [n+ 1]. We denote by X, Y € R¥*™ the matrices whose columns are ; and y;, respectively.
The query covariate and response are denoted by Tiest = Tp+1 and Yiest = Yn+1 respectively.

Linear Self-Attention Model: Following prior works (Von Oswald et al., [2023a; |Ahn et al.| 2023
Wu et all [2024), we consider transformers composed of linear self-attention layers. Let Z, €
R*4¥4% denote the input matrix constructed from X, Y and (s but excluding yiest, Where d,
denotes the number of tokens and varies across prompt structures. The model is defined by stacking
L attention blocks with skip connections, where the [-th layer is expressed as:

Zy=Z—1 + L Attny, o, (Zi-1), Attnyq(2) =VZM(ZTQZ). (1)

Here, the trainable parameters are {V}, @, } £, where V; € R?¢*2d denotes the projection and value
matrices, and Q; € R24*24 denotes the query and key matrices. Following the work (Ahn et al.,
2023), we adopt a masking matrix M = diag(l4,1,0) to prevent attention from earlier tokens to
the final one. The output of the model is defined as TF(ZO; {V, Ql}lL:l) = (Z1)(d+1:2d),a, (€.,
the latter half of the last column). This definition aligns with the structure of the input Z, which
will be further discussed in subsequent sections. During training, the parameters are optimized to
minimize the expected ICL risk over random linear regression instances:

LUV QML) = Bz || TF(Zo Vi, Quby) + Waiest - 2

3 EMERGENCE OF TASK VECTORS IN LINEAR-ATTENTION MODELS

Firstly, we present theoretical evidence that task vectors naturally arise in simple linear transformers.
Specifically, we analyze the loss landscape of the in-context risk, focusing on the properties of its
critical points. As a startup, recall the standard linear regression setup (Ahn et al., 2023} |Wu et al.,
2024), where the (z;,y;) pairs for each demonstration are concatenated to form the input prompt:

X Ttest T1 Ta c Tp Ttest 2dxd _

ZO_[Y 0}_[% o ooy 0 SR dp=ntl ©)
According to existing analyses (Ahn et al., 2023} |Zhang et al., 2024; Mahankali et al.| |2024)), each
attention layer in this setting performs one step of gradient descent on the learned coefficient ma-
trix. Specifically, the theoretically optimal single-layer (possibly nonlinear) attention (Katharopou-
los et al., [2020) implements the following predictive function (Ahn et al.,|2023)) when the covariates
are drawn from P, = N (0, I), by selecting V; o< diag(0gxa, I4) and Q1 o< diag(Iy, 0gxq):

TF(Zp; (V1,Q1)) = —%YO'(X)TO'(Itest), where o : R? R" is a kernel function. (4)

Here, we abbreviate [0(z1) -+ o(z,)] as 0(X). This model employs W’ o Yo (X)T as an
estimate of W, yielding prediction §est = W' (Ztest). This paper considers alternative settings
more reflective of practical scenarios, where z; and y; are separated as distinct tokens. As noted
(Zuo et al.| 2025), such separation necessitates the usage of position encodings for bi-directional
attention. Following prior analysis (Kazemnejad et al.| [2023), we assume that position encodings
are appended to the input tokens, and reformulate the layer-wise update rule of self-attention as:

Attny,g(Z2)=VZM [ZT PT]Q []ZD] ., where P € R, (5)

For analytical tractability, we take P = I, as one-hot position encodings. Following previous work
(Ahn et al| 2023) (see Appendix [A.3|for more explanation), we further impose that:

V, = dlag(Al, Bl), Ql = d1ag(Cl,0dxd,Dl), where Al, Bl, Cl S RdXd, D, e]deXd”. (6)

Under review as a conference paper at ICLR 2026

These parameterizations ensure that the projection and attention operations act independently on the
covariate, response, and positional components of the input. This structural decoupling is essential
for understanding how the transformer identifies the dependency between each (x;,y;) pair and
revealing the actual optimization algorithm being executed by the model. The proofs for the main
theoretical results in this paper are available in Appendix D}

3.1 WARM-UP: LEARNING WITH PAIRWISE DEMONSTRATIONS

We begin by analyzing the optimization of linear transformers on pairwise demonstrations. Follow-
ing previous approach (Garg et al., [2022;|Wibisono & Wang, 2023} | Xing et al.,[2024)), we decompose
each demonstration in eq. H into a pair of tokens Z§ = [% g?%] € R2%2 to better reflect the prac-
tical ICL prompt structure:

Iy 0 R 7% 0 Ttest 0
Oy - 0 yo 0 0
The following theorem suggests that certain critical points of the in-context risk effectively solve
the regression problem by first concatenating each pair of (z;,y;) into the same tokens, and then
executing a variant of the gradient descent algorithm to compute the prediction. To simplify notation,
we denote A = {Az}lel (similarly for B, C, and D) and present:

Theorem 1 (Critical Points; Pairwise Demonstrations). Assume that P, = N SO, Y) and P, =
N(0, 271 with ¥ € R4 satisfying ¥ = 0. Define Sy, Sy, C R™? and Sp € R
Sr={Mg|AeR}, Se={AS"'|XeR}, Sp={diag(l, ® A1, As) | A, Ay € R¥*?}.
Consider optimizing an L-layer transformer under parameter configuration in eq. (6), we have

infy pesr, cesk, pesk ZHeAUBUCUD ||VH£({V17 Qz}le) ||; =0.

Zo=[2% - Zy Z(t)est]:|:], dy=2n+2. (7

p X dp as

To understand the behavior of these critical points within a self-attention layer, we fix ¥ = I; and
take A;, B; = 14, C; = —\lg, and D; = diag(l,, ® A1, As). Let the first and last d rows of Z; be
denoted by X, and Y}, respectively. Under these settings, the update rule of each layer becomes:

Zy =211 = N2 MX L X+ [Z0 A - ZP A ZioY diag(1,0)As] . (8)
The above update can be decomposed into the following two distinct components:

¢ Gradient Descent: The first component, Z; < Z;_1 — AZ;_1MX le 1Xi—1, implements the
GD++ algorithm (Von Oswald et al., 2023a). This variant enhances convergence speed over stan-
dard gradient descent by improving the condition number of X lT_lX 1—1. Notably, this operation
modifies only X; but not Y; for the first layer, as implied by the structure of Q; (eq. (6)).

« Embedding Concatenation: The second component, Z; < Z} | + Z} A fori € [n], mixes
each pair of (x;,y;) tokens. Given that z; and y; tokens are initially linearly separable as in
our formulation, this operation concatenates each (z;,y;) pair, thereby transforming pairwise
demonstrations into the original single-token format. For the query token Z[°s*, this operation
copies Test, into the final token, reconstructing the structure in eq. (EI), where each non-final token
directly concatenates (x;, y;) of a demonstration, and the final token contains only Zest.

In summary, our analysis reveals that for pairwise demonstrations, the first attention layer leverages
position encodings to distinguish between covariate and response tokens, subsequently concate-
nating them to form a single-token prompt structure. The remaining layers then apply the GD++
algorithm, mirroring the learning dynamics on single-token demonstrations. As a result, an L-layer
linear transformer allocates one layer for embedding concatenation and utilizes the remaining
L — 1 layers to perform gradient descent. In Figure[2a] we visualize the learned D; weights under
the setting of Theorem |[I] and observe that they closely match the critical point structure of Sp.

3.2 EMERGENCE OF TASK VECTORS WITH TRIPLET DEMONSTRATIONS

Next, to better reflect the prompt structure of practical ICL, we insert additional zero tokens between
each pair of (z;,y;) to simulate the arrow (—) tokens. This reformulates each demonstration as a
triplet (x;, —,y;), enabling us to analyze the critical points with these triplet demonstrations:

Jzr 0 0 - mp 0 0 et O O .
Zy = 0 0 4 - 0 0 yy 0 0 ol dp =3n+ 3.)}

Under review as a conference paper at ICLR 2026

-2 o k-2

(a) D; (Pairwise) (b) D; (Triplet) (c) AsA]

Figure 2: Visualization of learned D,; weights. (a) Pairwise demonstrations yield a block-diagonal
structure aligned with Theorem [I] (b) Triplet demonstrations yield a richer structure aligned with
Theorem 2] (c) The learned matrix A4 has nearly orthonormal rows as suggested by Proposition

Theorem 2 (Critical Points; Triplet Demonstrations). Assume that P, = N(0,X) and P, =
N(0,571) with ¥ € R4 satisfying ¥ = 0. Define St, Sz, C R¥*? and Sp € R¥%* v gs

Sr={Mg|AeR}, Sy ={AT7'|AeR},
Sp = {diag(ln ® A1, A2) + Ins1 ® As + Mg @ Ag|
AiAs € M(é 0 6)71\3 c M(S 0 8),/\4 € ROFDX(ntD) A e M(S 0 8)}
101 000 010
Consider optimizing an L-layer transformer under parameter configuration in eq. (6), we have

infy pest, cesk, pest ZHeAuBUCUD IVaL({Vi, Qu}is) er = 0.

To analyze the behavior of each attention layer, we note that the critical points for the matrices A;,
By, and C; remain consistent with Theorem [I] thereby implementing the GD++ algorithm. For the
matrix D;, we decompose its structure into three distinct components:

* Embedding Concatenation: The first component, diag ([, ® A1, A2), mixes each pair of (x;, y;)
tokens, effectively concatenating them — analogous to the operation analyzed in the previous
section. This converts all non-arrow tokens into single-token demonstrations.

* Self Magnification: The second component, I,,11 ® Ag, scales the embeddings corresponding
to each arrow (—) token by a fixed constant and adds them back to themselves.

 Task Vector Formation: The third component, A4 ® A5, performs a weighted summation across
all demonstrations in the prompt. This operation is central to the emergence of task vectors. Let
[Bi - Bnt1] € R (n+1) denote the first n rows of A4 (we will soon show that the last row
of A4 converges to zero), the first self-attention layer then outputs n + 1 linear combinations of
the demonstrations as the hidden states for the arrow tokens, expressed as 2!, = [zfﬁgl] for
i € [n+ 1], where ay, a2 € R are the two non-zero entries of As. These vectors can then be
injected into zero-shot prompts and function as single-token demonstrations.

This mechanism provides strong theoretical evidence for our main conjecture, demonstrating that
task vectors naturally emerge from the pretraining stage of linear-attention transformers on
triplet-formatted prompts. Notably, the structure of Sp closely aligns with our visualization of
Dy in Figure[2b] confirming our theoretical analysis. We now further investigate the structure of the
weight matrix A4, and present the following result:

Proposition 3 (Optimal Task Vector Weights). Assume P,, P, = N(0, ;). Consider optimiz-
ing a 2-layer linear-attention transformer with triplet demonstrations and parameter configuration
given in eq. @) and assume C7 = 04 4. Let

Dy = diag(l, ® Ay, A2) + [i11 @ A3+ Ay ® As € Sp
be any minimizer of the in-context risk E({Vl, Ql}le), we then have Ay € Sy, where
Sy = {A | AAT = Xdiag(I,,0),\ € R}.

This result suggests that the optimal A4 weight matrix satisfies two key properties: (1) the last row
is zero, and (2) the first n rows are mutually orthonormal. These conditions imply that the learned

Under review as a conference paper at ICLR 2026

Y1 Tz — Y2 T3 — Y3 Trest — Y1 Tz = Y2 T3 > Y3 Trest —
95
ooooooooo oooooooooo _16- 0.25
$ -0.20
: i =
/ 14 i | ' -0.15
I I I I -0.10
000000000 (X N A N N N N X J (1.2- .
Ty Y1 T = Y2 Tz Y3 Trest Ty Y Ta = Yo Tz — Y3 Teest — 1 5 10
1
(a) Saliency Map (I = 10) (b) Saliency Map (I = 12) (c) Task Vector Weights

Figure 3: Visualizations on Llama-7B: (1) saliency matrices as bipartite graphs between layer [(e)
and [+ 1 (e), edge widths indicate saliency magnitude; (2) variations in the extracted task vector
after perturbing the i-th demonstration (I) and the optimal task vector weights (—) obtained by
optimizing Proposition (a) Each y; token attends to its corresponding (x;,y;) pair, reflecting
embedding concatenation. (b) The final (—) token attends broadly to all y; tokens, indicating task
vector formation. This occurs just before the optimal injection layer (I = 13). (c) The predicted task
vector weights closely match the trend of empirical results, validating our theoretical model.

weight vectors 31, --- , 8,41 are likely to be distinct. Therefore, the n + 1 task vectors produce
diverse linear combinations of the demonstrations, thereby enriching the representation within the
input prompt. This implication is verified in Figure While task vectors are typically extracted
from the final arrow (—) token in standard usage, here we consider all arrow tokens as task vectors
as bi-directional attention allows each to aggregate information from the full prompt.

4 PREDICTED FAILURE OF TASK VECTORS ON BIJECTION TASKS

We then present an empirical observation that supports our conjecture. Consider the setting where
task vectors are injected into zero-shot prompts. Based on our prior analysis, the injected task vector
ztv 18 formed as a weighted summation of the original demonstrations. As a result, we show that the
injected prompt reconstructs the single-token structure in eq. (3) with only 1 demonstration:

s v 0 s X8 0
ZO = [Ztest Ztv 0] = [xtg ’ ;tv O] = |:33t5 ’ gzyg 0:| € dex37 (10)

where the weight vector 5 € R™ comes from the last column of A4, and the weights a;, as come
from A5 (see our discussion after Theorem [2). After the first layer, the A, matrix of Sp moves
Tiest to the last token, reducing the prompt to a single-shot, single-token demonstration. Ac-
cording to the optlmal single- layer transformer (eq. (@), the estimated coefficient matrix is now
W' = ajaY B(XB)T, which is rank-one. Therefore, task vectors are inherently limited in their
expressiveness: they can only replicate 1-shot ICL, which is restricted to rank-one coefficient matri-
ces. This implication also naturally extends to multi-layer transformers.

While our analysis is conducted on linear-attention transformers, we demonstrate that similar learn-
ing patterns also emerge within practical LLMs. Specifically, we visualize the layer-wise informa-
tion flow between tokens using saliency maps (Wang et al.,[2023)), where the saliency score for each
attention matrix is computed as S(A4;) = >, |Ain - OL/0A; 1|, Aij denotes the attention matrix
of the h-th head at layer [, and L is the ICL loss (i.e., the cross-entropy loss for predicting yest)-
As demonstrated in Figures [3aand 3] the saliency maps reveal certain patterns matching the ones
of embedding concatenation and weighted summation. This suggests that real-world transformers
implement a similar algorithm to solve ICL tasks and, consequently, inherit the same expressiveness
limitation. The full saliency score maps are given in Appendix [B.3]

To verify this, we construct a specialized class of ICL tasks, named bijection tasks. Specifically,
given a bijective mapping from domain X to codomain), one can combine it with its inverse
mapping to form a new task that maps X' U onto itself. For instance, combining the “to uppercase”
task with its inverse ’to lowercase” yields a bijection task that maps each letter to its opposite case,
and a valid ICL prompt takes the form: “a — A, B — b, c — C, D —”. Note that this differs from
task superposition (Xiong et al.,[2024), as each input corresponds to a unique, well-defined output.
We then establish a key limitation of rank-one coefficient matrices in addressing such tasks:

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the accuracies of many-shot ICL and task vector on bijection tasks (Llama-
7B, n = 10). We use gray text to indicate accuracies lower than 60%.

. . X =Yy Y- X XY

Task Domain X Domain Y Example
IcL TV ICL TV ICL TV
To Upper {a,--,2} {A,---.,Z} a— A 1.00 091 1.00 099 1.00 0.55
English French hello — bonjour 0.83 084 082 0.70 054 0.35
Translation English Italian hello — ciao 0.84 0.78 0.82 0.74 0.70 047
English Spanish hello — hola 092 0.88 089 075 0.64 043
Present Gerund go — going 099 095 1.00 097 0.80 041
Linouistic Present Past go — went 098 091 099 096 052 033
& Present Past Perfect go — gone 0.82 082 094 065 055 033
Singular Plural dog — dogs 0.88 0.78 094 089 0.76 0.51
Copy {a,--,2z,A,---,Z} A=A - - 1.00 0.98
Antonym Adjectives happy — sad 0.89 0.83 - 0.83 0.73

Proposition 4. Let x,y € R? be non-zero vectors. Then the following are equivalent: (1) There
exists a rank-one matrix W € R¥? such that y = Wx and x = Wy; (2) x = y or x = —.

This result highlights that rank-one coefficient matrices cannot solve general bijection tasks, and
are restricted to two special cases: the identity mapping (x = y), or the negation mapping (x =
—1). We further verify this implication in real-world LLMs: in Table[I] both ICL and task vectors
perform well on the original tasks and their inverses. But for bijection tasks, while ICL preserves
performance in many cases, the task vector method consistently fails, confusing examples from the
two domains and yielding near-random predictions (50%) (e.g., in “To Upper”, task vectors predict
the correct letter but fail to distinguish between uppercase and lowercase. See Appendix for
further results). The only exceptions are Copy and Antonym, the special cases in Proposition 4]

Together, these findings empirically validate our main conjecture: the task vector approach, which
is restricted to one-shot ICL, is limited to rank-one mappings and cannot solve general ICL
tasks (e.g., bijection tasks). While a variety of ICL tasks have been explored to assess the capabili-
ties of task vectors (Hendel et al.|[2023; Todd et al., 2024} |Li et al.| [2024), the fundamental limitation
of task vectors in addressing these bijection tasks has not been previously identified.

5 FURTHER DISCUSSIONS

Effect of Causal Attention and Dropout. While task vectors naturally emerge in linear attention,
their embeddings do not directly help minimize the ICL risk, as evidenced by the identical perfor-
mance between pairwise and triplet formatted prompts (Figures [4a and Ab)). Instead, we show that
task vectors do contribute to optimization under token-wise dropout, acting as redundancies for in-
context demonstrations that may be randomly dropped during training. This redundancy ensures
that essential task information is preserved to facilitate inference despite partial context loss.

Proposition 5. Under the same settings as Proposition 3| consider adding token-wise dropouts O, :

i iid.

Z,=27,_10; + %Atthth(Zl,l)Ob where O = diag(oll, e ,old”), o; "~ Bern(p).

Then any minimizer A4 of the in-context risk [:({Vl, Ql}le) satisfies (A4)n41,. = 0 and:

. 4 n 4 n+l 4 T2 2
(A x amgmin eal]A[+ea 30 Asliren 0 A3 +ea AT, st AN = 1.

where c1, - - - , 4 are non-negative constants depending on Vi, Q, and p.

This result suggests that dropout introduces additional higher-order regularization on the task vector
weights, encouraging them to distribute more uniformly across demonstrations. Furthermore, when
considering causal attention (i.e., enforcing A4 to be upper-triangular), it induces a decaying weight
pattern from later to earlier demonstrations, which exactly matches the practical behavior observed
in practical transformer models (as evidenced in Figure [3c).

Under review as a conference paper at ICLR 2026

10" 10!
T(L:Z) - T(L::s) 0.4 = CL(n=1)
P =2) S(L=2) - Task Vector
x x 107 %0
© 4 n‘:
- | —
O 1 O3 9
10~ 10
| 1l | | |I Wl
1072 107° I 0.0 u
5 10 2) 5 15 25 30 2 3
v L
(a) Single- vs. Multi-Token (L = 2) (b) Single- vs. Multi-Token (L = 3) (¢) ICL vs. TV

Figure 4: (a, b) Comparison of the best ICL risk achieved using single (S), pairwise (P), and triplet
(T) formatted prompts. (c) Performance comparison between 1-shot ICL and task vector.

Decoding the Vocabulary of Task Vectors. Multiple prior works (Hendel et al., 2023 Todd et al.,
2024) have observed an interesting phenomenon that, when task vectors are directly decoded through
the final classification layer, the top tokens often belong to the output space of the current task (see
Table[din the Appendix). Our theoretical analysis provides a natural explanation for this: assuming
a 2d-dimensional hidden state space partitioned into input (x;) and output (y;) halves, the output
half of task vectors then encodes weighted summations of y;. Since the final prediction relies on the
output half, decoding a task vector yields a combination of y;, which is likely lying in the output
space. This observation suggests that practical LLMs adopt a similar hidden-state partition.

Extra EOS Tokens. In our previous analysis, we consistently imposed an additional zero token at
the end of the input prompt. While this token can be interpreted as an EOS token in practical models,
such a design choice is uncommon in standard ICL tasks. We justify this modeling decision with:

Proposition 6 (Informal). Given any L-layer, 1-head, d-dimensional linear-attention model with
EOS, there exists an equivalent L-layer, 2-head, 2d-dimensional model operating without EOS.

This equivalence suggests that the same learning dynamics can be realized through multi-head ar-
chitectures without relying on explicit EOS tokens. Specifically, the first head is dedicated to task
vector formation, while the other handles ICL prediction. This separation allows the model to retain
the functional role of the EOS token implicitly within its hidden states.

6 EXPERIMENTAL STUDIES

6.1 SYNTHETIC RESULTS WITH RANDOM LINEAR REGRESSION

In this section, we validate our critical points analysis with synthetic linear regression tasks. Specif-
1cally, we examine the achievable ICL risk of linear-attention models with single-token (eq. (3)),
pairwise (eq. (7)), and triplet (eq. @[)) demonstrations. We set the input dimension to d = 4 and
P, = P, = N(0, I;). For each setting, we train multiple models with different random seeds and
report the minimum ICL risk achieved as a proxy for the global optimum. The comparative results
across different numbers of layers L and demonstration formats are shown in Figures a] and b}

These results support our theoretical analysis: when trained with pairwise or triplet demonstrations,
the model recovers the GD++ algorithm similar to the single-token case. Notably, the performance
of L-layer models with pairwise (P) and triplet (T) demonstrations closely aligns, indicating a shared
underlying learning pattern. Moreover, their performance consistently lies between that of single-
token (S) case L-layer and (L — 1)-layer models. The observed improvement over the (L — 1)-layer
single-token baselines comes from the additional GD++ performed solely on x; tokens in the first
layer, effectively acting as a “half-step” of gradient descent.

We then reproduce the task vector method in linear models. Specifically, we extract the hidden
state of the final (—) token from triplet demonstrations after the first layer, and inject this vector
into zero-shot prompts consisting of xes¢ only. To simulate the effect of layer normalization, we
normalize the task vectors before inference and the output vectors before ICL risk evaluation. As
shown in Figure[dd] the performance of task vectors is highly related to that of standard 1-shot ICL.
This validates our conjecture that the injected task vector effectively acts as a single demonstration.

Under review as a conference paper at ICLR 2026

Table 2: Accuracy comparison between few-shot ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Llama-13B with n = 10.

Method | Knowledge Algorithmic Translation Linguistic Bijection | Average

Baseline 6.90 + 2.08 15.60 £ 1.72 7.00 £ 1.65 1244 £ 174 8.27 +133 10.28 +0.98
TaskV 68.80 +266 86.20 + 1.61 73.53 +091 8524 +180 50.67 +£232 | 72.26 & 1.01

Baseline 69.50 £386 73.67 £156 57.80+201 5622 +157 4476 +244 | 58.11 £0.63
1-shot TaskV 79.50 £235 88.47 £075 80.67 256 89.11 £ 084 60.44 £2.07 | 78.79 +0.77
TaskV-M | 81.30 280 89.53 +0.65 80.13 +214 88.71 +0.62 61.78 +£096 | 79.34 +0.37

Baseline 78.80 £330 85.07 +1.37 75.67 £264 76.80 £1.18 56.49 +£287 | 72.92 +0.59
2-shot TaskV 84.60 +2.11 88.40 4+ 0.68 84.33 +092 90.13 £092 6244 +2.16 | 80.82 +0.42
TaskV-M | 85.70 £1.63 89.27 +1.10 84.13+1.15 89.64 +08 64.49 +2.02 | 81.48 +0.37

Baseline 86.20 + 2.69 88.07 £ 1.06 80.00 £ 167 84.04+1.19 6218 +£1.52 | 78.51 +0.42
3-shot TaskV 90.20 +223 88.67 +089 86.27 +231 9231 +048 66.53 £0.94 | 83.53 £ 041
TaskV-M | 90.30 150 89.87 +0.83 86.07 +£2.17 9236 +0.72 68.13 +0.76 | 84.15 +0.52

Baseline | 84.80 +2.06 88.07 +0.61 83.27 £18 8889 +191 67.16+147 | 81.52 +0.66
4-shot TaskV 88.70 £1.69 89.53+134 8627 £1.08 92.76 £ 054 70.44 +£1.35 | 84.66 & 0.39
TaskV-M | 89.60 + 143 91.00 + 1.01 87.20 £ 062 9236 +1.44 72.53 +£094 | 85.64 +0.29

0-shot

6.2 ENHANCING THE TASK VECTOR METHOD

We further explore an enhancement to the original task vector method. According to our previous
analysis, a single injected task vector may not provide sufficient information for inference on com-
plex tasks (e.g., bijection tasks). Moreover, in linear-attention models, each (—) token functions
as an individual in-context demonstration during the gradient descent phase and thus contributes
equally to the ICL risk. Motivated by this, we extend the standard task vector method, which modi-
fies only the final arrow token, and propose a multi-vector variant that injects into every single arrow
token in few-shot prompts. This enriched injection scheme enables the model to leverage multiple
new demonstrations, thereby providing a more informative and distributed context for prediction.

We compare our multi-vector injection strategy (TaskV-M) against standard N-shot ICL (Baseline)
and the original task vector method (TaskV). Note that Baseline uses few-shot ICL and TaskV is in-
jecting into few-shot prompts, which are different from the settings in Table[[]which uses many-shot
prompts for ICL and zero-shot prompts for task vectors. For each N-shot prompt, we generate N 41
distinct ICL prompts to produce N + 1 task vectors, which are then used to replace the embeddings
of all arrow tokens in the input. For each task, performance is evaluated over 50 randomly sampled
prompts, with mean accuracy and standard deviation reported across 5 independent trials. The final
results, summarized in Table[2] span a diverse set of ICL task types, showing that TaskV-M consis-
tently outperforms TaskV, especially the challenging bijection tasks. While the improvement is not
dramatic, we believe that the current results sufficiently demonstrate the potential of multi-vector
injection, thereby providing insights for the design of future ICL or task vector methods.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

This paper proposes a plausible explanation for the emergence and functionality of task vectors in
ICL. We support this conjecture with both empirical observations and theoretical analysis, demon-
strating how task vectors naturally arise under ICL-style training prompts, and why this method
inherently fails on general ICL tasks beyond rank-one mappings. Our work provides a new perspec-
tive on the underlying mechanisms and offers a promising direction for interpreting intermediate
hidden states in modern transformer-based language models.

While our analysis provides new insights into the emergence and functionality of task vectors, it
is primarily conducted on simplified linear-attention transformers and synthetic tasks, which may
not fully capture the complexity of real-world LLMs. Moreover, our theoretical framework focuses
solely on critical point analysis, and there is still a lack of convergence guarantee or sample com-
plexity analysis to fully understand the learning dynamics during model pretraining.

Under review as a conference paper at ICLR 2026

Future directions of this work may include: (1) extending the current theoretical framework to causal
and multimodal settings; (2) exploring how richer architectures (e.g., non-linear attention) or train-
ing objectives (e.g., auto-regressive loss) influence the behavior of task vectors; (3) synthesizing
orthogonal enhancements of the task vector method (e.g., function vectors (Todd et al., [2024) and
in-context vectors (Liu et al.,[2024)), and extending to more complex reasoning tasks.

ETHICS STATEMENT

This work advances the theoretical understanding of in-context learning and task vector mecha-
nisms, which can lead to more efficient and interpretable language models. By enabling faster
inference through task vectors, it may reduce the computational cost and energy consumption of
large-scale deployment, thereby making Al systems more accessible and environmentally sustain-
able. Improved interpretability could also enhance trust and transparency in Al applications across
education, healthcare, and other socially beneficial domains.

As task vector methods improve efficiency and transferability, they may also be misused to repli-
cate or extract functionality from proprietary models without authorization, raising concerns around
model intellectual property. Additionally, while interpretability is often framed as a benefit, deeper
insights into model internals could be exploited to engineer adversarial inputs or extract sensitive
training data. Careful consideration and mitigation strategies are essential to ensure that such work
aligns with the broader goals of safe and beneficial Al

REPRODUCIBILITY STATEMENT

We provide complete proofs for our main theoretical results in Appendices [C] and [D] experimental
details about the dataset and implementation in Appendix B} and full source codes to reproduce our
experimental results in the supplementary materials.

USAGE OF LLMS

We used LLLMs only to improve grammar and polish academic writing. All technical ideas, proofs,
experiments, and conclusions were entirely conceived and verified by the authors.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614-45650, 2023.

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
1d=0g0X4H8yN4 Tl

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.
Provable in-context vector arithmetic via retrieving task concepts. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
DbUmeNnNpt.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,

James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in neural information processing systems, 35:18878-18891, 2022.

10

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=DbUmeNnNpt
https://openreview.net/forum?id=DbUmeNnNpt

Under review as a conference paper at ICLR 2026

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
gpt learn in-context? language models secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 4005-4019, 2023.

Gilad Deutch, Nadav Magar, Tomer Natan, and Guy Dar. In-context learning and gradient descent
revisited. In Proceedings of the 2024 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers),
pp- 1017-1028, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583-30598, 2022.

Seungwook Han, Jinyeop Song, Jeff Gore, and Pulkit Agrawal. Emergence and effectiveness of task
vectors in in-context learning: An encoder decoder perspective. In Forty-second International
Conference on Machine Learning, 2025.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 9318-9333, 2023.

Alberto Hojel, Yutong Bai, Trevor Darrell, Amir Globerson, and Amir Bar. Finding visual task
vectors. In European Conference on Computer Vision, pp. 257-273. Springer, 2024.

Brandon Huang, Chancharik Mitra, Leonid Karlinsky, Assaf Arbelle, Trevor Darrell, and Roei
Herzig. Multimodal task vectors enable many-shot multimodal in-context learning. Advances
in Neural Information Processing Systems, 37:22124-22153, 2024.

Joonseong Kang, Soojeong Lee, Subeen Park, Sumin Park, Taero Kim, Jihee Kim, Ryunyi
Lee, and Kyungwoo Song. Adaptive task vectors for large language models. arXiv preprint
arXiv:2506.03426, 2025.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36:24892-24928, 2023.

Dongfang Li, Xinshuo Hu, Zetian Sun, Baotian Hu, Min Zhang, et al. In-context learning state vector
with inner and momentum optimization. Advances in Neural Information Processing Systems, 37:
7797-7820, 2024.

Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. In International Conference on
Machine Learning, pp. 32287-32307. PMLR, 2024.

Grace Luo, Trevor Darrell, and Amir Bar. Vision-language models create cross-modal task repre-
sentations. In Forty-second International Conference on Machine Learning, 2025.

Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One step of gradient descent is prov-
ably the optimal in-context learner with one layer of linear self-attention. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=8p3fuS561Kc.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
style vector arithmetic. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 5030-5047, 2024.

Yingzhe Peng, Xinting Hu, Jiawei Peng, Xin Geng, Xu Yang, et al. Live: Learnable in-context
vector for visual question answering. Advances in Neural Information Processing Systems, 37:
9773-9800, 2024.

11

https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=8p3fu56lKc

Under review as a conference paper at ICLR 2026

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Position: Do pretrained transformers learn
in-context by gradient descent? In Proceedings of the 41st International Conference on Machine
Learning, pp. 44712-44740. PMLR, 2024.

Pavel Tikhonov, Ivan Oseledets, and Elena Tutubalina. One task vector is not enough: A large-scale
study for in-context learning. arXiv preprint arXiv:2505.23911, 2025.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151-35174. PMLR, 2023a.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023b.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
words are anchors: An information flow perspective for understanding in-context learning. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
9840-9855, 2023.

Kevin Christian Wibisono and Yixin Wang. On the role of unstructured training data in transformers’
in-context learning capabilities. In NeurIPS 2023 Workshop on Mathematics of Modern Machine
Learning, 2023.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=vSh5ePalph.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=RdJVFCHJUMI.

Yue Xing, Xiaofeng Lin, Chenheng Xu, Namjoon Suh, Qifan Song, and Guang Cheng. Theoret-
ical understanding of in-context learning in shallow transformers with unstructured data. arXiv
preprint arXiv:2402.00743, 2024.

Zheyang Xiong, Ziyang Cai, John Cooper, Albert Ge, Vasilis Papageorgiou, Zack Sifakis, Angeliki
Giannou, Ziqian Lin, Liu Yang, Saurabh Agarwal, et al. Everything everywhere all at once: Llms
can in-context learn multiple tasks in superposition. arXiv preprint arXiv:2410.05603, 2024.

Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert Nowak. Task vectors in
in-context learning: Emergence, formation, and benefit. arXiv preprint arXiv:2501.09240, 2025.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1-55, 2024.

Chunsheng Zuo, Pavel Guerzhoy, and Michael Guerzhoy. Position information emerges in causal
transformers without positional encodings via similarity of nearby embeddings. In Proceedings
of the 31st International Conference on Computational Linguistics, pp. 9418-9430, 2025.

12

https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=vSh5ePa0ph
https://openreview.net/forum?id=vSh5ePa0ph
https://openreview.net/forum?id=RdJVFCHjUMI

Under review as a conference paper at ICLR 2026

A ADDITIONAL DISCUSSIONS
A.1 SUMMARY OF MATHEMATICAL NOTATIONS

Table 3: Summary of key mathematical notations used throughout the paper.

Notation Description

n Number of demonstrations in the input prompt

L Number of transformer layers

d Dimension of covariate and response embeddings

dp Prompt length (depends on demonstration structure)
Attny g Linear-attention layer with parameter V, Q)

TF Linear-attention model by stacking linear-attention layers
z; € RY Covariate (input) of the i-th demonstration

y; € R4 Response (output) of the i-th demonstration

X,Y € R¥™ Matrices of covariates and responses for n demonstrations
Ttests Ytest Query covariate and ground-truth response

w; € R4 j-th regression coefficient vector

W e Rdxd Coefficient matrix, W = [wy, - -+ ,wq] "

Zy € R24%d» Input prompt embeddings before the transformer

Z; € R?¥d» Hidden states after the I-th layer

P c Révxdp Positional encoding matrix

Vi, Qi Value and key-query matrices of the [-th attention layer
Ay, B;,C;, D; Block components of V;, QQ; in layer [

Ay Sub-block matrices of D; used in critical point analysis
L In-context learning loss (ICL risk)

M(M) Set of masked matrices with binary mask M
S1,Sx,Sp Structured sets of matrices defining critical points

Ziv Task vector extracted from an arrow (—) token

BeR” Weight vector for task vector formation

A.2 ADDITIONAL RELATED WORKS

In-Context Learning in Attention-based LLMs. The ability of LLMs to learn from examples
provided in the input prompt, without updating parameters, has attracted wide attention since the
discovery of ICL in GPT-3 (Brown et al., [2020). A growing body of theoretical work has sought
to explain this phenomenon. Early analyses show that transformer attention layers can implement
gradient descent-like algorithms over linear regression objectives (Garg et al.| [2022; |Akytirek et al.,
2023; [Von Oswald et al.l [2023a; |Ahn et al., [2023} (Wu et al., [2024), while others investigate sam-
ple complexity and generalization behavior (Xie et al., 2022} |Chan et al., 2022; |Shen et al.| [2024;
Von Oswald et al., 2023b; |Deutch et al.l [2024)). These works collectively suggest that ICL is closely
tied to the inductive biases of the attention mechanism, but do not fully explain how higher-level
abstractions of tasks are formed or encoded in LLMs.

The Task Vector Method in ICL. Task vectors have recently been proposed as an abstraction of
ICL demonstrations into compact hidden-state representations. [Hendel et al.|(2023) introduced task
vectors as hidden states extracted from the last arrow token in triplet prompts, enabling zero-shot
transfer by injecting them into new contexts. Concurrent works developed similar notions, such as
function vectors (Todd et al., |2024) and in-context vectors (Liu et al., | 2024). These studies show
that task vectors accelerate inference and sometimes match the effectiveness of ICL with fewer
demonstrations. However, they remain largely empirical, without a clear theoretical explanation of
how or why such vectors encode task information.

Subsequent research has expanded the scope and utility of task vectors. [Yang et al.| (2025)) demon-
strates that task vectors naturally emerge even in small transformers trained from scratch with syn-
thetic data, suggesting that their formation is an inherent property of attention-based architectures.

13

Under review as a conference paper at ICLR 2026

Table 4: Top 20 tokens with the highest output probability by decoding the task vector, results from
(Hendel et al}[2023)). We underline the tokens in the output space of the current task.

Model Task Tokens

Prev Letter b, ¢, v, 9, s, name, i, ro, n, j, 4, &,
A, ai, com, m, ust, test, active, k

French to English other, name, the, true, is, social,
s, active, time, car, type, money, F,
force, a, public, heart, one, ms, life

Present to Gerund getting, storing, working, moving,
GPT-J 6B playing, doing, making, driving,
shooting, picking, being, sending,
putting, selling, watching, changing,
taking, collecting, feeding, reading

Country to Capital London, Paris, New, West, Berlin, South,
Tokyo, San, Chicago, City, Moscow,
Jerusalem, Amsterdam, Philadelphia,
East, Madrid, Vienna, Beijing, Mexico,
Germany

Li et al.|(2024) shows that aggregating hidden states across layers and multiple arrow tokens leads
to stronger task representations. [Kang et al.| (2025) proposes to generate task vectors conditioned on
each input query. Beyond text, task vectors have also been applied in vision (Hojel et al.,|2024; Peng
et al.l 2024) and multimodal models (Huang et al.,|2024; Luo et al.l 2025)), where they enable flex-
ible transfer across modalities. [Han et al.| (2025)) connects the performance of task vectors by task
decodability, defined by the similarity between task vectors from different ICL tasks. These works
highlight the empirical utility of task vectors but stop short of explaining their inner mechanisms.

Explaining the Task Vector Method. Task vectors were initially conjectured to encapsulate the
complete knowledge of the current task (Hendel et al.| [2023). However, this view fails to account
for their inconsistent performance across tasks of varying complexity. Empirical observations fur-
ther suggest that directly decoding task vectors typically yields tokens from the task output space
(Todd et al.| [2024)), rather than explicit task descriptions (Merullo et al.| [2024). Concurrent work
by Bu et al.| (2025)) analyzes the learning dynamics of 1-layer transformers with ICL-style prompts,
explaining the utility of task vectors through a word2vec-like scheme (i.e., the existence of a vector
z; for task ¢ such that y & z; + « for all input-output pairs (x, y)). While insightful, this characteri-
zation is restricted to additive translation tasks, single-token prompts, and single-layer architectures,
limiting its generality. By contrast, our analysis encompasses richer prompt structures, including
pairwise and triplet formats that better reflect practical ICL settings. Moreover, our critical point
characterization extends beyond 1-layer models, and our linear regression formulation captures a
broader spectrum of ICL tasks. Complementing our findings, [Tikhonov et al.|(2025) independently
shows that standard task vectors lack sufficient expressiveness for complex ICL tasks, reinforcing
our conclusion that task vectors are fundamentally constrained by rank-one mappings.

A.3 JUSTIFICATION OF THE BLOCK-DIAGONAL ASSUMPTION

In our main analysis, we impose an assumption on the trainable parameters of linear-attention lay-
ers, such that the V; and @; matrices are block-diagonal in eq. (6). This block-diagonal formulation
is a widely adopted assumption in theoretical studies of ICL for transformer models, as it facilitates
tractable analysis (Ahn et al.}[2023;Mahankali et al., 2024} |Wu et al.| 2024} Zhang et al.| 2024)). Prior
work by |Ahn et al.| (2023)) demonstrates that the global minimizer of single-layer linear-attention
transformers indeed exhibits such a block-diagonal structure. Although finding exact solutions for
multi-layer transformers is more involved, it is reasonable to conjecture that similar structural pat-
terns hold. Empirically, we observe that when optimizing the full matrices, gradient-based training
also tends to converge to block-diagonal solutions.

14

Under review as a conference paper at ICLR 2026

Intuitively, given the high dimensionality of hidden states in modern LLMs, it is plausible to assume
that the x; and y; components can be projected into orthogonal or nearly orthogonal subspaces
when mixed in the hidden state space. This motivates a decomposition of the projection matrices V;
and @, into two separate parts that operate independently on z; and y;, which can be equivalently
formulated as the block-diagonal structures.

A.4 INSEPARABLE COVARIATES AND RESPONSES

In our main analysis, we assume that z; and y; embeddings are linearly separable, allowing the
addition z; + y; to act a concatenation operation. However, recognizing that this assumption does
not generally hold for real-world transformers, we extend our analysis to the following setting, where
x; and y; are no longer linearly separable. While this still imposes a 2d-dimensional requirement
on the hidden space, such a constraint is easily satisfied in practical transformers, given the high
dimensionality of their internal representations.

ZO — 0 0 T 0 0 0 0 c R(Zd)x(2n+2) (1 1)
T Y1 - Tn Yn Ttest 0 '

We slightly modify the sparsity constraints for the first layer, and require (Dy)2;,. = 0 fori € [n+1]:

_ | 0 A _ |O2dax2d¢ 0 dxd dpxd
Vo = [ded O:| s Qo— |: 0 Dol where Ay € R , Dy € R 7%, (12)
With these conditions, we are ready to establish the critical points for inseparable demonstrations.
Note that V{) and @)y do not involve By and Cy, so the sequences B and C' have size L — 1.

Theorem 7. Under the same settings as Theorem define S;, Sy, C R4 and Sp € R%* % gg
Sr={Mg|AeR}, Ss={A2"'|XeR}, Sp={diag(l, ® A1, As) | A1, Ay € R**?}.

Consider optimizing an L-layer linear transformer with inseparable pairwise demonstrations and
parameter configuration given in eq. (I2)) for the first layer and eq. (6)) for the remaining layers, then

. 2
mfAesIL, BeSp~', cesL!, Desk ZHeAUBUCUD [VaL{Vi, Q1) HF =0.

This result suggests that for inseparable demonstrations, the first layer performs a functionally simi-
lar concatenation operation by “moving” the embedding of each x; to the corresponding y; position.
This enables the model to reconstruct the single-token structure without linear separability.

A.5 LAST TASK VECTOR WEIGHTS THE MOST

While our analysis of linear-attention models suggests that each formed task vector (i.e., the hidden
state at each arrow token) contributes equally to the final prediction, this assumption does not fully
hold in practical LLMs. As demonstrated by the conflicting tasks experiment in (Hendel et al.,
2023)), injecting a task vector from task B into an ICL prompt designed for task A causes the model
to predominantly perform task B. This behavior indicates that LL.Ms largely rely on the last arrow
token to determine the task identity. We attribute this to the causal attention mechanism used in
practical LLMs, which is not captured by our current theoretical analysis. In causal attention, only
the final arrow token can aggregate information from the entire preceding context, making it the
most informative and influential for prediction. This explains why our multi-vector strategy offers
modest, though consistent, performance gains. The improvement suggests that intermediate arrow
tokens do participate in the inference process, albeit less effectively. Enhancing how LLMs utilize
information from all arrow tokens remains a promising direction for improving task vector accuracy
and robustness.

B EXPERIMENT DETAILS AND ADDITIONAL RESULTS

In this section, we present experiment details and additional results not included in the main text due
to space limitations. Our experiments are conducted on an A100 40G GPU. It takes around 30 GPU
hours to fully reproduce our results.

15

Under review as a conference paper at ICLR 2026

B.1 SYNTHETIC EXPERIMENTS ON LINEAR-ATTENTION MODELS

We consider training linear-attention models on random linear regression instances. We take embed-
ding dimension d = 4, and the distributions for generating z; and w; are both P, = P, = N(0, I).
We optimize the ICL risk for L-layer linear-attention models with n in-context demonstrations using
AdamW, where L € [3] and n € [5, 30]. Each gradient step is computed from a batch size of 1000.
We additionally apply ¢; regularization to simplify the found solutions. For training efficiency and
stability, we restrict the A;, B;, and C; matrices to S; during training, and initialize D; € R% *%
with 1.1.d. Gaussian matrices. For each case, we train 40 models with different random seeds, and
report the minimum achieved ICL risk to approximate the global minimum.

To reproduce the task vector mechanism, we focus on models trained with triplet-formatted prompts.
The training procedure is identical to the above. For inference, we restrict P, to rank-one coefficient
matrices, by letting W = wjw, , where w1, ws ~ N(0, I;). We first generate normal ICL prompts
to generate task vectors as the hidden states of the last arrow token after the first attention layer,
and then inject them into zero-shot prompts after normalization. The final outputs gest are taken
as the output of these injected zero-shot prompts after being processed with the same transformer

model. We compute the final risk as E H Hgtﬁl\ + sz;:H

in practical LLMs. The reported scores are averaged for n € [5, 30].

‘ to simulate the layer normalization blocks

B.2 EXPERIMENTS ON PRACTICAL LLMs

Datasets. Following the settings of the original task vector method (Hendel et al., 2023), our study
covers 33 tasks in 5 categories. The detailed description for each task is provided in Table 5]

Prompt Template. The template used to construct ICL demonstrations is “Example:{z;} — {v;},
where x; and y; are subsequently replaced by the input and output of the semantic mapping. For
the query part, y; is omitted from the prompt. After concatenating each demonstration with “\n”, an
example of the full input prompt is:

Example:{z1} — {y1}\n- - - Example:{z,,} — {y, }\nExample:{Ztest } — (13)

Evaluation. To evaluate the N-shot performance, we generate 50 x (/N + 1) i.i.d. prompts for each
task with number of demonstrations n = 10 for task vector extraction. The hidden states of the
last — token, which is also literally the last token in the prompt, are recorded for every layer in the
transformer. Thereafter, we generate another 50 i.i.d. prompts with /N demonstrations, where Xest
is selected to be distinct from the previous chosen ones. The final accuracy is measured by whether
the next word predicted matches the expected answer. The performance of the standard ICL method
(Baseline) is acquired by inferring without interference. For the task vector method (TaskV) and our
multi-vector variant (TaskV-M), the extracted task vectors are injected to replace the hidden states
of the arrow — tokens at a specified layer . For TaskV, only the last arrow token is injected, while
for TaskV-M, each of the IV 4 1 arrow tokens is injected with the N + 1 extracted task vectors for
the same task. The performance is reported for the layer [€ L achieving the highest accuracy. For
each case, the mean and standard deviation are evaluated through 5 independent trials.

Additional Results. Besides Llama-13B, we also observe consistent accuracy improvement of our
TaskV-M method on the Pythia-12B model, as reported in Table [6]

While the performance gains of TaskV-M over TaskV are not dramatic across all ICL tasks, the
goal of TaskV-M is not to surpass state-of-the-art ICL techniques but to demonstrate that the task
vector framework can be systematically extended by injecting multiple vectors simultaneously. This
is especially valuable for complex tasks that inherently require higher-rank representations. Our
results on bijection tasks clearly validate this motivation: TaskV-M yields notable improvements
over the standard TaskV method. For other simpler tasks, the marginal gains from TaskV-M suggest
that the expressiveness of W may not be the primary performance bottleneck. We believe these
insights facilitate the design of future ICL and task vector methods.

B.3 ANOTHER MULTI-VECTOR INJECTION VARIANT

In our main experiments, we implement TaskV-M by extracting /N + 1 task vectors from the same
number of different prompts. Another possible implementation for TaskV-M is to extract multiple

16

Under review as a conference paper at ICLR 2026

Table 5: Descriptions of the tasks used in our empirical studies.

Category Task Example Description
Contry to Capital France — Paris Output the capital city of the given country.
Person to Language Macron — French ~ Output the native language of the given person.
Location to Continent Paris — Europe Output the corresponding continent of the given
Knowledge location.
Religion Saladin — Muslim Output the associated religion of the given lo-
cation or person.
List First [a,b,c] — a Output the first item in the given list.
List Last [a,b,c] — ¢ Output the last item in the given list.
Next Letter a—b Output the next letter of the given letter in the
alphabet.
Algorithmic Prev Letter b—a Output the previous letter of the given letter in
the alphabet.
To Upper a— A Output the corresponding uppercase letter of
the given lowercase letter.
To Lower A—a Output the corresponding lowercase letter of
the given uppercase letter.
English to French hello — bonjour Translate the given word in English to French.
English to Italian hello — ciao Translate the given word in English to Italian.
Translation English to Spanish hello — hola Translate the given word in English to Spanish.
) French to English bonjour — hello Translate the given word in French to English.
Italian to English ciao — hello Translate the given word in Italian to English.
Spanish to English hola — hello Translate the given word in Spanish to English.
Present to Gerund go — going Output the corresponding gerund form of the
given verb in present simple tense.
Present to Past go — went Output the corresponding past simple form of
the given verb in present simple tense.
Present to Past Perfect go — gone Output the corresponding past perfect form of
the given verb in present simple tense.
Gerund to Present going — go Output the corresponding present simple form
of the given verb in gerund form.
Linguistic Past to Present went — go Output the corresponding present simple form
of the given verb in past simple tense.
Past Perfect to Present gone — go Output the corresponding present simple form
of the given verb in past perfect tense.
Singular to Plural dog — dogs Output the corresponding plural form of the
given noun in singular form.
Plural to Singular dogs — dog Output the corresponding singular form of the
given noun in plural form.
Antonym happy — sad Output the antonym of the given adjective.
To Upper & Lower a<r A Output the given letter in uppercase if it is in
lowercase, and vice versa.
English & French hello <+ bonjour Translate the given word to French if it is in
English, and vice versa.
English & Italian hello <+ ciao Translate the given word to Italian if it is in En-
glish, and vice versa.
English & Spanish hello <+ hola Translate the given word to Spanish if it is in
Bijection English, and vice versa.
Present & Gerund g0 <+ going Output the given verb in gerund form if it is in
present simple tense, and vice versa.
Present & Past g0 > went Output the given verb in past simple form if it
is in present simple tense, and vice versa.
Present & Past Perfect g0 <> gone Output the given verb in past perfect form if it
is in present simple tense, and vice versa.
Singular & Plural dog <> dogs Output the given noun in plural form if it is in

singular form, and vice versa.

17

Under review as a conference paper at ICLR 2026

Table 6: Accuracy comparison between standard ICL (Baseline), the task vector method (TaskV),
and our strategy (TaskV-M). The experiment is conducted on Pythia-12B with n = 10.

Method | Knowledge Algorithmic Translation Linguistic Bijection | Average

Baseline 6.60 + 1.59 14.07 £ 145 8.60 + 0.68 1253 £157 10.31 +£0.70 | 10.82 +£048
TaskV 6330 +262 84.73+122 62.07 098 8258 + 122 42.27 +£092 | 66.40 +0.96

Baseline 61.80 +£545 7280 +1.15 4327 +292 57.07+1.15 41.91 +283 | 53.95 +1.02
1-shot TaskV 76.40 £240 84.20 £1.05 7147 +141 87.16 £2.04 53.11 £237 | 73.59 +£0.79
TaskV-M | 77.70 +£252 83.73 +1.37 71.00 £+ 148 86.80 £1.59 53.87 +£2.90 | 73.68 + 0.90

Baseline 70.30 £3.71 82.13+054 60.80+181 81.16+157 50.76 +2.17 | 68.41 +0.64
2-shot TaskV 80.30 +246 87.00 + 1.63 76.13 £377 89.33 £0.70 58.67 +£244 | 77.41 +0.50
TaskV-M | 81.60 +156 86.47 +040 7727 £253 89.51 +088 59.24 +248 | 77.87 £0.76

Baseline 77.60 +2.40 81.87 +0.81 68.13 £2.02 86.31 +£193 5573 +£1.60 | 73.20 +0.31
3-shot TaskV 84.00 +276 86.33 £1.17 79.53 £227 92.00 £067 58.76 £1.53 | 79.06 + 0.67
TaskV-M | 85.40 + 2.31 87.07 £ 1.18 78.13 £1.86 92.84 +068 59.56 +1.27 | 79.54 +0.35

Baseline | 78.40 +183 8273 +£044 7240 +124 88894125 5791 +146 | 75.46 +0.64
4-shot TaskV 83.80 +1.12 87.60 +1.81 80.20 +£239 92.18 £096 59.38 £0.47 | 79.59 +0.62
TaskV-M | 84.30 +1.50 88.13 +0.81 80.00 +267 91.87+125 60.31 +086 | 79.87 +0.51

0-shot

Table 7: Accuracy comparison between few-shot ICL (Baseline), the task vector method (TaskV),
the multi-vector method (TaskV-M), and the single-prompt variant (TaskV-MS). The experiment is
conducted on Llama-13B with n = 10.

Method \ Knowledge Algorithmic Translation Linguistic Bijection \ Average
0-shot Baseline 6.90 +2.08 15.60 + 1.72 7.00 + 1.65 1244 +1.74 827 +£1.33 10.28 4+ 0.98
TaskV 68.80 266 86.20 £ 1.61 7353 +091 85.24 +180 50.67 +232 | 72.26 +1.01
Baseline 69.50 386 73.67 £156 57.804+201 5622 +157 44.76 £244 | 58.11 +0.63
1-shot TaskV 79.50 +£235 88.47 +£075 80.67 +256 89.11 + 084 60.44 +2.07 | 78.79 +0.77

TaskV-M 81.30 280 89.53 +0.65 80.13 +£2.14 8871 +062 61.78 +£096 | 79.34 4+ 037
TaskV-MS | 80.90 +£3.10 88.40 +0.93 80.13 £254 88.89 £0.73 61.11 £1.31 | 78.96 +0.43

Baseline 78.80 £330 85.07 £137 75.67 £264 76.80 £1.18 56.49 £2.87 | 72.92 +0.59
2-shot TaskV 84.60 £2.11 88.40 +£0.68 84.33+£092 90.134+092 6244 +2.16 | 80.82 +0.42
TaskV-M 8570 +1.63 89.27 £1.10 84.134+1.15 89.64 +08 64.49 +202 | 81.48 +037
TaskV-MS | 84.40 +2.13 89.53 +0.98 84.67 173 90.18 +139 64.49 +230 | 81.61 +0.80

Baseline 86.20 £269 88.07 +1.06 80.00 +£1.67 84.04+1.19 62.18+152 | 78.51 042
3-shot TaskV 90.20 +2.23 88.67 £0.89 86.27 231 9231 £048 66.53 £094 | 83.53 £ 041
TaskV-M 90.30 +1.50 89.87 +0.83 86.07 £2.17 9236 +0.72 68.13 +0.76 | 84.15 +0.52
TaskV-MS | 90.60 +220 89.47 +0.78 86.20 £1.89 9191 £087 67.69 £1.40 | 83.91 +0.45

Baseline 84.80 £206 88.07 +0.61 8327 +1.8 88.89+191 67.16 £147 | 81.52 +0.66
4-shot TaskV 88.70 £1.69 89.53 +134 86.27 £1.08 92.76 £ 054 70.44 +1.35 | 84.66 +0.39
TaskV-M 89.60 £1.43 91.00 + 1.01 87.20 062 9236 +1.44 7253 £0.94 | 85.64 +0.29
TaskV-MS | 90.10 +£1.39 90.67 £+ 1.10 87.00 £1.17 9222 +£092 72.09 £1.46 | 85.45 +0.26

task vectors from each arrow token in a single few-shot prompt simultaneously. We name this alter-
native approach as TaskV-MS. As discussed in Proposition 3] the task vector weights that emerge at
each arrow token are approximately orthonormal, suggesting they encode distinct information sub-
sets and can be simultaneously injected to enhance model performance (e.g., by increasing the rank
of the induced coefficient matrix W). Table[7]shows a comparison between the current multi-vector
method (TaskV-M) and this single-prompt variant (TaskV-MS).

While TaskV-MS also delivers strong performance, it slightly underperforms TaskV-M. We believe
this is due to the causal attention mechanism in real LLMs, where earlier arrow tokens can only
aggregate information from a subset of demonstrations. Nonetheless, TaskV-MS is a promising
alternative for accelerating inference.

18

Under review as a conference paper at ICLR 2026

Table 8: Comparison of the accuracies of n-shot ICL and task vector on bijection tasks (n = 10).
We use gray text to indicate accuracies lower than 60%.

GPT-J Pythia-6.9B Pythia-12B Llama-7B Llama-13B Qwen3-8B Llama3-8B
icL TV ICcL TV ICL TV ICL TV ICL TV ICL TV ICL TV
Lower «» Upper 1.00 0.08 090 028 096 024 1.00 055 1.00 058 1.00 056 1.00 0.38

English <+ French 0.64 050 038 028 052 028 054 035 0.64 032 084 048 0.66 0.42
English <« Italian 068 056 0.62 048 0.60 056 070 047 072 044 0.68 036 0.70 0.36
English <+ Spanish 0.70 0.52 0.62 056 0.66 056 064 043 0.84 056 070 032 072 032

Task

Present <+ Gerund 0.64 036 044 032 040 022 080 041 0.74 026 072 034 094 052
Present < Past 0.60 038 048 036 054 0.6 052 033 068 044 0.78 042 090 0.58
Present <> Perfect 046 0.14 038 024 046 028 055 033 054 042 066 042 0.78 0.50
Singular <+ Plural 0.66 0.50 0.56 028 044 028 0.76 051 080 052 084 058 0.88 0.58
Antonym 086 078 0.76 066 076 070 0.83 0.73 078 0.72 082 0.74 0.82 0.76

Table 9: Comparison of the accuracies of n-shot ICL and task vector on bijection tasks (n = 20).
We use gray text to indicate accuracies lower than 60%.

GPT-J Pythia-6.9B Pythia-12B Llama-7B Llama-13B Qwen3-8B Llama3-8B
IcL TV ICL TV ICL TV ICL TV ICL TV ICL TV ICL TV
Lower <> Upper 1.00 0.12 1.00 032 094 038 100 048 1.00 060 1.00 058 1.00 0.36

English <+ French ~ 0.74 054 044 040 052 040 052 034 058 034 058 030 0.74 028
English « Italian 062 054 0.66 046 068 048 0.78 050 0.74 048 076 038 0.76 032
English <> Spanish 0.80 0.58 0.54 038 0.56 040 0.78 0.58 0.84 058 0.66 032 086 0.40

Task

Present <» Gerund 0.54 026 054 022 046 0.14 084 044 094 038 088 028 098 052
Present < Past 066 026 054 030 058 028 072 030 076 044 0.74 040 1.00 048
Present <» Perfect 042 0.18 044 020 046 024 048 030 052 048 080 044 090 048
Singular <+ Plural ~ 0.64 040 0.62 036 052 028 080 052 094 042 0.86 060 092 0.60
Antonym 084 0.76 084 0.70 090 082 09 0.84 090 084 0.84 074 0.84 0.76

B.4 FURTHER RESULTS ON BIJECTION TASKS

Here, we extend the results from Table |I| that illustrate the failure of task vectors on bijection tasks
across a broader range of LLMs and varying numbers of input demonstrations. We keep the same
experimental settings as Table |1| while increasing the number of demonstrations to n € {10, 20},
and report the results for 7 distinct LLMs: GPT-J, Pythia-6.9B, Pythia-12B, Llama-7B, Llama-
13B, Qwen3-8B and Llama3-8B. As shown in Tables [§]and [J] the task vector method results in a
significant performance drop compared to the standard ICL on bijection tasks. These results further
support our claims that:

* Task vectors systematically fail on bijection tasks, even when further increasing the number
of demonstrations in the prompt.

* The failure is consistent across multiple model architectures, validating that the issue stems
from a fundamental expressiveness limitation rather than model-specific artifacts.

B.5 FULL SALIENCY ANALYSIS RESULTS

In the main text, we reported a simplified version of the saliency map due to space limitations,
focusing only on the demonstration tokens x;, —, y;. In Figure[5] we report the full saliency map
covering every token in the prompt. Here, “B” stands for the [BOS] token, and “E” stands for the
word “Example”. Please refer to eq. (I3)) for further details about the structure of the input prompt.
As can be seen, the highlighted saliency weights exhibit clear patterns of embedding concatenation
and weighted summation. It can also be observed that latter demonstrations weigh more for task
vector formation (i.e., saliency magnitudes for latter y; tokens are larger in Figure [5b).

19

Under review as a conference paper at ICLR 2026

B E rp =y \n E Ty — Y2 \n E vy = ys \n E ¢ oz — oy \n E o= ys \ME o oag =y \n E o oxr = oy \n E s = ys \0 E 1 oz =y \n E T10 = Yo \n E Tiest—
000900 0

..‘.. LX)
BE o=y \nE :m—>p\nE o=y \nE o=y \nE ooy \nE o= \nE - oor sy \nE oo s \n E s w5 g \n E ¢ oxg—pio\n E G g

(a) Full Saliency Map (I = 10)

BE :ao >y \WE : 2> pWWE : 235y WE : 245y \WE @ 2555 \WE : 26—y \WE : 20— g \NE : g g \nE ¢ 29— o \0 E : 29—y \0 E : e

0000000000000 00C00O0O0COOCKFCFOCOCOCOS

BE o >y \nE o>y \nE o>y \nE o>y \nE a5y \nE oy \nE - op sy \nE ooy \nE s omg = g \n E ¢ org—gio\n E G T

(b) Full Saliency Map (I = 12)

Figure 5: Visualization of full saliency matrices as bipartite graphs between layer [(o) and [+ 1
(e), edge widths indicate saliency magnitude (Llama-7B, n = 10). (a) Each y; token attends to its
corresponding (x;,y;) pair, reflecting embedding concatenation. (b) The final (—) token attends
broadly to all y; tokens, indicating task vector formation.

C AUXILIARY LEMMAS

Lemma 8 (Proposed in m) Given positive objective function f(A) taking parame-
ters A = {A;}_ |, where A; € R0 Lot S — 07, S; C P R%*% pe a predefined parameter

subspace. Define A(t Ry) = {Ay,--- JA; + tR;,--- A} given i € [1,n], R; € R%*% gnd
t € R. Ifforany A € S and R; € R%*% there exists R; € S; such that

%f(ﬁ(t, ﬁi)) = %f(ﬁ(tﬁi))

. 2
é‘é@; IV f(A) =0.

)

t=0

then we have

Proof. This lemma is proved as part of the main theorems in (Ahn et al| 2023). We rearrange
the proof here to accommodate arbitrary function of matrices. Firstly, notice that for any R =
{Ri}iy € M R,

n

> Sr(Aw r))

i=1

d
= Zf(A+tR)

t=0 t=0

Therefore, the provided precondition is equivalent to stating that for any A € S and R €
7, R9:%di | there exists R € S such that:

%f(AHE)

< d—f(A+tR)

t=0 t=0

Let R = —V 4 f(A), we then have

_ <df(A —tVaf(4)) d(A-tVaf(4)) >
=0 d(A—1tVaf(4))’ t

d
3 [A+tR)

t=0

20

Under review as a conference paper at ICLR 2026

= (Vaf(A), ~Vaf(A)) = —|Vaf(A).

If the infimum of |V 4 f(A) H2F is not zero but some positive value p, then the S-constrained gradient
flow induced by R will lead to unbounded descent:

< —p.
t=0

%f(/H—tﬁ)

This contradicts the fact that f(A) > 0 and concludes the proof. O

The following lemma is an extension of Lemma 5 in (Ahn et al., [2023) by accommodating mul-
tivariate y samples as well as enabling a wider range of demonstration and transformer parameter
configurations.

Lemma 9. Let x1,--- , 2,41 be i.i.d. samples from an input distribution, and let W be sampled
independently of {x;}!1!. Let Zy € RCDXN where N € Z, be constructed of form

oo X (2d)x N
Zo = l: . Od:l eR s
where the x parts can be arbitrarily constructed from {xz}?jll and W. Let Z) be defined as replac-

ing the zero part of Zy by yn41:

20:[1 e]eR@dW.
Yn+1

Let Z be the output of the l-th layer of the linear transformer, and let)Zh }N/l € RN be the first
and last d rows of Z,, respectively. Suppose that the {Ql}le matrices are of form

Ql:[* O(2d+d,)xd * }

)
d columns dyp columns

Then the in-context risk of this L-layer linear transformer is equivalent to
L(IVi Qi) = B, gy [er((Iv = 3OV Vi (v = 1)). (14)
Proof. Let the V; and Q; matrices be represented as:
Vi = [5;:} Q=[Q o @

where V1, V2 € R¥>24 Ql € R(2d+dp)xd Q? € R(2d+dp)xdn Then the update rule in eq. (5) can
be rephrased as

1
X;=Xi1 + 5W121—1M[Z£17P] (QIX1—1 + Q7 P),
1
Yi=Yi1+ ~V7?ZaM[ZL,, P](Q1 Xio1 + Q] P).
Let Ay = ZO — Zy, i.e. an all-zero matrix except that the last half of the last column is y,, ;. Let
Ax and Ay be its first and last d rows respectively, then Ay = 0and Ay = [0 -+ 0 ypi1].
Note that Z; = Z; + Az holds for [= 0 trivially. Now suppose it holds for some [= k — 1, then
v ¥ 115 =T 1y 2
Xp=Xp_1+ nd ZaM\|Zy_, P QrXk—1+ Qi P
1
=X, 1+ EVkle,lM[Z,;[h Pl(QrXk—1 + Qi P)
1
+ EV;AZM[ZI;[D P] (Q;ngk—l + Qip)

1
+ nglzkflM[A;, 0d,xa,] (QxXi-1+ Qi P)

21

Under review as a conference paper at ICLR 2026

+ %Vk,lAZM[A;a Od, xd,]| (QkXk—1 + QiP)
=X, 1+ %V,}Zk_lM[Z,I_l, Pl(QrXk-1 + QiP) = Xy,
where the last step holds by noticing that Az M = 0. Similarly, one can prove that
Vi=Ye 1+ Ay + %VkQquM[Z;lp Pl(QiXk-1 + QiP) = Yi + Ay.
Therefore, it holds that for any [€ [1, L], Z = Z; + Az. Recall the in-context risk in eq. :

2
LUV, Q3r) = Ezow ||(ZL) (a4 12005 + Yt
=Ez,w |(Yz + Ay)(In — M)|;

=E; [m((IN MY, Vi(Iy — M))].

The proof is complete. O

D PROOF OF THEORETICAL RESULTS

D.1 PROOF OF PROPOSITION[4]

Proof. We will first prove sufficiency. Let W = ab' be a rank-one matrix, where a,b € R?%. The
given conditions imply that z = Wy = WWaz = ab"ab' x, we thenhave b’z = bTab ab' z =
(b"a)?b" . Since b'z # 0, we can conclude that b' @ = 41. Then, z = ab'ab'z = +ab'z =
+y.

To prove the necessity, it suffices to show that selecting W = zz "/ Hx||§ when © = y satisfies the
given conditions (alternatively, select W = —zx T / ||;v\|§ when x = —y). O

D.2 PROOF OF THEOREM[I]

Proof. To enhance the readability of the notations in this proof, we will drop the constant % factor

in linear attention. Furthermore, we will simplify Z),)?0 and)70 in Lemma |§I as Zp, X and Y
respectively. This results in different definitions compared to the original ones, but we will not refer
to the original definitions in the remainder of this proof.

XO 1 0 e T 0 Ttest 0 (2d)x (2n+2)
0 |:YO:| |: 0 Yy e 0 Yn 0 ytest:| <

Let Z; be the output of the [-th layer of the transformer, and let X;,Y; € R*(2n+2) denote the first
and last d rows of Z;, respectively. Under the constraint in eq. (6)), we can verify that
Xi =X+ AXaM(X,L CiXi—1 + Dy),

T (15)
Y=Y _1+BY_1M(X,_,CiX,—1 + Dy).

In the following analysis, we will use f(A < B) to denote the result of the function f of A when
replacing the value of A with B. Additionally, we denote f(A < B x A) as f(A < B) for any
operator *. Therefore, f(A <~ B) = f(A + A+ B). We also denote f(A & B) = f(A + BA)
and f(A < B) = f(A « AB) for convenience.

Our goal is proving that, for any £ € AU B U C U D and an arbitrary matrix R € R?*¢ (R *d»
for D), there exists R € Sy (Sx;, for C, Sp for D) such that

d - d N
_ < — .
GLE S R)| < T L(E & tR) (16)

t=0 t=0

Let Xo = [0, 21, ,0, Ttest] be a function of X, we then have Yy = WXg. Let U; € R%*? be a
uniformly sampled random orthonormal matrix, and let Uy, = »i/2y lZ_l/ 2. One can verify that

22

Under review as a conference paper at ICLR 2026

Ug' = 212U $-1/2, By applying Lemma|§|and the fact that Xy < Us, X, we have that for any
given matrix R,

d +
aE(E +— tR)

t=0

— %EXO,W {tr((l MY, (E & tR)YL(E & tR) (I — M))}
t=0
=2Ex, w [u((l - MY, %YL(E & tR) - (- M))}

d
=2Ex, wu, {tr((f — MY, (Xo & Us) 3 V(X0 EUs, EEtR)| (I- M))].
t=0

Next, we will show that eq. holds for each one of A;, B;, C;, D; forany i € [1, L].
1. Equation (16) holds for A;.
We first show that for any [€ [1, L], the following equations hold:

Xi(Xo & Us) = Us Xy, (17)

d d
(X EUs, A; EtR)| =Us T & tU RUY)

(18)

t=0 t=0

It is straightforward to verify that eq. holds for [= 0. Now suppose that eq. holds for some
| =k — 1, we then have

Xp(Xo & Us)

= X1 (Xo & Us) + A X1 (Xo & Ug)M(X,;r_l(XO E U)X o1 (Xo & Us) + Dl>
=UsXp_1 + A4Us Xk 1 M (X, Us ClUs Xj1 + D)

= Us(Xp-1 + AiXp 1 M (X, Ci X1+ Dy)) = Us X,

where the third equality follows by noticing that when A; = a;14 and C} = X!, we have
AUs = UsA; and UETClUZ = (). This concludes the proof of eq.

We now turn to the proof of eq. (I8). Notice that when [< i, we naturally have

d d
—X)(Xg & Us, A; £ tR)| =Us —X;(A; & tUS'RUY)

=0.
dt =0 dt ‘=0
When [= ¢, it is easy to verify that
d
3-N(Xo LU, A; & tR)| = RUsX,_ 1 M(X," UL CUs X1 + D))
t=0

=Us - Ug'RUsM(X,"1C X1 + D))

d
=Us o Xi(4; & U RUS)

t=0

Now suppose that eq. (I8) holds for some I = k — 1 > 4, one can verify that:

d
k(X & Us, A; & tR)

t=0
d d
= S Xp 1 (X & Us, A & tR)| 4+ —

AR Xy 1(Xo & Usy, A; & tR)M
i . dtkk1(0<_U27 + tR)

. (X,j_l(xo E Us, A £ tR)CL X1 (Xo & Usy, A &£ tR) + Dk>

t=0
d
— aX,H(X0 & Us, A; & tR)

23

Under review as a conference paper at ICLR 2026

d
— Xj_1(Xo & Us, A; < tR)

A
+kdt

M(X,j_l(Xo & U)Cp X1 (Xo & Us) + Dk)
t=0
d

— X1 (Xo < Us, A; € tR)

+ Akafl(X() (i UE)M 1

CrXp-1(Xo & Us)
t=0

d
+ ApXp_1(Xo & Us)MX, [(Xo & Us)Ck Xk 1(Xo & Us, 4; £ tR)

t=0
d
= Ux 3 Xi (4 & U5 RUY)

t=0

+U2Ak ka 1(A (—tU IRUZ)

M (X, ,CrXi—1 + Dy)
t=0

d
+ Us A X1 M —X,| (A, & tUS ' RUY)

CrXj—
1 kX k-1

t=0

d
+ Us A X 1]\4)(;€ lOk Xk 1(A; %tUZIRUE)

t=0

d
Z AR X1 (A; & tUS ' RUs)M

d _
= X1 (A; & tUS RUy) o7

—U
=t

+Us
t=0

. (XkT,l(Al- & UG RU) Cr X -1 (A; £ tUS ' RUS) + Dk)

t=0

d
— Uy —Xi(A; & tU5'RUy)
dt o

This completes the proof of eq. (I8).

Under the condition that B; = b1, for some b; € R, we can simplify eq. as
Y, =Y+ bV M(X,L,Ci Xy + Dy)
=Y, (I+ M (X, 0 X1 + Dy))

!
H (I+b;M(X;_,C;X;1+ D).
Define G, = X H (I +0M(X] 0y XJ 1+ D ;)), then it satisfies that Y; = WG;. We are
ready to prove that similar results to eqs [17) and (18)) also hold for Gy, [€ [1, L]:
Gi(Xo & Us) = UG, 19)
(20)

d d
3 C1(Xo EUs, A £tR)| =Us, 3Gl & tUS RUY)

t=0 t=0

Notice that eq. holds trivially for I = 0 as Gy = X . Now suppose that eq. holds for some
{ =k — 1, we then have

Gr(Xo & Us) = Gr_1(Xo & Us) (I b M (X (Xo & Us)CrXior (Xo & Us) + Dk)>

= UEGk_l(I + bkM(X,j_leXk_l + Dk)) = UsxGg.

This concludes eq. (I9). As for eq. , notice that both sides equal 0 when [< i. Now suppose
that eq. (20) holds for some | = k — 1 > i, we then have:

aGk(XO & Us, A; &£ tR)

t=0

d d
— &Gk_l(xo EUs, A £ tR)| + akak_l(XO EUs, A EtR)M

t=0

: (X,ll(Xo & Us, Ay & tR)Ou X1 (Xo & Us, A; & tR) + Dk)

t=0

24

Under review as a conference paper at ICLR 2026

d

- &Gk_l(Xo & Us, A; £ tR)

t=0

d
+ bk &kal(XO é UE7A’L <i tR) M<Xl;rfl(X0 é UZ)Cka?*l(XO é UE) + Dk)

t=0

d

+ b Gr_1(Xo & Us)M aX,j_l(XO EUs, A EtR)| CpXp_1(Xo & Us)
t=0
d
+ bpGr_1(Xo & Ug)MX,] | (Xo & Us)Ch &Xk_l(Xo & Us, A; £ tR)
t=0

d
= Uz 7 CGr1(4; & tU; RUY)

t=0

M (X, _,CrXi—1 + Dy)

d
+ b, Us *Gk—l(Ai (i tUilRUE)
dt ‘=0

CrXk—1

d
+ b UG M anT_l(Ai & U5 RUY)
t=0

d
+ bpUs Gt M X[, Cy, k(4 & tU5 ' RUY)

t=0

d
= U 4 Gi(4; & U RUS)

t=0

This concludes the proof of eq. (20). Consider the in-context risk:

S (A &t
dtﬁ(—tR) i
d
=2Ex, wu, {tr(([— MY, (X, & Us) &YL(XO KU, A EtR)| (I- M))]
t=0
=2Ex, wu, tr((I — M)GLUSWTWUs %GL(AZ- & U RUs)| (I - M))]
t=0

' d
= 2dEx, [tr((I - M)GTE™ ZEy, [GL(AZ- & tUglRUg)]

L))
L))
L))

[d
=2dEx, tr<(I - M)G[E™! &GL(Ai & By, [tU5 ' RUS))

=2dEx, [tr((I — M)G[X! %GL(AZ- & trly)

t=0

d
= L Ewrly)

t=0

where r = Ey, [Us, 'RUs] = 2 tr(S71/2RE1/2), and we used the fact that Ul ©~1Usy = £71,

and G (4, & tR)‘ is affine in R. This concludes that eq. holds for 4;, i € [1, L.
t

2. Equation (16) holds for B;.

From the recursive expressions in eq. (I3)), we can conclude that the values of X; do not depend on
B;. Therefore, we naturally have

X)(B; &£ tR) = X,. 1)
Next, we would like to show that for any [€ [1, L],
T d + e d +
Ew |W' —=Yi(B; < tR) =37 —=Gi(b; <+ ttr(R)) . (22)
de t=0 de t=0

25

Under review as a conference paper at ICLR 2026

When [< 4, we can easily verify eq. (22) since both sides equal 0. When [= i, we can get

d
Ew (W7 B & tR)

| = B (W7 RYi 10 (X, CiXic + D)
t=0

=Ew [WTRW|G,_1M(X,_,C. X1 + D))
= tr(R)S G M (XD, CiXio1 + D)

d
=y! 3 G0 & ttr(R))

t=0
Suppose that eq. (22) holds for some | = k — 1 > i. One can then verify

o

d
=Ew [WT — Y1 (B; & tR) (I + b M (X, _,C. X1 + Dy))

d
Ew [WT 3 (B &£ LR)

dt

o

d
—Ew [WT ~Yi_1(B; & tR)] (I + bpM(X]_,CrXy_1 + Dy))
t=0

dt

=yt %Gk_l(bi & ttr(R))

(I 4 b M(X,_,Cr X1+ Dy))
t=0

=x! %Gk(bi & ttr(R))

t=0
The proof of eq. (22) is complete. Now, look at the in-context risk, we have

d - m)]

o)

0
. (I M)>

L))

L(B; & tR)

d
=2Ex, w [m«(([- MY, aYL(Bi &£ tR)

t=0

=2Eyx, {m«((] — M)G] Ey [WT %YL(BZ- & tR)

= 2Ry, {tr(([~M)G ™t %GL(bi & tir(R))

= QEXO,W |:tI‘<(I - 2\4)}/LT %YL(BZ <i ttI’(R)Id)

d
= —L(B; & ttr(R)1y)
dt =0
This concludes that eq. holds for B;, i € [1, L].
3. Equation (16) holds for C;.

Similar to the A; case, we will first prove that for any [€ [1, L],

d d
~Xi(Xo & Us, Ci £ tR)| = Us —Xi(C; & tUS RUY) (23)
dt +=0 dt t=0
The equation above holds trivially for [< i. For the case [= ¢, we have
d
—X(Xo & Us,C; < tR)
dt ‘=0

= A X, 1(Xo & Us)MX, (Xo & Us)RX,_1(Xo & Us)

d
= UpA; X, \MX," Ul RUs X, = Us, (e & UL RUY)

One can conclude the proof of eq. (23)) through a similar reduction as eq. (T8)) for / > i layers. Next,
we establish the corresponding result for G;:

t=0

gGl(X0 L Us,Ci & tR)| =Us %Gl(@ & Uy RUY)

24
dt =0 24)

t=0

26

Under review as a conference paper at ICLR 2026

This equation holds trivially for | < ¢. When taking [= 7, we can verify that

d
&GZ(XO EUs,Ci ¢ tR)| =bG_1(Xo & Us)MX,[(Xo & Us)RX,_1(Xo & Us)
t=0

= bUsG_1(Xo & Us)MX, UL RUs X,

d
= Uz 4,Gi(Ci & Uy RUY)

t=0
For [> i layers, one can follow similar reductions as eq. (20) to finish the proof. We then consider
the in-context risk:

d +
&c(cz «~ tR

t=0

X

d
(I— MY, (Xo & Us) =Y. (X & Us, C; & tR)

dt

L))
L =)]
=)
L))

= %EXO,W [tr((l — M)Y,(C; & tre)Y (G & tr2 =) (1 - M))}

(I—-M)GJUSWT WUy d 461G £ tR)

)
= Z]EXO,W,UJ_ |:tI‘
=2Ex,wu. {tr

/\/—\

d

S Eu. [GL(C & RUE)]

= 2dEx, {m«((] M)GLx™!

= 2dEx, {tr(([- M)GLx! &GL(C;- Ly

t=0

d

ZL(C; Etrnh|
dt =0

where r = Ey | [Uyl RUs] = L tr(£Y/2R¥1/2). This concludes that eq. (16) holds for C;.

4. Equation (16) holds for D,.

Let U, € R™*™ be a uniformly sampled permutation matrix, i.e., a binary matrix that has exactly
one 1 entry in each row and column with all other entries 0. Let U, = diag(U, ® I, I2) €

R(Z7+2)x(2n+2) * One can verify that by multiplying XoU., it is equal to shuffling the first n 2-
column sub-blocks of X and keeping the last 2 columns unchanged.

Then, consider a matrix Ug = diag({y, ..., &) € ROFDX(HD) where ¢; S Unif{£1},ie.,a
diagonal matrix with random +1 entries. Let Uy = U ® I, € RGn+2)x2n+2) Thug Uy = U]
and XU is randomly flipping the sign of each 2-column sub-block in Xj.

We are going to prove that for any [€ [1, L], recalling that f(A < B) = f(A «+ AB),
Xi(Xo & UsUs) = XU, (25)
Gi(Xy & ULU,) = GiULU.. (26)
Equation holds trivially for [= 0. When eq. holds for some [= k£ — 1, we can verify that
X (Xo & ULUL)
= X 1UpUs + Ap X1 U U M (UJ UL X Oy X3—1ULUs + D)
= X 1UrUs + Ap X1 Us U MUJ UL (X, Oy Xp—1 + U Us DU UL UL U,
= X 1UpUs + Ap X1 M (X1 Cr Xp—1 + Di) U Us
= (Xpo1 + A X1 M (X, O Xyo1 + Dy)) UrUs = X3 UrUs.

It uses the fact that there exists some D}, D? € R?*2 such that D; = diag(l,, ® D}, D?), so
shuffling the first n 2 x 2 diagonal sub-blocks of D; does not change the matrix, and we have
UODZ-U;r = D;. Similarly, we have UkaUj—Er = Djy.. This concludes eq. , and eq. could
be acquired similarly.

27

Under review as a conference paper at ICLR 2026

Next, we will establish the following equalities for X; and G:

UslUs, (27)
t=0

d
= —X(D; & wWLURU]UL)

d
—X(Xo & UsUs,, D; - tR) 4

dt

t=0

d d
&Gl(XoﬁUiUo,DiitR) :&Gl(DiitUiUORUOTUI) UrUs. (28)

t=0

t=0
The proof follows by similar reductions as proving eqs. and (20).
Finally, we consider the in-context risk under the permutation of U, and U¢. Since each pair of

(z4,y:) is equivalently sampled from Gaussian distributions, we have X 4, oU+U,. Therefore,

d +
=2 r(D:
S L(D; & 1R)

t=0

=2Ex,w {u((f — M)Y, %YL(DZ- &tR)| (I— M))]
t=0
d
= 2Ex, w,u, U [m((IM)YJ(XO S ULU,) Y (Xo L ULU,, D; £ tR)| (I- M))]
t=0

d

6D &tULULRU]UY)

=2dEx,u, v, [tr((I—M)UJUiTGIX—l

g vtr-1) |

L))

(I — M))} = %E(Di &£ tR)

— 2dEx, [u(([— M)GIx! %EUP,UE [GL(DZ» & tUiUOTRUOUi)}

)

= 2dEx, [m(([—-M)Gx? %GL(Di & tR)
t=0

t=0

where R = Ey, v, [UrU] RU, U] = diag(I, ® R', R?), R* = %L Z?Zl R;, R? = Ry41, and R,
is the j-th 2 x 2 diagonal block of R. The 4th equality uses the fact that tr[(I — M)A(I — M)] is ex-
tracting the right-bottom element of A, so it should be equal to tr[(I — M)U, UL AULU.(I — M)]
for any matrix A. This concludes that eq. (I6) holds for D;.

Till now, we have proved that eq. holds for each one of A;, B;, C;, D;. The proof of the whole
theorem is then completed by applying Lemma 8] O

D.3 PROOF OF THEOREM[2]

Proof. In this proof, we follow the same notations as the proof of Theorem where the constant %
factor is dropped and Zj, X, Yy are simplified as Zy, Xo, Yy respectively.

7 0 0 -+ xp 0 0 Tyey O O (2d) x (3n+3)
Zy = R . 2
=10 0y - 0 0y 0 0 ytes.;]e 29)

Let Z; € R2¢x(3743) pe the I-th layer’s output and let X;,Y; € R**37+3) pe its first and last d
rows. Our goal is to prove that, for any £ € AU B U C U D and an arbitrary matrix R € R?*9

(R%*d» forD), there exists R € S; (Sx, for C, Sp for D) such that

% cEER)| <Lrmdn) (30)

o dt

t=0

The proofs of eq. (30) for A;, B; and C; are identical with the proof of Theorem [I]so we omit them.
We will be focusing on D; for the rest of the proof.

Let US € R™" and U} € R("+)x("*+1) be uniformly sampled permutation matrices. Let
Us = diag(U;,1) ® diag(1,0,1) and U} = U} ® diag(0,1,0). Therefore, XoU; is shuf-
fling the 1-st and 3-rd columns among each 3-column sub-block of X, (except for the last 3-
column sub-block), and XU/ is shuffling the 2-nd column among each 3-column sub-block. Next,
let U, Ug € R(M+Ux(+1) be diagonal matrices with uniformly sampled +1 entries. Define

Ut = U ®@diag(1,0,1) and U} = U{ ®@diag(0,1,0). It can then be verified that XoU3§ U’ 2 X,.

28

Under review as a conference paper at ICLR 2026

To simplify the notations, let U= denote U5 U} USU?. We will focus on a subset of Sp:
Sl = {dlag(© A1y Ao) + Iy @ Ay | Ap,As € M((ng(lJ),Ag e M(ggg)}
Assume Dy, = diag(l, ® A1, Az) + I,41 ® Ag € Sp as defined above, one can verify that it is

a block-diagonal matrix constructed from the same 3 x 3 sub-blocks, and thus is invariant under
U=D;U.. We will then prove that for any [€ [1, L],

X;(Xo < U=) = XUz, 31)
Gi(Xo < U=) = GiU=, (32)
gXI(XO L U-, D, EtR)| = gXl(Di Ew_RrUD)| U, (33)
dt =0 At t=0
—Gl(Xo & U_,D;, &tR)| = gGl(DZ- &w_rUl)| U= (34)
dt =0 dt B P

These results can be acquired by similar proofs as eqs. (23)) to (28). We then consider the in-context
risk under the permutations of U=. Similarly, we have X 4 XoU= and

GO m)|
0 0)

=2dEx,,u_ [tr< (I-M)G[(Xo < U=)27! %GL(XO & U=, D; £ tR)

= 2Ex,w [(YL(D & tR)

)
)

L))

Let R; be the j-th 3 x 3 diagonal block of R, then R = 1" R, (1 0 1), R2 = Ry.10

=2dEx, v_

L

tr< (I-MUIGI=T tGL(DiitUERU;)

= 2dEX0 |:tl‘(I M GTE_ tGL(Di <i tEUE [UERU;])

fc(& tR)

t=0

(980). B = oy S50 Ryo(318) and B = Ev_ [U=RUZI| = diag(l,@RY, R)+ L1 0 R,
This indicates that eq. .) holds for each D; € S, and thus the proof of the whole theorem
completes by applying Lemma and noticing that S, C Sp. O

D.4 PROOF OF THEOREM[]]

Proof. We keep the same notations as the proof of Theorem dropping the % factor and simplifying
Xo, Yo, Zg as X, Yo, Zg, as follows:

1 Y1 - Tn Yn Ttest Ytest

Note that we now have X and Y}, containing both z; and y;. Define

X = [371 0 -+ xp 0 Ttest O] 5
X = [0 g -+ 0 z, O xtest] s
Y = [0 7 0 Yn 0 ytest] .

we then have Yy = X +Y = X + W X. From the parameter configuration in eq. , the update
rule of the first attention layer is

X, = A\YoMD, = AJXMD,, Yi=Yy=X+WX. (36)

29

Under review as a conference paper at ICLR 2026

The update rule for the following layers is the same as eq. (I5). We are going to prove that, for any
E € AUBUC U D and an arbitrary matrix R € R4*¢ (R% ¥ for D), there exists R € Sy (Ss
for C, Sp for D) such that

d ~ d
—L(EEtR)| < —L(EER)| . (37)
dt t=0 dt t=0
Similarly to Theorem [I| we uniformly sample U; € R%*? as an orthonormal random matrix, and
let Us, = X1/2U, ©~1/2, Under the condition that B; = b;I,; for some b; € R, we have
1
V=Y [[(I+b;M(X],CiX;-1 + Dy)).

j=2
Let R = XTIy (I4b;M (X[, CiX;_1+ D)), G =
)7]_[222 (I+bjM(XjT710ij_1 +Dj)), we then have Y; = F; + W(|. According to LemmaEl,
d
—L(E & tR)
dt 0

= L [ir((T = a0V (8 & Ry & eR)(1 -)]

t=0

_ %EXO,W (=)P (B & tR)FL (B & tR)(1 - M) |

t=0

+ g W [tr((f — M)GL(E S tRWTWGL(E & tR)(I — M))]

at
L))

-).

Next, we will show that eq. holds for each one of A;, B;, C;, D; for any i € [1, L].
1. Equation (37) holds for A,.

One can easily verify that egs. and (I8) still hold. Furthermore, egs. (I9) and (20) hold for both
F; and G;. With these observations, we can then verify

t=0
=2Ex, [m(([— M)F} %FL(E £ tR)

1 d

+2dEx, {tr(([—~ M)GLx~ 3 Cr(E & tR)

d
—L(A; & tR)
dt t=0

d
=2Ex, v, {m(([— M)F] (X & Uy) aFL(X & Us, A; £ tR)

(I M))}
t=0
+2dEx,,u, tr<([~M)G[(X & Us)x™? %GL(X & Us, A; & tR)

L))
L))
L))

d
=2Ex, v, [tr(([— M)F] Us Us, 34 & tU5 ' RUS)

d
+2dEx, v, [u(([— MG, Us 271U &GL(Ai & U5 RUY)

L 0=m)]
L))

d
=2Ex, {n(([~ M)F} e & trly)

+2dEx, [u(([—-M)G 2! %GL(AZ- & trly)

d
= aE(A,; & trly)

)

t=0
where r = Ey, [Uy, ' RUs] = 2 tr(S71/2REY/2).

30

Under review as a conference paper at ICLR 2026

2. Equation (37) holds for B;.

From the definition of F; and G}, we can verify that

iYl(B + tR)
de o
l
=R(Fim1 + WGin)M(X,,CiXioa+ Dy) [] (I+6;M(X],C;X;1 + Dy)).
j=i+1
Define
l
Fi= (Fi1 + B F,_ M(X,_,CiX,_1 + D)) H (I+0b;M(X] ,C; X1+ Dy)),
j=it+1
Gl =(WGi1+BWG, 1 M(X,"\CiX; 1+ Dy)) [[(I+b;M(X;_,C;X;1 4 D;)),
Jj=i+1
We then have
d —.
— —Fi(B; & tR)

Lyi(B, & tR) + 3G, &

de t—o At =0 =0
Similar to eqs. (20) and (22), we can prove that
d_. d_.
—Fi(Xo &£ Us,B; & tR)| =Us —Fi(B; & tU;'RUy)|
dt =0 de¢ =0
d _. d _.
Eyw [WT —Gi(B; & tR) } =2 ZGi(B; & ttr(R)Iy)
dt =0 de t=0

Without loss of generality, we assume that r = 3 tr(27Y/2R¥Y?) < Ltr(R), and let v =
rd/tr(R) < 1. Then, one can verify that

d +
—L(B; + t
" (B; < tR)

t=0

d
= QEX(“UJ_ |:t1‘((IM)F'l (X (— UE) FZ(X % Us, B; <—tR)

L0-m)]
L))
L))
L))

L))
L)
. > %E(Bi & trly) .

The last inequality assumes the positivity of the term involving G;. Otherwise, one can simply flip
the numerator and denominator of - and scale the derivative of F} instead of GG; to yield an additional
positive term besides the risk term to finish the proof.

3. Equation (37) holds for C;, D;.
Similarly, one can verify that egs. (23) and @&lstill hold (also egs. (23)) to (28)), and finish the proof
O

L))

+2Ex, w [u(([- MaGiw’ %é}'(& &£ tR)

] W
=2Ey, tr(([~ M)ET &F}(BZ- & trly)

+2Ey, {tr <(I - M)ny1 G’(B & ttr(R)1)

d
=2Ex, tr(([- M)F 7 F1(Bi & trly)

1
+ ;QdEXO [tr(([- M)GlTZ_l d Gl(Etrly)

= <1 — 1> QdEXO {tr(([- M)Gl—r271 &Gl(Bi (— t?"Id)
Y

d
+ aE(BZ (i t’l’]d)

by following the same reductions as Theorem [I| with F; and G;.

31

Under review as a conference paper at ICLR 2026

D.5 PROOF OF PROPOSITION[3]

Proof. Let A = a;ly, By =bi13,C; = clgand D) = diag(LL@D}, D?)+In+1®D?+D?®DlE’ for
1 €[1,2]. Let Z; € R?¥*(37+3) be the output of the I-th attention layer, and let X;,Y; € R?*(3n+3)
be its first and last d rows respectively. Note that Y; in this proof does not contain gt

dy 0 dY sz 0 s .
Let D} = | o O 0).D?=(000 (note that the last row of D? is masked out by M, so we
1 dz 0 d 1 990 1

simply set it to 0), and D? = <§ j(i §). We use D as an abbreviation for D%, and use d; ; to denote
the elements in D. One can verify that
X1 = Xo + a1 XoM (diag(I, ® D, D}) + I,41 ® D} + Df ® DY)
[(14 a1d®)z aty Zi:l 1T ard¥xy

(1+ a1d%)x, aty Zl 1 di nT; ard¥x,
(14 a1d)Trest a1ty Sy dipr®i a1dYT1est |
Similarly, we have
Y1 = Yo + b1 YoM (diag(L, ® D1, D}) + Int1 ® D} + Dy © DY)
[bidjyr ity Z?ﬂ dinyi (14 bid))y
bld;yn blt Z dl nYi (1 + bldg)yn
0 blt Z -1 dz,n+1yz 0]

By the definition of linear attention, we can show that

TF(Zo; {Vi, Qi}7=1) = (Ya)3nt3 = b2 Y1 M (2 X{ (X1)3043 + (D2)3n43)

3n+2
= szzald% < Z (Yl) (Xl))Itest~
i=1
Define AX; = [0 aitydni11Ttest 0 -+ 0 aitgdnii nr1Ttess 0], and let X7 = X; —
Ale then TF(Z()7 {‘/lv Ql}lzzl) = TF(ZOa {Wa Ql}[zzla Xl — Xl) + TF(ZOa {‘/27 Ql}[zzla Xl —
AXl). Let bld;<1 + a1d£) + (1 + bldg)ald; =a, bltyaltgg =b, bQCQ(lldz = ¢, we then have

n+1 n n
(Z07{‘/l7Ql}l 1,X1 <_X —C azyzl' +bz Zd] iYj Zdj,iij Ttest
i=1 i=1 \ j=1 j=1
n n n n+1
=c CLZ yixiT + bz Z (Z djid Z> ijk Ttest, (38)
=1 j=1k=1 \i=1
n+1l n
TF(Z0; {Vi, @}, X1 = AX1) = b D> Y djiyjdn 1T rest
=1 j=1
n Jn+1
= be Z (Z dmdnﬂ,i) YT st Ttest - (39)
j=1 \i=1

Now consider the in-context risk,
L(V,Q) = Ez,w [ITF(Zo: {V.Q}) + Warest 5
= Ezyw | (TF(Zoi {V. Q1) + Waeew) T (TF(Z0: {V,Q}) + Werer)|
= Ezyw | (TF(Z0: {V, Q} X1 = K1) + Warewt) | (TF(Z03 {V, Q) X = X1) + Wattest)|

+2E 7, w[TF(Zo; {V,Q}, X1 + AX1) " (TF(Zo; {V, Q}, X1 < X1) + Wgest) |
+Ezw [TF(Z0; {V,Q}, X1 + AX1) T TF(Zo; {V, Q}, X1 + AXy)].

32

Under review as a conference paper at ICLR 2026

In the equation above, the 3-rd part is always positive. We then examine the second part:
Ezow [TF(Zo; {V,Q}, X1 + AX1) T (TF(Zo; {V,Q}, X1 + X1) + Waest)]

T T
= IEZO,I/V [xtestxtestletest + mtestxtestUthest} =0,

where v; =be 7, (Z?;l dj7idn+1,i) ijC(a S i +0 0T STh (Z?Ill dj,idk-,z) yﬂZ)
and vy, = be Z?Zl (Z?;l djyidn_s_lﬂ;)ijW are independent of x.s;. Therefore, £L(V, Q) attains
its minimum only if TF(Zy; {V, Q}, X1 < AX;) = 0, implying d,,11 , = 0 fori € [1,n + 1].

In the following analysis, we will assume that the last row of D is 0, and let M € R™*(*+1) pe
the first n rows of D. Additionally, we will drop the ¢ factor in eq. (38), since its position could be
substituted by a and b. We then define W = a 377, g + 6327y S0y (S0 dyadis Jwsarf
X=[z1 - zp]andY =[y1 -+ Yy]. One can verify that

W=aVYX T +bYMM ' XT =aWXXT +0WXMMTXT. (40)

Furthermore, the in-context risk could be expanded as

—~ 2 —~ —~
L(V,Q) = Bz ||Wattest + Watest | = Ezow [we W + W) T (W + W)zt

—Ew [tr((W)T (W + W))}
=Bz [tr(WTW) + 260 (WTW) + e (WTW)).
We will use the identity Ex[XAX " XBX "] = (tr(A) tr(B) + tr(AB") + d tr(AB)) 1, for any
A, B € R™ "™ which can be acquired by expanding each element and applying Isserlis’ theorem.
LetT) = tr(MMT) and T, = tr(MMTMMT), then
Ezow [tr((@aWXXT +bWXMMTX)T (aWXXT +bWXMMTX"))]
=Ezow[a® tr(XX W WXXT) 4+ 2abtr(XX W WXMM'XT)]
+Ezow [P tr(XMMTX "W WXMMTXT)]
=dEz [a®tr(XXTXX) + 2abtr(XX XMM'X ") + 0> tr(XMM X" XMM"XT")]
= a’d*n(n + 1+ d) + 2abd*(n + 1 + d)Ty + b*d*(T? + (1 + d)T3).
Simultaneously, we can verify that Ez, w [tr (W TW)] = d? and
Ezow [tr(WT/W)} =Ezw[aW WXXT +0W ' WXMM'X"| = ad*n + bd*T;.

Combining the results above, we aim to find the optimal a, b, M that minimize
1
ﬁﬁ(V, Q) = co+ a7t + 17 + 3T,
where
co=a’n(n+1+d)+1+2an, c; =2ab(n+1+d)+2b,
82:b2, C3:b2(1—|—d).
Since ¢3 > 0, to minimize £(V, Q) we need to minimize 7. Given that MM T is symmetric, we
denote its n eigenvalues as \;, i € [1,n]. Then by Cauchy—Schwarz inequality,

n

2
" 1 1
tr(MMTMM") = ; 22> - (; >\Z-> == tr2 (MM).

Therefore, £(V, Q) is minimized only if the inequality above holds with equality, which implies
that A; = A; for any ¢ # j. This concludes the proof by showing that there exists A € R such that
MMT = M4, and thus DD = diag(\ly,0). O

33

Under review as a conference paper at ICLR 2026

D.6 PROOF OF PROPOSITION[3]

Proof. We will continue from egs. (38) and (39). After applying token-wise dropout, we have

n
TF(Zoi {Vi, Qi} =1, X1 < X1) = Y (a0 % + 003")0} *of yiz of" 03" wiens
1=1

n n+1
3i—1 3j 3k—2 3n+1 3 +3
+CZZ ZO2Z dj,idr,;i |07’ oy ijko " " Ttests 41)

j=1 k=1

n n+1
TF(Zo: {Vi, Qui}iey, X1 ¢ AXy) = cod" ™3> (Z dj,z-dnﬂ,z-) 07 0"y @y Thest
j=1 \i=1
where a = bgCgaldgbldz(l + a1d%), b = bocoard¥(1 + bldg)aldi and ¢ = bacoa1d¥bityait,.
One can verify that our previous analysis about TF(Zo; {V;, Q;}?_,, X1 + AX;) still holds and
we thus have d, ;. = 0. We then define:

O} = diag(o, -+ ,0;" %) € R™" OF = diag(o}, - ,0f"™) € R™*", forl € [2],
03 = diag(03, - - - ,05"?) e RPFDx(n+1),
By defining
N n n n+1
W = Z(aogl 2 L bod) ot 2oy + CZ Z (Z i 1dj,idk,i> 03 o3k= 2y,
i=1 j=1k=1

One can verify that
W=A+B+C2aY020L0!XT +bY0?020!XT + cYO2MO3MTO X,
Then, we will compute the expectation of each term in the following decomposition:
L(V,Q)=Ezw [tr(ﬁ/’TW) + 2tr(WT’m7) + tr(WTW)}

Specifically, let Ty = tr(MM7T), To = tr(MMTMMT), Ty = |[M|y, Ts = S0, | M]3
Ts = Z"'H | M._;||3, we then have

Eltr(ATA)] = a®d*(np® + n(n — 1)p° + (1 + d)np?),

E[tr(BTB)] = b?d*(np® + n(n — 1)p® + (1 + d)np®),
Eltr(CTC)] = Ed*(p°TF + (1 + d)(p* = p")Tu + (1 + d)(p° - p°)T5
+ (1 +d) (0" —p* ="+)5 + (07 — p")Tu + p' T2 + dp°T),
[tr(ATB)] = abd*(np* +n(n — 1)p°® + (1 4+ d)np*),
E[tr(ATC)] = acd®((p* + (n — 1)p°)Ty + (1 + d)p"Th),
Eftr(B'C)] = bed®((p* + (n — 1)p°)Ty + (1 + d)p"Th),
Eltr(W'A)] = ad’np®, E[tr(W'B)] = bd’*np®, E[tr(W'C)] = cd*p*T1.
Summarizing our analysis above, miny; £(V, Q) is equivalent to:
m]\/i[n{co + 1Ty 4 coTn + c3T5 4 cyTy + c5T5 + C6T12},
where
co = 1+n(2+d)p*(a® +) + 2np*(a + b) + 2n(2 + d)p*ab + n(n — 1)p°(a + b)?,
c1 = 2(a+b)e(p’ + (n = 1)p° + (1 + d)p*) + 2¢p’,
¢y = (p* +dp°),
cs =1+ d)P* —p' —p° +1°),
e =A((L+d)(p" —p°) + (p° —p"),
s = (1 +d)(p° - p%),
cg = cpb.

It is easy to verify that ¢, c3, ¢4, C5,c6 > 0. O

34

Under review as a conference paper at ICLR 2026

D.7 PROOF OF PROPOSITIONI6]

Propositi0n|§| (Restate). Let dy, denote the number of non-EOS tokens. Given any L-layer, single-
head, d-dimensional linear-attention transformer with EOS tokens:

TF(Zo: {Vi, Q1 Phieiy) = (Zo)wap+1, (Z0):d,4+1 =0,
where
Zl c Rdx(dp+1)7 ‘/th c]Rdxul7]Dl c R(dp+1)><(dp+1),
Zy =2+ ViZiiM(Z),QuZ + B), M = diag(I4,,0).

There exists an L-layer, two-head, 2d-dimensional linear-attention transformer operating without
EOS tokens: o o
TF(Zo:{V], Q. Pl hiecrnyne) = (Z1)a:2d,d,»

where

Z, € R2xdy Th Ob ¢ R2X2% Ph ¢ Rébxdy,
2
Zy =211+ ZV?ZZ—1(2£1@?ZL1 +]3?)
h=1

Such that for any Z € R4, by letting Zy = [Z 0] and Zy = {g} we have
TF(Zo; {Vi, Qi, Phieiy) = TF(Zo; {V, QL. P} hien)nep)) -
Proof. We construct V7, Q{L, and 13lh as follows:
w0 o @= (8 0 P,
vi=|y o @=0 ¢ Pl @)
(Zl):,(ézdpq) (Z1):.a,

(Zl):,dp+1
that it holds trivially for [= 0. Then, suppose it holds for some [= k£ — 1, we have

Zy = Zoor + ViZoos(Zi 1 Qi Zgy + P) + ViZir(Zi QR Z4 oy + PY)

Vi(Zk-1): 1.4, ((Zk—1)L:dka(Zk—l):,mp + (Pk)lzd,),lzdp>
0

We will show that for any | € [L], it satisfies Z; = } . One can verify

=Zr1+

Vk(Zki):,l:d } ([0 (Zkil);a:dp@k(Zkil):,dpﬂ] - [O (Pk):,dpﬂ])

(ViiZo s M (Z_Qi(Zi—1): 10, + (Pk):,lzdp>]
0

|

=Zk1+

[0 0
+ 0 VeZp aM(Z{_,Qr(Zk-1):d,41 + (Pk):,dp+1):|

_ {(Z’“)d’lzdp} + [8 (Zk)(:),dﬁl} '

The proof is complete.]

35

	Introduction
	Related Works

	Setting: Linear Regression with Linear-Attention Models
	Emergence of Task Vectors in Linear-Attention Models
	Warm-up: Learning with Pairwise Demonstrations
	Emergence of Task Vectors with Triplet Demonstrations

	Predicted Failure of Task Vectors on Bijection Tasks
	Further Discussions
	Experimental Studies
	Synthetic Results with Random Linear Regression
	Enhancing the Task Vector Method

	Conclusion, Limitations, and Future Works
	Additional Discussions
	Summary of Mathematical Notations
	Additional Related Works
	Justification of the Block-Diagonal Assumption
	Inseparable Covariates and Responses
	Last Task Vector Weights the Most

	Experiment Details and Additional Results
	Synthetic Experiments on Linear-Attention Models
	Experiments on Practical LLMs
	Another Multi-Vector Injection Variant
	Further Results on Bijection Tasks
	Full Saliency Analysis Results

	Auxiliary Lemmas
	Proof of Theoretical Results
	Proof of Proposition 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 7
	Proof of Proposition 3
	Proof of Proposition 5
	Proof of Proposition 6

