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ABSTRACT

Despite the remarkable zero-shot performance of vision-language models, such
as Contrastive Language-Image Pretraining (CLIP), on many downstream tasks,
their potential may be degraded under distributional shifts. Test-time adapta-
tion (TTA) offers a solution by adapting the model to these shifts during in-
ference, without requiring labeled data. Prior methods like CLIP-OT leverage
optimal transport for pseudo-labeling. However, the quality of these labels can
be unreliable, leading to suboptimal adaptation and error accumulation. To ad-
dress this, we propose CLIP-DR, which introduces two extra key components:
(1) a cosine similarity loss to align image features with textual prototypes, sta-
bilizing the adaptation direction; and (2) an information maximization regular-
izer to promote confident and diverse predictions, preventing model collapse.
Extensive evaluation on seven benchmarks (covering 15 corruption types and
domain shifts, totaling ~6000 trials) demonstrates that CLIP-DR consistently
outperforms state-of-the-art methods while adding ~0.01 seconds of computing
time per batch (e.g., 4% and 12% higher than CLIP-OT and WATT-S on the
TinyImageNet-C dataset with 1.98 second per batch). The codes are available
athttps://anonymous.4open.science/r/TTA-Codes—6DF 3l

1 INTRODUCTION

Vision language models (VLMs), such as contrastive language-image pretraining (CLIP) model
Radford et al.| (2021); [Wu et al.| (2025)); Yang et al|(2025)), have demonstrated promising zero-shot
transferability due to their strong semantic feature understanding capabilities. However, if there
exists a distribution or texture shifts between the training set and the test set, the performance of
the model can be degraded |Silva-Rodriguez et al.| (2024). Intuitively, a simple solution for this
challenge is to fine-tune the trained model using domain-specific labeled data (Goyal et al.| (2023));
Chaddad et al.| (2025). These approaches have several limitations in real-world applications. For
example, they require a large amount of labeled data, which can be difficult to obtain |Carvalho &
Abad| (2025). Furthermore, fine-tuning the model can degrade its transferability (e.g., its zero-shot
capabilities) Kim et al.| (2024)).

Test-time adaptation (TTA) introduces a practical solution to address these limitations [Tong et al.
(2025)); Rifat et al.| (2025). The key in TTA is to optimize a pre-trained model in a real-time adap-
tation situation without accessing any supervisory signals (e.g., label) |[Hu et al.| (2025). However,
despite the progress in convolutional neural network (CNN) and vision transformer (ViT) based
TTA, the study related to Vision-Language Models (VLMs) remains less explored. Initial methods,
such as entropy minimization (TENT) Wang et al., pseudo-labels guidance |(Osowiechi et al.[(2024)
have been used for CLIP adaptations. However, these approaches can lead to suboptimal solutions
due to insufficient supervision information [Hakim et al.| (2025). Recent studies, such as CLIP-OT,
uses optimal transport (OT) to align the outputs of CLIP and the pseudo logits generated by text
prototypes Mishra et al.| (2025)). This achieves promising performance with reasonable computa-
tional overhead on several TTA benchmarks. However, using OT alone can lead to poor pseudo
logit quality, thereby reducing reliability in prediction. Figure [I]shows an example of CLIP-OT in
prediction using a reliability diagram. CLIP-OT provides a higher expected calibration error (ECE
Zhang et al.|(2025))), indicating its overconfidence and poor pseudo-label quality during inference.
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Figure 1: CLIP-OT (first row) vs. CLIP-DR (second row). Relying on OT loss leads to overconfi-
dence for model prediction, resulting in a higher calibration error.

In light of the above limitation, this study introduces two components to refine the quality of the
pseudo-labels in CLIP-OT: (i) a cosine similarity loss to align the predicted logits of the CLIP and
the virtual logits generated by text prototypes, and (ii) an information maximization (IM) strategy to
regularize the virtual logits in an unsupervised manner. Experimental results show that the proposed
approach provides a feasible improvement in test accuracy (e.g., 5.42% higher on Tiny-ImageNet-C
dataset) with nearly identical computation load compared to CLIP-OT.

The contributions of this paper can be summarized as follows:

1. Algorithm. To improve the quality of the pseudo-labels in CLIP-OT, we extended CLIP-OT
by: (i) We design a self-supervised cosine similarity loss that encourages the model to learn
high quality pseudo logits, thereby improving the robustness to image corruptions. (ii) We
propose using an information maximization loss function to regularize the predicted logits.
This reduces prediction uncertainties and prevents mode collapse on test data.

2. Empirical analysis. We validate the CLIP-DR on seven publicly available datasets in: (i)
robustness to different corruptions, (ii) generalization ability to domain shifts, (iii) compu-
tational overhead, (iv) robustness and (v) stability under small batch sizes.

2 RELATED WORK

Test-time adaptation. TTA adapts a pre-trained model (e.g., on ImageNet) to an incoming stream
of unlabeled data processed in batches during testing |Liang et al.| (2025). In [Sun et al. (2020),
they propose the fundamentals of TTA and introduce self-supervised loss to adapt the model to
the target data. However, this approach requires source data, which limits its potential. In Wang
et al., they first formulate the full TTA task and design an entropy-based regularization technique to
fine-tune the normalization layer parameters using the target test data. Furthermore, in|Chen et al.
(2022), they applied self-supervised contrastive learning between different augmented images with
a pseudo-labeling technique to adapt the model at test time.

Test-time adaptation with VLMs. Test-Time Prompt Tuning (TPT) |Shu et al.| (2022) explored
the usefulness of prompt tuning in TTA tasks using VLMSs, such as CLIP. Specifically, it optimizes
the prompt by minimizing the entropy with confidence selection to encourage the model to produce
consistent predictions across different augmented views of each test sample. However, it requires
multiple augmented samples, increasing memory usage. In|Osowiechi et al.[(2024)), a diverse set of
templates for text prompts was used with a text ensemble strategy to enhance text features by ag-
gregating various textual cues (Weight average test-time adaption, WATT). Finally, it optimizes the
normalization layer parameters with pseudo-labels. Similarly to WATT, in|Hakim et al.[(2025)), they
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design a novel process for tuning text prompts (CLIPArTT). Basically, multiple predicted classes are
aggregated into a new text prompt (e.g., a picture of a “cat” or a “dog”) that is used as a pseudo-label
to reclassify the images transductively. By updating the normalization layer parameters, CLIPArTT
provides feasible performance with lower overhead. Furthermore, in [Lafon et al| (2025)), they ar-
gue that previous gradient-based approaches for VLMs can degrade learned knowledge during TTA.
Thus, they proposed a soft contrastive loss that aligns with CLIP’s pretraining objective. In|Maha-
(2025), they propose a bimodal online TTA method designed to improve the robustness
of CLIP to common image corruptions. Specifically, they adapted the visual encoders and aligned
the image and text features, promoting a stronger association between the image class prototype and
the corresponding text feature generated by pseudo-labels.

Unlike previous works, we extend CLIP-OT by introducing cosine similarity based feature align-
ment and information maximization to regularize the predictions and reduce uncertainties. Specifi-
cally, it solves the over-confidence in OT framework, which causes high ECE. Our approach intro-
duces negligible computational costs during adaptation, enhancing its practicality in a wide range of
applications.

3 METHOD

3.1 PROBLEM SETTING

We address the problem of adapting a pretrained VLM at test time. In particular, given a model
trained on the source domain Dg (e.g., ImageNet), the goal is to adapt the model online to the new
target domain Dp, where only unlabeled data are available (note that data is received as a stream of
batches, and predictions must be provided).

Lor(P, Q1)

Images

Templates
A photo of a {class}
Itap of a {class}

A bad photo of a {class}

Sinkhorn-Knopp
algorithm

A photo of the small {class),

Figure 2: Pipeline of CLIP-DR. It uses optimal transport with the Sinkhorn algorithm to generate

-.» while use the original image and averaged text features to yield the probability matrix P. Then,
it minimizes the pseudo cross-entropy loss between P and Q;,, the similarity loss between O and
text prototypes t.,,, and the regularization loss Ly, using Z and ty,, as unsupervised loss during
TTA. Note that at each test batch, following |Mishra et al.| (2025), our model runs for m iterations,
each leveraging a different template m to obtain the Q.

Figure 2] shows the pipeline of our approach. It has two parts, 1) feature extraction, and 2) test-time
adaptation. We will elaborate on these parts as follows.
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3.2 FEATURE EXTRACTION WITH CLIP

CLIP is an image-text based VLM, which requires two encoders, namely an image encoder 6 and
a text encoder ¢. Basically, given the inputs x with corresponding prompts t (e.g., “A PHOTO OF
A CLASS”), CLIP generates the vision and text features z € R< and t;, € R? normalized by Iy
distance, and provides the predicted probability as follows:

exp (ziTtk/T)

Sjsiexp (2] t/7)

ply = klx;) = (1)

where T is a pre-defined scaling parameter.

However, the original CLIP relies on a single prompt, that is, lacks diversity. Then, we introduce
a popular strategy Radford et al.| (2021) that designs multiple prompts to obtain the text features.
Specifically, given a prompts set 7 = {{Tm }L,}X_,, whose embedding for template m and

class k is calculated as ty,,, = ¢(“prompts”). Finally, the t, is obtained as t; = % Z%Zl O (Tiem)
Details of the templates are reported in Appendix

3.3 TEST TIME ADAPTATION

Optimal transport.. Following |[Mishra et al.[(2025), CLIP-DR optimizes the following loss func-
tions:

N C
|
— 2 2 aly = klxi) log p(y = kx;) )

i=1 c=1
where ¢(y = k|x;) is posterior distributions encoded using the model predictions.

Furthermore, since the probability is obtained using Eq. (IJ), the objective in Eq. () can be expressed

as:
N
Lor = Z

where T = [t1, -, tx] represents the matrix consisting of class text prototypes. In practical, it can
be reformulated as the following objective:

z t
szqu logZeXp k)l, 3)
k=1

T T
825157“((2 T'Z), 4)

where the Q should be an element of the transportation polytope:

Q= {QER”NQ1N=[1(1K7QT1K:]1V1N}, (5)

where 1 and 1 represent the vectors of ones in dimension K and IV, respectively.
To efficiently solve the previous objective function, the Sinkhorn algorithm is used to reformulate

the Eq. (@) as follows:

TmT
gleagtr(Q T'Z)+eH(Q) (6)

where H is a Shannon entropy function. Finally, we can obtain Q* with a few iterations as:
T'Z
Q* = Diag(u”) exp <> Diag(v("), 9
T

where u and v are renormalization vectors in R” and R? respectively, with ¢ indicating the iteration.
Specifically, u and v can be obtained using the iterative Sinkhorn-Knopp algorithm Knight| (2008).
Since we use multiple templates, in each batches of data, it will iterate m times for each template m
as follows:

T
et (1) s .

where for each Q};,, the loss is calculated as £(P, Q) = —Q}, logP.

m?
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Logits alignment. To maintain CLIP’s cross-modal alignment during adaptation, we regularize the

output logits O obtained from CLIP to align with the text prototypes. Specifically, we construct

virtual logits f; from the text prototypes to serve as alignment targets. Following (Choi et al. (2025),
we enforce this alignment using cosine similarity:

O.f; = ;

L= 08 , where £, =t t!

.
Sof = = my O =12; t;/7 &)
N T YT ¥

where the label § corresponds to the most confident class for target sample x;. The final loss can be
formulated as follows:

B
Leos = Y exp(C(x;) — Co) - (1= s05,) - {C(x;) > Co} (10)
j=1

where I is an indicator function. C'(x) is the predictive confidence of sample x, and the Cj is the
confidence threshold to filter prediction uncertainties. A lower value of L., indicates that the output
O is similar to the virtual logits fj;.

Information maximization. To prevent posterior collapse and ensure meaningful feature learning,
we introduce a regularization term using an Information Maximization (IM) function [Tschannen
et al.| (2020). Specifically, we minimize the entropy of individual predictions to ensure the model
produces confident, sharp outputs on the unlabeled test data, while we maximize the entropy of the
average prediction distribution across the entire test samples to force the model to produce diverse

predictions as follows:
1

L= Y H(px)) - H(p) (11)
|Bt‘ xEB
where H (p(x)) = — 25:1 pr(x) log pr(x) is the entropy of the prediction distribution for a single

sample x, p = ﬁ Y e 5, P(x) is the average prediction distribution over the test samples in each
batch, and H(p) = — 25:1 Pr log py. is the entropy of the average prediction distribution.
Finally, we optimize the following loss function:

L= Lor +MLeos + A2Lim (12)

where \; and )\ are two hyper-parameters. Following Mishra et al.| (2025), we optimize the Layer-
norm layer while freezing the other layers to improve computational efficiency.

Typically, over-confidence (i.e., high ECE) arises from noisy pseudo-labels and collapsed predic-
tions. During adaptation, L., reduces pseudo-label noise by aligning features with correct pro-
totypes, minimizing confidently wrong predictions. Furthermore, L£;,; directly penalizes over-
confidence by enforcing diverse outputs via entropy maximization while maintaining per-sample
confidence, which is a regularization for calibration |Patel et al.| (2020). Together, they jointly opti-
mize the model to avoid feature misalignment and distribution collapse, providing promising cali-
bration ability.

4 EXPERIMENTS

4.1 DATASETS

CLIP-DR is evaluated on three families of adaptation benchmarks, namely no corruptions (CIFAR-
10 Krizhevsky et al.| (2009) and TinyImageNet |Le & Yang (2015)), corruptions (CIFAR-10/100-
C |Hendrycks & Dietterich| (2019), ImageNet-C |[Hendrycks & Dietterich| (2019), TinylmageNet-C
Hendrycks & Dietterich (2019) with 15 perturbations), and domain shifts (PACS|L1 et al.|(2017) and
OfficeHome |Venkateswara et al.| (2017)). In this study, we consider the same severity level as used
in CLIP-OT.

4.2 IMPLEMENTATION DETAILS

Pretrained CLIP (ViT-B/32) [Radford et al.| (2021) is used as the feature extractor backbone. The
batchsize is set to 128 with a learning rate of 10~ for an Adam optimizer. The 7 is set to 0.01. The
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Table 1: Accuracy (%) of the different approaches on CIFAR Corruptions benchmarks. Bold means
the best result. A represents the difference between Ours and CLIP-OT.
CLIP TENT TPT CLIPArTT WATT-P WATT-S CLIP-OT CLIP-DR

Dataset ICLR2I  ICLR'2I  NewrIPS22  WACV'25  NeurlPS'24  NewrIPS'24  Arxiv'25 Ours A
CIFAR-10 8874  91.69 £0.10 88.06 £0.06 90.04 £0.13 91.41 £0.17 91.05 £0.06 9323 £008  93.4320.06 +02
Gaussian Noise 3527 41274027 3390 £008 5990 £036 61892024 6384 £024 6503 £0.16  652540.13 +022
Shot Noise 3067 4720 £023 3820 £002 6277 £0.07 63.52 5008 6528 £021 6743 £019  67.380.15 0.05
Impulse Noise 4261 4858 2031 37.66 2020 56.02£0.16 57.13 2002 58.64 £0.11 62.15£036  62.2410.23 +0.09
Defocus Blur 6976 77.124£0.16 67.83 £0.28 7674 £0.05 78.86 £0.09 78.94 £0.12 8226 +£0.09  82.440.13 +0.14
Glass Blur 4240 5265 +0.30 38.81 £0.12 61.77 £0.16 62.88 £0.06 65.12 £0.07 67.86 £0.02  67.6940.04 0.17
«, Motion Blur 6397 71254009 633940.13 7601 £0.19 76.85 £0.26 77.81 £0.14 814 +£0.15  81.64--0.19 +0.24
€ Zoom Blur 69.83 7620 £0.19 68.95+0.16 7740 £0.20 7935 +0.04 7932 +£0.07 83.14 £0.19  83.6+23 +0.46
% Snow 7178 78294020 70.16 £0.10 77.29 £0.16 79.44 £0.09 79.79 £0.06 83.61 £0.14  84.1+14 +0.49
£ Frost 7286 79.84 £0.09 7239 £022 79.20 £0.08 80.13 £0.10 80.54 £0.12 8324 £022  83.45+0.18 +0.21
5 Fog 67.04  77.39 001 6431028 7574 4+0.14 77.68 £0.07 78.53 £0.22 8229 £0.12  82.38--0.08 +0.09
Brightness 81.87 8778 £0.03 81.30 £0.18 86.59 £0.16 87.10 £0.10 87.11 £0.11 89.64 £0.10  89.75--0.11 +0.11
Contrast 6437 7947 £0.11 6226031 77.82£0.14 80.04 £024 8120 £0.22 8475 £0.13  84.98--0.12 +0.23
Elastic Transform  60.83  70.00 £0.25 56.43 £027 70.20 £0.01 71.76 £0.10 72.66 £0.15 7598 £0.22  76.16:£0.17 +0.18
Pixelate 5053 6374 £0.18 42.80 2040 6652 £0.13 69.28 £0.09 71.11 £0.13 76.64 £0.06  77.110.04 +0.47
JPEG Compression 5548 62.64 £0.14 53.67 2025 63.51 £0.14 6649 £0.14 67.36 £0.28 70.18 £031  70.54+0.27 +0.32
Average 59.22 67.56 56.80 7117 72.83 73.82 77.04 77.24 402
Gaussian Noise 1480  14.3840.14 14.03£0.10 25324014 31284003 32074023 33.194£0.11  33.5540.13 +0.36
Shot Noise 1603 17.344027 15254017 27.9040.05 33444011 34364011 34754013  35.2320.15 +0.48
Impulse Noise 1385  10.032£0.13  13.01£0.13 25624009 29404011 30334003 30494033  30.610.21 +0.12
Defocus Blur 3674 49.05420.07 37.604£0.17 49.884+023 52324028 52994016 53504025  53.7740.19 +027
Glass Blur 1419 3712007 16412002 27.8940.03 312040.12 32154030 34814024  353:+£0.26 +0.49
© Motion Blur 36.14 4662027 37.52£023 47.93£0.14 4972015 50.53£0.12 5270005 52812007 +0.11
€ Zoom Blur 4024 51842015 429940.11 52704006 54724004 55304022 5673£0.15  56.8310.16 +0.1
2 Snow 3895 46712021 42354013 49722001 51794004 52774015 5383£0.12  54.2440.11 +0.41
Z Frost 4056 44904027 43314014 49.63+0.12 53.04:0.08 5379031 54634005  54.91+0.08 +0.28
E Fog 3800 47314004 38.8140.17 48774004 50784024 51494021 53534003  53.87-+0.08 +0.34
Brightness 4818 60.584+0.18 5023+0.11 61274008 62.65+025 63572021 64.07029  64.4740.21 +0.4
Contrast 2953 45900.11 28.0940.09 48554024 51344010 52764027 54754032  54.87-+0.28 +0.12
Elastic Transform 2633 33.09:£0.08 28.12:£0.15 37.450.08 39.9740.06 40904043 43.06+021  43.47+0.17 +0.41
Pixelate 2198 26474009 204310.14 33884+0.14 39594009 4097+0.16 44.68+£028  45.31+0.15 +0.68
JPEG Compression 2591 29.89:20.07 28.8240.09 36.0740.32 38.99+0.16 39.59+0.08 40.66:£0.17  41.07-0.11 +0.41
Average 29.43 35.19 30.46 41.51 44.68 45.57 47.02 47.35 +0.33

Table 2: Test accuracy (%) on Tiny-ImageNet-C corruption benchmarks. Bold means the best result.
A represents the difference between CLIP-DR and CLIP-OT.
CLIP TENT TPT CLIPTT WATT-S TDA CLIP-OT CLIP-DR

Dataset ICLR'21 _ICLR’2I _ NeurPS’22 WACV'25 __ NewrlPS'24____ CVPR24 Arxiv’25 Ours -
Tiny-ImageNet 5829 5772 5890 59.85 61.35 62.36 63.69 64.38 +0.69
Gaussian Noise  7.08 801 9.29 14.44 13.02 24.01 2136 24.76 +34
Shot Noise 9441 1004 1170 1744 15.94 2821 2451 32.53 +7.63
Impulse Noise 344 418 4.85 10.37 6.90 18.65 1821 24.68 +734
Defocus Blur 2171 2453 27.56 3146 26.91 36.77 36.25 44.42 +817
Glass Blur 912 1000 1103 1584 1401 2258 23.08 29.24 +6.16
Motion Blur 3452 3694 3897 4134 4126 37.38 4778 49.45 +167
Zoom Blur 2744 2948 3429 35.06 33.96 36.59 40.96 44.78 +382
Snow 3251 3220 3445 36.86 37.76 3323 4128 43.85 +257
Frost 3633 3572 3713 38.20 3965 35.04 46.03 47.66 +163
Fog 2504 2746 2889 3344 32.13 38.17 39.93 49.31 +938
Brightness 15 3979 8331 46.43 46.93 4298 5381 57.9 +409
Contrast 1.81 2.24 3.15 6.24 3.53 14.70 12.94 18.21 +5.27
Elastic Transf. 3040 3192 3388 33.89 3501 4238 4153 49.5 +797
Pixelate 278 2479 27170 34.85 3155 3407 4290 47.54 +464
JPEG Compr. 2959 3093 3360 37.32 36.46 40,64 4288 50.93 +805
Mean 204 2322 2532 28.88 27.87 3248 35.56 40.98 +5.16

Table 3: Detailed performance values for PACS and OfficeHome datasets. A represents the differ-
ence between Qurs and the CLIP-OT. Bold indicates the best result.

Dataset Domain CLIP TENT TPT CLIPArTT  WATT-P WATT-S CLIP-OT CLIP-DR A
ICLR’21 ICLR’21 NeurlPS’22 ~ WACV’25  NeurIPS’24  NeurlPS’24  Arxiv'25 Ours
Art 96.34 96.65+0.05 95.5240.20 96.5740.09 96.3140.01 96.3940.01 96.5440.02  97.07+0.01 +0.53
Cartoon 96.08 96.224£0.05 94.7740.20 96.00+0.02 96.52£0.02 96.6240.02 97.66+0.00  98.0040.00 +0.34
PACS Photo 99.34 99.40+0.00 99.4240.06 99.2840.00 99.484+0.03 99.5240.00 99.7610.03  99.76+0.03 -
Sketch 82.85 82.9640.12 83.2240.14 83.931+0.14 86.924+0.04 86.65+0.12 86.54+0.01 87.1410.01 +0.6
Mean 93.65 93.81 93.23 93.95 94.81 94.80 95.13 95.5 +0.37
Art 73.75 74.03+0.27 75.76+0.27 73.844+0.20 75.651+0.27 75.7640.39 78.78 £0.15 79.38 £0.22 +0.6
Clipart 63.33 63.4240.04 63.08+0.31 63.5440.06 66.231+0.13 65.7740.11 66.214+0.19  67.74+0.12 +1.53
OfficeHome  Product 85.32 85.514+0.08 84.0740.28 85.23+0.16 8541+0.09 85.41£0.01 86.13£0.03  86.2540.03 +0.12
Real World 87.71 87.7440.05 85.8940.33 87.614+0.05 88.2240.15 88.3740.07 87.79£ 0.19 87.96+ 0.17 +0.17
Mean 77.53 77.68 77.20 77.56 78.88 78.83 78.98 80.33 +1.35
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Table 4: Test accuracy (%) on Tiny-ImageNet-C dataset with different components. Bold indicates

the best result.
Components Noises
LoT L1y Lcos|Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog  Brightness Contrast Elastic Pixelate JPEG [ Avg.
"4 X X 2136 2451 1821 36.25 23.08 4778 4096 41.28 46.03 39.93 53.81 1294 4153 4290 42.88(35.56
v v X 2375 297 2212 40.01 27.55 4942 42.87 4347 47.21 47.79 57.59 1571 4626 47.02 49.9239.36
v X v 2457 3036 2236  40.71 27.48 49.09 41.72 43.33 47.33 48.13 57.16 16.06 4526 4641 49.89(39.32
v v v 2476 3253 24.68 4442 2924 4945 44.78 43.85 47.66 49.31 57.9 1821 495  47.54  50.93|40.98

e used in Eq. [0]is set to 0.7 and 0.5 for CIFAR-10/100-C and TinyImageNet-C datasets, respectively.
Furthermore, the values of A1 and A5 are set to 0.1 and 0.3 for CIFAR-10-C, 0.1 and 0.1 for CIFAR-
100-C, and 1.0 and 0.1 for TinyImageNet-C, respectively. All experiments are based on the Windows
11 operating system, and feature an Intel 13900KF CPU with 128 GB of RAM and an RTX 4090
GPU. We use PyTorch 1.13.1 with Python 3.8. Furthermore, eight predefined text templates from
CLIP were used to evaluate the proposed model’s adaptability and performance. Note that the
templates are the same as the ones employed in WATT |Osowiechi et al.| (2024). For comparison,
we consider CLIP-based TTA approaches, including TENT Wang et al., TPT |Shu et al.| (2022),
CLIPACTT Hakim et al.| (2025), TDA [Karmanov et al.| (2024), WATT |Osowiechi et al.| (2024} and
CLIP-OT Mishra et al.| (2025). Following the CLIP-OT [Mishra et al.| (2025)), we report the results
on these datasets as the average + standard deviation (three times under different random seeds).
Baseline results (excluding CLIP-OT and TDA) are from Mishra et al.| (2025); we reran CLIP-OT
and TDA using their official code with optimal settings they provided.

4.3 RESULTS

No corruptions. As reported in Table|l|and Table 2| CLIP-DR achieves higher test accuracy than
CLIP-OT, e.g., a 0.69% improvement on TinyImageNet. These results suggest that CLIP-DR effec-
tively adapts the features without compromising the performance of the model on its original clean
data.

Performance under common corruptions. Table[T]and Table 2]report the test accuracy for CLIP-
DR and baselines on CIFAR-10, CIFAR-10/100-C and TinyImageNet-C datasets. Notably, CLIP-
DR achieves a substantial improvement of 4.82% in Avg. accuracy compared to CLIP-OT on the
TinylmageNet-C dataset. Across its 15 corruptions, CLIP-DR shows consistent gains, with im-
provements ranging from 1.63% to 9.38%. On the CIFAR benchmarks, CLIP-DR provides modest
performance gains (e.g., +0.33% Avg. accuracy on CIFAR-100-C). These results suggest that CLIP-
DR enhances the performance on both simple and complex data while maintains a stable adaptation
process. Furthermore, Table [5] summarizes the performance on ImageNet-C. Results show that
CLIP-OT suffers from negative adaptation, degrading the performance from 37.89% (CLIP zero-
shot) to 35.45%. This demonstrates that the pseudo-labels generated by OT can be highly unreli-
able. CLIP-DR reduces performance degradation and provides a higher Avg. accuracy of 39.03%,
outperforming CLIP-OT by 3.58%. This proves that our dual regularization framework is essen-
tial for stabilizing the adaptation process and preventing error accumulation. The results of the
TinyImageNet-C dataset with standard deviation are summarized in Appendix Table [30]

Texture and style shifts. Table[3|presents the test accuracy for the PACS and OfficeHome datasets.
For example, CLIP-DR achieves an Avg. accuracy of 80.33%, outperforming CLIP-OT by 1.35% on
OfficeHome. Overall, CLIP-DR provides the highest Avg. accuracy across all datasets, highlighting
its adaptability to texture and style shifts.

Table 5: Accuracy (%) on ImageNet-C for CLIP-DR and baselines. Bold indicates the best result.

Methods Noises
ImageNet-C | G i Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG | Avg.
CLIP 35.4 3575  35.96 3559 1945 36.63 26.88 31.35 30.04 43.99 53.38 46.95 46.59 4442 46.01 | 37.89
CLIP-OT 31.56  32.08 33 325 19.65 31.73 27.65 30.53 28.94 40.29 52.51 4322 4415 40.73 43.29 (3545
CLIP-DR 3751 3775 37.71 36.73 25.1 3822 30.98 33.23 30.42 435 52.97 4636 4569 44.02 45.35]39.03

Computation overhead. Figure[3|compares the per-batch inference time of the baselines and CLIP-
DR using a batch size of 128. As shown, CLIP-DR requires an extra 0.01 and 0.02 seconds on Tiny-
ImageNet-C and OfficeHome datasets compared to CLIP-OT. This minimal overhead demonstrates
that the proposed components can be integrated into the TTA with negligible impact on throughput,
making CLIP-DR suitable for practical situations.
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accuracy with different Cy (Right) values on PACS, OfficeHome and Tiny-ImageNet-C datasets.
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Figure 4: Test accuracy (%) on CIFAR-10-C (Left) and Tiny-ImageNet-C (Right) corruption bench-
marks with different € values.

4.4 MODEL ANALYSIS

Ablation study. Table[]reports the test accuracy on Tiny-ImageNet-C with different components.
With L.,s, CLIP-DR learns more robust features, provides a higher accuracy compared to CLIPOT
(e.g., 24.57% vs. 21.4% under Gaussian noise), while the use of both L.,s and L, leads to the
highest accuracy (e.g., 24.76%). These results highlight the usefulness of the proposed components.

Impact of e. We validate the usefulness of the hyper-parameter € using CIFAR-10-C and Tiny-
ImageNet-C datasets. As shown in Figure 4 a lower e value such as 0.3 can not guarantee the
model learn useful feature representations, thereby provides 0.5% and 10% Avg. accuracy on
TinyImageNet-C and CIFAR-10-C datasets, respectively. This is because in certain cases, the Q ma-
trix became NaN, causing numerical instabilities during iterative updates. Instead, a higher € value,
such as 0.5 improves stability, leading to the highest Avg. accuracy of 40.98% on TinyImageNet-C.
Overall, the chosen values (0.5, 0.7) strike a balance between stability and performance, yielding
robust results across these noises.

Impact of C,. We use different threshold (Cj) to validate its importance in L.,s. Specifically,
we consider Cy € {0.1,0.2,---,0.95} for experiments using CIFAR-10-C, CIFAR-100-C and
TinylmageNet-C datasets. As shown in Figure 3] setting a higher Cj leads to a higher Avg. accu-
racy compared to low Cjy on CIFAR-10-C (e.g., 77.24%) and CIFAR-100-C (e.g., 47.35%) datasets,
while using a small Cy provides higher Avg. accuracy on TinylmageNet-C dataset (e.g., 40.98%).
We hypothesize that on simpler datasets such as CIFAR-10-C, a high threshold effectively filters out
true uncertainties. On complex datasets, the model can be overconfident in its incorrect predictions,
requiring a lower threshold.

Hyperparameter sensitivity. We explore the impact of each hyperparameter on the CIFAR-10-C,
CIFAR-100-C, and Tiny-ImageNet-C datasets. Specifically, we consider A; using values ranging
from [0.1, 0.2, ..., 1.0] for Tiny-ImageNet-C, CIFAR-10-C and CIFAR-100-C. We set the values of
Ao ranging from [0.1, 0.2, 0.3, ..., 1.0] (Tiny-ImageNet-C, CIFAR-10-C and CIFAR-100-C). Figure
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Figure 5: Heatmaps of the average accuracy with respect to A; and As.
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Figure 6: The deterioration ratio for CLIP-OT and CLIP-DR on TinyImageNet-C dataset.

[] shows the sensitivity of the Avg. accuracy to the hyperparameters A; and Xo. For example,
the heatmap for Tiny-ImageNet-C shows an optimal performance region (i.e., red) where \; is
approximately in [0.8, 1.0] and A9 in [0.1, 0.5]. The highest Avg. accuracy of 40.98% is achieved
at a value of 1.0 for A; and 0.1 for \s. Furthermore, the performance of the model depends strongly
on A1, with Avg. accuracy consistently higher than 40% when A; > 0.8, while the impact of A,
is minimal (i.e., the accuracy changes are < 0.5%). However, for CIFAR-10-C, achieving optimal
performance requires a higher value of A, and a lower value of A;. For CIFAR-100-C, setting
smaller values for both hyperparameters provides higher Avg. accuracy (e.g., A1 = 0.1, Ao = 0.3,
with an Avg. of 47.35%). Our results indicate that the optimal hyperparameter region is dataset-
dependent. A simple tuning strategy can be drawn from these findings: prioritize tuning A; on
large-scale datasets, while for smaller datasets, careful tuning of )5 is essential. The details of the
test accuracy for each corruption are reported in Appendix [A.6.1]

Robustness. Figure[6]shows the deterioration ratio (i.e., the fraction of initially correct predictions
that become incorrect during adaptation) on TinyImageNet-C dataset based on a single run (seed
42). For example, CLIP-OT exhibits a high deterioration ratio on many corruptions, such as Shot
noise (~0.5) and Defocus blur (~0.6), indicating severe catastrophic forgetting. However, CLIP-DR
reduces these ratios to ~0.3 on the same corruptions. Overall, CLIP-DR yields a lower deterioration
ratio under all 15 corruptions, highlighting its stability effect during adaptation.

Small Batch Sizes. Recent studies Wang et al.| (2025); Karmanov et al.| (2024) suggest one chal-
lenging TTA setting, which uses a small batchsize (e.g., four). Table [6|reports the test accuracy on
CIFAR-10-C and TinyImageNet-C datasets with a batchsize of four. For CIFAR-10-C dataset, the
small batch size limits the potential of CLIP-OT, reducing its Avg. accuracy to 57.01%. We notice
that CLIP-OT yields a lower Avg. accuracy compared to CLIP (59.22%). Similar conclusion can
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be drawn from TinylmageNet-C dataset. This indicates that using OT alone can lead to negative
adaptation under highly constrained conditions. In contrast, CLIP-DR, with its dual regularization
components, achieves an Avg. accuracy of 64.21% on CIFAR-10-C dataset, representing a 7.2% im-
provement over CLIP-OT and a 4.99% improvement over the CLIP. This highlights the robustness
of our approach in practical low-batch-size settings.

Table 6: Performance under different batchsize for CLIP-DR and CLIP-OT. Bold indicates the best

result.
Methods Noises
CIFAR-10-C | Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG | Avg.
CLIP-OT 49.93  51.16 482 59.54  51.53 6027 61.7 61.68 659 5935 64.11 5832 5832 50.06 55.13|57.01
CLIP-DR 55.65 56.71 52.72 69.9 5783 68.78 71.27 69.7 71.61 66.58  73.29 66.95 6421 58.62 59.35|64.21
TinyImageNet-C
CLIP-OT 12.1 1539 11.92 17.17 1469 187 17.83 19 2044 20.62 2398 7.11 21.94 2171 24.16|17.78
CLIP-DR 18.81 25.17 18.56 30.67 20.73 3347 3213 27.64 31.21 36.74 3742 12.07 38.18 2942 37.76 | 28.66

Cross-dataset. We use several cross-datasets to explore the generalization on different data types.
Specifically, ImageNet-R |[Hendrycks et al|(2021), ImageNetV2 [Recht et al.| (2019)), Aircraft Maji
et al.[ (2013), Caltech-101 |Bansal et al.[ (2023)), EuroSAT |Helber et al.[| (2019), DTD |Cimpoi et al.
(2014) and Pets |Parkhi et al.| (2012) are used for experiments. Table |Z| reports the test accuracy.
While the gains of CLIP-DR on some datasets are modest, the key finding is that CLIP-DR never de-
creases the original performance, unlike CLIP-OT which can cause degradation (e.g., on Imagenet-
R, Pets). This reliability is crucial for real-world TTA applications.

Table 7: Performance on other datasets for CLIP-DR and CLIP-OT. Bold indicates the best result.

Methods Datasets
Imagenet-R  EuroSAT Aircraft Caltech-101 ImageNetV2 DTD ImageNet-S Pets
CLIP 68.36 33.30 25.87 80.74 55.02 43.38 74.33 77.51
CLIP-OT 68.26 34.87 26.50 80.80 55.19 43.59 73.91 77.30
CLIP-DR 68.40 35.94 26.63 80.77 55.25 43.70 74.70 77.85

Different backbones. We replace the CLIP backbone with SigLIP |Zhai et al.[(2023) and EVA02-
CLIP|Fang et al.|(2024) to evaluate the generalizability of the proposed dual-regularization approach.
Table [ reports the test accuracy on CIFAR-10/100-C datasets. CLIP-TTA consistently provides a
higher Avg. accuracy (e.g., 89.38% vs. 86.92%) compared to CLIP-OT with SigL.IP and EVA02-
CLIP backbones. These results confirm that the proposed dual-regularization principle is a general
and effective strategy for robust test-time adaptation, not just being a mere tweak for CLIP model.

Table 8: Accuracy (%) on CIFAR10-C (3-5 and 7-9 rows) and CIFAR100-C (11-13 and 15-17 rows)
for CLIP-DR and baselines using different backbones. Bold indicates the best result.

Methods Noises
SigLIP G Shot Tmpulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG [ Avg.
SigLIP 1327 148 20.52 54342336 46 529 2549 3206 6874 2835 7853 3836 36.84 26.69 [37.35
CLIP-OT 39.98 502  60.65 76.92 56.69 74.88 78.65 53.04 64.15 85.06 64.27 8942  66.83 68.1 53.73 | 65.50
CLIP-DR 40.34  51.35 61.34 77.69 5739 752 7971 54.1 66.33 85.74 66.12 89.04 6791 7042 54.92 | 66.51

EVAO02-CLIP
EVAO2-CLIP| 71.87 742 73.11 90.14 6485 86.87 9144 924 9235 83882 96.5 8042 7594 61.92 79.05[81.93
CLIP-OT 81.18 7636  80.7 90.73  83.54 89.53 91.07 92.53 87.54 82.46 96.87 94.28 83.73 89.96 83.41]86.92
CLIP-DR 83.05 81.61 86.55 93.14 83.66 90.53 94.03 91.67 93.69 92.21 94.89 9452 87.85 87.72 85.59|89.38

CIFAR-T00-C

12!
CLIP-OT
CLIP-DR

43.04 21.03 26.72

4203 2001 2608 54.

EVAO02-CLIP K B . . 36. 3 . K . 5. . 23 5. . 37755826
CLIP-OT 5544 5294 56.89 66.54 5435 63.15 677 66 6822 65.64 72.79 64.68  57.15 6243 59.37]62.22
CLIP-DR 56.74 56.44 58.86 6778 571 6586 6994 68.75 71 65.64 76.54 67.51  61.26  65.65 61.35 | 64.69

EVAO02-CLIP

5 CONCLUSION

In this study, we extend the study in CLIP-OT by introducing a cosine similarity loss to align the
image features and text prototypes, while adding an IM regularization technique to reduce the un-
certainties in prediction. Experimental results on seven datasets show that CLIP-DR outperforms
recent state-of-the-art results in several settings with minimal computation overhead, highlighting
its potential for efficient TTA.

10
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We affirm that all text, code, and data presented in this work were prepared by the authors. No
large language models (e.g., ChatGPT) or other generative Al tools were used in the creation of this
manuscript.

A.2 ANALYSIS OF L.,s AND L7 FOR REDUCING ECE

We provide the analysis of L.,s and L, for reducing ECE. Specifically, the ECE can be formulated
as follows:

o~ Bl
ECE =) Tm|acc(Bm) — conf(B,,)| (13)

where B,, is the m-th bin. n is the number of samples. A higher ECE value is dominated by
confidently wrong samples residing in high-confidence, low-accuracy bins.

Concerning Ly, it is defined as:

Liv = Z H(p H(p) (14)
|B | xEBt fid d\’-/
connaence 1Ver51ty

The first term, namely confidence regularization, it encourages the model to make more confident
predictions for each sample. This helps to reduce under-confidence, ensuring that predictions in
medium-confidence bins are meaningful and not due to model uncertainty.

The second term, namely diversity regularization, it controls over-confidence of all predictions
through maximizing H (p). This directly penalizes the model if it becomes over-confident on aver-
age (e.g., always predicting a few classes with high probability), reducing the number of samples
that are incorrectly assigned to high-confidence bins.

By jointly optimizing these two opposing objectives, L7 strikes a balance that prevents both under-
confident and over-confident predictions, leading to a better-calibrated model and a lower ECE.

Considering L., it is represented as:
Leos = »_exp(C(x;) = Co) - (1 = so7,) - H{C(x;) > Co} (15)

where s is defined as:

sop = Q00 e =T t1 0= 2Tt/r (16)
" Ol

Specifically, it will push the image features toward the pseudo-text prototypes. Thus, it will change

the logits s with the following two points: 1) increase the number of correct predicted samples, and

2) decrease the incorrect predictions. This reduces the number of confidently wrong samples. These

samples are the primary contributors to high ECE, as they cause large |acc(B,,) — conf(B,,)| in

high-confidence bins. By minimizing L., we systematically reduce this miscalibration.

In summary, L.,s and L7, form a synergistic framework: £.,s works at the feature level to reduce
the source of confident errors (noisy pseudo-labels), while £, operates at the output level to ensure
a well-calibrated probability distribution. This theoretical framework is validated by our empirical
results.

A.3 DIsScUSSION BETWEEN CLIP-DR AND C-TPT

In[Yoon et al|(2024), they propose C-TPT (Calibrated Test-Time Prompt Tuning), sharing a similar
goal of improving model calibration during TTA for CLIP without requiring labeled data. Specif-
ically, C-TPT identifies that the choice of prompts considerably impacts calibration in CLIP, and
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proposes that prompts leading to higher text feature dispersion result in better-calibrated predic-
tions. Based on this insight, they propose the Average Text Feature Dispersion (ATFD) to optimize
prompts for enhanced calibration. Their results show that ATFD has a negative correlation with ECE
value (i.e., a higher ATFD value leads to a lower ECE value and vice versa). This analytical frame-
work of linking text feature dispersion to calibration error provides a valuable perspective. While
C-TPT offers a novel prompt-based strategy, our work demonstrates that calibration can be achieved
through a feature and output space regularizations within a pseudo-labeling TTA framework. We
will explore the integration of both prompt-tuning and image feature adaptation for CLIP-based
TTA.

A.4 ALGORITHM

Algorithm[T]shows the pseuodo-code of CLIP-DR.

Algorithm 1 Adaptation procedure of CLIP-DR for one corruption.

1: input: test dataset X = {x, } (images), text templates 7 (class descriptions), visual and text
encoders (0, ¢).
/I Split X into B batches of size Bs;.
// Compute K x M text prototypes (¢(T ), Vm, k).

2 TeRVOM = [tyn]y ) gmer,mr

for sampled minibatch {x;}7:, do
/I'1 - Test-time Adaptation
for each template m in {1,2,..., M} do
T, € R¥XE // class text embeddings for m.

4

5:

6: Z = [z1,...,zp,] // visual features (97 ).
7.
8

w

Compute codes Q7 // (Eq. .
Compute cosine similarity regularization loss L., // (Eq. [I0).

9: Compute information maximization loss Lys // (Eq. m)
10: ty = ﬁ an\le tem  (tg € Rd) /l average class text embeddings over all M templates.
11: P =[pi1,...,pp.]// predict: t;, VEk, Eq. (III)
12: Min. cross-entropy with P and Q..
13: Min. L..s and L.
14: 9](;\?71) — 983) // Update layer norm (LN) of 6.
15: end for
/1 2 - Inference (for all images in the batch).
16: Z=|zi,...,2p,) // visual features (with Oﬁ"o).
17: P=[p1,...,p5.] // predict with ty, Vk, Eq.
18: end for

A.5 TEMPLATES

Table 9] reports the templates we used in our study.

Table 9: The different templates used during the experiments.

Template

“a photo of a {class k}”

“itap of a {class k}”

“a bad photo of the {class k}”
“a origami {class k}”

“a photo of the large {class k}”
“a {class k} in a video game”
“art of the {class k}”

“a photo of the small {class k}”

AR R ol S
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A.6 ADDITIONAL RESULTS

A.6.1 RESULTS FOR DIFFERENT HYPER-PARAMETERS

Table[I0]to Table[BT]report the test accuracy on CIFAR-10/100-C and TinyImageNet-C datasets with
different \; and A\, values.

Table 10: Test accuracy (%) under different A\; values (A2 = 0.1) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise ~ 65.13 6515 6520 65.18 6516 6517 6515 6518 6521 6518

Corruption

Shot Noise 6735 6734 6734 6737 6736 6735 6734 6733 6734 6734
Impulse Noise 6227 6226 6225 6220 6223 6225 6225 6223 6222 6225
Defocus Blur 8233 8233 8232 8232 8236 8237 8233 8233 8234 8234

Glass Blur 67.86 67.89 6790 6790 6792 6793 6793 6793 6793 6794

Motion Blur 81.41 81.41 81.41 81.41 81.41 81.41 81.41 8142 8144 8143

Zoom Blur 83.34 8336 8339 8342 8342 8342 8345 8343 8342 8340

Snow 83.81 83.82  83.81 8380 83.80 8380 83.77 8378 83.75 83.75

Frost 8333 8334 8334 8335 8335 8335 8335 8335 8336 83.36

Fog 8226 8229 8230 8230 8231 82.31 8234 8232 8235 8235
Brightness 89.71 89.71 89.72  89.72  89.72  89.71 89.72  89.72  89.72  89.72
Contrast 8499 8499 8500 8498 8497 8497 8496 8496 8497 8497
Elastic Transform 76.05  76.04 76.04 76.04 7605 76.06 7606 76.07 76.06  76.08
Pixelate 7695 7694 7696 7696 7696 7695 7695 7695 7693  76.92

JPEG Compression ~ 70.21 70.21 7022 70.21 70.21 70.19  70.17  70.18  70.19  70.20

Table 11: Test accuracy (%) under different A; values (A2 = 0.2) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 6529 6517 6523 6517 6499 6499 6493 6493 6482 6475

Corruption

Shot Noise 67.43 6738 6738 6738 6737 6732 6734 6728 6731 67.25
Impulse Noise 62.16  62.19 6222 6219 6213 62.04 6189 6185 61.88 61.82
Defocus Blur 8236  82.31 8236 8230 8230 8226 8231 8226 8230 8228

Glass Blur 67.87 6776 67.68 67.68 67.62 67.63 6758 67.54 67.54 67.6]

Motion Blur 81.46 8149 81.54 8157 8l.66 81.70 81.73 81.75 81.72  81.70
Zoom Blur 83.44 8342 8347 8355 8355 8356 8356 8349 8348 8354
Snow 83.82 83.85 83.86 8390 8391 83.87 83.88 83.87 83.77  83.65

Frost 83.42 8343 8343 8342 834l 83.40 8340 8340 8340 83.34

Fog 82.41 8239 8233 8233 8236 8234 8234 8231 8233 8235
Brightness 89.78  89.79 89.75 89.77 89.75 89.75 89.76 89.74  89.73  89.74
Contrast 85.02 85.00 8497 8494 8490 8490 84.89 84.87 84.83 84.85
Elastic Transform 76.10  76.12  76.10 76.06  76.08 76.08 76.10 76.09 76.04  76.07
Pixelate 771.00 7697 7697 7699 77.06 77.08 77.11 77.08  77.00  76.97

JPEG Compression ~ 70.32 7034 7038 7031 7028 70.27 7020 70.15 70.15  70.11

Table 12: Test accuracy (%) under different A\; values (A2 = 0.3) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 6523 6525 6520 65.16 6505 6493 6493 6484 6481 64.68

Corruption

Shot Noise 67.46 6744 6738 6734 6733 6727 6731 6724 6727 67.16
Impulse Noise 62.18 6213 6220 6210 6207 6199 6192 6199 6198 6190
Defocus Blur 8246 8233 8239 8240 8240 8237 8234 8228 8229 8234

Glass Blur 67.73  67.68 67.69 6770 67.63 67.55 6753 67.63 67.65 67.68

Motion Blur 81.61 81.61 81.68 8170  81.74 81.74 8173 8175 81.73  81.66

Zoom Blur 83.49 8351 83.52 8352 8353 8354 8358 8354 8356 83.56

Snow 83.91 8395 8394 8396 8398 8394 8393 8385 8379 83.70

Frost 83.43 8343 8344 8341 8343 8340 8336 8335 8336 8338

Fog 8235 8231 8229 8230 8235 8237 8240 8236 8233 8234
Brightness 89.76  89.77 89.74  89.77 89.78  89.75 89.72  89.69  89.71 89.73
Contrast 85.05 8498 8498 8496 8492 8492 8489 8486 84.85 84.84
Elastic Transform 76.11 7615 76.11 76.02 7601 76.10 76.14 76.13  76.11  76.09
Pixelate 771.06 7713  77.11 7716  77.19  77.14 7716  77.08 77.05 77.01

JPEG Compression ~ 70.38 7045 7048 7038 7033 70.28 7024 7020 70.13  70.13
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Table 13: Test accuracy (%) under different A\; values (A2 = 0.4) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 6525 6520 6516  65.12 6498 6490 6488 6483 6478 6474

Corruption

Shot Noise 6737 6737 6738 6737 6728  67.21 67.25 6726 6722 6728
Impulse Noise 62.16 62.18 6205 62.06 62.01 6198 6195 6198 62.04 6198
Defocus Blur 8242 8235 8236 8236 8236 8237 8234 8234 8233 8232

Glass Blur 67.74  67.71 67.65 67.64 67.69 67.64 67.66 67.66 67.65 67.60
Motion Blur 81.68  81.71 81.69 8170  81.68 81.73 8175 81.70 81.64  81.65

Zoom Blur 83.55 8356 8357 83.61 83.63 8359 83.58 83.58 83.60 83.61

Snow 84.00 84.03 84.05 84.02 84.00 8398 8390 83.84 83.81 83.72

Frost 83.49 8345 8342 8340 8340 8339 8340 8336 8338 8338

Fog 8235 8234 8234 8236 8235 8239 8236 8235 8237 8230
Brightness 89.77 89.77 89.78 89.76  89.73  89.74 89.76  89.74  89.74  89.76
Contrast 8499 8497 8498 8493 8492 8486 8486 84.84 8486 84.83
Elastic Transform 76.14  76.09 7609 76.08 76.12 76.18 76.19 76.16 76.19  76.15
Pixelate 7106 7710 77.09 7714 7711 7716  77.09 77.09 77.08  77.05

JPEG Compression ~ 70.45 7045 7042 7039 7032 7028 7028  70.15 70.17  70.20

Table 14: Test accuracy (%) under different \; values (A2 = 0.5) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 6525 6518 6512 6508 6502 6490 6487 6484 6480 64.68

Corruption

Shot Noise 6738 6736 6735 6732 6724 6724 6728 6725 67.15 6721
Impulse Noise 6224 6218 6208 62.02 6203 62.03 6205 62.02 6202 6197
Defocus Blur 82.40 8237 8231 8236 8235 8232 8235 8232 8231 82.34

Glass Blur 67.69  67.65 67.68 6773 67.69 67.64 67.64 67.62 6757 67.58

Motion Blur 81.64 81.66 81.72  81.71 81.70  81.67 81.68 81.65 81.67 81.62
Zoom Blur 83.60  83.61 8359 83.62 8358 8359 8358 8356 8358  83.58
Snow 84.10 84.09 84.02 8403 8399 8396 8383 83.86 8379 83.74

Frost 83.45 8341 8337 8337 8336 83.38 8339 834l 83.42 8344

Fog 8238 8236 8239 8238 8240 8238 8241 8237 8236 8234
Brightness 89.75  89.71 89.75 89.75 89.77 89.77 89.76  89.76  89.74  89.74
Contrast 8498 8496 8493 8480 8487 8486  84.81 8485  84.87 84.86
Elastic Transform 76.16  76.15 76.16  76.16  76.16  76.15 76.15 7622 7622  76.22
Pixelate 77.11 7713 7713 7714 77.11  77.08 77.09 77.10 77.08  77.03

JPEG Compression ~ 70.50 7046 7037 7035  70.31 70.31 7025 7023 7025  70.27

Table 15: Test accuracy (%) under different \; values (A2 = 0.6) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 6523 6511 6507 6501 6500 6492 6489 6489 6486 6478

Corruption

Shot Noise 67.31 6738 6736 6729 6734 6728 6727 67.14 6720 67.14
Impulse Noise 62.18  62.07 6208 62.05 6208 62.12 6205 62.02 6200 6197
Defocus Blur 8234 8239 8237 8241 8235 8235 8233 8235 8234 8233

Glass Blur 67.72 6773 67.68 67.65 67.68 67.67 67.61 67.62  67.63  67.61

Motion Blur 81.68 81.66  81.67 81.61 81.63 81.63 81.62 81.62 81.61 81.58
Zoom Blur 83.59 8358 8357 8356 8357 8353 8352 8353 8356 83.54
Snow 84.09 84.09 84.07 84.04 8399 8399 8391 83.83  83.81 83.77

Frost 83.42 8343 8344 8342 8340 8339 8339 8343 8346 8349

Fog 8239 8239 8241 8243 8237 8240 8240 8239 8238  82.39
Brightness 89.79  89.80 89.78 89.78 89.78 89.76  89.75 89.73  89.75  89.75
Contrast 8494 8492 8490 8490 84.89 8485 8487 84.85 84.87 84.88
Elastic Transform 7621 7625 7624 7623 7624 7627 7624 7623 7624  76.22
Pixelate 7106 7710 77.14  77.09 77.07 7710 77.09 77.07 77.07 77.07

JPEG Compression ~ 70.45 7040 7042 7034 7031 70.31 7026 7028 7030  70.27

A.6.2 RESULTS FOR LAION-C

Table fT]reports the test accuracy on LAION-C[Li et al.| (2025)). The results conclusively prove that
the proposed dual regularization can enhance the performance within the OT optimization frame-
work (e.g., a reliable performance gain (+1.46% in Avg.)).
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Table 16: Test accuracy (%) under different A\; values (A2 = 0.7) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise ~ 65.14 6511 6498 6499 6496 6490 6495 6489 6485 64.83

Corruption

Shot Noise 6736 6744 6735 6736 6725 6723 67.17 67.14 67.16 67.13
Impulse Noise 62.08  62.01 6199  62.08 62.11 62.11 62.04 62.05 6200 6197
Defocus Blur 8239 8243 8243 8241 8242 8237 8233 8238 8241 82.35

Glass Blur 67.75  67.71 67.66  67.67 67.68 67.63 67.68 67.68 67.66 67.60
Motion Blur 81.60 81.60 8157 8159 81.60 81.60 81.61 81.59  81.61 81.60

Zoom Blur 83.53 8354 8355 8355 8357 8350 8351 83.56  83.54  83.53

Snow 84.08 8405 84.05 8406 84.02 8399 8391 83.85  83.81 83.79

Frost 83.45 8344 8345 8346 8344 8344 8344 8346 8346 8344

Fog 8242 8243 8244 8241 8239 8243 8244 8243 8240 8238
Brightness 89.81 89.78  89.79  89.80  89.77 89.77 89.78 89.76  89.77  89.78
Contrast 84.93 8491 8493 84.87 8485 8486 8487 84.87 8490 84.87
Elastic Transform 7630 7627 7633 7628 7624 7626 7625 7624 7628  76.25
Pixelate 77.04 7705 77.02 77.06 77.06 77.09 77.08 77.02 77.07 77.11

JPEG Compression ~ 70.44  70.41 7035 7032 7030 7032 7026 7023 7026  70.26

Table 17: Test accuracy (%) under different A\; values (A2 = 0.8) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise ~ 65.18  65.03 6499 6500 6493 6495 6493 6487 6485 64.84

Corruption

Shot Noise 6742 6736 6734 6730 6726 6722 67.16 67.13 67.15 67.18
Impulse Noise 62.00 62.04 6206 62.07 6209 62.05 6205 62.05 6203 61.99
Defocus Blur 8245 8244 8242 8244 8246 8238 8241 82.42 8242 8239

Glass Blur 67.73 67772 6773 6772 6771 67.70  67.69 67.66 67.64 67.68

Motion Blur 81.61 81.56 8157 8159 8159 8159 8159 8159 8158 81.60
Zoom Blur 83.55 8353 8355 8356 8359 8353 8351 83.50 8349  83.50
Snow 84.02 84.04 84.03 84.02 84.07 8402 8396 8389 83.81 83.84

Frost 83.49 8346 8344 8346 8347 8347 8346 8344 8344 8347

Fog 8244 8243 8246 8247 8244 8241 8238 8243 8241 82.40
Brightness 89.79 89.80 89.80 89.80 89.80 89.80 89.80 89.80  89.78  89.79
Contrast 84.90 8491 8488  84.85 8485 84.87 8483 8490 84.88  84.90
Elastic Transform 7625 7625 7627 7628 7633 7630 7626 7627 7626  76.18
Pixelate 7100 77.01 77.03 77.04 77.04 77.01 77.01 77.02 77.04 77.07

JPEG Compression ~ 70.42  70.34  70.31 7035 7032 70.31 70.26 7027  70.28  70.25

Table 18: Test accuracy (%) under different A; values (A2 = 0.9) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise ~ 65.08  65.04 6498 6501 6491 6495 6492 6489 6492  64.85

Corruption

Shot Noise 6736 6732 6735 6726 6722 67.15 67.14 6717 67.17 67.17
Impulse Noise 62.10 62.10 6208 62.11 62.11 62.05 6203 62.03 6201 6199
Defocus Blur 82.47 8241 82.41 8243 8244 8242 8244 8243 8245 8243

Glass Blur 6782 67778 6776 6774  67.71 67.68  67.67 67.68 6772  67.67

Motion Blur 81.55 8155 8155 8156 81.62 8157 8158 8156 8155 8158
Zoom Blur 83.52 8357 8355 8356 83.56 8351 83.48 8346 8352 8351
Snow 84.07 84.04 84.04 8403 84.00 8398 8393 83.88 83.84 83.78

Frost 83.50 8346 8348 8347 8348 8350 8350 8349 8349 8351

Fog 82.46 8246 8243 8243 8244 8245 8241 8242 8239 8238
Brightness 89.79  89.80  89.80  89.80  89.81 89.82  89.81 89.78  89.77  89.77
Contrast 84.91 84.88 84.80 84.84 8486 84.87 8488 84.88  84.86 84.90
Elastic Transform 7625 7630 7631 7630 7630 7628 7625 7621  76.19  76.20
Pixelate 77.07  77.01 77.01 77.03  77.00 77.00 7699 7699 7699  77.03

JPEG Compression ~ 70.40 7040 7039 7034 7033  70.31 7030 7032 7029  70.27

A.6.3 RESULTS FOR UPDATING TEXT ENCODER

Table @2]reports the test accuracy on CIAFR-10-C for updating both the image and text LayerNorm
parameters. It can be seen that optimizing the text encoder ¢ leads to negative effects.
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Table 19: Test accuracy (%) under different A\; values (A2 = 1.0) on CIFAR-10-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise ~ 65.17 6511 6502 6498 6493 6495 6492 6492 6491 6494

Corruption

Shot Noise 6737 6736 6729 6723 67.15 67.19 67.17 67.16 67.14 67.15
Impulse Noise 62.12 6213 6212 6212 6206 62.03 6206 62.03 6202 6198
Defocus Blur 82.47 8245 8243 8243 8244 8246 8248 8245 8241 82.41

Glass Blur 67.83 6780 67.77 6775 6772 6771 67770 6772  67.71  67.69

Motion Blur 81.57 81.56 8158 8157 8159 8157 81.60 8156 81.58  81.59
Zoom Blur 83.53 8357 8356 8350 8350 8348 8344 8344 8346 8348
Snow 84.03 8402 84.02 8400 8398 8396 8393 83.88 83.883  83.84

Frost 83.51 83.50 8353 8355 8350 8350 8353 83.54 8355 83.54

Fog 82.44 8243 8247 8248 8246 8244 8243 8242 8242 8241
Brightness 89.77 89.79  89.82  89.82  89.81 89.82  89.77 89.76  89.77  89.76
Contrast 84.89 84.86 84.84  84.81 84.86  84.88 8488 84.86 84.86 84.90
Elastic Transform 7633 7631 7634 7635 7630 7626 7625 76.19 7621  76.25
Pixelate 77106  77.05 77.03 77.03 77.04 77.00 7697 7699 7698  77.02

JPEG Compression ~ 70.38  70.39 7037  70.34 7035 70.34 7034  70.29  70.31 70.33

Table 20: Test accuracy (%) under different A\; values (A2 = 0.1) on CIFAR-100-C dataset.
A1
010 020 030 040 050 060 070 080 090  1.00

Corruption

Gaussian Noise 33.55 3351 3352 33,53 3348 3338 3337 3340 3335 3322

Shot Noise 3523 3516 3515 3512 3520 3513 3512 3504 3487 3481
Impulse Noise 30.61 30.63  30.58  30.53 3052 30.50 3043 3033 3036  30.31
Defocus Blur 5377 5386  53.87 5382 5378 5373 5362 5359 5357 5352

Glass Blur 353 3535 3536 3536 3520 35.07 3496 3480 3479 3493

Motion Blur 5281 5276 52775 5275 5266 52,67 5261 52.64  52.58  52.55
Zoom Blur 56.83  56.77 56.73  56.77 56.72  56.62  56.67 56.58  56.52  56.42
Snow 5424 5419 5426 5421 5424 5426 5420 54.19 5427 54.23

Frost 54.91 5489 5488 5485 5487 5482 5479 5487 5489 5485

Fog 5387 5379 5374 5380 5393 5390 5399 5395 5395 53.89
Brightness 64.47 6434 6441 6442 6447 6446 6449 6446 6450 64.48
Contrast 5487 55.03 5494 5488 5477 5474 5466 54.64 5470  54.64
Elastic Transform 4347 4347 4351 4353 4349 4339 4330 4324 43.17  43.11
Pixelate 45.31 4520 4521 4525 4521 4526 4523 4519  45.14  45.01

JPEG Compression ~ 41.07  40.86 4097 41.02 4090 40.890 40.76  40.67 40.50  40.48

Table 21: Test accuracy (%) under different A\; values (A2 = 0.2) on CIFAR-100-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 3351 3357 3348 3347 3344 3341 3343 3337 3329 3325

Corruption

Shot Noise 3523 3519 3518 3522 3514 3514 3503 3493 3485 3473
Impulse Noise 30.63  30.62 30.54 3049 3042 3039 3032 3034 3034 3035
Defocus Blur 5383 53.87 5380 53.77 53.67 53.63 5354 53.53 5353 53.53

Glass Blur 3536 35.31 3527  35.18 3503 3491 34.81 3487 3494 3494

Motion Blur 52.86 5280 5275  52.67 5265 52.62 5262 5254 5253 5256
Zoom Blur 56.79 5674 5678 5673  56.66  56.65 56.52 5645 5641 56.31
Snow 54.16 5422 5425 5422 5423 5422 5430 5424 5423 5420

Frost 5491 5487 5489 5487 5487 5485 5491 5487  54.88  54.84

Fog 53775 53.74 5385 5393 5398 5399 5398 5395 5393 53.85
Brightness 6434 6442 6446 6448 6449 6450 6449 6455 6452 6452
Contrast 5498 5486 54779 5477 5471 54.67 54.64 5472  54.68 5470
Elastic Transform 4352 4348 4350 4341 4337 4327 43.19 4318  43.11 4299
Pixelate 4530 4527 4528 4530 4529 4529 4521 45119 4507 4498

JPEG Compression 4093  41.04 4104 4106 4096 4084 4078 4061 4046  40.49

A.6.4 RESULTS ON FINE-GRAINED DATASET

The effectiveness of L., relies on the discriminative text prototypes, which can be a limitation in
extremely fine-grained datasets (e.g., Pets). To empirically evaluate the contribution of L.,s, we
validate the L.,s without L), on fine-grained datasets (Please see the Table below). As reported
in the Table 3] introducing L.,s consistently improves upon CLIP-OT across all datasets. This
suggests that L., does not shift the model toward incorrect priors but acts as a reliable regularizer
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Table 22: Test accuracy (%) under different A; values (A2 = 0.3) on CIFAR-100-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 3355 3350 3344 3346 3347 3340 3336 3332 3321 3322

Corruption

Shot Noise 3523 3517 3521 35.14 3508 3502 3498 3486  34.81 34.68
Impulse Noise 30.61 30.48 3051 30.41 30.34  30.30  30.31 3039 3042 3034
Defocus Blur 5377 5377 5374 53.64 5356 53.56 5353 53.53 5357 53.52

Glass Blur 3530 35.19 3508 35.00 3493 3488 3492 3490 3494 3479
Motion Blur 5281 5273 52,69 5265 5259 5258 5251 5252 5249 5249

Zoom Blur 56.83 5679  56.69 56.69 5658 56.50 5642 5639 5630 @ 56.24

Snow 5424 5428 5426 5420 5422 5429 5426 5424 5421 5421

Frost 5491 5492 5495 5497 5491 5493 5497 5484 5482  54.77

Fog 5387 5390 5395 5398 5390 5395 5395 5392 5390 53.92
Brightness 6447 6448 6446 6446 6454 6452 6455 6450 6452 6448
Contrast 5487 5484 5478 5475 54772 5475 54772 5470 54772 5474
Elastic Transform 4347 4341 4338 4330 4323 4320 43.12  43.04 4293 4283
Pixelate 4531 4531 4529 4529 4531 45119 4518 45.16 4503  44.96

JPEG Compression ~ 41.07  41.09  41.03 4098 40.88 40.80 40.72 40.56 4051 4041

Table 23: Test accuracy (%) under different Ay values (A2 = 0.4) on CIFAR-100-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 3352 3346 3344 3350 3339 3329 3329 3324 3325 3322

Corruption

Shot Noise 3523 3520 35.18  35.04 3495 3494 3492 3481 34.71 34.60
Impulse Noise 30.44 3047 3040 3034 3026  30.34 3034 3036 3037 3033
Defocus Blur 53779 5370 5365 53.61 5361 53.55 5356 53.58 5354  53.53

Glass Blur 35.16  35.07 3500 3494 3493 3492 3486 3490 3481 34.70

Motion Blur 52770  52.64 5265 5259 5255 5248 5245 5245 5250  52.53
Zoom Blur 56.74  56.65 56,57 5652 5648 5642 5637 5630 5628  56.21
Snow 5432 5425 5423 5420 5425 5429 5424 5424 5422  54.16

Frost 5496 5499 5498 5496  55.02 5495 5487 5482 5482 5481

Fog 5396 5392 5398 5396 5397 5394 5397 5396 5393 53.84
Brightness 6448 6448 6452 6453 6455 6454 6448 6446 6444 6448
Contrast 5476 5474 5477 5474 5471 54772 5473 54774 5479 5477
Elastic Transform 4331 4336 4330 4321 43.17 43.11  43.02 4286 4276  42.67
Pixelate 4528 4523 4530 4522 4521 4523 4519 4506 4499 4497

JPEG Compression ~ 41.07  41.01 4099 4092 4081 40.75 40.61 40.53 4051 4048

Table 24: Test accuracy (%) under different A\; values (A2 = 0.5) on CIFAR-100-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 3350 3347 3345 3334 3324 3332 3323 3323 3318 3314

Corruption

Shot Noise 3519 3515 3505 3495 3494 34091 3489 3472 3460 3445
Impulse Noise 30.47 3043 3038 3027 3032 3030 3038  30.38 30.34 3038
Defocus Blur 53.69  53.65 5369 53.68 5362 53.63 53.61 53.58  53.57 5349

Glass Blur 3502 3496 3491 3490 3489 3490 3494 3480 3466 34.55

Motion Blur 52.67  52.63 5258 5251 5248 5242 5244 5250 5249 5248
Zoom Blur 56.57 5658  56.54 5643 5636 5635 5629 5630 5623  56.20
Snow 5423 5420 5422 5424 5427 5427 5427 5421 5420  54.20

Frost 55.00  55.01 55.01 5495 5495 5489 5486 5485 5482 5483

Fog 5395 5393 5393 5395 5399 5399 5393 5392 5385 53.84
Brightness 6452 6453 6452 6451 6449 6445 6448 6449 6446 6448
Contrast 5477 54770 5477 5478  54.81 54.81 5480  54.81 54.80  54.75
Elastic Transform 4323 4318 43.15 4313 43.05 43.00 4286 4275 4260 4252
Pixelate 4522 4523 4521 4521 4520 4513 4504 4499 4501 4495

JPEG Compression 41 :01 41.00 4094  40.84 40:80 40:66 4056  40.51 4048  40.39

within the OT framework. We will explore more discriminative text representations in future work
to solve the limitation of L.

A.6.5 ECE VALUE FOR OTHER TTA TECHNIQUES WITH THE PROPOSED METHOD

We add more results about ECE value for other TTA techniques (TENT, TPT) with the proposed
dual approach (Table 4] and Table [A5). As reported, adding the proposed method to TENT can
reduce the ECE value for certain noises such as Gaussian (0.08 vs. 0.12) and Shot (0.08 vs. 0.12).
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Table 25: Test accuracy (%) under different A; values (A2 = 0.6) on CIFAR-100-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 3344 3337 3331 3327 3328 3324 3317 3314 3312  33.09

Corruption

Shot Noise 35.14 3507 3488 3493 3489 3486 3472 3457 3449 3439
Impulse Noise 30.44 3036 3030 3035 3030 3036 3038 3034 3035  30.34
Defocus Blur 53779 5375 53777  53.65 53.67 53.61 5356 53.56 5352 5345

Glass Blur 35.02 3494 3491 3493 3496 3488 3479 34.67 3454 3448
Motion Blur 52.60 5256 5259 5252 5250 5248 5246 5247 5249 5243

Zoom Blur 56.61 56.53 5645 5640 5633 5632 5627 5625 @ 56.21 56.12

Snow 54.18  54.16  54.17 5417 5424 5421 5418 5416 5417 54.14

Frost 55.01  55.01 5498 5497 5489 5486 54838 54.88 5485 54.80

Fog 5395 5392 5395 5397 5398 5397 5389 53.87 5384  53.79
Brightness 64.54  64.51 64.51 6448 6442 6448 6449 6448 6448  64.48
Contrast 5474 5477 5482 5481 5482 5486 5484 5482 54779 5474
Elastic Transform 43.18  43.10 43.08 43.03 4293 4282 4271 42,62 4255 4247
Pixelate 4522 4516  45.17 45116 4507 45.01 4502 4498 4495 4490

JPEG Compression ~ 40.97  40.99  40.83 40.82 40.76  40.57 4051 4049 4048 4041

Table 26: Test accuracy (%) under different A\; values (A2 = 0.7) on CIFAR-100-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 3332 3328 3330 3327 3318 3316 3314 3317 33.09 33.04

Corruption

Shot Noise 3500 3490 3495 3490 3480 3473 34.64 3453 3440 3435
Impulse Noise 3039 3033 3031 3032 3039 3041 30.38 3035 3037 3033
Defocus Blur 5381 53.76 5371 53.67 53.61 53.62 5356 53.54 5342  53.38

Glass Blur 3496 3493 3490 3492 3485 3472 34.65 3458 3443 3437

Motion Blur 5256 5255 5252 5250 5249 5247 5250 5247 5245 5248

Zoom Blur 56.48 5645 5643 5639 5632 5630 5626  56.21 56.17  56.10

Snow 5412 5415 5419 5421 5416 5415 5416 5415 5413 5412

Frost 5499 5496 5496  54.87 5487 5488 5487 5487 5484 5481

Fog 5393 5392 5395 5393 5393 53.88 5390 53.80 53.77 53.73
Brightness 64.54 6450 6445 6448 6448 6452 6448 6448  64.51] 64.49
Contrast 54.81 5482 5483 5486 54.84 5484 5478 54779 5474 54772
Elastic Transform 43.09 43.05 4299 4294 4286 4271 4260 4253 4251 4244
Pixelate 45.15  45.10  45.11 4507 4503 45.02 4502 4496 4489 4483

JPEG Compression ~ 40.99  40.88  40.82  40.79  40.65 40.57 4051 4050 4046 4042

Table 27: Test accuracy (%) under different A\; values (A2 = 0.8) on CIFAR-100-C dataset.
A1

010 020 030 040 050 060 070 080 090  1.00

Gaussian Noise 3331 3332 3329 3323 3316 3311 3313 3306 3305 3301

Corruption

Shot Noise 3495 34091 3488  34.85 3472 3470 3454 3443 3434 3423
Impulse Noise 30.35 3031 30.28 3035 3039 3040 3036 3038 3035  30.28
Defocus Blur 53775 5376  53.66  53.69 53.62 53.59 5355 5344 5341 53.36

Glass Blur 3491 3496 3493 3483 3471 34.68 3450 3443 3436 3434

Motion Blur 5255 5257 5255 5256 5252 5249 5247 5249 5247 5246
Zoom Blur 56.47 5645 5639 5634 5628 5630 5627 5624 5620  56.11
Snow 5411 5416 5416 5414 5418 5417 5412 5414 5416 54.13

Frost 5497 5491 5487 54.82 5484 5486 5483 5486 5485 54.81

Fog 5397 5392 5392 5391 53.87 5385 53.82 5379 5376  53.74
Brightness 6452 6446 6448  64.51 64.54 6448 6449 6445 6447 6451
Contrast 5487 5486 5487 5486 5484 5483 5481 54775 5474 54775
Elastic Transform 43.00 43.00 4294 4280 42.67 42.64 4255 4250 4244 4245
Pixelate 45.14  45.09 4504 4499 4502 4498 4495 4491 4488 4484

JPEG Compression 40:88 40.80  40.79 4075  40.64  40.58  40.51 40.47 4044 4044

Similar situation can be found using TPT (e.g., 0.06 vs. 0.07 with Frost). These results highlight the
effectivenss of the proposed method in reducing ECE.
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Table 28: Test accuracy (%) under different A\; values (A2 = 0.9) on CIFAR-100-C dataset.

. )\1
Corruption
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Gaussian Noise 3329 3329 3321 33.17 3312 3314 3310 3305 3299 3297
Shot Noise 3490 3485 3486 3474 3472 3456 3442 3432 3425 3421
Impulse Noise 30.31 3033 3032 3038 3038 30.39 3038 3035 3028  30.30
Defocus Blur 5374 5370  53.69 53.64 53.60 5356 5350 5341 5337 5339
Glass Blur 3495 3488 3483 3471 34.64 3456 3442 3437 3434 3431
Motion Blur 5259 5260 5259 5254 5253 5251 5247 5246 5248 5245
Zoom Blur 56.41 56.42 5632 5629 5627 5627 5623  56.16 56.13  56.11
Snow 5415 5411 5414 5418 5416 5416 5416 5415 5413  54.15
Frost 5491 5484 5484 5480 5482 5485 5486 54.87 5484  54.80
Fog 5394 5391 53.87 5387 53.86 5381 5379 5378 5374 5372
Brightness 6450 6452 6452 6454 6449 6452 6448 6450 6450 6452
Contrast 5488 5487 5485 5484 5481 5479 5478 5475 5473 5473
Elastic Transform 43.03 4294 4280 4266 4262 42,60 4251 4246 4243 4235
Pixelate 45.11 4501 4502 4503 4496 4495 4493 4494 4484 4490
JPEG Compression ~ 40.81  40.77  40.73  40.65 40.57 40.57 4058 40.51 4050 4044

Table 29: Test accuracy (%) under different A; values (A2 = 1.0) on CIFAR-100-C dataset.

. A1
Corruption
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Gaussian Noise 33.27 3325 3320 3314 3315 33.14 33.06 33.03 3298 3293
Shot Noise 3486 34.89 3474 3466 3456 3444 3432 3428 3420 3423
Impulse Noise 30.33 3032 3039 3040 3040 @ 3041 30.38 3038 3028  30.31
Defocus Blur 5374 5367 53.62 5360 5359 5349 5345 5339 5339 5342
Glass Blur 3492 3481 3470 3464 3455 3442 3434 3431 3429 3422
Motion Blur 52.62 5259 5257 5254 5253 5251 5248 5247 5248 5248
Zoom Blur 56.36 5632 5632 5628 5625 5622  56.21 56.16 5617  56.13
Snow 5413 5415 5416 5417 5419 5414 5417 5414 5416  54.18
Frost 5487 5485 5483 5484 5485 5485 5487 5481 5482 5473
Fog 5390 5389 53.86 5387 5385 5380 53779 5376 53775  53.75
Brightness 6450 6454 6454 6453 6452 6452 6452 6450 6452  64.53
Contrast 5489 5485 5485 5482  54.81 5478 54777 5472 5471 54.75
Elastic Transform 4290 4273 42,65 42.63 4259 4254 4247 4244 4240 4232
Pixelate 45.03 4500 4495 4497 4497 4491 4495 4491 4491 44388
JPEG Compression ~ 40.80  40.77  40.71  40.59  40.54 4057 40.54 4047 4047 4040

Table 30: Accuracy (%) of the different approaches on Tiny-ImageNet and Tiny-ImageNet-C bench-

marks, using ViT-B/32 as backbone.

Dataset CLIP TENT TPT CLIPTT WATT-S TDA CLIP-OT CLIP-TTA
ICLR’21 ICLR’21 NeurIPS’22 ~ WACV’25 NeurlPS’24 CVPR’24 Arxiv’25 Ours
Tiny-Imagenet 58.29 57724+ 0.14 5890+ 0.15 59.85£0.01 61354+ 0.17 62.3610.13 63.69+ 0.15 64.3810.14
Gaussian Noise 7.08 8.014 0.05 9.294 0.03 14444025 13.024+ 0.07 24.0140.26 21.364 0.31 24.761+0.31
Shot Noise 9.41 10.04£0.07 11.704+0.07 17444+ 0.12  15.94+ 0.07 28.2140.11 24514 0.15 32.531+0.14
Impulse Noise 3.44 4.18+ 0.02 4.85+ 0.01 10374 0.16 6.90£ 0.01 18.65+£0.03 18214 0.14 24.68+0.09
Defocus Blur 21.71 2453+ 0.05 27.56+0.10 31.46£ 026 29914 0.13 36.7740.11 36254 0.17 44.42+0.15
Glass Blur 9.12 10.09+0.06  11.03£0.10 15844 0.09  14.01% 0.10 22.5840.13 23.08+ 0.18 29.24+0.14
Motion Blur 34.52 36.9440.07 3897+ 0.05 41.34£020 41.264 0.04 37.384+0.22 4778+ 0.34 49.45+0.32
Zoom Blur 27.44 29.484+0.06 34294+ 0.07 35.06£0.15  33.964 0.07 36.5940.07 40.96+ 0.06 44.78+0.08
Snow 32.51 32204 0.03 3445+ 0.10 36.79£0.08  37.76% 0.09 33.2340.11 41.28+ 0.09 43.85+0.13
Frost 36.33 35724 0.02 37.13+0.05 38.37£0.13  39.654 0.03 35.9440.15 46.03+ 0.21 47.66+0.16
Fog 25.94 27464 0.04 28.89+0.08 33.51£0.19  32.134 0.08 38.1740.12 39.934 0.25 49.31+0.23
Brightness 40.15 39.7940.08 4331+ 0.10 46.52£0.06  46.93+ 0.13 42.98+0.07 53.814 0.09 57.940.09
Contrast 1.81 2.24+ 0.04 3.15+ 0.04 6.07+0.12 3.53+0.02 14.704-0.09 12,94+ 0.21 18.21+0.15
Elastic Transform 30.40 31.9240.05 33.88+0.14 33.74£0.11  35.0140.13 42.384+0.11 41.53+0.17 49.54+0.13
Pixelate 22.78 24794 0.03 27.704+0.12  34.8440.09  31.55+ 0.08 34.9740.11 42.90+ 0.13 47.541-0.08
JPEG Compression 29.59 30.934+ 0.13  33.604+ 0.15 37.2940.14  36.46+ 0.11 40.6440.13 42.88+ 0.05 50.931+0.07
Mean 22.14 23.22 25.32 28.87 27.87 32.48 35.56 40.98
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Table 31: Test accuracy (%) under different A\ values (A2 = 0.1) on TinyImageNet-C dataset.
A1
010 020 030 040 050 060 070 080 090  1.00

Corruption

Gaussian Noise 2387 2410 2426 2444 2459 2459 2467 2461 2446 2476

Shot Noise 29.16 2957 2994 30.19 3042 30.86 31.03 3141 3190 3253
Impulse Noise 2055 2116 2171 22,10 2235 2255 2250 2289 2326  24.68
Defocus Blur 33.09 37.84 3996 4035 4099 4139 41.83 4247 4295 4442

Glass Blur 2681  26.87 2699 2738 2780 28.14 2846 2832 28.61 29.24

Motion Blur 4899  49.00 4895 49.08 4925 49.25 4930 4937 4933 4945
Zoom Blur 38.74 3953 4033 4152 4249 4278 4346 4412 4484 44718
Snow 4318 4320 4329 4333 4336 4346 4351 4357  43.67  43.85

Frost 47.16  47.16 4724 4737 4741 4751 4748 4745 4753  47.66

Fog 4749 4778 4791  48.03 48.06 48.13 4825 4851 4875 4931
Brightness 56.75  57.00 57.09 5721 5736 5744 5759 57.68 57.71 579
Contrast 14.83 15.42 15.69 16.00  16.19 16.29 17.34 17.61 17.81 18.21
Elastic Transform 3856 4215 4406 4502 4585 46.77 4744 4797 4839 49.5
Pixelate 4550 4585 46.15 4645 4659  46.81  47.00 47.16 4721 4754

JPEG Compression 48:85 4925 4949 4985 50.04 50.18 5033 5037 5046 5093

Table 32: Test accuracy (%) under different A values (A2 = 0.2) on TinyImageNet-C dataset.

Corruption
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 2399 24.11 2441 2448 2451 2454 2451 2434 2440 2449

Shot Noise 29.49 2986  30.06 3029 30.65 30.83 31.21 31.70  31.80 3191
Impulse Noise 21.04  21.52 2196 2221 2236 2233 2259  23.02 2332 2350
Defocus Blur 3826 39.80 40.12  40.82 41.15 41.64 4199 4248 4292  43.65

Glass Blur 2686 2696 2733 2772 28.03 27.89 2799 2824 2846  28.92

Motion Blur 4893  49.00 49.14 4922 4924 4930 4935 4936 4944 4951
Zoom Blur 3943 4025 4135 4222 4267  43.17 4387 4435 4475 4432
Snow 4323 4325 4334 4338 4346 4349 4365 43.67 4370 4374

Frost 47.18 4727 4734 4740 4737 4739 4742 4755 4756 4753

Fog 4758 4775 4796 4796  48.04 48.13 4830 48.62 48.89  48.96
Brightness 57.03 57.03 5722 5732 5743 5759 5763 57.66 5775  57.75
Contrast 15.29 15.56 15.83 15.97 16.16 16.25 17.33 17.71 17.81 18.01
Elastic Transform 4192 4370 4483 4557 4651 47.14 4774  48.03 4845 4881
Pixelate 4593  46.19 4645 4659 4680 47.00 47.13 4720 4728 4740

JPEG Compression ~ 49.19 4932 4976 4995 50.14 50.18 5031 50.44 5047  50.66

Table 33: Test accuracy (%) under different \; values (A2 = 0.3) on TinyImageNet-C dataset.
A1
010 020 030 040 050 060 070 080 090 100

Corruption

Gaussian Noise 2411 2430 2435 2441 2446 2446 2424 2429 2436 2425

Shot Noise 29.74 2999 3020  30.51 30.59 3094 3132 3158 3171 31.74
Impulse Noise 2135 21.77 2206 2223 2225 2243 2273 2312 2346  23.65
Defocus Blur 39.62 3999 4045 4090 41.14  41.65 4210 4249 4299  43.65

Glass Blur 27.01 2736 2754 2782 27.67 2785 2786 2795 2839 2896

Motion Blur 49.08  49.19 4930 4926 4931 4933 4937 4944 4955  49.56
Zoom Blur 40.15  41.03  42.07 4252 4279  43.66  44.11 44.71 44.15 4430
Snow 4327 4338 4343 4345 4350 43.63 4360 43.66 43.68 43.72

Frost 4723 4730 4734 4730 4732 4736 4750 4753 4744 4750

Fog 47.63 4787 4792 4793  48.05 48.11 4840  48.68  48.87 4894
Brightness 57.05 5720 5731 57.46  57.51 5759 57.63 57.69 5775  57.77
Contrast 15.41 15.71 15.89 16.01 16.19 16.44 17.44 17.74 17.92 18.04
Elastic Transform 4338 4471 4527 4626 4692 4745 4781 48.18 4857  48.84
Pixelate 4620 4647 46.60 46.79 47.01  47.11 47.18 4728 4738 4743

JPEG Compression 4920  49.59  49.82 50.08 50.06 5028 5039 5039 5056  50.71
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Table 34: Test accuracy (%) under different A\ values (A2 = 0.4) on TinyImageNet-C dataset.
A1
010 020 030 040 050 060 070 080 090  1.00

Corruption

Gaussian Noise 2422 2421 2431 2436 2437 2417 2418 2425 2418 24.16

Shot Noise 2990 30.12 3038 3057 3072 31.06 3125 3135 3152  31.66
Impulse Noise 21.68 2191 22,02 2223 2227 2255 2288  23.12 2333  23.68
Defocus Blur 39.75  40.09 40.53 4086 41.21 41772 4223 4268  43.07 43.62

Glass Blur 2728 2746  27.62 2752 2773 2773 27773 27.81 28.18  28.83

Motion Blur 4921  49.27 4928 4929 4930 4933 4943 4954 4959  49.59
Zoom Blur 4091 41.82 4237 4270 4352 4394 4457 4450 44.04  44.06
Snow 43.31 4345 4351 4349 4363 4359 43.64 43.64 43.68 4372

Frost 4723 4733 4730 4732 4741 4745 4746 4747 4752 4755

Fog 4781 4789 4786 4794 48.03 4826 4847 48.67 4885 4890
Brightness 5721 5733 5746 5749 5758 5758 57.64 57.68 57774 57.84
Contrast 15.63 15.78 15.93 16.02 16.17 16.46 17.55 17.76 17.96 18.06
Elastic Transform 4436  45.10 46.03 46770 4722  47.61 48.05 4839 4857  48.77
Pixelate 46.51  46.63 4682 4695 47.09 47.18 4723 4735 4740 4744

JPEG Compression 49:46 4976 4996 5003 50.10 5031 5039 5041 5055 5081

Table 35: Test accuracy (%) under different A values (A2 = 0.5) on TinyImageNet-C dataset.

Corruption
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 2411 2417 2429 2426 2411 2409 2415 2413 2412 24.02

Shot Noise 2998  30.19 3042 3053 30.85 31.06 31.09 31.18 3136 3152
Impulse Noise 21.81 22,02 2218 2218 2246 2264 2289 2312 2339 23.60
Defocus Blur 39.67  40.00 40.44 4079 4112 41.77 4227 4261 4297  43.63

Glass Blur 2744 2744 2739 2763 2768 2771 2772 2786  28.14  28.37

Motion Blur 4927  49.28 4928 4934 4939 4946 4958 4958  49.62  49.56
Zoom Blur 41.53 4206 4256 4333 4377 4407 4474 4404 4410 4403
Snow 43.44 4347 4349  43.60 4358 43,59 4370 4374 4370  43.71

Frost 4727 4724 4730 4740 4739 4739 4742 4748 4752  47.56

Fog 4784 4782 4784 4793  48.13 4838 4852 4871 48.84  48.95
Brightness 5737 5752 5749 5758 5760 57.66 57772 5777 57.84  57.90
Contrast 15.69 15.79 15.92 16.13 16.30 16.72 17.65 17.82 17.95 17.91
Elastic Transform 4497 4582 4641 4695 4728  47.69 4815 4842 4858 4871
Pixelate 46.65 46.77 4693  47.04 47.13 4721 4735 4736 4745 4749

JPEG Compression ~ 49.69 4991 4997  50.02 5022 5037 5042 5046 50.61 50.90

Table 36: Test accuracy (%) under different \; values (A2 = 0.6) on TinyImageNet-C dataset.
A1

010 020 030 040 050 060 070 080 090 100

Gaussian Noise ~ 24.12 2425 2420 2408 2398 2405 2409 2399 2388 2381

Corruption

Shot Noise 30.12 30.17 3034 3059 3079 3090 3094 31.17 3141 31.46
Impulse Noise 21.86  22.04 22,17 2228 2257 2270 2288 23.17 2340 23.60
Defocus Blur 39.76  40.17  40.65 40.84 41.21 41.84 4234 4275 43.13 4352

Glass Blur 2737 2732 2752 2754 2756 27.64 2775 2798 28.09  28.23

Motion Blur 4928 4927 4934 4939 4946  49.57 4959  49.62 4955  49.59
Zoom Blur 41.96 4238  43.04 4371 4382 4458 4432 4392 4397  44.07
Snow 4349 4349 4354 4355 4361 43.68 4370 4370  43.69  43.82

Frost 4723 4730 4737 4729 4734 4738 4742 4746 4751 4753

Fog 47778 4773 4784 48.01 4826 4836 4850 4874  48.88  49.03
Brightness 5747 5748 5759 57.63 57.66 5770 57776  57.83  57.89 5798
Contrast 15.65 15.76 15.93 16.17 16.44 17.10 17.62 17.80 17.84 17.89
Elastic Transform 4554 4623  46.69  47.09 4757 4796 4820 4842 4852  48.67
Pixelate 4677 4692  47.01 47.14 47.18 4733 4731 4746 4746  47.58

JPEG Compression ~ 49.72  49.88 4996 50.17 5034 5031 5041 50.57  50.73 5092
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Table 37: Test accuracy (%) under different A\ values (A2 = 0.7) on TinyImageNet-C dataset.
A1
010 020 030 040 050 060 070 080 090  1.00

Corruption

Gaussian Noise 2418 2413 2395 2392 2398 24.06 2394 2387 2379  23.65

Shot Noise 30.05  30.10 30.26 3058 30.79 30.74 3097 31.16 31.27 31.39
Impulse Noise 21.88 2216 2225 2245 2263 2266 22838 23.10 2337 2344
Defocus Blur 3995 4029 4046 4094 4126 4192 4245 4283  43.14 4372

Glass Blur 2728 2750 2750 2750 27.63 2775 2789 2798 28.09 28.13

Motion Blur 4937 4936 4937 4951 4956  49.60 4959 4953 4955  49.58
Zoom Blur 4231 4281 4344 43,61 4412 4457 4396 4393 4394  44.02
Snow 43.44 4346 4358 4355 4368 4372 4368 4370 4377  43.82

Frost 4731 4737 4729 4730 4734 4736 4742 4748 4749 4748

Fog 47772 47776 4795  48.09 4831 4842 4857 4873 4890  49.00
Brightness 5752 5759 5760 57.64 57771 5777 5781 5791 57.98  57.99
Contrast 15.75 15.80 16.04 16.19 16.57 17.28 17.58 17.77 17.86 17.93
Elastic Transform 46.07 4645 4687 4741 47.69 4798 4822 4839 48,50  48.72
Pixelate 46.86  46.99  47.13  47.17 4731 4731 4742 4746 4755  47.66

JPEG Compression 49:81 4992  50.04 5024 5039 5025 5032 50.62  50.87 5098

Table 38: Test accuracy (%) under different A values (A2 = 0.8) on TinyImageNet-C dataset.

Corruption
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 2408 2390 2388 2392 2394 2391 2379 2370 2354 23.53

Shot Noise 2996 3005 3033 3055 3063 30.69 3093 31.12 31.18 31.17
Impulse Noise 21.99 2222 2237 2253 2261 22,67 2285 23.06 2323 2338
Defocus Blur 40.04  40.20 40.66  41.04 4147 4214 4251 4294 4329 4383

Glass Blur 2744 2741 27.46 2752  27.68 2779 2787 2795 2799  28.06

Motion Blur 4937 4941 4947 4952  49.60 49.60 49.53  49.57 4955  49.58
Zoom Blur 4259 4317 4359 4387 4452 44.04 4378 4386 4383  44.02
Snow 4347 4353 4357  43.62  43.69 4371 43770 4373 43775 43778

Frost 4732 4726 4727 4733 4735 4739 4740 4745 4743 4746

Fog 47773  47.88  48.03  48.15 4832 4847 48.62 4877 4890  49.00
Brightness 5753 5758 57.61 5770 5774  57.80 5791 5796 5798  58.10
Contrast 15.72 15.94 16.14 16.36 16.60 17.38 17.61 17.73 17.85 17.83
Elastic Transform 4626  46.65 47.04 4752 4783 48.06 4821 4839 4852  48.83
Pixelate 47.00 47.12  47.13 4726 4734 4738 4744 4753 4762 4774

JPEG Compression 4991  50.03  50.09 5025 5026 50.23 5046 50.76 5092  50.99

Table 39: Test accuracy (%) under different \; values (A2 = 0.9) on TinyImageNet-C dataset.
A1
010 020 030 040 050 060 070 080 090 100

Corruption

Gaussian Noise 2385 23.83 2385 2386 2380 23.72 23.64 2347 2346 2340

Shot Noise 29.91 30.11 30.31 3052 3052 30.64 30.82 3094 3099 30.96
Impulse Noise 22,12 2228 2243 2255 2263 2273 2289 23.06 2325 2332
Defocus Blur 40.09 4045 4079 4117 4164 4214 4274  43.05 4334 4387

Glass Blur 2750 2747 2744 27.60 27774 2786 2790 28.00 28.06 27.88

Motion Blur 4941 4948 4952 4958 4956  49.54 4955 4951 4953 49.54
Zoom Blur 43.03 4334 4370 4429 4436 4383 4385 4382 4386  44.01
Snow 4352  43.56 4360 43.67 43.69 43.67 4371 43779 43776 4371

Frost 4721 4728 4727 4732 4738 4739 4746 4742 4742 4741

Fog 4784  48.02 48.15 4823 4835 4849 4870 4879 4891  48.99
Brightness 5759  57.62 5771 5771 5781 5789 5794 5795 58.09 58.14
Contrast 15.82 16.02 16.25 16.49 16.70 17.44 17.62 17.65 17.69 17.73
Elastic Transform 46.50  46.76 4730 4770 47.87 48.06 4825 4840 4856  48.90
Pixelate 47.06  47.18 4723 4731 4734 4743 4748 4758 47773 4771

JPEG Compression ~ 49.96  50.00 50.09 5031 5027 5038 50.64 50.85 5097  50.99
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Table 40: Test accuracy (%) under different \; values (A2 = 1.0) on TinyImageNet-C dataset.

. A1
Corruption
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Gaussian Noise 2378 2374 2375 2372 2367 23.60 2348 2340 2331 2324
Shot Noise 29.87  30.17 3031 3043 3043 3059 3076 30.79  30.88  30.84
Impulse Noise 22.20 22.20 22.53 22.54 22.67 22.76 22.83 23.00 23.12 23.25
Defocus Blur 4030 4058 4094 4132 4194 4234 4274 43.07 4341 4390
Glass Blur 2750 2746  27.62 2774 2774 2785 2789 27.88 2787 27.83
Motion Blur 4949 4951 4957 4956 4954 4953 4947 4952 4947 4948
Zoom Blur 4324  43.63 4396 4441 4394 4381 4384 4378 4384 4392
Snow 43.60 43.62 43.61 43.68 43.68 4373 4373 4376 4374  43.68
Frost 4723 4724 4729 4737 4739 4740 4745 4738 4738 4742
Fog 4798  48.11  48.19 4824 4841 4854 4868 4879 4886  49.01
Brightness 57.66  57.69 5770 57.82 5787 5795 5797 58.09 58.13  58.19
Contrast 1591 16.16 1627  16.54 16.84  17.45 17.57 17.65 17.65 17.69
Elastic Transform 46.59  47.11 4750 4773 4786 48.10 4830 4839  48.60  48.99
Pixelate 47.14  47.19 4734 4732 4740 4744 4759 4765 47.69  47.69
JPEG Compression ~ 49.93  50.07 5023 5025 5030 5046 50.82 5090 5094  51.02

Table 41: Performance on LAION-C dataset for CLIP-DR and CLIP-OT (ViT-B-32). Bold indicates

the best result.

Methods LAION-C
mosaic geometric glitched 1 e stickers vertical lines | Avg.
CLIP 15.33 21.48 19.12 7.93 6.18 8.45 13.08
CLIP-OT | 15.62 31.69 21.09 13.75 1.57 15.62 17.56
CLIP-DR | 16.24 38.43 21.39 14.65 7.52 15.89 19.02

Table 42: Performance on CIFAR-10-C. Bold indicates the best result.

Methods Noises
CIFAR-10-C | Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG | Avg.
w/ ¢ optimized | 6491 67.34 62.12 82.09 6748 8149 8355 84.01 834 8233 89.57 84.89  76.05 7692 70.44(77.10
w/o ¢ optimized | 65.25  67.38 62.24 824 67.69 81.64 83.6 841 8345 8238  89.75 8498 7616 77.11 705 |77.24
Table 43: Accuracy (%) on fine-grained datasets. Bold indicates the best result.
Methods Datasets
EuroSAT Aircraft DTD  Pets
CLIP-OT 34.87 26.50 43.59 77.30
CLIP-DR (w/o L1pr) | 3547 26.56  43.63 77.55
CLIP-DR 35.94 26.63 43.70 77.85
Table 44: ECE value on CIFAR-10-C for othet TTA techniques with the proposed method.
Methods Noises
Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG
TENT 012 0.12  0.05 0.02 0.04 0.02 001 0.03 0.03 0.03 0.03 0.04 0.02 0.03  0.04
TENT (w/ours) | 0.08  0.08 0.05 0.02 0.02 0.01 001 0.03 0.03 0.03 0.03 0.04 0.02 0.02  0.03
TPT 005 0.04 003 0.06 0.03 0.02 003 0.06 0.07 0.06 0.07 0.09 0.04 0.03  0.03
TPT (w/ ours) 006 0.04 003 0.05 0.03 0.02 0.02 0.05 0.06 0.05 0.06 0.08 0.03 0.02  0.02

Table 45: ECE value on CIFAR-100-C for othet TTA techniques with the proposed method.

Methods Noises
Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG
TENT 024 0.19 0.1 0.06 031 0.03 0.05 0.04 0.03 0.03 0.06 0.04 0.05 0.02  0.02
TENT (w/ours) | 0.10  0.08  0.05 0.06 026 0.04 005 0.04 0.04 0.03 0.06 0.04 0.03 0.02  0.02
TPT 0.12 0.09  0.05 0.07 023 0.05 0.06 0.06 0.05 0.04 0.07 0.05 0.03 0.02  0.02
TPT (w/ ours) 0.07 0.06  0.03 0.08 0.19 0.05 0.07 0.06 0.05 0.05 0.07 0.05 0.02 0.02  0.02
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