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ABSTRACT

Robustness to distribution shift is a necessary property of machine learning models
for their safe and effective deployment. However, deep learning models are sus-
ceptible to learning spurious features of the in-distribution (ID) training data that
fail to generalise to out-of-distribution (OOD) data. Domain generalisation algo-
rithms aim to tackle this problem, but recent studies have demonstrated that their
improvement over standard empirical risk minimisation is marginal. We address
this problem for multivariate time series classification (TSC), where it is standard
practise to use feature extractor architectures that learn with channel dependence
(CD), enabling cross-channel patterns to be learned. Inspired by recent success
in time series forecasting, we investigate how channel independence (CI) impacts
OOD generalisation in TSC. Our experiments on six time series datasets reveal
that ID and OOD features exhibit significantly greater distributional divergence
when learned with CD compared to CI. As a consequence, models that learn with
CI are more robust to distribution shift, evidenced by smaller generalisation gaps
(the difference between ID and OOD performance) across datasets. On datasets
that have a stronger shift, OOD accuracy is substantially higher for CI than CD.

1 INTRODUCTION

In real-world applications, machine learning models are often required to make predictions on out-
of-distribution (OOD) data that is different from the in-distribution (ID) data they were trained on.
Models should be robust to distribution shift, maintaining performance on OOD data that is compa-
rable to that on ID data (Taori et al., 2020). Unfortunately, this is not typical and large generalisation
gaps, the difference between OOD and ID performance, are common (Gulrajani & Lopez-Paz, 2021;
Gagnon-Audet et al., 2023). This has been attributed to models learning features of the training data
that are spurious; they correlate with labels but do not capture a causal relationship (Geirhos et al.,
2020; Gulrajani & Lopez-Paz, 2021). A model that relies on spurious features will fail to generalise
effectively to OOD data where those features are absent.

In this work, we focus on improving OOD generalisation in time series classification (TSC). TSC
plays an important role in a range of applications, including activity recognition (Zhang et al.,
2022a), disease diagnosis and monitoring (Oh et al., 2020), and predictive maintenance (Carvalho
et al., 2019). Distribution shift in time series data can arise from inherent intra- and inter-person vari-
abilities, as well as differences in recording equipment (Gagnon-Audet et al., 2023). For the safe
and effective deployment of machine learning models in real-world TSC applications, robustness
under distribution shift is vital.

In tackling this problem, we consider the domain generalisation setting: models are trained on a
set of source domains, which form the ID data, and OOD generalisation is then assessed on a set
of unseen target domains. Gagnon-Audet et al. (2023) showed that across time series benchmarks,
models trained with empirical risk minimisation (ERM) (Vapnik, 1991) exhibit substantial generali-
sation gaps, highlighting the need for effective domain generalisation algorithms in this area. How-
ever, they also showed that existing algorithms only marginally improve upon the OOD accuracy of
ERM. Thus, there remains a clear need for approaches that effectively improve OOD generalisation
in TSC.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: The generalisation gap in terms of accuracy for CD and CI for each time series dataset, as
a measure of robustness to distribution shift (smaller is better).

DSADS HAR MHEALTH PAMAP WESAD WISDM

CD 19.9 3.6 14.1 34.0 25.4 12.6
CI 5.6 2.8 2.5 4.8 6.8 7.5

In many TSC applications, the time series are multivariate, composed of multiple channels of uni-
variate time series. In OOD generalisation research with multivariate time series, it is standard
practise to use a feature extractor architecture that learns with channel dependence (CD), where fea-
tures are a function of multiple channels (Lu et al., 2023; Gagnon-Audet et al., 2023; Ozyurt et al.,
2023; He et al., 2023). The rationale is that richer features of the time series may be learned by
considering cross-channel relationships, potentially improving task performance. The alternative is
channel independence (CI), where learning is restricted to the individual channel, which has had
recent success in time series forecasting (Nie et al., 2023; Zeng et al., 2023; Liu et al., 2024; Han
et al., 2024). In this work, we propose a simple method for implementing CI for multivariate TSC,
and investigate how these two types of learning impact OOD generalisation.

We find that learning with CD is often detrimental to OOD generalisation, and that learning with CI
is a significantly more robust alternative, as shown in Table 1. Using six real-world multivariate time
series datasets, we analyse ID classification performance and the distributional divergence between
source (ID) and target (OOD) domain features, which bound performance in the target domain (Ben-
David et al., 2006; 2010). Our results show that models that learn with CD outperform CI on ID
data, but that the features learned exhibit far greater distributional divergence, indicating a tendency
to learn spurious features. On datasets with more severe distribution shifts, the greater robustness of
CI enables it to vastly outperform CD on OOD data.

We extend our work by exploring the use of the frequency domain1, which describes the content
of a signal at individual frequencies and has emerged as a means of improving OOD generalisation
in TSC (He et al., 2023; Mohapatra et al., 2024), in the context of CD and CI. Our experiments
show that frequency domain features exhibit consistently lower distributional divergence than time
domain features, but at the cost of worse ID classification performance. Importantly, this trade-
off has different implications for OOD generalisation with CD and CI. For CD, where divergence
is high, frequency features improve OOD performance. However, since CI models already show
low divergence with time domain features, frequency features offer no additional benefit. This
underscores that strategies improving OOD generalisation in CD models may not be effective for CI
models.

2 RELATED WORK

Domain generalisation in time series classification. Domain generalisation algorithms learn from
a set of labelled source domains and are evaluated for OOD generalisation on unseen target domains.
A number of general approaches have been proposed, such as domain invariant learning (Ganin et al.,
2016; Arjovsky et al., 2020), meta-learning (Li et al., 2018) and data augmentation (Volpi et al.,
2018; Li et al., 2021). Gulrajani & Lopez-Paz (2021) compared domain generalisation algorithms on
image classification benchmarks and found that none outperformed ERM. More recently, Gagnon-
Audet et al. (2023) performed a similar study for time series tasks with both general and time series-
specific domain generalisation algorithms, and similarly found only marginal improvement over
ERM. An explanation for this is that although existing algorithms can improve robustness, this is
outweighed by an accompanying decrease in ID classification performance (Sener & Koltun, 2022).
Distinct from existing methods, our work explores how different ways of learning from multiple
channels impacts OOD generalisation.

Channel independence in time series forecasting. Recently, CI has shown superior performance
over CD in time series forecasting with transformers (Nie et al., 2023; Zeng et al., 2023; Liu et al.,
2024). To explain this, Han et al. (2024) show that models that learn with CI perform worse on

1We also use the word ‘domain’ in this context to be consistent with signal processing literature.
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ID data due to reduced learning capacity, but are more robust to distribution shift than models that
learn with CD, and that this trade-off favours CI for forecasting. Although relevant to our work, we
cannot assume that these results transfer to TSC as the nature of the tasks are different, as are the
characteristics of the data. Forecasting datasets typically have sampling frequencies measured in
minutes, hours, days or weeks (Han et al., 2024), while TSC applications use sampling frequencies
on the order of tens, hundreds, or thousands of samples per second, as evidenced by the datasets
used in this paper. Furthermore, their analyses are specific to forecasting, while ours are based on
domain adaptation theory, which better aligns with OOD generalisation research.

Channel independence in time series classification. CI has been applied to standard (i.e. non-
OOD) TSC to an extent. Ruiz et al. (2021) use CI simply as a means of adapting models designed
for univariate time series to multivariate data by building an ensemble of univariate classifiers, each
trained on a different channel, though this was in the context of non-deep learning models. In deep
learning for TSC, Zheng et al. (2014) used a separate convolutional neural network (CNN) for each
channel of a time series (though the features from each were fused before classification, meaning the
models are not truly independent). However, subsequent state-of-the-art model architectures opted
to learn with CD instead (Fawaz et al., 2019; Foumani et al., 2024). Research on OOD generalisation
in TSC have all made use of feature extractor architectures that learn with CD (Wilson et al., 2020;
Ragab et al., 2023; Lu et al., 2023; Gagnon-Audet et al., 2023; Ozyurt et al., 2023; He et al., 2023;
Mohapatra et al., 2024). It therefore remains to be seen whether the benefits observed in forecasting
from using CI also apply to OOD generalisation in classification.

Frequency features in time series tasks. Converting a signal from the time domain into the fre-
quency domain has long been popular for improving performance in TSC applications (Lima et al.,
2019; Saeidi et al., 2021), and more recently in self-supervised representation learning (Yang &
Hong, 2022; Zhang et al., 2022b). Most relevantly, He et al. (2023) used the approach for domain
adaptation, a similar setting to domain generalisation but with unlabelled target domain data avail-
able during training. They separately encode the time and frequency domain of time series and
concatenate the features for classification, which showed improved OOD performance compared to
time features alone. These results were observed when using a feature extractor that learns with CD,
hence we investigate whether the same benefits similarly extend to models that learn with CI.

3 PRELIMINARIES

3.1 PROBLEM SET-UP

We consider the domain generalisation setting for TSC. Let X ⊂ RL×N denote the input space for
multivariate time series with N channels and sequence length L, Z ⊂ Rm be the m-dimensional
feature space, and Y = {1, . . . , C} be the output space for a C-class classification task. Input data
samples are X ∈ X , features are Z ∈ Z and labels are y ∈ Y .

We have a set of source domains Etrain and a set of target domains Etest, each with a labelled dataset
Dd = {(Xi, yi)}nd

i=1 sampled i.i.d. from a joint probability distribution Pd(X, y). Each distribution
is different, such that Pd(X, y) ̸= Pd′(X, y) for all d ̸= d′ with d, d′ ∈ Etrain ∪ Etest. All domains
share the same input, feature, and label spaces.

The datasets are combined to form the overall training dataset Dtrain = ∪d∈EtrainDd and test dataset
Dtest = ∪d∈EtestDd. The objective is to train a model f = h ◦ g (= h(g(·))) using Dtrain that
generalises to unseen domains in the set of all possible domains Eall, where g : X → Z is a feature
extractor, h : Z → Y is a classifier, and Etrain, Etest ⊆ Eall. We evaluate the performance of f on Dtest
to estimate generalisation to Eall.

The shift between two joint probability distributions d and d′ may be decomposed as
Pd(y|X)Pd(X) ̸= Pd′(y|X)Pd′(X). A common simplifying assumption in OOD generalisation
research is that distribution shift is the result of a covariate shift (Zhao et al., 2019; Liu et al., 2023),
which states that Pd(X) ̸= Pd′(X) while Pd(y|X) = Pd′(y|X). This is the assumption that we
adopt moving forward.
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Figure 1: Learning from a three-channel time series with CD and CI using a 1D CNN as the feature
extractor, represented with a single convolutional kernel (the grid structures). With CD, the model
operates over all channels. In the channel-wise ensemble (for CI), each CNN only operates on a
single channel.

3.2 COMPARING CHANNEL DEPENDENCE AND CHANNEL INDEPENDENCE

In this section, we clarify the difference between CD and CI with an example of a 1D CNN feature
extractor (Ozyurt et al., 2023; He et al., 2023), illustrated in Figure 1. The same principles outlined
here extend to other commonly used architectures, albeit with different formulations.

In a standard 1D CNN that learns with CD, the convolutional kernels in the first layer span all the
channels of the input time series. Specifically, each kernel is parameterised by a matrix of height
N , corresponding to the number of input channels, and a length LK , determining the receptive field
of the kernel. The kernels slide across the time dimension of a time series sample X , and perform
a convolution at each step. Denote a single kernel K ∈ RN×LK , the output oi of the convolution
between K and X at time step i is:

oi =

N−1∑
n=0

LK−1∑
l=0

Xn,i+lKn,l,

where Xn,i+l is the value from the nth channel at time step i + l, and Kn,l is the value from the
nth row and lth column of the kernel. This formulation shows that the output at each time step is a
function of all the channels in the time series. Since the parameters of K are learnable, the model is
able to capture cross-channel dependencies.

In contrast, learning with CI means that each channel of the time series is processed independently
using convolutional kernels that are specific to that channel. Let Xj ∈ R1×N be the jth channel of
X , and Kj ∈ R1×LK be a kernel for channel j. The output oji for channel j at time step i is:

oji =

LK−1∑
l=0

Xj
i+lK

j
l .

The output at each time step depends only on channel j, making the learned features channel-
specific.

Clearly, the kernel space of the CD approach K ⊂ RN×LK has greater capacity than the kernel
space of the CI approach Kj ⊂ R1×LK . While this enables more complex patterns of the data to
be learned with CD, the smaller capacity of CI provides implicit regularisation that may improve
robustness.
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4 LEARNING WITH CHANNEL INDEPENDENCE

4.1 CHANNEL-WISE ENSEMBLE

Models designed for univariate time series classification can be extended to multivariate time series
by constructing an ensemble of models, each one trained on a different channel (Ruiz et al., 2021).
This is the approach that we take for implementing CI, which we refer to as a channel-wise ensemble,
illustrated in Figure 1.

We construct an ensemble of N independently-trained models {fj = hj ◦ gj}Nj=1 for multivariate
time series with N channels, where each model consists of a feature extractor gj and classifier hj .
In this work, we build a homogeneous ensemble, with the models in the ensemble having the same
architecture. A heterogeneous ensemble could be used to boost performance if it is known that
certain architectures are better suited to certain channels.

The jth model is trained on the dataset Dj
train = {(Xj

i , yi)|(Xi, yi) ∈ Dtrain}, which contains uni-
variate time series from the jth channel of Dtrain. We use ERM (Vapnik, 1991) for training models
in our experiments, which minimises the average loss over the training data:

f∗
j = arg min

fj∈F
R̂(fj), R̂(fj) =

1

|Dj
train|

|Dj
train|∑

i=1

ℓ(fj(X
j
i ), yi),

where F is the hypothesis class for fj , R̂(fj) is the empirical risk, |Dj
train| is the cardinality of Dj

train,
and ℓ the cross-entropy loss. We use ERM given its simplicity and competitiveness with domain
generalisation algorithms (Gulrajani & Lopez-Paz, 2021; Gagnon-Audet et al., 2023), though the
channel-wise ensemble is agnostic to the training algorithm used.

During inference, given a new multivariate time series X∗, each model in the ensemble makes a
prediction ŷj = σ(fj(X

j
∗)) on its respective channel, where σ is the softmax (sigmoid) function for

converting output logits into a class probability distribution (single probability for binary classifica-
tion), as is common in ensembles (Abe et al., 2022). The final prediction of the ensemble is obtained
by combining the probabilities from all the models in a weighted sum:

ŷens =

N∑
j=1

wj ŷj ,

where wj ∈ R+ controls the contribution of the prediction from model fj to the final prediction. In
this work, we only consider the uniform ensemble with wj = 1

N , though other weighting schemes
could be explored in future work.

4.2 THEORETICAL ANALYSIS

In this section, we aim to theoretically understand how the channel-wise ensemble impacts OOD
generalisation compared to models that learn with CD. Our analysis is based on domain adaptation
theory from Ben-David et al. (2006), which provides a bound on the risk in the target domain for
a classifier trained on the source domain. We adjust the notation for deep learning models as in
Johansson et al. (2019); Chuang et al. (2020).

Theorem 1 (Ben-David et al. (2006)). Let S and T be the source and target domains, respectively.
With a feature extractor g and hypothesis class H of classifiers, the hypothesis class for the overall
model is F(g) = {h ◦ g : h ∈ H}. With f trained on data from S, the risk in T for all f ∈ F(g) is:

RT (f) ≤ RS(f) + dH(P g
S(Z), P g

T (Z)) + λF(g),

where RT = E(X,y)∼PT
ℓ(f(X), y) and RS = E(X,y)∼PS

ℓ(f(X), y) are the risk in the target and
source domains, respectively, dH(P g

S(Z), P g
T (Z)) is the H-divergence between the marginal feature

distributions induced by g, and λF(g) is the optimal joint risk that can be achieved from F(g).

The bound states that target domain risk is determined by three factors: the source domain risk and
two terms that quantify the distribution shift between the source and target domains. From Section
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3.1, a shift occurs when P g
S(y|Z)P g

S(Z) ̸= P g
T (y|Z)P g

T (Z), so these terms reflect the difference
between the two distributions.

First, the H-divergence term is defined as:

dH(P g
S(Z), P g

T (Z)) = sup
h∈H

∣∣∣∣ Pr
Z∼P g

S

[h(Z) = 1]− Pr
Z∼P g

T

[h(Z) = 1]

∣∣∣∣ ,
and measures the divergence between the two feature marginal distributions induced by g as how
well a classifier from H can distinguish between features from source and target domain. Second,
λF(g) is defined as:

λF(g) = RS(f
∗) +RT (f

∗), f∗ = inf
h∈H

RS(f) +RT (f),

and measures the difference in the labelling function between the source and target domain, or prob-
abilistically, the conditional label distributions P g

S(y|Z) and P g
T (y|Z). As we make the covariate

shift assumption, we focus our analyses on the divergence between P g
S(Z) and P g

T (Z).

Extension to the channel-wise ensemble. We now modify the above bound for the channel-
wise ensemble. Using Jensen’s inequality, the target domain risk can be expressed as
RT

(∑N
j=1 wjfj

)
≤

∑N
j=1 wjRT (fj), and then as:

RT

 N∑
j=1

wjfj

 ≤ RS

 N∑
j=1

wjfj

+

N∑
j=1

wjdH(P
gj
S (Z), P

gj
T (Z)) +

N∑
j=1

wjλF(gj). (1)

The first term on the right side is the source risk for the ensemble, and the second term is the
weighted sum of the individual-channel feature marginal distribution divergences.

In our experiments, we report on (approximations of) the source risk and feature marginal distri-
bution divergence to understand how OOD generalisation is impacted by learning with CD and CI.
For models that learn with CD, we compute these quantities as defined in Theorem 1. For the
channel-wise ensemble, we use Inequality 1.

4.3 EXPERIMENTAL SETUP

Datasets. We perform experiments on six benchmark multivariate time series classification datasets:
DSADS (Altun et al., 2010), HAR (Anguita et al., 2013), MHEALTH (Banos et al., 2014), PAMAP
(Reiss & Stricker, 2012), WISDM (Kwapisz et al., 2011) for human activity recognition, and WESAD
(Schmidt et al., 2018) for stress and affect detection. Information about each dataset can be found
in Appendix A.

Training and evaluation. Across all datasets, each participant is defined as a domain. Participants
are split equally into four groups, and each group is used as the OOD test set while the remaining
three are used for model training. Each reported metric for a dataset-algorithm combination is
averaged across the four participant splits. All results are averaged across five runs with different
random seeds. For CD, we train a single fully convolutional network (FCN) (Wang et al., 2017)
with ERM, and similarly for CI, each model in the ensemble is an FCN trained with ERM. Further
training details are provided in Appendix B.

Metrics. We report on three metrics based on the analysis in Section 4.2: (1) ID accuracy (as a
proxy of source risk) computed on the ID validation set (a subset of Dtrain, see Appendix B.1), (2)
H-divergence between source and target domain features, which is approximated with the proxy-A
distance (PAD) (Ben-David et al., 2006; Ganin et al., 2016), as described in Appendix C, and (3)
OOD accuracy (as a proxy of target risk) computed on Dtest. We also report the generalisation gap,
defined as:

Gen. gap = ID acc. − OOD acc.,
to explicitly measure robustness to distribution shift.

4.4 RESULTS

Figure 2 shows each metric for the CD and CI approaches across the six datasets, from which we
can make several observations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Metrics for CD and CI for each dataset. Error bars represent one standard deviation across
five runs. The arrows under each metric shows which direction is better.

A trade-off between ID accuracy and feature divergence. Although CI achieves consistently high
ID accuracy across all datasets, indicating that learning cross-channel dependencies is not strictly
required for effective multivariate TSC, CD consistently outperforms CI. This is consistent with the
intuition that richer features of the training data can be learned by considering cross-channel patterns.
On the other hand, PAD is lower for CI than CD across all datasets, showing that on average across
the ensemble, single-channel models learn features that are more robust to distribution shift than
with CD. These findings suggest that a trade-off exists between ID classification performance and
feature divergence, which is consistent with Han et al. (2024).

Implications for OOD generalisation. Since CD and CI trade off between ID performance and
domain divergence, one approach will not always be superior for OOD generalisation. Figure 2
shows that CI achieves significantly higher OOD accuracy than CD on the DSADS, MHEALTH,
PAMAP, and WESAD datasets. CD exhibits large PAD values on these datasets, and the difference
in PAD between CD and CI is substantial. This clearly outweighs the drop in ID performance for
CI in determining OOD performance. In contrast, CD outperforms CI in OOD accuracy on HAR.
Here, the PAD for CD is far smaller than on the other datasets, and the drop in ID performance for
CI becomes more significant. These results suggest that CI is preferred when the distribution shift
between domains is more severe, while CD might be preferred when the distribution shift is weaker.
In reality, knowing the strength of a distribution shift a priori is difficult. The greater reliability
offered by CI, evidenced by the smaller generalisation gap across all datasets, might then still be
preferred.

Analysis of individual channels. Figure 3 shows each metric for each model in the channel-wise
ensemble on MHEALTH, with the other five datasets shown in Appendix D.1. The analyses here also
apply to the other datasets unless specified. The accuracy metrics reveal that certain channels carry
significantly more class-discriminative information than others, and comparing with Figure 2, the
performance of the ensemble exceeds the performance of the best single channel member (except
for WESAD). Hence, although the models in the ensemble are independent, the late fusion of their
predictions makes good use of the information from multiple channels. The PAD for all individual
models is lower than the CD model, showing explicitly that single-channel models learn more robust

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Metrics for each individual member of the channel-wise ensemble on the MHEALTH
dataset.

features. However, it is worth noting that the generalisation gap is lower for the CD model than some
individual models. For models with similar PAD values, such as Channels 16, 17, and 18, a higher
ID accuracy typically corresponds to a smaller generalisation gap.

5 LEARNING FROM THE FREQUENCY DOMAIN

5.1 THE DISCRETE FOURIER TRANSFORM AND FREQUENCY FEATURES

In time series analysis, the discrete Fourier transform (DFT) is used to transform a signal from the
time domain, which describes the signal as an amplitude that changes over time, into the frequency
domain. For a discrete-time signal x[n] composed of N samples, the DFT, F , and its inverse are
defined as:

F{x[n]} = X[k] =

N−1∑
n=0

x[n]e
−i2πkn

N , k = 0, . . . , N − 1,

F−1{X[k]} = x[n] =
1

N

N−1∑
k=0

X[k]e
i2πkn

N , n = 0, . . . , N − 1,

where k is the frequency index and i =
√
−1. The DFT decomposes a time domain signal into a

sum of complex exponential basis functions at each frequency k, each with a coefficient X[k] which
may written in exponential form as X[k] = |X[k]| eiϕ, where |X[k]| is the amplitude and ϕ is the
phase:

|X[k]| =
√

Re(X[k])2 + Im(X[k])2, ϕ = arctan

(
Im(X[k])

Re(X[k]))

)
,

where Re(·) and Im(·) are the real and imaginary parts of a complex number, respectively.

Feature learning. Mohapatra et al. (2024) showed that using separate feature extractors for the
magnitude and phase of the DFT coefficients, followed by late feature fusion, outperforms joint
encoding (concatenating them first) or using a single modality. Following this approach, we extract
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Figure 4: Metrics for CD with time, frequency, and both features.

separate magnitude and phase feature vectors. We then concatenate them and project to a lower
dimensional space (equal to that of the time feature vector) using a linear layer, forming the overall
frequency feature vector. We concatenate time and frequency feature vectors before classification as
in He et al. (2023).

5.2 RESULTS

In these experiments, the setup is the same as before (Section 4.3). We show results for models
with either time features or frequency features to understand their behaviour individually, or both as
described above.

Frequency features improve OOD generalisation with CD. Figure 4 shows that frequency fea-
tures consistently yield lower PAD but also lower ID accuracy (except for HAR) compared to time
features. When time and frequency features are concatenated, ID performance is preserved while
distributional divergence is reduced, leading to improved OOD accuracy across all datasets com-
pared to time features alone. This supports He et al. (2023) in showing that frequency domain
features improve OOD generalisation in TSC, when the model learns with CD. Comparing with
Figure 2, it is important to note that in terms of OOD accuracy and generalisation gap, this strategy
is still inferior to using CI with time features on datasets where the distribution shift is significant.

Methods to improve OOD generalisation are architecture-specific. Figure 5 shows the same
trend in ID accuracy and PAD for CI as with CD. However, the effect that this has on OOD perfor-
mance is different, with no significant benefit being observed by using frequency features (except
on WISDM, where ID performance is improved by using both). Our explanation for this is that the
domain divergence for time features is already low, and the drop in ID performance outweighs any
gain from further reducing divergence. We do not mean to imply here that frequency features are
not useful for improving OOD generalisation when using CI, as other architectures may use those
features in a more effective way. But rather we highlight that a strategy that helps to improve OOD
generalisation for models that learn with CD might not help models that learn with CI.
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Figure 5: Metrics for CI with time, frequency, and both features.

6 CONCLUSIONS

In this paper, we have investigated how learning with CI impacts OOD generalisation in multivariate
TSC, and compared it with the standard approach of learning with CD. We have shown that CI sig-
nificantly improves robustness to distribution shift, as evidenced by smaller feature divergences and
generalisation gaps across all the six benchmarks we used. For datasets where the distribution shift
is more severe, this improved robustness vastly improves classification performance on OOD data.
Below, we present limitations of our work and highlight some potential future research avenues.

Learning channel dependencies. The CI approach assumes that learning dependencies between
channels is not strictly necessary for good performance. Although our experiments suggest that this
assumption is reasonable, it is entirely possible that a dataset might require learning these dependen-
cies for effective classification, in which case the approach would fail. Therefore, a natural extension
to this research would be to explore how both types of learning might be incorporated into a single
solution.

Improving performance for CI. Our results on using frequency features show that to improve OOD
generalisation further for the channel-wise ensemble, an approach that trades off ID classification
performance for robustness will likely not be effective. Instead, approaches will need to either (1)
maintain ID classification performance while improving robustness or (2) maintain robustness while
improving ID classification performance.

Beyond time series classification. Finally, we recognise that our methods and findings are specific
to multivariate TSC, but we hope that they might inspire those investigating OOD generalisation
in other domains to take a step back and consider all the assumptions and choices, perhaps taken
for granted, that could be impacting OOD generalisation. This might help to uncover other simple
techniques for improving OOD generalisation.
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A DATASETS

In this section, we provide details for each of the benchmark datasets that we used in this paper.
To obtain multiple input samples from a single continuous recording, a sliding window approach
is used, whereby a window of fixed size is passed along the time series, creating segments at fixed
intervals. If the class labels for each time step of the window are all the same, the window is used,
and is assigned that class label. This prevents windows being used that are assigned a class label but
contain individual time steps that have been recorded as a different label.

DSADS (Altun et al., 2010). This dataset contains data from eight subjects for the task of human
activity recognition, with 19 classes. The data was recorded with a 3-axis accelerometer, 3-axis gy-
roscope, and 3-axis magnetometer device at five different locations on the body (total 45 channels),
with a sampling frequency of 25 Hz. The dataset is already segmented into windows of 125 samples
(five seconds). The average number of samples for each domain is 1140.

HAR (Anguita et al., 2013). This dataset contains data from 30 subjects for the task of human activity
recognition, with six classes: walking, walking upstairs, walking downstairs, sitting, standing, and
laying. The data was recorded with a 3-axis accelerometer, 3-axis gyroscope, and 3-axis body device
(total nine channels), with a sampling frequency of 50 Hz. The dataset is already segmented into
windows of 128 samples (2.56 seconds). The average number of samples for each domain is 343.

MHEALTH (Banos et al., 2014). This dataset contains data from 10 subjects for the task of human
activity recognition, with 12 classes. The data was recorded with a 3-axis accelerometer, 3-axis
gyroscope, and 3-axis magnetometer device at two different locations on the body, and a third device
on the chest with a 3-axis accelerometer and two-lead ECG (total 23 channels), with a sampling
frequency of 50 Hz. We segment the dataset with a window length of 100 samples (two seconds)
and overlap of 50 samples. The average number of samples for each domain is 663.

PAMAP (Reiss & Stricker, 2012). This dataset contains data from nine subjects for the task of
human activity recognition, with 18 classes. The data was recorded with a temperature sensor, 3-
axis accelerometer, 3-axis gyroscope, 3-axis magnetometer device at three different locations on
the body (total 30 channels), with a sampling frequency of 100 Hz. We segment the dataset with a
window length of 256 samples (2.56 seconds) and overlap of 128 samples. The average number of
samples for each domain is 820.

WESAD (Schmidt et al., 2018). This dataset contains data from 15 subjects for the task of stress and
affect detection with two classes: stressed and non-stressed. The data was recorded with an ECG,
EDA, EMG, respiration, and temperature sensor and 3-axis accelerometer (total 8 channels), with a
sampling frequency of 700 Hz. We downsample the signals to 100 Hz to ease computational costs.
We segment the dataset with a window length of 6000 samples (60 seconds) and overlap of 1000
samples. The average number of samples for each domain is 172.
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WISDM (Kwapisz et al., 2011). This dataset contains data from 36 subjects for the task of human ac-
tivity recognition, with six classes: walking, jogging, walking upstairs, walking downstairs, sitting,
and standing. The data was recorded with a 3-axis accelerometer, with a sampling frequency of 20
Hz. We segment the dataset with a window length of 128 samples (6.4 seconds) and no overlap. The
average number of samples for each domain is 228.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATA SPLIT

We use the ‘training-domain validation set’ model selection strategy (Gulrajani & Lopez-Paz, 2021).
Here, the dataset Dd from a domain d ∈ Etrain with indices Id = {1, . . . , nd} is split into a
training set with indices I train

d ⊂ Id and a validation set with indices Ival
d = Id\I train

d , such
that we have a training set Dtrain

d = {(Xi, yi)|(Xi, yi) ∈ Dd and i ∈ I train
d } and a validation

set Dval
d = {(Xi, yi)|(Xi, yi) ∈ Dd and i ∈ Ival

d }. The training and validation sets from each
domain are combined to form the overall training set Dtrain = ∪d∈EtrainD

train
d and validation set

Dval = ∪d∈EtrainD
val
d . We use 75% of the data in Dd for training and 25% for validation, strati-

fied by class.

B.2 MODEL TRAINING

We use a fully convolutional network (Wang et al., 2017) as the feature extractor for all experiments.
It consists of three 1D convolutional layers, each with 16 kernels of length 3, with batch normal-
isation and the ReLU activation function between layers. Global average pooling is used on each
feature map from the last layer to obtain the final 16-dimensional feature vector. For classification,
the feature vector is passed to a linear classifier.

All models are trained for 50 epochs using the Adam optimiser with a learning rate of 1 · 10−3,
weight decay of 1 · 10−5, and a batch size of 64. For recording metrics, we select the epoch with the
lowest validation loss.

All experiments were implemented in PyTorch and ran on a single NVIDIA GeForce RTX 3090.

C PROXY-A DISTANCE

We approximate the H-divergence with the proxy-A distance (PAD), following the approach of
Ganin et al. (2016). This first involves creating a new dataset of source domain feature vectors from
Dtrain, each labelled as 0, and a dataset of target domain feature vectors from Dtest, each labelled as
1. The larger dataset is truncated such that they are both the same size N , and half of each dataset is
then randomly selected as the train split, and the other half as the test split:

US
train = {(Zi, 0)}N/2

i=1 , U
S
test = {(Zi, 0)}Ni=(N/2)+1,

UT
train = {(Zi, 1)}N/2

i=1 , U
T
test = {(Zi, 1)}Ni=(N/2)+1.

They are combined into the overall training and test datasets:

Utrain = {US
train ∪ UT

train}, Utest = {US
test ∪ UT

test}.
A two-layer MLP is trained on Utrain to distinguish between source and target domain features, and
then tested on Utest. The mean absolute error is computed for the predictions to obtain the error ϵ.
The PAD is then computed as:

PAD = 2(1− 2ϵ).

D ADDITIONAL RESULTS

D.1 INDIVIDUAL CHANNEL RESULTS

In these figures, we show the four metrics for the individual ensemble members for the other five
datasets (i.e. not MHEALTH).
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Figure 6: DSADS. Individual values are not shown because of legibility with the large number of
channels.

Figure 7: HAR.

E MISCELLANEOUS

E.1 FREQUENCY DOMAIN WINDOWING

The discrete Fourier transform (DFT) treats a signal being analysed as if it is an integer number
of periods of a periodic signal. However, as described in Appendix A, individual time series to
be classified are obtained by segmenting a longer time series, which can create discontinuities at
the boundaries of the segmented signal, i.e. an abrupt change from x[N − 1] to x[0]. This results
in spectral leakage and a worsening of the quality of the frequency spectrum. To remedy this, a
window function can be used to enforce continuity at the boundaries of the signal. We apply a
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Figure 8: PAMAP. Individual values are not shown because of legibility with the large number of
channels.

Figure 9: WESAD.

cosine window, defined as w[n] = sin (π(n+ 0.5)/N), to each channel of each time series before
computing the DFT.
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Figure 10: WISDM.
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