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Abstract
Hyper-relational knowledge graphs (HKGs) extend the traditional
triplet-based knowledge graph by adding qualifiers to the relation-
ships, making HKGs particularly useful for tasks that require more
profound understanding and inference from relationships between
entities. However, existing hyper-relational knowledge represen-
tation learning methods (HKRL) focus on direct neighbourhood
information of entities only by neglecting the relational similarity
of the main triple in hyper-relational facts and the attribute de-
tails in the qualifiers. In addition, few works extract common and
private information across multiple views to minimize noise and
interference. This paper proposes a multi-hypergraph disentangle-
ment method for HKRL to address the above issues. Specifically,
we first construct four hypergraphs to mine and utilise the inher-
ent structure information of HKGs, and then propose to extract
common representations among hypergraphs and private repre-
sentations within individual hypergraphs to mine the semantic
information and the task-relevant information, respectively. Ex-
periment results on four real datasets demonstrate the effective-
ness of the proposed method compared to SOTA methods in link
prediction tasks on HKGs. Source code is available at the URL:
https://anonymous.4open.science/r/MHD.

CCS Concepts
• Computing methodologies → Knowledge representation
and reasoning.

Keywords
Hyper-relational knowledge graph; Hypergraph; Multi-view; Infor-
mation disentangled
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1 Introduction
Knowledge graphs (KGs) have profoundly permeated the Web do-
main, acting as a powerful force that drives the advancement of
semantic search [35], question answering [11], and personalized
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recommendation [24, 34]. The traditional KG is a graph structure
composed of nodes (representing entities) and edges (represent-
ing relations), and is often described by triples (i.e., (𝑠, 𝑟, 𝑜)) [8, 13].
However, triples exhibit inherent limitations in describing knowl-
edge, namely, their formal simplicity inevitably leads to ambiguity
[4]. Hyper-relational knowledge graphs (HKGs) have emerged as
an alternative by expanding the traditional triple structure to the
hyper-relational fact (H-Fact) [3, 12], i.e., incorporating qualifiers
as attribute extension elements. For example, HKGs specifies “(Cin-
derella, voice actor, Luis van Rooten)” in traditional knowledge graph
as “{(Cinderella, voice actor, Luis van Rooten), character role: The King
and Grand Duke}”, to offer greater flexibility and expressiveness in
modelling real-world knowledge. Recently, hyper-relational knowl-
edge representation learning (HKRL) has become a hot spot in
academia and industry with the goal of developing effective tech-
niques for learning the representations of entities and relations
within HKGs, so that these representations enable intelligent sys-
tems to understand and utilise the H-Fact in HKGs [2, 15].

Existing HKRL methods can be broadly divided into two cat-
egories based on their utilisation of neighbourhood information,
i.e., intra-hyperrelational representationmethods and neighbourhood-
aware representation methods. The intra-hyperrelational represen-
tation method focuses on the structure and association information
within individual H-Facts [7, 25, 28]. For example, HINGE [20]
employs two graph convolutional neural networks to capture the
structural information of the main triple and the correlation be-
tween the triple and its attribute-value pairs. GRAN [26] models
each H-Fact as a heterogeneous graph to represent the H-Fact’s
internal structure and applies graph learning to capture entity rela-
tion associations within the H-Fact. However, in practical scenarios,
H-Facts are often interconnected rather than isolated. Ignoring the
relationships between H-Facts and the overall structure of HKGs
limits the potential of these models. The neighbourhood-aware
representation method addresses such limitations by incorporating
the neighbourhood information of the H-fact in the HKG structure
to exploit the connectivity of H-Facts. For example, HAHE [16]
constructs a global-level hypergraph to represent the connectiv-
ity of entities and uses hypergraph dual-attention layers to learn
structural information in the HKG. HyperFormer [10] introduces
an entity neighbour aggregator to integrate the neighbourhood
information of entities within an H-Fact.

Previous HKRL methods have demonstrated their effectiveness,
but they still have limitations to be addressed. First, existing HKRL
methods consider neighbourhood information of entities only by
neglecting either the similarity of relations in the main triple or the
identity of attributes in the qualifiers, so that they difficult extract
semantic similarity in the HKG. For example, given three H-Facts
as follows, i.e., F1 = {(Cinderella, voice actor, Luis van Rooten), {char-
acter role: The King and Grand Duke, publication time: 1950}}, F2 =

1
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Figure 1: The flowchart of the proposed MHD consists of four components, i.e.,multi-hypergraph construction, hypergraph
encoder, disentangled learning, and link prediction. Specifically, the multi-hypergraph construction module first constructs
four types of neighbourhood views, i.e., subject view, relation view, object view, and qualifier view, based on the structural
characteristics of H-Facts, and then transforms every view to a hypergraph structure. The hypergraph encoder module employs
a transformer-based hypergraph encoder to extract both node and hyperedge representations from every hypergraph. The dis-
entangled learning module disentangles the representations among different graphs into common and private representations.
Finally, the fusion representation is used to conduct link prediction in the link prediction module.

{(Cinderella, voice actor, Ilene Woods), {character role: Cinderella}}
, and F3 = {(Cinderella, directed by, Clyde Geronimi), {publication
time: 1950}}, F1 and F2 describe the voice actors for characters in the
movie “Cinderella”, sharing the relation “voice actor”. This similarity
of relation implies that the two H-Facts contain similar semantic
information. In addition, both F1 and F3 have the qualifier “publica-
tion time: 1950”, indicating that their events were published in 1950.
Therefore, exploring relation similarity and the qualifier identity is
crucial to mining comprehensive semantic patterns and improving
hyper-relational knowledge representation.

Second, existing HKRL methods mine the neighbourhood infor-
mation of H-Facts by ignoring HKG’s diversity and thus decreasing
the quality of its representation. For example, HAHE [16] constructs
a hypergraph to represent the connectivity of entities by ignoring
the semantic information between relations. Actually, the connec-
tions and interactions between entities help to understand their
roles and positions within H-Facts from the perspective of entities,
while the similarity between relations helps to understand their
structural semantics from the perspective of relations. Therefore,
combining different perspectives to construct multiple hypergraphs
can capture the diversity of the HKG to further enrich the repre-
sentation of H-Facts. However, few study focused on this.

In this paper, we propose a Multi-Hypergraph Disentanglement
(MHD)method for hyper-relational knowledge representation learn-
ing, as shown in Figure 1, to address the above issues. Specifically,

based on the structural characteristics of H-Facts, we first sample
four neighbourhood perspectives from HKGs and then transform
these perspectives into different hypergraph structures, i.e., the sub-
ject hypergraph, the relation hypergraph, the object hypergraph,
and the qualifier hypergraph. As a result, the relation hypergraph
and the qualifier hypergraph, respectively, are designed to explore
the similarity of relations and identity of qualifiers, thus addressing
the first issue. Moreover, our method constructs multiple hyper-
graphs to consider the diversity of HKGs and address the second
issue. Considering that every hypergraph contains both the se-
mantic information of H-Fact and the structural information of
HKG, we disentangle the representations of nodes into common
representation and private representation, aiming at using common
representation to extract the semantic information and use private
representation to mine the task-relevant information (e.g., structure
information of HKGs).

Compared with previous HKRL methods, our contributions are
summarized as follows:

• We construct a multi-hypergraph for HKRL to mine the
relation similarity and the qualifier identity in HKGs, as well
as comprehensively utilise the neighbourhood information
of H-Facts.

• Wepropose to disentangle different kinds of representations
for nodes by mining semantic information of H-Facts and
task-relevant information of the HKRL. To the best of our

2
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knowledge, this is the first attempt to decouple common
and private representations for HKRL.

2 Methodology
Notations. Denoting H𝐾𝐺 = {F1, · · · , F𝑈 } a hyper-relational
knowledge graph, F = {T ,Q} is the hyper-relational fact (H-Fact),
where T = {(𝑠, 𝑟, 𝑜) |𝑠, 𝑜 ∈ 𝐸, 𝑟 ∈ 𝑅} is a main triple, Q = {{𝑎𝑖 :
{𝑣 𝑗
𝑖
}𝑛𝑖
𝑗=1}

𝑚
𝑖=1 |𝑣

𝑗
𝑖
∈ 𝐸, 𝑎𝑖 ∈ 𝑅} is the set of qualifiers, the attribute 𝑎𝑖

and the value set {𝑣 𝑗
𝑖
}𝑛𝑖
𝑗=1 form 𝑖-th qualifier. Denoting 𝐸 the set

of entities, 𝑅 the set of relations,𝑚 and 𝑛 the number of qualifiers
and the quantity of values, respectively, the goal of the proposed
MHD method is to learn the representation Z ∈ R | F |×𝑑 of H-Fact
F ∈ H𝐾𝐺 , where |F | is the number of elements in the H-Fact F ,
and 𝑑 is the dimension of representations.

2.1 Motivation
Given a H-Fact F = {(𝑠, 𝑟, 𝑜), {𝑎𝑖 : {𝑣 𝑗𝑖 }

𝑛𝑖
𝑗=1}

𝑚
𝑖=1}, existing methods

first extract one-hop neighbourhood information of entities (i.e., 𝑠, 𝑜
and 𝑣) to construct a hypergraph for learning the representation of
entities within the H-Fact, and then employ a local-level encoder to
learn the semantic information of H-Facts [10]. Obviously, the hy-
pergraph construction is the most important step. Previous methods
often involve two steps to construct the hypergraph, i.e., extracting
one-hop neighbourhood of entities and constructing a hypergraph
of entities. Specifically, denoting the one-hop neighbourhood of en-
tities 𝑠 , 𝑜 , and every attribute value 𝑣 𝑗

𝑖
, respectively, N(𝑠) = {F ′ ∈

H𝐾𝐺 | 𝑠 ∈ (F ′ ∩ F )}, N(𝑜) = {F ′ ∈ H𝐾𝐺 | 𝑜 ∈ (F ′ ∩ F )}, and
N(𝑣 𝑗

𝑖
) = {F ′ ∈ H𝐾𝐺 | 𝑣 𝑗

𝑖
∈ (F ′ ∩ F )}. The neighbourhood of

H-FactF is denoted byN(F ) = {N (𝑠)∪N (𝑜)∪N (𝑣 𝑗
𝑖
)}. The hyper-

graph is denoted by G = (V, E,H). The node set V consists of all
subjects, objects, and values from the auxiliary attributes, i.e., V =

{𝑠, 𝑜} ∪ {𝑣 𝑗
𝑖
| 𝑖 = 1, · · · ,𝑚; 𝑗 = 1, · · · , 𝑛𝑖 } ∪ (⋃F′∈N(F) {𝑠′, 𝑜′}) ∪

(⋃F′∈N(F) {𝑣
𝑗
𝑖

′ | 𝑖 = 1, · · · ,𝑚′; 𝑗 = 1, · · · , 𝑛𝑖 ′}) . The hyper-
edge set E is formed by all H-Facts, where each hyperedge con-
nects an entity pairs (𝑠, 𝑜) and its auxiliary attribute values 𝑣 𝑗

𝑖
,

i.e., E =
{
𝑒F′ | F ′ ∈ (N (F ) ∪ {F })

}
. The element of the indica-

tor matrix H ∈ R |V |× | E | is defined by:

ℎ𝑖 𝑗 =

{
1, if 𝑣𝑖 ∈ 𝑒 𝑗 ; 𝑣𝑖 ∈ V; and 𝑒 𝑗 ∈ E,
0, if 𝑣𝑖 ∉ 𝑒 𝑗 ; 𝑣𝑖 ∈ V; and 𝑒 𝑗 ∈ E . (1)

After constructing the hypergraph G = (V, E,H) from H-Facts,
existing methods often use an hypergraph encoder to extract rep-
resentations for the nodes in the hypergraph, i.e.,

X𝑣 = 𝑓ℎ

(
X0
𝑣,H

)
. (2)

where X0
𝑣 ∈ R |V |×𝑑0 is the initialised node representation, 𝑑0 is

the initial node dimension, and X𝑣 ∈ R |V |×𝑑 is the updated node
representation. As a result, node representations learn the structural
information from the HKG, so a local-level encoder is then used to
learn the semantic information of H-Facts, i.e.,

Z = 𝑓𝑙 (X𝑣, F ) (3)

where Z ∈ R | F |×𝑑 is the updated representation of the H-Fact F .
However, previous methods still have limitations. First, the ex-

isting methods mix all types of neighbouring entities into a single

hypergraph, which may lead to information interference among
different types of neighbours. For example, the neighbours of the
subject entity may convey context relevant to the subject, while
the neighbours of the object entity provide context relevant to the
object. Combining them may dilute or confuse key features, thus
negatively impacting the representation learning of entities. Sec-
ond, the existing methods only consider the neighbourhood feature
of the entities (i.e., 𝑠, 𝑜 and 𝑣) to extract the structural information
of HKGs, ignoring the importance of relation 𝑟 in the main triple
and attribute 𝑎 in the qualifiers.

2.2 Multi-hypergraph construction
To address the above limitation, we construct four different neigh-
bourhood hypergraphs based on the structural characteristics of
the H-Fact to mine comprehensive semantic information in HKGs.
Specifically, we divide the construction process of every hyper-
graph into two steps, i.e., the neighbourhood view generation and
the hypergraph construction. We list the details as follows.

(1) We sample four neighbourhood views based on the type of
element in H-Facts, i.e.,

• generating the one-hop neighbourhoodN(𝑠) of the subject
entity 𝑠 as:

N(𝑠) = {F ′ ∈ H𝐾𝐺 | 𝑠 ∈
(
F ′ ∩ F

)
}. (4)

• generating the one-hop neighbourhoodN(𝑟 ) of the relation
𝑟 as:

N(𝑟 ) = {F ′ ∈ H𝐾𝐺 | 𝑟 ∈
(
F ′ ∩ F

)
}. (5)

• generating the one-hop neighbourhood N(𝑜) of the object
entity 𝑜 as:

N(𝑜) = {F ′ ∈ H𝐾𝐺 | 𝑜 ∈
(
F ′ ∩ F

)
}. (6)

• generating the one-hop neighbourhood N(𝑎𝑣) for each
qualifier {𝑎𝑖 : {𝑣 𝑗𝑖 }} as:

N(𝑎𝑣) = {F ′ ∈ H𝐾𝐺 | {𝑎𝑖 , 𝑣 𝑗𝑖 } ⊂
(
F ′ ∩ F

)
}. (7)

(2) We construct a hypergraph for every view to capture higher-
order relationships amongH-Facts for node representation learning,
i.e., neighbourhood hypergraphs G (𝑠 ) , G (𝑟 ) , G (𝑜 ) , and G (𝑎𝑣) . For
brevity, we illustrate the construction process of the hypergraph 𝛾
( i.e., G (𝛾 ) = (V (𝛾 ) , E (𝛾 ) ,H(𝛾 ) ), where 𝛾 ∈ {𝑠, 𝑟, 𝑜, 𝑎𝑣}) as follows.

• The node setV (𝛾 ) consists of all elements, including the
subject, the relation, the object, the attribute and values
and is denoted by:

V (𝛾 ) = {𝑠, 𝑟, 𝑜} ∪
{
𝑎𝑖 , 𝑣

𝑗
𝑖
| 𝑖 = 1, · · · ,𝑚; 𝑗 = 1, · · · , 𝑛𝑖

}
∪ ©«

⋃
F′∈N(𝛾 )

{
𝑠′, 𝑟 ′, 𝑜′

}ª®¬
∪ ©«

⋃
F′∈N(𝛾 )

{
𝑎𝑖

′, 𝑣 𝑗
𝑖

′ | 𝑖 = 1, · · · ,𝑚′; 𝑗 = 1, · · · , 𝑛𝑖 ′
}ª®¬ .

(8)

• The hyperedge set E (𝛾 ) is formed by each H-Fact, where
each hyperedge connects a triple {𝑠, 𝑟, 𝑜} and its qualifiers

3
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Figure 2: Illustration of the hypergraph construction of the
relation hypergraph G (𝑟 ) (left) and the qualifier hypergraph
G (𝑎𝑣) (right), where each hypergraph contains one neigh-
bouring H-Fact of the H-Fact F .

{
𝑎𝑖 , 𝑣

𝑗
𝑖
| 𝑖 = 1, · · · ,𝑚; 𝑗 = 1, · · · , 𝑛𝑖

}
and is denoted by:

E (𝛾 ) =
{
𝑒F′ | F ′ ∈ (N (𝛾) ∪ {F })

}
. (9)

• The indicator matrix H(𝛾 ) ∈ R |V (𝛾 ) |× | E (𝛾 ) | is defined by:

ℎ𝑖 𝑗 =

{
1, if 𝑣𝑖 ∈ 𝑒 𝑗 ; 𝑣𝑖 ∈ V (𝛾 ) ; and 𝑒 𝑗 ∈ E (𝛾 ) ,
0, if 𝑣𝑖 ∉ 𝑒 𝑗 ; 𝑣𝑖 ∈ V (𝛾 ) ; and 𝑒 𝑗 ∈ E (𝛾 ) .

(10)

Based on the above two steps, we obtain four hypergraphs,
i.e., the subject hypergraph G (𝑠 ) = (V (𝑠 ) , E (𝑠 ) ,H(𝑠 ) ), the rela-
tion hypergraph G (𝑟 ) = (V (𝑟 ) , E (𝑟 ) ,H(𝑟 ) ), the object hypergraph
G (𝑜 ) = (V (𝑜 ) , E (𝑜 ) ,H(𝑜 ) ), and the qualifier hypergraph G (𝑎𝑣) =
(V (𝑎𝑣) , E (𝑎𝑣) ,H(𝑎𝑣) ). Figure 2 lists a visual example to show the
process of the hypergraph construction.

Compared to previous methods, our multi-hypergraph construc-
tion shows at least two advantages. First, we explore both the
relation similarity and the qualifier identity in HKGs to comprehen-
sively utilise the neighbourhood information of H-Facts. Second,
multi-hypergraph construction can capture different perspectives
of H-Facts. For example, a relation hypergraph can be constructed
to describe the semantic similarity among H-Facts, while a qualifier
hypergraph can represent the attribute identity. Each hypergraph
focuses on a specific information perspective, providing the model
with rich and comprehensive knowledge representation.

2.3 Hypergraph encoding
In hypergraph representation learning, one of the key challenges
is extracting higher-order feature information. Current approaches
often rely on convolutional neural networks or attention networks,
such as HyperGCN [33], HGNN [5], and TDHNN [38], to offer new

insights into data with complex relationships. However, in hyper-
relational knowledge graphs, if the number of nodes and edges is
immense, the connections between two nodes tend to be sparse.
This sparsity hinders the model to effectively capture the intricate
relationships between two nodes during the training process, ul-
timately impacting the quality of the learned representations. To
address these issues, we propose a hypergraph transformer encoder.

The proposed encoder stacks𝐿 layers and every layer has a hyper-
graph multi-head self-attention and a feed-forward network [22],
whose connection is residual connections [9] and layer normaliza-
tion operation [32]. For simplicity, we use the symbolG = (V, E,H)
to denote the hypergraph in this section.

Given the hypergraph G = (V, E,H), we first employ an embed-
ding layer (i.e., word embedding [17] or random initialization [38])
to initial node representations X0

𝑣 ∈ R |V |×𝑑 and hyperedge repre-
sentations X0

𝑒 ∈ R | E |×𝑑 , where |V|, |E |, and 𝑑 , respectively, are the
number of nodes, hyperedges of the hypergraph G, the dimension
of the representation. After that, we feed the initialised X0

𝑣 and X0
𝑒 ,

as well as the incidence matrix H ∈ R |V |× | E | into our hypergraph
encoder with 𝐿 layers to update the representation for the nodes
and hyperedges. The hypergraph multi-head self-attention has two
steps, i.e., nodes to hyperedges and hyperedges to nodes.

(1) Node features are aggregated into hyperedge representations
to capture the high-order information within H-Fact, i.e.,

X̃𝑙𝑒 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(W𝑄

𝑒 X𝑙−1𝑒 ) · (W𝐾
𝑣 X𝑙−1𝑣 )⊤

√
𝑑𝑧

⊙ H

)
· (W𝑉

𝑣 X
𝑙−1
𝑣 ) (11)

X𝑙𝑒 = 𝑀𝐿𝑃

(
X̃𝑙𝑒 ⊕ X𝑙−1𝑒

)
(12)

whereW𝑄
𝑒 ,W𝐾

𝑣 , andW𝑉
𝑣 are the learnableweights, ⊙ represents the

Hadamard multiplication, ⊕ means the concatenation operation,
𝑑𝑧 = 𝑑

𝑇
is the dimension of the heads in all layers, and 𝑇 is the

number of the heads.
(2) We aggregate the hyperedge representations into the node

representations to achieve high-order information fusion, i.e.,

X̃𝑙𝑣 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
(W𝑄

𝑣 X𝑙−1𝑣 ) · (W𝐾
𝑒 X𝑙𝑒 )⊤√

𝑑𝑧
⊙ H

)
· (W𝑉

𝑒 X
𝑙
𝑒 ) (13)

whereW𝑄
𝑣 ,W𝐾

𝑒 , andW𝑉
𝑒 are the learnable weights.

After the above two steps, we employ feed-forward networks
𝑓𝐹𝐹𝑁 (·) to capture complex patterns through non-linear transfor-
mations as well as employ layer normalization 𝑓𝐿𝑁 (·) to ensure
training stability, fast convergence, and effective gradient flow, i.e.,

¤X𝑙𝑣 = 𝑓𝐹𝐹𝑁

(
𝑓𝐿𝑁 (X̃𝑙𝑣 + X𝑙−1𝑣 )

)
(14)

X𝑙𝑣 = 𝑓𝐿𝑁

(
¤X𝑙𝑣 + 𝑓𝐿𝑁 (X̃𝑙𝑣 + X𝑙−1𝑣 )

)
. (15)

Compared to previous hypergraph representation learning meth-
ods, our method has at least two advantages as follows. First, it can
capture the relationships between any two nodes in the hypergraph.
This global interaction helps alleviate the issue of data sparsity. Sec-
ond, through the self-attention mechanism, our model can learn the
intrinsic connections and importance differences between nodes,
thereby mitigating the impact of noise and missing data on model
performance.
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2.4 Disentangled learning
Every hypergraph contains the similar content to describe the
same H-Fact (i.e., common information), as well as contains the
information different from other hypergraphs (i.e., private infor-
mation). For example, every hypergraph contains the H-Fact F
(i.e., F ∈ {E (𝑠 ) ∩E (𝑟 ) ∩E (𝑜 ) ∩E (𝑎𝑣) }) and the node representation
in different hypergraphs captures the same semantic information of
the H-Fact. In addition, every hypergraph contains a different neigh-
bour set (i.e., {E (𝑠 )−F } ≠ {E (𝑟 )−F } ≠ {E (𝑜 )−F } ≠ {E (𝑎𝑣)−F }),
which provides additional knowledge and context to the H-Fact,
helping to enhance knowledge reasoning and link prediction tasks.

After the hypergraph encoder, the node representations of H-
Fact F in each hypergraph simultaneously capture the semantic
information within the H-Fact and the structural information of
the HKG. However, semantic information is often intertwined with
the structural information, forming complex entangled represen-
tations. As a result, fusing node representations of the H-Fact in
multi-hypergraphs will lead to semantic information redundancy.
Effectively extracting high-quality and reliable semantic informa-
tion of H-Facts from these intertwined multi-hypergraphs has be-
come a key challenge in current research [19, 30]. In addition, com-
plete structure information inmulti-hypergraph provides additional
knowledge and context to the H-Fact, helping to enhance knowl-
edge reasoning and link prediction tasks. Thus, extracting clean
semantic information and complete structure information helps to
improve the performance of HKRL.

To do this, we explore a multi-hypergraph disentangled represen-
tation learning to use common representation to extract semantic
information as well as to use private representation to explore task-
relevant information (e.g., structure information of HKG) for the
HKRL. Specifically, we extract common and private representations
from the node representations of the H-Fact F by:

C(𝛾 ) = 𝑓𝑐

(
X(𝛾 )
F

)
P(𝛾 ) = 𝑓𝑝

(
X(𝛾 )
F

) (16)

where X(𝛾 )
F ∈ R | F |×𝑑 is the node representations of the H-Fact F

in the hypergraph 𝛾 , |F | is the number of nodes in the H-Fact F .
C( ·) ∈ R | F |×𝑑𝑐 and P( ·) ∈ R | F |×𝑑𝑝 are the common representation
and private representation, respectively. 𝑑𝑐 and 𝑑𝑝 are the dimen-
sions of common and private representation, respectively. 𝑓𝑐 (·) and
𝑓𝑝 (·) are two mapping functions (i.e., multilayer perceptron [21])
with non-shared parameters.

In order to disentangle two kinds of information, we first extract
a common variable matrix S from common representations in four
hypergraphs by singular value decomposition, which is both or-
thogonal and zero-mean. Specifically, we introduce a matching loss
to minimize the distinctions between the common variable matrix S
and the common representations C(𝛾 ) from different hypergraphs,
encouraging high consistency among common representations of
all hypergraphs, i.e.,

L𝑚𝑎𝑡 =
1
|F |

4∑︁
𝛾=1

| F |∑︁
𝑖=1

c(𝛾 )𝑖
− s𝑖

2
2
, 𝑠 .𝑡 .SS⊤ = I,

1
|F |

| F |∑︁
𝑖=1

s𝑖 = 0 (17)

where ∥·∥2 represents the 𝐿2 norm.

Second, we decouple common and private representations to
enforce their independence, achieving clean common information
and complete private information. Specifically, we use the Pearson’s
correlation coefficient to calculate a correlation loss to achieve this
goal, i.e.,

L𝑐𝑜𝑟 =
4∑︁
𝛾=1

���𝐶𝑜𝑣 (
𝑓
(𝛾 )
𝜙

(C(𝛾 ) ), 𝑓 (𝛾 )
𝜓

(P(𝛾 ) )
)���√︂

𝑉𝑎𝑟

(
𝑓
(𝛾 )
𝜙

(C(𝛾 ) )
)√︂

𝑉𝑎𝑟

(
𝑓
(𝛾 )
𝜓

(P(𝛾 ) )
) (18)

where 𝑓
(𝛾 )
𝜙

(·) and 𝑓
(𝛾 )
𝜓

(·) are measurable functions, 𝐶𝑜𝑣 (·, ·) and
𝑉𝑎𝑟 (·) indicate covariance and variance operations, respectively.
This correlation loss reinforces the statistical independence be-
tween common and private representations, ensuring they remain
maximally separated and non-interfering in the feature space.

The learned common and private representations may result
in trivial solutions. Existing methods usually adopt adversarial
training or auto-encoders [18, 31]. However, these methods do not
consider node features and hypergraph structure reconstruction si-
multaneously. To address these issues, we propose a reconstruction
loss function, i.e.,

L𝑟𝑒𝑐 =
4∑︁
𝛾=1

©«
X̃(𝛾 )

F − X(𝛾 )
F

2
𝐹

|F | +

X(𝛾 )
𝑣 X(𝛾 )⊤

𝑒 − H(𝛾 )
2
𝐹

|V (𝛾 ) | × |E (𝛾 ) |
ª®®¬ (19)

where X̃( ·)
F = 𝑀𝐿𝑃 (C( ·) ⊕ P( ·) ) is the reconstructed node repre-

sentations obtained by concatenating C( ·) and P( ·) and feeding
them into the reconstruction mapping function. The second term
in the equation represents the reconstruction of the topology of
hypergraph 𝛾 .

Compared to existing methods, our disentangled learning shows
at least two advantages. First, it uses common representation to
capture the semantic information and private representation to
extract the structural information. This separation captures clearer
semantic information about H-Fact, and thus improving HKRL’s
performance. Second, our method ensures that additional structural
information from multiple hypergraphs provides a more compre-
hensive context to the H-Facts, thus supporting better knowledge
reasoning and more accurate link prediction tasks.

2.5 Link prediction
After conducting the processes, including the multi-hypergraph
construction, the hypergraph encoder, and disentangled representa-
tion learning, we obtain the common variable matrix S and private
representations P for the H-Fact. Given a H-Fact with missing
values, previous methods of link prediction fuse private representa-
tions from multiple views to a unified representation using sum-
mation or average pooling. However, either summation or average
pooling simply applies weighted addition or averaging to represen-
tations from different perspectives, which ignores the differences
between features from each perspective. If one perspective is crit-
ical while others are relatively noisy, average pooling will dilute
the contribution of the necessary perspective. To address these
issues, we employ an attention mechanism to automatically learn
the importance of different hypergraphs and dynamically adjust
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Table 1: Evaluation of different models with mixed-percentage mixed-qualifier on the JF17K, WD50K, WikiPeople-, and
WikiPeople datasets. Best scores are highlighted in bold, the second best scores are underlined, and ‘–’ indicates the results are
not reported in previous work.

Model JF17K WD50K WikiPeople- WikiPeople

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

m-TransH 0.206 0.206 0.462 - - - 0.063 0.063 0.300 - - -
RAE 0.215 0.215 0.466 - - - 0.059 0.059 0.306 - - -
NaLP 0.221 0.165 0.331 0.177 0.131 0.264 0.408 0.331 0.546 0.206 0.161 0.291
HINGE 0.449 0.361 0.624 0.243 0.176 0.377 0.445 0.359 0.577 0.318 0.238 0.457
Transformer 0.512 0.434 0.665 0.286 0.222 0.406 0.469 0.403 0.586 0.426 0.335 0.576
STARE 0.572 0.493 0.725 0.318 0.215 0.496 0.478 0.393 0.571 0.435 0.326 0.601
ShrinkE 0.565 0.489 0.711 0.210 0.170 0.285 0.421 0.357 0.607 0.385 0.286 0.571
GRAN 0.567 0.485 0.728 0.332 0.262 0.466 0.476 0.382 0.623 0.456 0.364 0.602
NYLON 0.466 0.374 0.651 0.290 0.225 0.413 0.459 0.358 0.624 0.383 0.298 0.519
HyperFormer 0.659 0.594 0.785 0.370 0.292 0.519 0.470 0.357 0.645 0.434 0.325 0.610
HAHE 0.598 0.518 0.758 0.349 0.273 0.493 0.480 0.397 0.618 0.465 0.382 0.599
MHD (our) 0.696 0.669 0.745 0.488 0.453 0.553 0.544 0.506 0.614 0.538 0.499 0.611

the contribution of each perspective, i.e.,

P = 𝑓𝑎𝑡𝑡

(
P(𝑠 ) ⊕ P(𝑟 ) ⊕ P(𝑜 ) ⊕ P(𝑎𝑣)

)
(20)

where 𝑓𝑎𝑡𝑡 is a attention function (i.e., MLP). We then get the final
node representation Z by concatenating the common variable S
and P of the above formula, i.e.,

Z = 𝑓𝑧 (S ⊕ P) (21)

After obtaining the final representation Z, we predict the missing
node z𝑚𝑎𝑠𝑘 in the H-Fact by:

ỹ = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑓𝑝𝑟𝑒 (z𝑚𝑎𝑠𝑘 )

)
(22)

where 𝑓𝑝𝑟𝑒 is a prediction function (i.e.,MLP) and ỹ is the probability
distribution of the missing element.

Finally, we use the cross-entropy loss function [37] as the link
prediction loss, i.e.,

L𝑙𝑖𝑛𝑘 =
1
S

S∑︁
𝑖=1

𝑦𝑖 log𝑦𝑖 (23)

where 𝑦𝑖 and 𝑦𝑖 are the 𝑖-th entry of the label y and the prediction
ỹ, respectively. S is the number of samples.

Integrating Equation (17), (18), (19) and (23), the final loss func-
tion of our proposed model is:

L = L𝑙𝑖𝑛𝑘 + 𝜆1L𝑚𝑎𝑡 + 𝜆2L𝑐𝑜𝑟 + 𝜆3L𝑟𝑒𝑐 (24)

where 𝜆1, 𝜆2 and 𝜆3 are non-negative parameters.

3 Experiments
3.1 Experimental setup
3.1.1 Datasets. In this study, we utilise four widely-used datasets
(i.e., JF17K, WD50K, WikiPeople, and WikiPeople-) for evaluating
our model’s performance in handling link prediction tasks. JF17K
is extracted and filtered from the Freebase knowledge base, while
WD50K, WikiPeople andWikiPeople- are drawn from the Wikidata
knowledge base. WikiPeople- is the variant of WikiPeople after
dropping statements containing literals, only 2.6% facts contain

qualifiers. The arity of facts ranges from 2 to 7, making it a useful
comparison against the original WikiPeople dataset for analyz-
ing model performance on lower-arity facts. These datasets vary
in terms of the number of facts, entities, relations, and the arity
(number of arguments) they support1.

3.1.2 Comparison methods. The comparison methods include nine
intra-hyperrelational methods (i.e., m-TransH [28], RAE[36], NaLP
[7], HINGE [20], Transformer [6], STARE [6], ShrinkE [29], GRAN
[26], and NYLON [35]) and two neighbourhood-aware methods
(i.e., HyperFormer [10] and HAHE [16]). m-TransH and RAE are
generalised the existing TransH [27] model to handle multi-fold
relations (i.e., H-Facts) in HKGs directly. NaLP represents an H-
Fact as a set of role-value pairs to capture the interactions between
roles and values within an H-Fact. HINGE, Transformer, STARE,
ShrinkE, GRAN, and NYLON represent an H-Fact as a main triple
coupled with a set of qualifiers descriptive attribute-value pairs to
directly learn the H-Fact representation in HKGs. HyperFormer and
HAHE included entity neighbours to enhance the representations
of H-Fact by capturing the structure information of HKGs.

3.1.3 Setting-up. All experiments are implemented in PyTorch and
conducted on a server with two Nvidia V100 GPUs with 32GB of
VRAM.We set 𝐿 = 2,𝑇 = 4, and𝑑 = 256 for our hypergraph encoder,
the learning rate as 3e-4, and set AdamW [14] as the optimizer. We
reproduced the comparisonmethods according to the original paper
to make them output the best results.

3.1.4 Metrics. We strictly follow the settings of (Galkin et al. [6],
Luo et al. [16]) to predict a missing subject or object entity in a
hyper-relational fact. We consider the widely used ranking-based
metrics for link prediction, i.e., mean reciprocal rank (MRR) and
H@K (K=1,10).

1Relate work, the details of datasets, and hyperparameter settings can be found in
Appendix.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Hyper-Relational Knowledge Representation Learning
with Multi-Hypergraph Disentanglement Conference WWW ’25, April 28–May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Link prediction performance of our method with different hypergraph on four datasets.

G (𝑠 ) G (𝑟 ) G (𝑜 ) G (𝑎𝑣) JF17K WD50K WikiPeople- WikiPeople

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
√

0.402 0.342 0.515 0.333 0.264 0.465 0.261 0.180 0.428 0.396 0.290 0.568√
0.655 0.621 0.722 0.464 0.443 0.503 0.503 0.481 0.543 0.529 0.502 0.577√
0.369 0.298 0.502 0.248 0.191 0.356 0.246 0.179 0.386 0.373 0.278 0.521√
0.541 0.461 0.701 0.268 0.200 0.397 0.236 0.155 0.407 0.418 0.336 0.552

√ √
0.603 0.560 0.682 0.479 0.443 0.545 0.540 0.507 0.601 0.516 0.475 0.591√ √
0.304 0.247 0.409 0.337 0.275 0.457 0.271 0.202 0.405 0.414 0.314 0.570√ √
0.455 0.401 0.556 0.332 0.263 0.465 0.267 0.183 0.441 0.409 0.302 0.582√ √
0.605 0.566 0.680 0.435 0.411 0.478 0.505 0.483 0.543 0.517 0.495 0.557√ √
0.687 0.656 0.748 0.479 0.460 0.512 0.510 0.491 0.543 0.515 0.496 0.547√ √
0.418 0.347 0.556 0.242 0.185 0.350 0.248 0.180 0.382 0.371 0.276 0.518

√ √ √
0.434 0.379 0.543 0.476 0.442 0.541 0.527 0.494 0.590 0.532 0.494 0.604√ √ √
0.641 0.606 0.708 0.445 0.406 0.520 0.532 0.496 0.604 0.515 0.470 0.596√ √ √
0.300 0.239 0.412 0.328 0.267 0.446 0.281 0.204 0.439 0.407 0.305 0.567√ √ √
0.614 0.570 0.700 0.442 0.419 0.484 0.503 0.480 0.542 0.519 0.493 0.567

√ √ √ √
0.696 0.669 0.745 0.488 0.453 0.553 0.544 0.506 0.614 0.538 0.499 0.611

3.2 Results and discussion
In this section, we present a detailed analysis of the results ob-
tained from our experiments on four datasets in Table 1. First, our
method achieves the best performance, followed by HyperFormer,
HAHE, GRAN, ShrinkE, STARE, Transformer, NYLON, HINGE,
NaLP, RAE, and m-TransH. For example, our method improves on
average by 5.71% and 30.91%, respectively, compared to the best
comparison method(i.e., HyperFormer) and the worst comparison
method (i.e., m-TransH) in all cases. The results show the superior
performance of our proposedmethod compared to various baselines.
Second, compared with the intra-hyperrelational representation
methods (i.e., m-TransH, RAE, NaLP, HINGE, Transformer, STARE,
ShrinkE, GRAN, and NYLON), has an average increase of 15.18%.
This demonstrates the superiority of neighbourhood-aware repre-
sentation methods, which may enhance representation learning
and capture a more holistic and interconnected view of knowledge.
Compared with the neighbourhood-aware methods (i.e., Hyper-
Former, HAHE) has an average improvement of 6.14%. The results
show that our method outperforms both intra-hyperrelational rep-
resentation methods and existing neighbor-aware representation
methods in capturing correlations in knowledge graphs. The most
significant improvements are observed in H@1, where our model
outperforms baselines averagely increased by 22.56%. This indi-
cates that our model is more accurate at identifying the correct
answer in the top position compared to the baselines, highlighting
its effectiveness in the link prediction task.

Overall, our proposed method has two advantages. First, by
constructing multi-hypergraphs, we can comprehensively utilise
the neighbourhood information of H-Facts in HKGs. Second, by
disentangling learning, we extract the common and private rep-
resentations to exploit the semantic information of H-Facts and
task-relevant information (e.g., structure information of HKGs) of
the HKRL.

3.3 Effectiveness on different hypergraph
Based on H-Fact’s structural characteristics, we construct four dif-
ferent neighbourhood hypergraphs (i.e., , subject hypergraph G (𝑠 ) ,
relation hypergraph G (𝑟 ) , object hypergraph G (𝑜 ) , and qualifier
hypergraph G (𝑎𝑣) ). In this section, we analyse the effectiveness
of different combinations of these four hypergraphs, including
single-hypergraph, two-hypergraph, three-hypergraph, and four-
hypergraph combinations. The experimental results are shown in
Table 2.

First, we evaluate the effectiveness of each hypergraph individu-
ally. Compared with other hypergraphs, the relation hypergraph
are 14.99% higher on average, indicating that the similarity of re-
lation in HKG promotes representation learning and is conducive
to mining semantic information of H-Fact. Second, the combina-
tion of relation hypergraph and qualifier hypergraph improves by
an average of 12.58% compared with other variants. This result
shows that relation similarity and qualifier identity in HKG are
crucial to mining comprehensive semantic patterns and improving
hyper-relational knowledge representation. Third, the method of
combining four hypergraphs achieves the best effect, which indi-
cates that the construction of multi-hypergraph for hyper-relational
knowledge representation is effective and comprehensively utilises
the neighbourhood information of H-Facts.

3.4 Ablation study
The proposed MHD has four loss functions, i.e., a matching loss
L𝑚𝑎𝑡 (see Eq.(17)), correlation lossL𝑐𝑜𝑟 (see Eq.(18)), reconstructed
loss L𝑟𝑒𝑐 (see Eq.(19)) and link prediction loss L𝑙𝑖𝑛𝑘 (see Eq.(23)).
To demonstrate the effectiveness of each part, we tested different
combinations of these loss functions (except L𝑙𝑖𝑛𝑘 as we cannot
perform link prediction tasks without L𝑙𝑖𝑛𝑘 ) on the link prediction
task by reporting the results in Table 3.
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Table 3: Ablation study of our method on four datasets.

L𝑙𝑖𝑛𝑘 L𝑚𝑎𝑡 L𝑐𝑜𝑟 L𝑟𝑒𝑐
JF17K WD50K WikiPeople- WikiPeople

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10
√

0.354 0.301 0.453 0.431 0.388 0.512 0.514 0.481 0.577 0.508 0.454 0.604√ √
0.602 0.561 0.678 0.446 0.405 0.524 0.526 0.489 0.595 0.512 0.478 0.576√ √
0.684 0.653 0.739 0.448 0.406 0.526 0.507 0.468 0.583 0.514 0.473 0.592√ √ √
0.684 0.652 0.744 0.440 0.398 0.518 0.526 0.491 0.593 0.528 0.489 0.601√ √
0.301 0.244 0.404 0.460 0.419 0.536 0.496 0.461 0.560 0.516 0.473 0.597√ √ √
0.685 0.657 0.738 0.484 0.451 0.547 0.502 0.462 0.581 0.525 0.485 0.598√ √ √
0.688 0.664 0.733 0.483 0.445 0.554 0.517 0.482 0.585 0.533 0.491 0.609√ √ √ √
0.696 0.669 0.745 0.488 0.453 0.553 0.544 0.506 0.614 0.538 0.499 0.611
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Figure 3: Effectiveness of different hypergraph encoder on four datasets

First, we remove the disentangled learning module (i.e., with-
out L𝑚𝑎𝑡 , without L𝑐𝑜𝑟 and without L𝑟𝑒𝑐 ) to evaluate multi-
hypergraph method for HKRL. The MHD has an average increase of
14.46% compared to the variant (i.e., without disentangled learning
module). The result indicated that multi-hypergraph disentangle-
ment can improve the ability of HKRL. Second, with the addition of
L𝑟𝑒𝑐 , these variants grew by an average of 1.34%. This shows that
reconstruction loss can effectively improve the model. Third, the
best performance is achieved by our method, which utilises the en-
tire loss function. Thus, our method’s different loss functions have
distinct contributions that are in accordance with our motivation.

3.5 Effectiveness of different encoder
To verify the effectiveness of our proposed hypergraph transformer
encoder, we conducted comparative experiments on link prediction
by replacing the encoder module across four datasets. Specifically,
we compared the hypergraph convolution encoder (i.e., Hyper-
Conv), the hypergraph attention encoder (i.e.,Hyper-Atten), and the
hypergraph transformer encoder (i.e., Hyper-Trans). The detailed
experiments are shown in Figure 3. Compared to the hypergraph
convolution method, the hypergraph attention encoder achieved
an average improvement of 9.74%. Compared to the hypergraph
attention method, the hypergraph attention encoder achieved an
average improvement of 21.23%. The experiments demonstrate that
our customised hypergraph transformer encoder is more effective
in extracting features from H-Facts for HKRL. It can capture the
relationships between any two nodes in the hypergraph and learn

the intrinsic connections and importance differences between nodes
through the self-attention mechanism.

4 Conclusion
In this paper, we have presented a novel multi-hypergraph disen-
tanglement method (MHD) for hyper-relational knowledge rep-
resentation learning. Specifically, we constructed multiple hyper-
graphs to mine the relation similarity and qualifier identity in HKGs
and comprehensively utilise the neighbourhood information of H-
Facts. In addition, we used disentangle representation learning to
mine clean semantic information of H-Fact and complete struc-
ture information of HKG. To the best of our knowledge, this is
the first attempt to decouple the common and private representa-
tions of multi-hypergraphs by disentangling learning. Finally, the
fusion representation is used to conduct a link prediction task. Ex-
tensive experimental results demonstrate that the proposed MHD
method consistently achieves state-of-the-art performance in hyper-
relational knowledge representation learning.

In future work, we would like to explore more intelligent tech-
niques for constructing hypergraphs, e.g., dynamic hypergraph
construction, potentially incorporating deep learning architectures
to automatically discover and represent relation similarities and
qualifier identities within HKGs. Additionally, we intend to extend
the application of our MHD method to various hyper-relational
knowledge representation tasks, including entity classification, re-
lation extraction, and knowledge reasoning. This expansion will
enable us to confirm its adaptability and broad applicability.
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A Related work
This section briefly reviews the work of hyper-relational knowledge
representation learning. According to the criteria of whether to use
neighbourhood information, we divided the existing work into two
categories, i.e., intra-hyperrelational representation methods and
neighbourhood-aware representation methods.

A.1 Intra-hyperrelational representation
methods

Intra-hyperrelational representation methods extract the represen-
tation of each element by learning the relationships between the
elements of H-Fact [1, 23]. For example, in 2016, Wen et al. [28]
argued that existing models, which convert multi-fold (or H-Fact)
relational data into binary triples, result in a loss of structural
information and introduce heterogeneity in predicates, making
representation less effective. Thus, the authors generalize the well-
known TransH model to create a new model called m-TransH by
capturing the roles of entities in multi-fold relations. Based on this
work, Zhang et al. [36] presented RAE model enhances HKGs rep-
resentation techniques by incorporating a relatedness metric that
captures the likelihood of entities co-participating in a common
H-Fact. In addition, Guan et al. [7] transferred an H-Fact into a set
of role-value pairs and introduced the NaLP model to capture the
interdependencies between different roles and their corresponding
values within the same H-Fact. These methods enhance the repre-
sentation of traditional knowledge graphs by computing individual
H-Fact features. However, they ignore the information provided by
the attribute element in the qualifier of H-Fact.

Rosso et al. [20] address this by proposing HINGE, which learns
from H-Facts, where each fact is not just a simple triplet but also
includes additional key-value pairs that offer further contextual in-
formation. The model uses convolutional neural networks to learn
from the base triplet (𝑠, 𝑟, 𝑜) and the additional attribute-value pairs
(𝑎, 𝑣). In 2020, Galkin et al. [6] presents a graph encoder called
STARE. The model is based on graph neural networks (GNNs),
which use a message-passing mechanism that learns representa-
tions for both the main triplet and any additional qualifiers. They
discuss how STARE can preserve the role of both main and qual-
ifying information in H-Facts, a first for GNN-based approaches.
Inspired by the prosperity in GNNs, Wang et al. [26] proposes the
GRAN model, which represents each H-Fact as a heterogeneous
graph. This graph includes entities, relations, and attributes as
nodes and uses four types of edges (i.e., subject-relation, object-
relation, relation-attribute, attribute-value) to capture the inter-
actions between nodes. GRAN uses edge-biased fully-connected
attention to learn from these heterogeneous graphs. This attention
mechanism is designed to handle both local and global dependen-
cies within the H-Fact.

However, in practical scenarios, H-Facts are often interconnected
rather than isolated. These existing works ignore the relationships
between H-Facts and the structure information of HKGs.

A.2 Neighbourhood-aware representation
methods

The neighbourhood-aware representation method was proposed to
address the limitations of the intra-hyperrelational representation
method. This approach incorporates the neighbourhood features
of an H-Fact to enhance the representation learning process and
capture a more holistic and interconnected view of knowledge. For
example, Hu et al. [10] designed a HyperFormer model with entity
neighbor aggregator to addresses challenges in previous models
that rely on graph structures by integrating information from an
entity’s one-hop neighbors. Luo et al. [16] proposed the HAHE,
which models both the global hypergraph structure and the local
sequential structure of H-Facts. The global-level hypergraph is built
by representing entities (i.e., 𝑠 , 𝑜 , and 𝑣) as nodes and H-Facts as
hyperedges. The relationship between nodes and hyperedges is cap-
tured by an incidence matrix, and dual-attention layers propagate
information between nodes and hyperedges, allowing the HAHE
model to capture the global structure of the HKG.

However, their methods only focus on direct neighbourhood in-
formation of entities (i.e., 𝑠 , 𝑜 , and 𝑣), neglecting the relation (i.e., 𝑟 )
similarity of the main triple and the attribute (i.e., 𝑎) identity in the
qualifiers. Secondly, existing approaches often construct a single
perspective to mine the neighbourhood information of H-Facts. For
example, HAHE [16] constructed a hypergraph to represent the
connectivity of entities and used hypergraph dual-attention layers
to capture topological relationships between entities. These meth-
ods ignore HKG’s diversity, decreasing the quality of the learned
representations. Therefore, combining different perspectives to con-
struct multi-hypergraph can capture the diversity of the HKG to
mining comprehensive semantic information and improving the
representation of H-Facts.

B Datasets
In this paper, we evaluate the performance of our method using
four benchmark datasets, i.e., JF17K, WD50K, WikiPeople, and
WikiPeople-. Table 4 provides a summary of the statistics for these
datasets. Each dataset contains hyper-relational facts (H-facts) that
are expressed as a main triple (subject, relation, object) supple-
mented by a variable number of qualifiers (attribute-value). The
datasets differ in their scale, the proportion of H-Facts, the num-
ber of entities, relations, and the arity (the number of elements in
each fact, including qualifiers). We list the details of the datasets as
follows:

• JF17K2 contains 100,947 facts, with 45.9% being hyper-
relational facts (46,320 facts). The dataset includes 28,645
unique entities and 501 relations. It is divided into 76,379
training facts and 24,568 testing facts. Since there is no
validation set for JF17K, we randomly sample 20% of the
train set as a validation set.

• WD50K3 contains a total of 236,507 facts, with 13.6% hyper-
relational facts (32,167 facts). The dataset includes 47,156
entities and 532 relations, split into 166,435 training facts,

2https://github.com/lijp12/SIR
3https://zenodo.org/record/4036498
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Table 4: Statistics of all datasets

Dataset All facts Hyper-relational facts(%) Entities Relations Train Valid Test Arity

JF17K 100,947 46,320(45.9%) 28,645 501 76,379 - 24,568 2-6
WD50K 236,507 32,167(13.6%) 47,156 532 166,435 23,913 46,159 2-67

WikiPeople 382,229 44,315(11.6%) 47,765 193 305,725 38,223 38,281 2-9
WikiPeople- 369,866 9,482(2.6%) 34,825 178 394,439 37,715 37,712 2-7

Table 5: Settings for the proposed MHD

Settings JF17K WD50K WikiPeople- Wikipeople

𝐿 2 2 2 2
𝑇 4 4 4 4
𝑑 256 256 256 256
𝑑𝑐 192 192 192 192
𝑑𝑝 64 64 64 64
𝜆1 1e-6 1e-4 1e-5 1e-5
𝜆2 1 1 1 1
𝜆3 1 1 1 1
learning rate 0.0001 0.0003 0.0003 0.0003
batch size 1024 128 1024 512
epoch 100 100 100 200
weight decay 0.01 0.01 0.01 0.01
dropout 0.1 0.1 0.1 0.1

23,913 validation facts, and 46,159 test facts. The arity of
the facts ranges from 2 to 67.

• WikiPeople4 comprises 382,229 facts, of which 11.6% are
hyper-relational (44,315 facts). It includes 47,765 entities
and 193 relations, divided into 305,725 training facts, 38,223
validation facts, and 38,281 test facts. The arity of the facts
ranges from 2 to 9.

• WikiPeople- is a variant of the Wikipeople dataset that
filters out statements containing literals with a lower pro-
portion of hyper-relational facts (2.6%). The dataset con-
tains 34,825 entities and 178 relations, with 394,439 training
facts, 37,715 validation facts, and 37,712 test facts. The arity
of the facts ranges from 2 to 7.

C Hyperparameter settings
In this paper, we train the MHD method on two 32G V100 GPUs.
Table 5 describes the detailed settings of our experimental setups
with MHD. MHD takes approximately 2 hours to complete the
training and evaluation on JF17K, 10 hours on WD50K, 6 hours on
WikiPeople-, and 8 hours on WikiPeople.
4https://github.com/gsp2014/NaLP
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