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Abstract

In this work, we consider the regret minimization problem for reinforcement learning
in latent Markov Decision Processes (LMDP). In an LMDP, an MDP is randomly
drawn from a set ofM possible MDPs at the beginning of the interaction, but the
identity of the chosen MDP is not revealed to the agent. We first show that a general
instance of LMDPs requires at least Ω((SA)M ) episodes to even approximate the
optimal policy. Then, we consider sufficient assumptions under which learning
good policies requires polynomial number of episodes. We show that the key
link is a notion of separation between the MDP system dynamics. With sufficient
separation, we provide an efficient algorithm with local guarantee, i.e., providing
a sublinear regret guarantee when we are given a good initialization. Finally, if
we are given standard statistical sufficiency assumptions common in the Predictive
State Representation (PSR) literature (e.g., [6]) and a reachability assumption, we
show that the need for initialization can be removed.

1 Introduction

Partially observable Markov decision processes (POMDPs) [42] give a general framework to describe
partially observable sequential decision problems. In POMDPs, the underlying dynamics satisfy
the Markovian property, but the observations give only partial information on the identity of the
underlying states. With the generality of this framework comes a high computational and statistical
price to pay: POMDPs are hard, primarily because optimal policies depend on the entire history of
the process. But for many important problems, this full generality can be overkill, and in particular,
does not have a way to leverage special structure. We are interested in settings where the hidden or
latent (unobserved) variables have slow dynamics or are even static in each episode. This model is
important for diverse applications, from serving a user in a dynamic web application [18], to medical
decision making [45], to transfer learning in different RL tasks [8]. Yet, as we explain below, even
this area remains little understood, and challenges abound.
Thus, in this work, we consider reinforcement learning (RL) for a special type of POMDP which we
call a latent Markov decision process (LMDP). LMDPs consist of some (perhaps large) numberM of
MDPs with joint state space S and actions A. In episodic LMDPs with finite time-horizon H , the
static latent (hidden) variable that selects one ofM MDPs is randomly chosen at the beginning of each
episode, yet is not revealed to the agent. The agent then interacts with the chosen MDP throughout
the episode (see Definition 1 for the formal description).
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Related Work. The LMDP framework has previously been introduced under many different names,
e.g., hidden-model MDP [11], Multitask RL [8], Contextual MDP [18], Multi-modal Markov decision
process [45] and Concurrent MDP [9].
Learning in LMDPs is a challenging problem due to the unobservability of latent contexts. For
instance, the exact planning problem is P-SPACE hard [45], inheriting the hardness of planning from
the general POMDP framework. Nevertheless, the lack of dynamics of the latent variables, offers
some hope. As an example, if the number of contextsM is bounded, then the planning problem can
be at least approximately solved (e.g., by point-based value iteration (PBVI) [39], or mixed integer
programming (MIP) [45]).
The most closely related work studying LMDPs is in the context of multitask RL [47, 8, 34, 18]. In
this line of work, a common approach is to cluster trajectories according to different contexts, an
approach that guided us in designing the algorithms in Section 3.4. However, previous work requires
very long time-horizon H � SA in order to guarantee that every state-action pair can be visited
multiple times in a single episode. In contrast, we consider a significantly shorter time-horizon that
scales poly-logarithmic with the number of states, i.e.,H = poly log(MSA). This short time-horizon
results in a significant difference in learning strategy even when we get a feedback on the true context
at the end of episode. We refer the readers to Appendix A for additional discussion on related work.
Main Results. To the best of our knowledge, none of the previous literature has obtained sample
complexity guarantees or studied regret bounds in the LMDP setting. This paper addresses precisely
this problem. We ask the following:

Is there a sample efficient RL algorithm for LMDPs, with sublinear regret?

The answer turns out to be not so simple. Our results comprise a first impossibility result, followed by
positive algorithmic results under additional assumptions. Specifically:

• First, we find that for a general LMDP, polynomial sample complexity cannot be attained without
further assumptions. That is, to find an approximately optimal policy we need at least Ω

(
(SA)M

)
samples, i.e., at least exponential in the number of contextsM (Section 3.1). This lower bound
even applies to instances with deterministic MDPs.

• We find that there are several natural assumptions under which optimal policies can be learned
with polynomial sample complexity. Similarly to mixture problems without dynamics, the key link
is a notion of separation between the MDPs. With sufficient separation, we show that there is a
planning-oracle efficient RL algorithm with polynomial sample complexity. A critical development
is adapting the principle of optimism as in UCB, but to the partially observed setting where
value-iteration cannot be directly applied, and thus neither can the UCRL algorithm for MDPs.

• Finally, under additional statistical sufficiency assumptions that are common in the Predictive State
Representation (PSR) literature (e.g., [6]) and a reachability assumption, we show that the need for
initialization can be entirely removed.

• Finally, we perform an empirical evaluation of the suggested algorithms on toy problems (Section
4), while focusing on the importance of the made assumptions.

2 Preliminaries

2.1 Problem Setup: Latent MDPs

We start with the definition of episodic reinforcement learning in latent Markov decision process:

Definition 1 (Latent Markov Decision Process (LMDP)) Consider a set of MDPsM with joint
state spaceS and joint action spaceA in a finite time horizonH . LetM = |M|, S = |S| andA = |A|.
Each MDPMm ∈M is a tuple (S,A, Tm, Rm, νm) where Tm : S ×A× S → [0, 1] a transition
probability maps a state-action pair and a next state to a probability, Rm : S ×A× {0, 1} → [0, 1]
a probability measure for rewards that maps a state-action pair and a binary reward to a probability,
and νm is an initial state distribution. Let w1, ..., wM be the mixing weights of LMDPs such that at
the start of every episode, one MDPMm ∈M is randomly chosen with probability wm.
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We assume the mixing weights are uniform and known a priori, i.e., w1 = ... = wM = 1/M . This
is only for the ease of presentation, and does not affect any algorithmic idea or main results in this
paper. The goal of the problem is to find a (possibly non-Markovian) policy π in a policy class
Π that maximizes the expected return: V ∗M := maxπ∈Π

∑M
m=1 wmEπm

[∑H
t=1 rt

]
,where Eπm[·] is

expectation taken over the mth MDP with a policy π. If not specified otherwise, we find the best
policy in a set of history-dependent policies π : (S,A, {0, 1})∗ × S → ∆(A) that map an entire
history to a probability distribution over actions.
We define the notion of regret relative to a (possibly approximate) planning oracle. Thus, suppose
we have a planning-oracle with the following approximation guarantee: V πM ≥ ρ1V

∗
M − ρ2, where

π is a returned policy whenM is given to the planning-oracle, and ρ1, ρ2 are multiplicative and
additive approximation constants respectively. We then define the regret as the comparison to the best
approximation guarantee that the planning-oracle can achieve:

Regret(K) =

K∑
k=1

(ρ1V
∗
M − ρ2)− V πkM , (1)

where πk is a policy executed in the kth episode. For example, we can use point-based value-iteration
(PBVI) [39] as a planning-oracle:

Example 1 PBVI [39] with discretization level εd > 0 in the belief space (over RM ) returns an εdH2

additive approximate policy. That is, equation (1) holds with ρ1 = 1 and ρ2 = εdH
2.

2.2 Predictive State Representation (PSR)

A partially observable dynamical system can be viewed as a model that generates a sequence of
observations from observation space O with (controlled) actions from action space A. A predictive
state representation (PSR) is a compact description of a dynamical system with a set of observable
experiments, or tests [41]. Specifically, a test of length t is a sequence of action-observation pairs
given as τ = aτ1o

τ
1o
τ
2 ...a

τ
t o
τ
t . A history h = ah1o

h
1a
h
2o
h
2 ...a

h
t o
h
t is a sequence of action-observation

pairs that has been generated prior to a given time. A predictionP(τ |h) = P(oτ1:t|h||do aτ1:t) denotes
the probability of seeing the test sequence from a given history, given that we intervene to take actions
aτ1a

τ
2 ...a

τ
t . In latent MDPs, the observation space can be considered as a pair of next-states and

rewards, i.e., O = S × {0, 1} and ot = (st+1, rt).
As we work with a special class of POMDPs, we customize the formulation for LMDPs. The set of
histories consists of a subset of histories that end with different states, i.e.,H =

⋃
sHs, where each

element h ∈ Hs is a short sequence of state-action-rewards of length l ending with state s:

h = sh1a
h
1r
h
1 s
h
2 ...s

h
l−1a

h
l−1r

h
l−1s = (s, a, r)h1:l−1s.

We define Pπm(Hs) a vector of probabilities where each coordinate is a probability of sampling each
history in Hs in the mth MDP with a policy π. Likewise, each element in tests τ ∈ T is a short
sequence of action-reward-next states of length at most l:

τ = aτ1r
τ
1s
τ
2 ...a

τ
l r
τ
l s
τ
l+1 = (a, r, s′)τ1:l.

We denote Pm(T |s) as a vector of probability where each coordinate is a success probability of each
test in themth MDP starting from a state s. That is,

Pm(T |s)i = Pm(rτi1 s
τi
2 ...r

τi
l s

τi
l+1|s||do a

τi
1 ...a

τi
l ).

2.2.1 Spectral Learning of PSRs in LMDPs

In spectral learning, we build a set of observable matrices that contains the (joint) probabilities of
histories and tests, and then we can extract parameters from these matrices by performing singular
value decomposition (SVD) and regressions [7]. In order to apply spectral learning techniques, we
require the following technical conditions on statistical sufficiency of tests:

Condition 1 (Sufficient Tests) For all s ∈ S, for the test set T , let Ls =
[P1(T |s)|P2(T |s)|...|PM (T |s)]. Then σM (Ls) ≥ στ for all s ∈ S with some στ > 0.
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Here, σM (·) is the minimum (M th) singular value of a matrix. Another technical condition for
spectral learning method is a rank non-degeneracy condition for sufficient histories:

Condition 2 (Sufficient Histories) For all s ∈ S, for the history set Hs ending with a state
s, let Hs = [Pπ1 (Hs)|Pπ2 (Hs)|...|PπM (Hs)]> with a sampling policy π. Then σM (LsHs) ≥
Pπ(end state = s) · σh with some σh > 0.

Here Pπ(end state = s) is a probability of sampling a history ending with s. Along with the rank
condition for tests, pairs of histories and tests can be thought as many short snap-shots of long
trajectories obtained by external experts or some exploration policy (e.g., random policy in uniformly
ergodic MDPs). Following the notations in [7], let PT ,Hs = LsHs. Conditions 1 and 2 ensure
σM (PT ,Hs) > 0. Under these conditions, the goal of spectral learning algorithm is to output PSR
parameters which are used to compute P̂(τ |h), the estimated probability of any future observations
(or tests τ ) given any sampled histories h. We refer to Appendix E.1 for a detailed procedure.

2.3 Notations

We denote the underlying LMDPwith true parameters asM∗. With slight abuse of notation, we denote
the l1 distance between two probability distributions D1 and D2 on a random variable X conditioned
on event E as ‖(PX∼D1

− PX∼D2
)(X|E)‖1 =

∑
X∈X |PX∼D1

(X|E)− PX∼D2
(X|E)|, where

X is a support of X . When we do not condition on any event, we omit the conditioning on E. When
we measure a transition or reward probability at a state-action pair (s, a), we use T or R instead
of P. We use Pm to refer to the probability of any event measured in the mth context (or in mth

MDP). In particular, Pm(s′, r|s, a) = Tm(s′|s, a)Rm(r|s, a). If we use P without any subscript,
it is a probability of an event measured outside of the context, i.e., P(·) =

∑M
m=1 wmPm(·). If

the probability of an event depends on a policy π, we add superscript π to P. Similarly, Em[·] is
expectation taken over themth context and π is added as superscript if the expectation depends on π.
We use ·̂ to denote any estimated quantities. a . b implies a is less than b up to some constant and
logarithmic factors. poly(·) means the order of polynomial complexity (up to logarithmic factors) in
referenced parameters. We interchangeably use o, an observation, to replace a pair of next-state and
immediate reward (s′, r) to simplify the notation. We occasionally express a length t > 0 history
(s1, a1, r1, ..., st, at, rt) compactly as (s, a, r)1:t.

3 Main Results

In this section, we first obtain a hardness result for the general case. We then consider sample- and
computationally efficient algorithms under additional assumptions.

3.1 Fundamental Limits of Learning General LMDPs

We first study the fundamental limits of the problem. In particular, we are interested in whether we
can learn the optimal policy after interacting with the LMDP for a number of episodes polynomial in
the problem parameters. We prove a worst-case lower bound, exhibiting an instance of LMDP that
requires at least Ω

(
(SA)M

)
episodes:

Theorem 3.1 (Lower Bound) There exists an LMDP such that for finding an ε-optimal policy πε for
which V πεM ≥ V ∗M − ε, we need at least Ω

(
(SA/M)M/ε2

)
episodes.

The hard instance consists of fully deterministic MDPs with possibly stochastic rewards, indicating an
exponential lower bound in the number of contexts even for the easiest types of LMDPs. The example
is constructed such that, in the absence of knowing true contexts, all wrong action sequences of length
M cannot provide any information with zero reward, whereas the only correct action sequence gets a
total reward of 1 under one specific context. The construction is given in Appendix B.
Theorem 3.1 prevents a design of efficient algorithms with growing number of contexts. We note
here that Theorem 3.1 holds even for restricted classes of policies, e.g., memoryless policies. Fur-
thermore, our construction of hard instances does not allow to find any approximate policy with
ρ1 = ω((SA)−M ) within a polynomial number of episodes either. To the best of our knowledge, this
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Algorithm 1 Latent Upper Confidence Reinforcement Learning (L-UCRL)
Initialize visit countsNm(s, a),N(m) and parameters (T̂m, R̂m, ν̂m) properly
1: for each kth episode do
2: Get a policy πk for M̃k in Lemma 3.2
3: Play policy πk and get the trajectory τ = (s, a, r)1:H

4: Get an estimated belief over contexts b̂ with either Algorithm 2 (when contexts are given), or
Algorithm 3 (when we infer contexts)

5: for m = 1, ...,M and t = 1, ...,H do
6: Nm(st+1|at, st)← Nm(st+1|at, st) + b̂(m)

7: Nm(rt|st, at)← Nm(rt|st, at) + b̂(m)

8: Nm(s1)← Nm(s1) + b̂(m)

9: Update empirical parameters T̂m, R̂m, ν̂m
10: end for
11: end for

is the first lower bound of its kind for LMDPs. Next, we investigate natural assumptions which help
us to develop an efficient algorithm when only polynomial number of episodes are available.

3.2 The Critical First Step: Contexts in Hindsight

Suppose the true context of the underlying MDP is revealed to the agent at the end of each episode.
We do not require any assumptions on the environments in this scenario. Note that this scenario is
different from fully observable settings (i.e., knowing the true context at the beginning of an episode).
In the latter scenario, we would simply haveM -decoupled RL problems in standard MDPs. While this
can be considered as a “warm-up” for the sequel, it is motivated by real-world examples. Moreover,
the key technical insight here will prove important for the sequel as well.
Knowing contexts in hindsight allows us to construct a confidence set for parameters:

C = {M |‖(νm − ν̂m)(s)‖1 ≤
√
cν/N(m), ‖(Tm − T̂m)(s′|s, a)‖1 ≤

√
cT /Nm(s, a),

‖(Rm − R̂m)(r|s, a)‖1 ≤
√
cR/Nm(s, a), ∀m, s, a}, (2)

where Nm(s, a) is the number of times each state-action pair (s, a) in mth MDP is visited, and
N(m) is the number of episodes we interact with the mth MDP. With properly set parameters
cT = O(S log(K/η)), cR = O(log(K/η)) and cν = O(S log(K/η)) for the confidence intervals,
M∗ ∈ C with high probability for allK episodes.
With the construction of confidence sets, it is then natural to try to design an optimistic RL algorithm,
as in UCRL [22]. An obvious optimistic value in light of (2) is maxπ,M∈C V

π
M. However, solving

this optimization problem is more general than solving an LMDP. In fully observable settings, we
could replace the complex optimization problem by adding a proper exploration bonus to obtain an
optimistic value function [4].
In partially observable environments, value iteration is only defined in terms of belief-states and not
the observed states. For this reason, existing techniques solely based on the value-iteration cannot be
directly applied for LMDPs. Yet, we find that proper analysis of the Bellman update rule over the
belief state reveals that an empirical LMDP with properly adjusted hidden rewards is optimistic:

Proposition 3.2 We construct an optimistic LMDP M̃ whose parameters are given such that:

T̃m(s′|s, a) = T̂m(s′|s, a), R̃obsm (r|s, a) = R̂m(r|s, a), ν̃m(s) = ν̂m(s),

R̃hidinit(m) = min
(

1,
√
cν/N(m)

)
R̃hidm (s, a) = H min

(
1,
√

5(cR + cT )/Nm(s, a)
)
,

where R̃hidinit(m) is an initial hidden reward given when starting an episode with a contextm, and
R̃obsm (·|s, a) is a probability measure of an observable immediate reward r whereas R̃hidm (s, a) is a
hidden immediate reward (that is not visible to the agent) for a state-action pair (s, a) in a contextm.
Then for any policy π, the expected long-term reward is optimistic, i.e., V π

M̃
≥ V πM∗ .
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Algorithm 2 Access to True Contexts
Input: Receive true context m∗ in hind-
sight
Output : Belief over hidden contexts:

b̂(m) =
{

1, form = m∗

0, form 6= m∗

Algorithm 3 Inference of Contexts
Input: Trajectory τ = (s1, a1, r1, ..., sH , aH , rH)
Output: Return an estimate of belief over contexts
b̂:
p̂m(τ) = ΠH

t=1(α+ (1− 2αS)P̂m(st+1, rt|st, at)),

b̂(m) =
p̂m(τ)∑M
m=1 p̂m(τ)

.

Here, hidden reward is a deterministic reward that happens for every state-action pair, but does not
appear in any observation history during the episode. We note that most existing planning algorithms
can incorporate the hidden-reward structure without changes to maximize the long-term observed
+ hidden rewards. For instance, the PBVI algorithm [39] can be executed as it is in the planning
step. Hence in each episode, we can build one optimistic model from Proposition 3.2, and call the
planning-oracle to get a policy to execute for the episode. Then we simply run the policy and update
model parameters in a straight-forward manner. The algorithm can be efficiently implemented as long
as some efficient (approximate) planning algorithms are available.
To establish Proposition 3.2, we make use of the ‘alpha vector’ representation [42] of the value
function of general POMDPs. Detailed analysis is deferred to Appendix C.1. With the optimistic
model constructed in Proposition 3.2, planning-oracle efficient implementation is straightforward.
The resulting latent upper confidence reinforcement learning (L-UCRL) algorithm is summarized in
Algorithm 1. Based on the established optimism in Proposition 3.2 and by carefully bounding the
on-policy errors we arrive to the following regret guarantee of L-UCRL.

Theorem 3.3 Let N = HK. The regret of the Algorithm 1 is bounded by:

Regret(K) ≤
K∑
k=1

(V πk
M̃k
− V πkM∗) . HS

√
MAN.

Proof of Theorem 3.3 is given in Appendix C.4. The central result of this section, Theorem 3.3
leads to the following observation: a polynomial sample complexity is possible for the LMDP model
assuming the context of the underlying MDP is supplied at the end of each episode. Next, we explore
ways to relax this assumption, while keep supplying with a polynomial sample complexity guarantee.

3.3 When we can Infer Contexts?

Without explicit access to the true context at the end of an episode, it is natural to estimate the context
from the sampled trajectory. One sufficient condition to infer the context is the following:

Assumption 1 (δ-Strongly Separated MDPs) For all m, m1,m2 ∈ [M ] such that m1 6= m2, for
all (s, a) ∈ S ×A, l1 distance between probability of observations o = (s′, r) of two different MDPs
in LMDP is at least δ > 0, i.e., ‖(Pm1

− Pm2
)(o|s, a)‖1 ≥ δ for some constant δ > 0.

In order to reliably infer the true contexts the seperatedness between MDPs alone is not sufficient,
since we need to estimate the contexts from the current empirical estimates of LMDPs. In order to
reliably estimate the context from empirical estimate of LMDPs, we need a well-initialized empirical
transition model of the LMDP:
‖(T̂m − Tm)(s′|s, a)‖1, ‖(ν̂m − νm)(s)‖1, ‖(R̂m −Rm)(r|s, a)‖1 ≤ εinit, ∀(s, a), (3)

for some initialization error εinit > 0. Note that while the initialization error is relatively small, it
can be still not good enough to obtain a near-optimal policy (i.e., it will result in a linear regret). We
can consider as if the state-action pairs are already visit at least N0 = cT /ε

2
init times in each context.

Once the initialization is given along with separation between MDPs, we can modify Algorithm 1
to update the empirical estimate of LMDP using the estimated belief over contexts computed in
Algorithm 3. Note that when we update the model parameters, we increase the visit count of state-
action pair (s, a) atmth MDP by b̂(m). With Assumption 1, it approximately adds a count for the
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Algorithm 4 (Informal) Recovery of LMDP parameters
Learn PSR parameters up to precision o(δ)
Get clusters {T̂m(·|s, a), R̂m(·|s, a)}(s,a)∈S×A,m∈[M ] with learned PSR parameters
Build each MDP model by correctly assigning contexts to estimated model parameters
ReturnWell-initialized model {T̂m, R̂m}m∈[M ]

correctly estimated context, but even without Assumption 1, the update steps can still be applied. In
fact, this is equivalent to an implementation of the so-called (online) expectation-maximization (EM)
algorithm [10] for latent MDPs. Thus Algorithm 1 with Algorithm 3 essentially results in combining
L-UCRL and the EM algorithm.
In terms of performance guarantees, using Algorithm 3 as a sub-routine for L-UCRL gives the same
order of regret as in Theorem 3.3 as long as the true context can be almost reliably inferred:

Theorem 3.4 Suppose Assumption 1 holds withH > C · δ−4 log2(1/α) log(N/η) for some absolute
constants C, δ > 0, and a parameter α > 0 such that α ln(1/α) ≤ δ2/(200S). If the initialization
parameters satisfy equation (3) with some initialization error εinit ≤ δ2/(200 ln(1/α)), then with
probability at least 1− η, the regret of Algorithm 1 is bounded by:

Regret(K) . HS
√
MAN.

The proof of Theorem 3.4 is given in Appendix D.3. The provable guarantees are only given for well-
separated LMDPs. Nevertheless, we empirically evaluate Algorithm 1 as a function of separations
and initialization (see Figure 1).
An interesting consequence of Assumption 1 is that the length of episode can be logarithmic in the
number of state and actions. With much longer time-horizons H ≥ Ω(S2A/δ2), [8, 18] assumed
similar δ-separation only for some (s, a) pairs. While Assumption 1 requires a stronger assumption
of δ-separation for all state-actions, the requirement on the time-horizon can be significantly weaker
with large state and action spaces. For a more discussion on the separation condition, we refer the
readers to Appendix D.1.

3.4 Learning LMDPs without Initialization

Finally, we discuss efficient initialization with some additional assumptions. Clustering trajectories is
the cornerstone of all our technical results, as this allows us to estimate the parameters of each hidden
MDP and then apply the techniques of Section 3.2. The challenge is how to cluster when we have
short trajectories, and no good initialization.
The key is again in Assumption 1. In Section 3.3, we use a good initialization to obtain accurate
estimates of the belief states. These can then be clustered, thanks to Assumption 1, allowing us to
obtain the true label in hindsight. Without initialization, we cannot accurately compute the belief
state, so this avenue is blocked. Instead, our key idea is to leverage a predictive state representation
(PSR) of the POMDP dynamics, and then show that Assumption 1 allows us to cluster in this space.
Algorithm 4 gives our approach. We first explain the high-level idea, and subsequently detail some
of the more subtle points. Suppose we have PSR parameters allowing us to estimate P(o|h‖do a),
(the probabilities of any future observations o = (s′, r) given a history h and intervening action a)
to within accuracy o(δ). We then show that we can again apply Assumption 1, to (almost) perfectly
cluster the MDPs by true context at the end of the episode. After we collect transition probabilities at
all states near the end of episode, we can construct a full transition model for each MDP.
Learning the PSR to sufficient accuracy requires an additional assumption. We show that the following
standard assumption on statistical sufficiency of histories and tests, is sufficient for our purposes (see
also Section 2.2.1 and Appendix E.1):

Assumption 2 (Sufficient Tests/Histories) Let T andH be the set of all possible tests and histories
of length l = O(1) respectively, with a given sampling policy π (e.g., uniformly random policy) for
historiesH. T andH satisfy Condition 1 and 2 respectively.
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(a) (b)

Figure 1: (a) L-UCRL when true contexts are revealed in hindsight and when we run with the EM algorithm.
(b) EM + L-UCRL (Algorithm 1) under different levels of separation and horizon length.

While the worst-case instance may require l ≥M to satisfy the full-rank conditions, we assume that
the length of sufficient tests/histories is l = O(1). In fact, l = 1 has been (implicitly) the common
assumption in the literature on learning POMDPs [20, 5, 17, 25]. Empirically, we observe that the
more MDPs differ, the more easily they satisfy Assumption 2. See Figure 2. At this point, we are not
aware whether sample-efficient learning is possible with only Assumption 1.
Though the main idea and key assumption are above, a few important details and technical assumptions
remain to complete this story. The primary guarantee still required is that we have access to an
exploration policy with sufficient mixing, to guarantee we can collect all required information to
perform the PSR-based clustering. The following assumption ensures that additional Õ(M/α2)
sample trajectories obtained with the exploration policy π can provide M clusters of estimated
one-step predictions Pm(o|s, a) for every state s and intervening action a.

Assumption 3 (Reachability of States) There exists a priori known exploration policy π such that,
for allm ∈ [M ] and s ∈ S, we have Pπm(sH−1 = s) ≥ α2 for some α2 > 0.

A subtle point here is that we still have an ambiguity issue in the ordering of contexts (or labels)
assigned in different states, which prevents us from recovering the full model for each context.
We resolve this issues ambiguity assuming the MDP is connected, and give the full description of
Algorithm 4 in Appendix E.2. We conclude this section with an (informal) end-to-end guarantee:

Theorem 3.5 (Informal) Let Assumption 2 hold for an LMDP instance with a sampling policy π.
Furthermore, assume the LMDP satisfies Assumptions 1 and 3. Then there exists an algorithm such
that with probability at least 2/3, it returns a good initialization of LMDP parameters that satisfies
(3) in time poly(Al, S,H,M, σ−1

h , σ−1
τ , α−1

2 , δ, εinit).

Theorem 3.5 completes the pipeline for learning in latent MDPs: we initialize the parameters by the
estimated PSR and clustering (see Appendix E) up to some accuracy, and then we run L-UCRL to
refine the model and policy up to arbitrary accuracy (Algorithm 1). Full version of Theorem 3.5 can
be found in Theorem E.3.

4 Experiments

In this section, we evaluate the proposed algorithm on synthetic data. Our first two experiments
illustrate the performance of L-UCRL (Algorithm 1) for various levels of separation and quality
of initialization. Then, we empirically study the performance of the PSR-Clustering algorithm for
randomly generated LMDPs for different levels of separation and time-horizon.

4.1 The Value of True Contexts in Hindsight

We first study the importance of receiving the true contexts in hindsight for the approach analyzed
in this work, by comparing the performance of Algorithm 1 when instantiating it with Algorithm 2
or 3 as a sub-routine. We generate random instances of LMDPs of sizeM = 7, S = 15, A = 3 and
set the time-horizon H = 30. The reward distribution is set to be 0 for most state-action pairs. We
compare when we give a true context to the algorithm (Algorithm 2) and when we infer a context
with random initialization or good initialization (Algorithm 3). In the latter, it is equivalent to
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Figure 2: PSR learning and Clustering (Algorithm 4). Left: Convergence of belief state. Middle: M th singular
value of sufficient histories/tests matrix PT ,H. Right: Accuracy of the estimated model.

running the EM algorithm for the model estimation. For the planning algorithm, we use Q-MDP
heuristic [32] which shows good empirical performance. We measure the model estimation error as
error := minσ∈PermM

∑
(m,s,a) ‖(Pm − P̂σ(m))(s

′, r|s, a)‖1, where PermM denotes all lengthM
permutation sequences. The measured errors are averaged over 10 independent experiments.
The experimental results are given in Figure 1(a). When the true context is given at the end of episode
(with Algorithm 2), L-UCRL converges to the optimal policy as our theory suggests. On the other
hand, if the true context is not given (with Algorithm 3), the quality of initialization becomes crucial;
when the model is poorly initialized, the estimated model converges to a local optimum which leads
to a sub-optimal policy. When the model is well-initialized, L-UCRL performs as well as when true
contexts are given in hindsight.

4.2 Performance of L-UCRL with Good Initialization

In our second experiment, we focus on the performance of L-UCRL (Algorithm 1) along with
Algorithm 3 under different levels of separation (δ in Assumption 1) when approximately good
model parameters are given. For various levels of δ, we generate the parameters for transition
probabilities randomly while keeping the distance between different MDPs to satisfy δ ≤ ‖(Tm1

−
Tm2

)(s′|s, a)‖1 ≤ 2δ form1 6= m2.
We show the error in the estimated model and average long-term rewards in Figure 1(b). When the
separation is sufficient (larger δ or H), the estimated model converges fast to the true parameters.
When the separation gets small (smaller δ or H), the convergence speed gets slower. This type of
transition in the convergence speed of EM (the update of model parameters with Algorithm 3) is
observed both in theory and practice when the overlap between mixture components gets larger (e.g.,
[29]). On the other hand, the policy steadily improves regardless of the level of separation. We
conjecture that this is because the optimal policy would only need the model to be accurate in the
total-variation distance, not in the actual estimated parameters.

4.3 Initialization with PSR and Clustering

In the third experiment, we evaluate the initialization algorithm (Algorithm 4) for randomly generated
LMDP instances. Since PSR learning requires a (relatively) large number of short sample trajectories,
we evaluate this step on smaller instances with S = 7, A = 2,M = 3. The LMDP instances are
generated similarly as in the second experiment with different levels of δ and H . The reward and
initial distributions are set the same across all MDPs. To learn the parameters of PSR, we run 106

episodes with H = 4. We assume histories and tests of length 1 are statistically sufficient with the
uniformly random policy. In the clustering step, we run an additional 5 · 103 episodes to obtain longer
trajectories of length H = 20, 40 and 80. We report the experimental results in Figure 2.
We first observe how the level of separation δ between MDPs impacts trajectory separation, i.e., belief
state vs true label (left). Recall that this separation property is the key for clustering trajectories. We
then examine the performance of Algorithm 4 (see full Algorithm 5) for various levels of separation.
Empirically, it succeeds to get a good initialization of an LMDP model when we have sufficient
separation. As the separation level decreases, the algorithm starts to fail (Right). There are two
possible sources of the failure: (1) the belief state is far from the true context, and (2) the similarity
between MDPs drops theM th singular value of PT ,H (Middle). We can compensate for (1) if we
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have a longer time-horizon to infer true contexts, as in the leftmost graph. For (2), if theM th singular
value drops, we require more samples for the estimation of PSR parameters. In our experiments, as
we decreased δ we found that failure in the spectral learning step was the more significant of the two.

5 Future Work

There are several interesting research avenues in continuation of this work. An interesting direction
is to study RL algorithms for LMDPs with no underlying assumptions. Although our lower bound
suggests such an algorithm necessarily suffers an exponential dependence in the number of contexts,
if this number is small, such dependence might be acceptable. Specifically, we conjecture that
general LMDPs can be learned with sample complexity of poly

(
(HSA)M , ε−1

)
. For a special

case when MDPs are deterministic, we show that the exponential dependence inM is sufficient In
Appendix G. The case for general LMDPs is an interesting open question. Furthermore, a needed
empirical advancement is to design efficient ways to learn the set of sufficient histories/tests for
learning predictive state representation of LMDPs. This can dramatically improve the performance of
our algorithms when a sufficiently good initial model needs to be learned.
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