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ABSTRACT

Despite the remarkable zero-shot performance of vision-language models, such
as Contrastive Language-Image Pretraining (CLIP), on many downstream tasks,
their potential may be degraded under distributional shifts. Test-time adapta-
tion (TTA) offers a solution by adapting the model to these shifts during in-
ference, without requiring labeled data. Prior methods like CLIP-OT leverage
optimal transport for pseudo-labeling. However, the quality of these labels can
be unreliable, leading to suboptimal adaptation and error accumulation. To ad-
dress this, we propose CLIP-DR, which introduces two extra key components:
(1) a cosine similarity loss to align image features with textual prototypes, sta-
bilizing the adaptation direction; and (2) an information maximization regular-
izer to promote confident and diverse predictions, preventing model collapse.
Extensive evaluation on seven benchmarks (covering 15 corruption types and
domain shifts, totaling ∼6000 trials) demonstrates that CLIP-DR consistently
outperforms state-of-the-art methods while adding ∼0.01 seconds of computing
time per batch (e.g., 4% and 12% higher than CLIP-OT and WATT-S on the
TinyImageNet-C dataset with 1.98 second per batch). The codes are available
at https://anonymous.4open.science/r/TTA-Codes-6DF3.

1 INTRODUCTION

Vision language models (VLMs), such as contrastive language-image pretraining (CLIP) model
Radford et al. (2021); Wu et al. (2025); Yang et al. (2025), have demonstrated promising zero-shot
transferability due to their strong semantic feature understanding capabilities. However, if there
exists a distribution or texture shifts between the training set and the test set, the performance of
the model can be degraded Silva-Rodriguez et al. (2024). Intuitively, a simple solution for this
challenge is to fine-tune the trained model using domain-specific labeled data Goyal et al. (2023);
Chaddad et al. (2025). These approaches have several limitations in real-world applications. For
example, they require a large amount of labeled data, which can be difficult to obtain Carvalho &
Abad (2025). Furthermore, fine-tuning the model can degrade its transferability (e.g., its zero-shot
capabilities) Kim et al. (2024).

Test-time adaptation (TTA) introduces a practical solution to address these limitations Tong et al.
(2025); Rifat et al. (2025). The key in TTA is to optimize a pre-trained model in a real-time adap-
tation situation without accessing any supervisory signals (e.g., label) Hu et al. (2025). However,
despite the progress in convolutional neural network (CNN) and vision transformer (ViT) based
TTA, the study related to Vision-Language Models (VLMs) remains less explored. Initial methods,
such as entropy minimization (TENT) Wang et al., pseudo-labels guidance Osowiechi et al. (2024)
have been used for CLIP adaptations. However, these approaches can lead to suboptimal solutions
due to insufficient supervision information Hakim et al. (2025). Recent studies, such as CLIP-OT,
uses optimal transport (OT) to align the outputs of CLIP and the pseudo logits generated by text
prototypes Mishra et al. (2025). This achieves promising performance with reasonable computa-
tional overhead on several TTA benchmarks. However, using OT alone can lead to poor pseudo
logit quality, thereby reducing reliability in prediction. Figure 1 shows an example of CLIP-OT in
prediction using a reliability diagram. CLIP-OT provides a higher expected calibration error (ECE
Zhang et al. (2025)), indicating its overconfidence and poor pseudo-label quality during inference.

1

https://anonymous.4open.science/r/TTA-Codes-6DF3


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 2.44%

Brightness

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 2.03%

Frost

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 2.33%

Pixelate

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 2.61%

Motion blur

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 1.38%

Brightness

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 1.92%

Frost

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 1.99%

Pixelate

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Outputs Gap ECE: 1.22%

Motion blur

Figure 1: CLIP-OT (first row) vs. CLIP-DR (second row). Relying on OT loss leads to overconfi-
dence for model prediction, resulting in a higher calibration error.

In light of the above limitation, this study introduces two components to refine the quality of the
pseudo-labels in CLIP-OT: (i) a cosine similarity loss to align the predicted logits of the CLIP and
the virtual logits generated by text prototypes, and (ii) an information maximization (IM) strategy to
regularize the virtual logits in an unsupervised manner. Experimental results show that the proposed
approach provides a feasible improvement in test accuracy (e.g., 5.42% higher on Tiny-ImageNet-C
dataset) with nearly identical computation load compared to CLIP-OT.

The contributions of this paper can be summarized as follows:

1. Algorithm. To improve the quality of the pseudo-labels in CLIP-OT, we extended CLIP-OT
by: (i) We design a self-supervised cosine similarity loss that encourages the model to learn
high quality pseudo logits, thereby improving the robustness to image corruptions. (ii) We
propose using an information maximization loss function to regularize the predicted logits.
This reduces prediction uncertainties and prevents mode collapse on test data.

2. Empirical analysis. We validate the CLIP-DR on seven publicly available datasets in: (i)
robustness to different corruptions, (ii) generalization ability to domain shifts, (iii) compu-
tational overhead, (iv) robustness and (v) stability under small batch sizes.

2 RELATED WORK

Test-time adaptation. TTA adapts a pre-trained model (e.g., on ImageNet) to an incoming stream
of unlabeled data processed in batches during testing Liang et al. (2025). In Sun et al. (2020),
they propose the fundamentals of TTA and introduce self-supervised loss to adapt the model to
the target data. However, this approach requires source data, which limits its potential. In Wang
et al., they first formulate the full TTA task and design an entropy-based regularization technique to
fine-tune the normalization layer parameters using the target test data. Furthermore, in Chen et al.
(2022), they applied self-supervised contrastive learning between different augmented images with
a pseudo-labeling technique to adapt the model at test time.

Test-time adaptation with VLMs. Test-Time Prompt Tuning (TPT) Shu et al. (2022) explored
the usefulness of prompt tuning in TTA tasks using VLMs, such as CLIP. Specifically, it optimizes
the prompt by minimizing the entropy with confidence selection to encourage the model to produce
consistent predictions across different augmented views of each test sample. However, it requires
multiple augmented samples, increasing memory usage. In Osowiechi et al. (2024), a diverse set of
templates for text prompts was used with a text ensemble strategy to enhance text features by ag-
gregating various textual cues (Weight average test-time adaption, WATT). Finally, it optimizes the
normalization layer parameters with pseudo-labels. Similarly to WATT, in Hakim et al. (2025), they
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design a novel process for tuning text prompts (CLIPArTT). Basically, multiple predicted classes are
aggregated into a new text prompt (e.g., a picture of a “cat” or a “dog”) that is used as a pseudo-label
to reclassify the images transductively. By updating the normalization layer parameters, CLIPArTT
provides feasible performance with lower overhead. Furthermore, in Lafon et al. (2025), they ar-
gue that previous gradient-based approaches for VLMs can degrade learned knowledge during TTA.
Thus, they proposed a soft contrastive loss that aligns with CLIP’s pretraining objective. In Maha-
rana et al. (2025), they propose a bimodal online TTA method designed to improve the robustness
of CLIP to common image corruptions. Specifically, they adapted the visual encoders and aligned
the image and text features, promoting a stronger association between the image class prototype and
the corresponding text feature generated by pseudo-labels.

Unlike previous works, we extend CLIP-OT by introducing cosine similarity based feature align-
ment and information maximization to regularize the predictions and reduce uncertainties. Specifi-
cally, it solves the over-confidence in OT framework, which causes high ECE. Our approach intro-
duces negligible computational costs during adaptation, enhancing its practicality in a wide range of
applications.

3 METHOD

3.1 PROBLEM SETTING

We address the problem of adapting a pretrained VLM at test time. In particular, given a model
trained on the source domain DS (e.g., ImageNet), the goal is to adapt the model online to the new
target domain DT , where only unlabeled data are available (note that data is received as a stream of
batches, and predictions must be provided).
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Figure 2: Pipeline of CLIP-DR. It uses optimal transport with the Sinkhorn algorithm to generate
Q∗

m, while use the original image and averaged text features to yield the probability matrix P. Then,
it minimizes the pseudo cross-entropy loss between P and Q∗

m, the similarity loss between O and
text prototypes tkm, and the regularization loss LIM using Z and tkm as unsupervised loss during
TTA. Note that at each test batch, following Mishra et al. (2025), our model runs for m iterations,
each leveraging a different template m to obtain the Q∗

m.

Figure 2 shows the pipeline of our approach. It has two parts, 1) feature extraction, and 2) test-time
adaptation. We will elaborate on these parts as follows.
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3.2 FEATURE EXTRACTION WITH CLIP

CLIP is an image-text based VLM, which requires two encoders, namely an image encoder θ and
a text encoder ϕ. Basically, given the inputs x with corresponding prompts t (e.g., “A PHOTO OF
A CLASS”), CLIP generates the vision and text features z ∈ Rd and tk ∈ Rd normalized by l2
distance, and provides the predicted probability as follows:

p(y = k|xi) =
exp

(
z⊤i tk/τ

)∑K
j=1 exp

(
z⊤i tj/τ

) , (1)

where τ is a pre-defined scaling parameter.

However, the original CLIP relies on a single prompt, that is, lacks diversity. Then, we introduce
a popular strategy Radford et al. (2021) that designs multiple prompts to obtain the text features.
Specifically, given a prompts set T = {{Tkm}Mk=1}Km=1, whose embedding for template m and
class k is calculated as tkm = ϕ(“prompts”). Finally, the tk is obtained as tk = 1

M

∑M
m=1 ϕ(Tkm)

Details of the templates are reported in Appendix A.5.

3.3 TEST TIME ADAPTATION

Optimal transport.. Following Mishra et al. (2025), CLIP-DR optimizes the following loss func-
tions:

L(p, q) = − 1

N

N∑
i=1

C∑
c=1

q(y = k|xi) log p(y = k|xi) (2)

where q(y = k|xi) is posterior distributions encoded using the model predictions.

Furthermore, since the probability is obtained using Eq. (1), the objective in Eq. (2) can be expressed
as:

LOT = L(p, q) = − 1

N

N∑
i=1

[
1

τ
z⊤i Tqi − log

K∑
k=1

exp(
z⊤i tk
τ

)

]
, (3)

where T = [t1, · · · , tK ] represents the matrix consisting of class text prototypes. In practical, it can
be reformulated as the following objective:

max
Q∈Q

tr(Q⊤T⊤Z), (4)

where the Q should be an element of the transportation polytope:

Q :=

{
Q ∈ RK×N | Q1N =

1

K
1K ,Q⊤1K =

1

N
1N

}
, (5)

where 1K and 1N represent the vectors of ones in dimension K and N , respectively.

To efficiently solve the previous objective function, the Sinkhorn algorithm is used to reformulate
the Eq. (4) as follows:

max
Q∈Q

tr(Q⊤T⊤Z) + ϵH(Q) (6)

where H is a Shannon entropy function. Finally, we can obtain Q∗ with a few iterations as:

Q⋆ = Diag(u(t)) exp

(
T⊤Z

τ

)
Diag(v(t)), (7)

where u and v are renormalization vectors in RK and RB respectively, with t indicating the iteration.
Specifically, u and v can be obtained using the iterative Sinkhorn-Knopp algorithm Knight (2008).
Since we use multiple templates, in each batches of data, it will iterate m times for each template m
as follows:

Q⋆
m = Diag(u(t)

m ) exp

(
T⊤

mZ

τ

)
Diag(v(t)

m ) (8)

where for each Q∗
m, the loss is calculated as ℓ(P,Q∗

m) = −Q∗
mlogP.
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Logits alignment. To maintain CLIP’s cross-modal alignment during adaptation, we regularize the
output logits O obtained from CLIP to align with the text prototypes. Specifically, we construct
virtual logits f̄ŷ from the text prototypes to serve as alignment targets. Following Choi et al. (2025),
we enforce this alignment using cosine similarity:

sO,̄fŷ
=

⟨O, f̄ŷ⟩
∥O∥·∥f̄ŷ∥

, where f̄ŷ = t⊤kmtŷkm , O = z⊤i tk/τ (9)

where the label ŷ corresponds to the most confident class for target sample xj . The final loss can be
formulated as follows:

Lcos =

B∑
j=1

exp(C(xj)− C0) · (1− sO,̄fŷ
) · I{C(xj) ≥ C0} (10)

where I is an indicator function. C(x) is the predictive confidence of sample x, and the C0 is the
confidence threshold to filter prediction uncertainties. A lower value of Lcos indicates that the output
O is similar to the virtual logits f̄ŷ .

Information maximization. To prevent posterior collapse and ensure meaningful feature learning,
we introduce a regularization term using an Information Maximization (IM) function Tschannen
et al. (2020). Specifically, we minimize the entropy of individual predictions to ensure the model
produces confident, sharp outputs on the unlabeled test data, while we maximize the entropy of the
average prediction distribution across the entire test samples to force the model to produce diverse
predictions as follows:

LIM =
1

|Bt|
∑
x∈Bt

H(p(x))−H(p̄) (11)

where H(p(x)) = −
∑C

k=1 pk(x) log pk(x) is the entropy of the prediction distribution for a single
sample x, p̄ = 1

|Bt|
∑

x∈Bt
p(x) is the average prediction distribution over the test samples in each

batch, and H(p̄) = −
∑C

k=1 p̄k log p̄k is the entropy of the average prediction distribution.

Finally, we optimize the following loss function:

L = LOT + λ1Lcos + λ2LIM (12)

where λ1 and λ2 are two hyper-parameters. Following Mishra et al. (2025), we optimize the Layer-
norm layer while freezing the other layers to improve computational efficiency.

Typically, over-confidence (i.e., high ECE) arises from noisy pseudo-labels and collapsed predic-
tions. During adaptation, Lcos reduces pseudo-label noise by aligning features with correct pro-
totypes, minimizing confidently wrong predictions. Furthermore, LIM directly penalizes over-
confidence by enforcing diverse outputs via entropy maximization while maintaining per-sample
confidence, which is a regularization for calibration Patel et al. (2020). Together, they jointly opti-
mize the model to avoid feature misalignment and distribution collapse, providing promising cali-
bration ability.

4 EXPERIMENTS

4.1 DATASETS

CLIP-DR is evaluated on three families of adaptation benchmarks, namely no corruptions (CIFAR-
10 Krizhevsky et al. (2009) and TinyImageNet Le & Yang (2015)), corruptions (CIFAR-10/100-
C Hendrycks & Dietterich (2019), ImageNet-C Hendrycks & Dietterich (2019), TinyImageNet-C
Hendrycks & Dietterich (2019) with 15 perturbations), and domain shifts (PACS Li et al. (2017) and
OfficeHome Venkateswara et al. (2017)). In this study, we consider the same severity level as used
in CLIP-OT.

4.2 IMPLEMENTATION DETAILS

Pretrained CLIP (ViT-B/32) Radford et al. (2021) is used as the feature extractor backbone. The
batchsize is set to 128 with a learning rate of 10−4 for an Adam optimizer. The τ is set to 0.01. The

5
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Table 1: Accuracy (%) of the different approaches on CIFAR Corruptions benchmarks. Bold means
the best result. ∆ represents the difference between Ours and CLIP-OT.

Dataset CLIP
ICLR’21

TENT
ICLR’21

TPT
NeurIPS’22

CLIPArTT
WACV’25

WATT-P
NeurIPS’24

WATT-S
NeurIPS’24

CLIP-OT
Arxiv’25

CLIP-DR
Ours ∆

CIFAR-10 88.74 91.69 ±0.10 88.06 ±0.06 90.04 ±0.13 91.41 ±0.17 91.05 ±0.06 93.23 ±0.08 93.43±0.06 +0.2

C
IF

A
R

-1
0C

Gaussian Noise 35.27 41.27 ±0.27 33.90 ±0.08 59.90 ±0.36 61.89 ±0.24 63.84 ±0.24 65.03 ±0.16 65.25±0.13 +0.22
Shot Noise 39.67 47.20 ±0.23 38.20 ±0.02 62.77 ±0.07 63.52 ±0.08 65.28 ±0.21 67.43 ±0.19 67.38±0.15 -0.05
Impulse Noise 42.61 48.58 ±0.31 37.66 ±0.20 56.02 ±0.16 57.13 ±0.02 58.64 ±0.11 62.15 ±0.36 62.24±0.23 +0.09
Defocus Blur 69.76 77.12 ±0.16 67.83 ±0.28 76.74 ±0.05 78.86 ±0.09 78.94 ±0.12 82.26 ±0.09 82.4±0.13 +0.14
Glass Blur 42.40 52.65 ±0.30 38.81 ±0.12 61.77 ±0.16 62.88 ±0.06 65.12 ±0.07 67.86 ±0.02 67.69±0.04 -0.17
Motion Blur 63.97 71.25 ±0.09 63.39 ±0.13 76.01 ±0.19 76.85 ±0.26 77.81 ±0.14 81.4 ±0.15 81.64±0.19 +0.24
Zoom Blur 69.83 76.20 ±0.19 68.95 ±0.16 77.40 ±0.20 79.35 ±0.04 79.32 ±0.07 83.14 ±0.19 83.6±23 +0.46
Snow 71.78 78.29 ±0.20 70.16 ±0.10 77.29 ±0.16 79.44 ±0.09 79.79 ±0.06 83.61 ±0.14 84.1±14 +0.49
Frost 72.86 79.84 ±0.09 72.39 ±0.22 79.20 ±0.08 80.13 ±0.10 80.54 ±0.12 83.24 ±0.22 83.45±0.18 +0.21
Fog 67.04 77.39 ±0.01 64.31 ±0.28 75.74 ±0.14 77.68 ±0.07 78.53 ±0.22 82.29 ±0.12 82.38±0.08 +0.09
Brightness 81.87 87.78 ±0.03 81.30 ±0.18 86.59 ±0.16 87.10 ±0.10 87.11 ±0.11 89.64 ±0.10 89.75±0.11 +0.11
Contrast 64.37 79.47 ±0.11 62.26 ±0.31 77.82 ±0.14 80.04 ±0.24 81.20 ±0.22 84.75 ±0.13 84.98±0.12 +0.23
Elastic Transform 60.83 70.00 ±0.25 56.43 ±0.27 70.20 ±0.01 71.76 ±0.10 72.66 ±0.15 75.98 ±0.22 76.16±0.17 +0.18
Pixelate 50.53 63.74 ±0.18 42.80 ±0.40 66.52 ±0.13 69.28 ±0.09 71.11 ±0.13 76.64 ±0.06 77.11±0.04 +0.47
JPEG Compression 55.48 62.64 ±0.14 53.67 ±0.25 63.51 ±0.14 66.49 ±0.14 67.36 ±0.28 70.18 ±0.31 70.5±0.27 +0.32

Average 59.22 67.56 56.80 71.17 72.83 73.82 77.04 77.24 +0.2

C
IF

A
R

-1
00

C

Gaussian Noise 14.80 14.38±0.14 14.03±0.10 25.32±0.14 31.28±0.03 32.07±0.23 33.19±0.11 33.55±0.13 +0.36
Shot Noise 16.03 17.34±0.27 15.25±0.17 27.90±0.05 33.44±0.11 34.36±0.11 34.75±0.13 35.23±0.15 +0.48
Impulse Noise 13.85 10.03±0.13 13.01±0.13 25.62±0.09 29.40±0.11 30.33±0.03 30.49±0.33 30.61±0.21 +0.12
Defocus Blur 36.74 49.05±0.07 37.60±0.17 49.88±0.23 52.32±0.28 52.99±0.16 53.50±0.25 53.77±0.19 +0.27
Glass Blur 14.19 3.71±0.07 16.41±0.02 27.89±0.03 31.20±0.12 32.15±0.30 34.81±0.24 35.3±0.26 +0.49
Motion Blur 36.14 46.62±0.27 37.52±0.23 47.93±0.14 49.72±0.15 50.53±0.12 52.70±0.05 52.81±0.07 +0.11
Zoom Blur 40.24 51.84±0.15 42.99±0.11 52.70±0.06 54.72±0.04 55.30±0.22 56.73±0.15 56.83±0.16 +0.1
Snow 38.95 46.71±0.21 42.35±0.13 49.72±0.01 51.79±0.04 52.77±0.15 53.83±0.12 54.24±0.11 +0.41
Frost 40.56 44.90±0.27 43.31±0.14 49.63±0.12 53.04±0.08 53.79±0.31 54.63±0.05 54.91±0.08 +0.28
Fog 38.00 47.31±0.04 38.81±0.17 48.77±0.04 50.78±0.24 51.49±0.21 53.53±0.03 53.87±0.08 +0.34
Brightness 48.18 60.58±0.18 50.23±0.11 61.27±0.08 62.65±0.25 63.57±0.21 64.07±0.29 64.47±0.21 +0.4
Contrast 29.53 45.90±0.11 28.09±0.09 48.55±0.24 51.34±0.10 52.76±0.27 54.75±0.32 54.87±0.28 +0.12
Elastic Transform 26.33 33.09±0.08 28.12±0.15 37.45±0.08 39.97±0.06 40.90±0.43 43.06±0.21 43.47±0.17 +0.41
Pixelate 21.98 26.47±0.09 20.43±0.14 33.88±0.14 39.59±0.09 40.97±0.16 44.68±0.28 45.31±0.15 +0.68
JPEG Compression 25.91 29.89±0.07 28.82±0.09 36.07±0.32 38.99±0.16 39.59±0.08 40.66±0.17 41.07±0.11 +0.41

Average 29.43 35.19 30.46 41.51 44.68 45.57 47.02 47.35 +0.33

Table 2: Test accuracy (%) on Tiny-ImageNet-C corruption benchmarks. Bold means the best result.
∆ represents the difference between CLIP-DR and CLIP-OT.

Dataset CLIP
ICLR’21

TENT
ICLR’21

TPT
NeurIPS’22

CLIPTT
WACV’25

WATT-S
NeurIPS’24

TDA
CVPR’24

CLIP-OT
Arxiv’25

CLIP-DR
Ours ∆

Tiny-ImageNet 58.29 57.72 58.90 59.85 61.35 62.36 63.69 64.38 +0.69

Gaussian Noise 7.08 8.01 9.29 14.44 13.02 24.01 21.36 24.76 +3.4
Shot Noise 9.41 10.04 11.70 17.44 15.94 28.21 24.51 32.53 +7.63
Impulse Noise 3.44 4.18 4.85 10.37 6.90 18.65 18.21 24.68 +7.34
Defocus Blur 21.71 24.53 27.56 31.46 29.91 36.77 36.25 44.42 +8.17
Glass Blur 9.12 10.09 11.03 15.84 14.01 22.58 23.08 29.24 +6.16
Motion Blur 34.52 36.94 38.97 41.34 41.26 37.38 47.78 49.45 +1.67
Zoom Blur 27.44 29.48 34.29 35.06 33.96 36.59 40.96 44.78 +3.82
Snow 32.51 32.20 34.45 36.86 37.76 33.23 41.28 43.85 +2.57
Frost 36.33 35.72 37.13 38.20 39.65 35.94 46.03 47.66 +1.63
Fog 25.94 27.46 28.89 33.44 32.13 38.17 39.93 49.31 +9.38
Brightness 40.15 39.79 43.31 46.43 46.93 42.98 53.81 57.9 +4.09
Contrast 1.81 2.24 3.15 6.24 3.53 14.70 12.94 18.21 +5.27
Elastic Transf. 30.40 31.92 33.88 33.89 35.01 42.38 41.53 49.5 +7.97
Pixelate 22.78 24.79 27.70 34.85 31.55 34.97 42.90 47.54 +4.64
JPEG Compr. 29.59 30.93 33.60 37.32 36.46 40.64 42.88 50.93 +8.05

Mean 22.14 23.22 25.32 28.88 27.87 32.48 35.56 40.98 +5.16

Table 3: Detailed performance values for PACS and OfficeHome datasets. ∆ represents the differ-
ence between Ours and the CLIP-OT. Bold indicates the best result.

Dataset Domain CLIP
ICLR’21

TENT
ICLR’21

TPT
NeurIPS’22

CLIPArTT
WACV’25

WATT-P
NeurIPS’24

WATT-S
NeurIPS’24

CLIP-OT
Arxiv’25

CLIP-DR
Ours ∆

PACS

Art 96.34 96.65±0.05 95.52±0.20 96.57±0.09 96.31±0.01 96.39±0.01 96.54±0.02 97.07±0.01 +0.53
Cartoon 96.08 96.22±0.05 94.77±0.20 96.00±0.02 96.52±0.02 96.62±0.02 97.66±0.00 98.00±0.00 +0.34
Photo 99.34 99.40±0.00 99.42±0.06 99.28±0.00 99.48±0.03 99.52±0.00 99.76±0.03 99.76±0.03 -
Sketch 82.85 82.96±0.12 83.22±0.14 83.93±0.14 86.92±0.04 86.65±0.12 86.54±0.01 87.14±0.01 +0.6
Mean 93.65 93.81 93.23 93.95 94.81 94.80 95.13 95.5 +0.37

OfficeHome

Art 73.75 74.03±0.27 75.76±0.27 73.84±0.20 75.65±0.27 75.76±0.39 78.78 ±0.15 79.38 ±0.22 +0.6
Clipart 63.33 63.42±0.04 63.08±0.31 63.54±0.06 66.23±0.13 65.77±0.11 66.21±0.19 67.74±0.12 +1.53
Product 85.32 85.51±0.08 84.07±0.28 85.23±0.16 85.41±0.09 85.41±0.01 86.13±0.03 86.25±0.03 +0.12
Real World 87.71 87.74±0.05 85.89±0.33 87.61±0.05 88.22±0.15 88.37±0.07 87.79± 0.19 87.96± 0.17 +0.17
Mean 77.53 77.68 77.20 77.56 78.88 78.83 78.98 80.33 +1.35
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Table 4: Test accuracy (%) on Tiny-ImageNet-C dataset with different components. Bold indicates
the best result.

Components Noises
LOT LIM Lcos Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Avg.

✓ ✘ ✘ 21.36 24.51 18.21 36.25 23.08 47.78 40.96 41.28 46.03 39.93 53.81 12.94 41.53 42.90 42.88 35.56
✓ ✓ ✘ 23.75 29.7 22.12 40.01 27.55 49.42 42.87 43.47 47.21 47.79 57.59 15.71 46.26 47.02 49.92 39.36
✓ ✘ ✓ 24.57 30.36 22.36 40.71 27.48 49.09 41.72 43.33 47.33 48.13 57.16 16.06 45.26 46.41 49.89 39.32
✓ ✓ ✓ 24.76 32.53 24.68 44.42 29.24 49.45 44.78 43.85 47.66 49.31 57.9 18.21 49.5 47.54 50.93 40.98

ϵ used in Eq. 6 is set to 0.7 and 0.5 for CIFAR-10/100-C and TinyImageNet-C datasets, respectively.
Furthermore, the values of λ1 and λ2 are set to 0.1 and 0.3 for CIFAR-10-C, 0.1 and 0.1 for CIFAR-
100-C, and 1.0 and 0.1 for TinyImageNet-C, respectively. All experiments are based on the Windows
11 operating system, and feature an Intel 13900KF CPU with 128 GB of RAM and an RTX 4090
GPU. We use PyTorch 1.13.1 with Python 3.8. Furthermore, eight predefined text templates from
CLIP were used to evaluate the proposed model’s adaptability and performance. Note that the
templates are the same as the ones employed in WATT Osowiechi et al. (2024). For comparison,
we consider CLIP-based TTA approaches, including TENT Wang et al., TPT Shu et al. (2022),
CLIPArTT Hakim et al. (2025), TDA Karmanov et al. (2024), WATT Osowiechi et al. (2024) and
CLIP-OT Mishra et al. (2025). Following the CLIP-OT Mishra et al. (2025), we report the results
on these datasets as the average ± standard deviation (three times under different random seeds).
Baseline results (excluding CLIP-OT and TDA) are from Mishra et al. (2025); we reran CLIP-OT
and TDA using their official code with optimal settings they provided.

4.3 RESULTS

No corruptions. As reported in Table 1 and Table 2, CLIP-DR achieves higher test accuracy than
CLIP-OT, e.g., a 0.69% improvement on TinyImageNet. These results suggest that CLIP-DR effec-
tively adapts the features without compromising the performance of the model on its original clean
data.

Performance under common corruptions. Table 1 and Table 2 report the test accuracy for CLIP-
DR and baselines on CIFAR-10, CIFAR-10/100-C and TinyImageNet-C datasets. Notably, CLIP-
DR achieves a substantial improvement of 4.82% in Avg. accuracy compared to CLIP-OT on the
TinyImageNet-C dataset. Across its 15 corruptions, CLIP-DR shows consistent gains, with im-
provements ranging from 1.63% to 9.38%. On the CIFAR benchmarks, CLIP-DR provides modest
performance gains (e.g., +0.33% Avg. accuracy on CIFAR-100-C). These results suggest that CLIP-
DR enhances the performance on both simple and complex data while maintains a stable adaptation
process. Furthermore, Table 5 summarizes the performance on ImageNet-C. Results show that
CLIP-OT suffers from negative adaptation, degrading the performance from 37.89% (CLIP zero-
shot) to 35.45%. This demonstrates that the pseudo-labels generated by OT can be highly unreli-
able. CLIP-DR reduces performance degradation and provides a higher Avg. accuracy of 39.03%,
outperforming CLIP-OT by 3.58%. This proves that our dual regularization framework is essen-
tial for stabilizing the adaptation process and preventing error accumulation. The results of the
TinyImageNet-C dataset with standard deviation are summarized in Appendix Table 30.

Texture and style shifts. Table 3 presents the test accuracy for the PACS and OfficeHome datasets.
For example, CLIP-DR achieves an Avg. accuracy of 80.33%, outperforming CLIP-OT by 1.35% on
OfficeHome. Overall, CLIP-DR provides the highest Avg. accuracy across all datasets, highlighting
its adaptability to texture and style shifts.

Table 5: Accuracy (%) on ImageNet-C for CLIP-DR and baselines. Bold indicates the best result.
Methods Noises

ImageNet-C Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Avg.
CLIP 35.4 35.75 35.96 35.59 19.45 36.63 26.88 31.35 30.04 43.99 53.38 46.95 46.59 44.42 46.01 37.89

CLIP-OT 31.56 32.08 33 32.5 19.65 31.73 27.65 30.53 28.94 40.29 52.51 43.22 44.15 40.73 43.29 35.45
CLIP-DR 37.51 37.75 37.71 36.73 25.1 38.22 30.98 33.23 30.42 43.5 52.97 46.36 45.69 44.02 45.35 39.03

Computation overhead. Figure 3 compares the per-batch inference time of the baselines and CLIP-
DR using a batch size of 128. As shown, CLIP-DR requires an extra 0.01 and 0.02 seconds on Tiny-
ImageNet-C and OfficeHome datasets compared to CLIP-OT. This minimal overhead demonstrates
that the proposed components can be integrated into the TTA with negligible impact on throughput,
making CLIP-DR suitable for practical situations.
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Figure 3: Runtime (Left) of recent TTA approaches and CLIP-DR for each batch of data and Avg.
accuracy with different C0 (Right) values on PACS, OfficeHome and Tiny-ImageNet-C datasets.
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Figure 4: Test accuracy (%) on CIFAR-10-C (Left) and Tiny-ImageNet-C (Right) corruption bench-
marks with different ϵ values.

4.4 MODEL ANALYSIS

Ablation study. Table 4 reports the test accuracy on Tiny-ImageNet-C with different components.
With Lcos, CLIP-DR learns more robust features, provides a higher accuracy compared to CLIPOT
(e.g., 24.57% vs. 21.4% under Gaussian noise), while the use of both Lcos and LIM leads to the
highest accuracy (e.g., 24.76%). These results highlight the usefulness of the proposed components.

Impact of ϵ. We validate the usefulness of the hyper-parameter ϵ using CIFAR-10-C and Tiny-
ImageNet-C datasets. As shown in Figure 4, a lower ϵ value such as 0.3 can not guarantee the
model learn useful feature representations, thereby provides 0.5% and 10% Avg. accuracy on
TinyImageNet-C and CIFAR-10-C datasets, respectively. This is because in certain cases, the Q ma-
trix became NaN, causing numerical instabilities during iterative updates. Instead, a higher ϵ value,
such as 0.5 improves stability, leading to the highest Avg. accuracy of 40.98% on TinyImageNet-C.
Overall, the chosen values (0.5, 0.7) strike a balance between stability and performance, yielding
robust results across these noises.

Impact of C0. We use different threshold (C0) to validate its importance in Lcos. Specifically,
we consider C0 ∈ {0.1, 0.2, · · · , 0.95} for experiments using CIFAR-10-C, CIFAR-100-C and
TinyImageNet-C datasets. As shown in Figure 3, setting a higher C0 leads to a higher Avg. accu-
racy compared to low C0 on CIFAR-10-C (e.g., 77.24%) and CIFAR-100-C (e.g., 47.35%) datasets,
while using a small C0 provides higher Avg. accuracy on TinyImageNet-C dataset (e.g., 40.98%).
We hypothesize that on simpler datasets such as CIFAR-10-C, a high threshold effectively filters out
true uncertainties. On complex datasets, the model can be overconfident in its incorrect predictions,
requiring a lower threshold.

Hyperparameter sensitivity. We explore the impact of each hyperparameter on the CIFAR-10-C,
CIFAR-100-C, and Tiny-ImageNet-C datasets. Specifically, we consider λ1 using values ranging
from [0.1, 0.2, ..., 1.0] for Tiny-ImageNet-C, CIFAR-10-C and CIFAR-100-C. We set the values of
λ2 ranging from [0.1, 0.2, 0.3, ..., 1.0] (Tiny-ImageNet-C, CIFAR-10-C and CIFAR-100-C). Figure
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Figure 5: Heatmaps of the average accuracy with respect to λ1 and λ2.
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Figure 6: The deterioration ratio for CLIP-OT and CLIP-DR on TinyImageNet-C dataset.

5 shows the sensitivity of the Avg. accuracy to the hyperparameters λ1 and λ2. For example,
the heatmap for Tiny-ImageNet-C shows an optimal performance region (i.e., red) where λ1 is
approximately in [0.8, 1.0] and λ2 in [0.1, 0.5]. The highest Avg. accuracy of 40.98% is achieved
at a value of 1.0 for λ1 and 0.1 for λ2. Furthermore, the performance of the model depends strongly
on λ1, with Avg. accuracy consistently higher than 40% when λ1 ≥ 0.8, while the impact of λ2

is minimal (i.e., the accuracy changes are < 0.5%). However, for CIFAR-10-C, achieving optimal
performance requires a higher value of λ2 and a lower value of λ1. For CIFAR-100-C, setting
smaller values for both hyperparameters provides higher Avg. accuracy (e.g., λ1 = 0.1, λ2 = 0.3,
with an Avg. of 47.35%). Our results indicate that the optimal hyperparameter region is dataset-
dependent. A simple tuning strategy can be drawn from these findings: prioritize tuning λ1 on
large-scale datasets, while for smaller datasets, careful tuning of λ2 is essential. The details of the
test accuracy for each corruption are reported in Appendix A.6.1.

Robustness. Figure 6 shows the deterioration ratio (i.e., the fraction of initially correct predictions
that become incorrect during adaptation) on TinyImageNet-C dataset based on a single run (seed
42). For example, CLIP-OT exhibits a high deterioration ratio on many corruptions, such as Shot
noise (∼0.5) and Defocus blur (∼0.6), indicating severe catastrophic forgetting. However, CLIP-DR
reduces these ratios to ∼0.3 on the same corruptions. Overall, CLIP-DR yields a lower deterioration
ratio under all 15 corruptions, highlighting its stability effect during adaptation.

Small Batch Sizes. Recent studies Wang et al. (2025); Karmanov et al. (2024) suggest one chal-
lenging TTA setting, which uses a small batchsize (e.g., four). Table 6 reports the test accuracy on
CIFAR-10-C and TinyImageNet-C datasets with a batchsize of four. For CIFAR-10-C dataset, the
small batch size limits the potential of CLIP-OT, reducing its Avg. accuracy to 57.01%. We notice
that CLIP-OT yields a lower Avg. accuracy compared to CLIP (59.22%). Similar conclusion can
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be drawn from TinyImageNet-C dataset. This indicates that using OT alone can lead to negative
adaptation under highly constrained conditions. In contrast, CLIP-DR, with its dual regularization
components, achieves an Avg. accuracy of 64.21% on CIFAR-10-C dataset, representing a 7.2% im-
provement over CLIP-OT and a 4.99% improvement over the CLIP. This highlights the robustness
of our approach in practical low-batch-size settings.

Table 6: Performance under different batchsize for CLIP-DR and CLIP-OT. Bold indicates the best
result.

Methods Noises
CIFAR-10-C Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Avg.

CLIP-OT 49.93 51.16 48.2 59.54 51.53 60.27 61.7 61.68 65.9 59.35 64.11 58.32 58.32 50.06 55.13 57.01
CLIP-DR 55.65 56.71 52.72 69.9 57.83 68.78 71.27 69.7 71.61 66.58 73.29 66.95 64.21 58.62 59.35 64.21

TinyImageNet-C
CLIP-OT 12.1 15.39 11.92 17.17 14.69 18.7 17.83 19 20.44 20.62 23.98 7.11 21.94 21.71 24.16 17.78
CLIP-DR 18.81 25.17 18.56 30.67 20.73 33.47 32.13 27.64 31.21 36.74 37.42 12.07 38.18 29.42 37.76 28.66

Cross-dataset. We use several cross-datasets to explore the generalization on different data types.
Specifically, ImageNet-R Hendrycks et al. (2021), ImageNetV2 Recht et al. (2019), Aircraft Maji
et al. (2013), Caltech-101 Bansal et al. (2023), EuroSAT Helber et al. (2019), DTD Cimpoi et al.
(2014) and Pets Parkhi et al. (2012) are used for experiments. Table 7 reports the test accuracy.
While the gains of CLIP-DR on some datasets are modest, the key finding is that CLIP-DR never de-
creases the original performance, unlike CLIP-OT which can cause degradation (e.g., on Imagenet-
R, Pets). This reliability is crucial for real-world TTA applications.

Table 7: Performance on other datasets for CLIP-DR and CLIP-OT. Bold indicates the best result.
Methods Datasets

Imagenet-R EuroSAT Aircraft Caltech-101 ImageNetV2 DTD ImageNet-S Pets
CLIP 68.36 33.30 25.87 80.74 55.02 43.38 74.33 77.51

CLIP-OT 68.26 34.87 26.50 80.80 55.19 43.59 73.91 77.30
CLIP-DR 68.40 35.94 26.63 80.77 55.25 43.70 74.70 77.85

Different backbones. We replace the CLIP backbone with SigLIP Zhai et al. (2023) and EVA02-
CLIP Fang et al. (2024) to evaluate the generalizability of the proposed dual-regularization approach.
Table 8 reports the test accuracy on CIFAR-10/100-C datasets. CLIP-TTA consistently provides a
higher Avg. accuracy (e.g., 89.38% vs. 86.92%) compared to CLIP-OT with SigLIP and EVA02-
CLIP backbones. These results confirm that the proposed dual-regularization principle is a general
and effective strategy for robust test-time adaptation, not just being a mere tweak for CLIP model.

Table 8: Accuracy (%) on CIFAR10-C (3-5 and 7-9 rows) and CIFAR100-C (11-13 and 15-17 rows)
for CLIP-DR and baselines using different backbones. Bold indicates the best result.

Methods Noises
SigLIP Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Avg.
SigLIP 13.27 14.8 20.52 54.34 23.36 46 52.9 25.49 32.06 68.74 28.35 78.53 38.36 36.84 26.69 37.35

CLIP-OT 39.98 50.2 60.65 76.92 56.69 74.88 78.65 53.04 64.15 85.06 64.27 89.42 66.83 68.1 53.73 65.50
CLIP-DR 40.34 51.35 61.34 77.69 57.39 75.2 79.71 54.1 66.33 85.74 66.12 89.04 67.91 70.42 54.92 66.51

EVA02-CLIP
EVA02-CLIP 71.87 74.2 73.11 90.14 64.85 86.87 91.44 92.4 92.55 88.82 96.5 89.42 75.94 61.92 79.05 81.93

CLIP-OT 81.18 76.36 80.7 90.73 83.54 89.53 91.07 92.53 87.54 82.46 96.87 94.28 83.73 89.96 83.41 86.92
CLIP-DR 83.05 81.61 86.55 93.14 83.66 90.53 94.03 91.67 93.69 92.21 94.89 94.52 87.85 87.72 85.59 89.38

CIFAR-100-C
SigLIP 2.78 2.97 4.51 22.68 6.85 17.49 24.04 5.26 8.57 37.98 6.82 46.08 10.78 10.01 5.88 14.18

CLIP-OT 11.96 14.63 20.39 40.41 19.66 37.45 42.03 20.01 26.08 54.21 21.65 58.16 25.66 26.87 18.4 29.17
CLIP-DR 12.89 15.71 21.12 41.32 20.05 38.19 43.04 21.03 26.72 55.1 22.82 59.23 26.27 27.58 18.73 29.99

EVA02-CLIP
EVA02-CLIP 45.66 47.74 45.37 68.84 36.99 64.78 72.28 71.86 71.55 65.29 80.21 64.23 45.28 40.14 53.75 58.26

CLIP-OT 55.44 52.94 56.89 66.54 54.35 63.15 67.7 66 68.22 65.64 72.79 64.68 57.15 62.43 59.37 62.22
CLIP-DR 56.74 56.44 58.86 67.78 57.1 65.86 69.94 68.75 71 65.64 76.54 67.51 61.26 65.65 61.35 64.69

5 CONCLUSION

In this study, we extend the study in CLIP-OT by introducing a cosine similarity loss to align the
image features and text prototypes, while adding an IM regularization technique to reduce the un-
certainties in prediction. Experimental results on seven datasets show that CLIP-DR outperforms
recent state-of-the-art results in several settings with minimal computation overhead, highlighting
its potential for efficient TTA.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We affirm that all text, code, and data presented in this work were prepared by the authors. No
large language models (e.g., ChatGPT) or other generative AI tools were used in the creation of this
manuscript.

A.2 ANALYSIS OF Lcos AND LIM FOR REDUCING ECE

We provide the analysis of Lcos and LIM for reducing ECE. Specifically, the ECE can be formulated
as follows:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (13)

where Bm is the m-th bin. n is the number of samples. A higher ECE value is dominated by
confidently wrong samples residing in high-confidence, low-accuracy bins.

Concerning LIM , it is defined as:

LIM =
1

|Bt|
∑
x∈Bt

H(p(x))︸ ︷︷ ︸
confidence

− H(p̄)︸ ︷︷ ︸
diversity

(14)

The first term, namely confidence regularization, it encourages the model to make more confident
predictions for each sample. This helps to reduce under-confidence, ensuring that predictions in
medium-confidence bins are meaningful and not due to model uncertainty.

The second term, namely diversity regularization, it controls over-confidence of all predictions
through maximizing H(p̄). This directly penalizes the model if it becomes over-confident on aver-
age (e.g., always predicting a few classes with high probability), reducing the number of samples
that are incorrectly assigned to high-confidence bins.

By jointly optimizing these two opposing objectives, LIM strikes a balance that prevents both under-
confident and over-confident predictions, leading to a better-calibrated model and a lower ECE.

Considering Lcos, it is represented as:

Lcos =

B∑
j=1

exp(C(xj)− C0) · (1− sO,̄fŷ
) · I{C(xj) ≥ C0} (15)

where s is defined as:

sO,̄fŷ
=

⟨O, f̄ŷ⟩
∥O∥·∥f̄ŷ∥

, where f̄ŷ = t⊤kmtŷkm , O = z⊤i tk/τ (16)

Specifically, it will push the image features toward the pseudo-text prototypes. Thus, it will change
the logits s with the following two points: 1) increase the number of correct predicted samples, and
2) decrease the incorrect predictions. This reduces the number of confidently wrong samples. These
samples are the primary contributors to high ECE, as they cause large |acc(Bm) − conf(Bm)| in
high-confidence bins. By minimizing Lcos, we systematically reduce this miscalibration.

In summary, Lcos and LIM form a synergistic framework: Lcos works at the feature level to reduce
the source of confident errors (noisy pseudo-labels), while LIM operates at the output level to ensure
a well-calibrated probability distribution. This theoretical framework is validated by our empirical
results.

A.3 DISCUSSION BETWEEN CLIP-DR AND C-TPT

In Yoon et al. (2024), they propose C-TPT (Calibrated Test-Time Prompt Tuning), sharing a similar
goal of improving model calibration during TTA for CLIP without requiring labeled data. Specif-
ically, C-TPT identifies that the choice of prompts considerably impacts calibration in CLIP, and

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

proposes that prompts leading to higher text feature dispersion result in better-calibrated predic-
tions. Based on this insight, they propose the Average Text Feature Dispersion (ATFD) to optimize
prompts for enhanced calibration. Their results show that ATFD has a negative correlation with ECE
value (i.e., a higher ATFD value leads to a lower ECE value and vice versa). This analytical frame-
work of linking text feature dispersion to calibration error provides a valuable perspective. While
C-TPT offers a novel prompt-based strategy, our work demonstrates that calibration can be achieved
through a feature and output space regularizations within a pseudo-labeling TTA framework. We
will explore the integration of both prompt-tuning and image feature adaptation for CLIP-based
TTA.

A.4 ALGORITHM

Algorithm 1 shows the pseuodo-code of CLIP-DR.

Algorithm 1 Adaptation procedure of CLIP-DR for one corruption.
1: input: test dataset X = {xn} (images), text templates T (class descriptions), visual and text

encoders (θ, ϕ).
// Split X into B batches of size Bs.
// Compute K ×M text prototypes (ϕ(T ),∀m, k).

2: T ∈ Rd×K×M = [tkm]k=1,...,K,m=1,...,M

3: for sampled minibatch {xi}Bs
i=1 do

// 1 - Test-time Adaptation
4: for each template m in {1, 2, . . . ,M} do
5: Tm ∈ Rd×K // class text embeddings for m.
6: Z = [z1, . . . , zBs

] // visual features (θ(m−1)
LN ).

7: Compute codes Q∗
m // (Eq. 8).

8: Compute cosine similarity regularization loss Lcos // (Eq. 10).
9: Compute information maximization loss LIM // (Eq. 11).

10: tk = 1
M

∑M
m=1 tkm (tk ∈ Rd) // average class text embeddings over all M templates.

11: P = [p1, . . . ,pBs ] // predict: tk,∀k, Eq. (1).
12: Min. cross-entropy with P and Q∗

m.
13: Min. Lcos and LIM .
14: θ

(m−1)
LN → θ

(m)
LN // Update layer norm (LN) of θ.

15: end for
// 2 - Inference (for all images in the batch).

16: Z = [z1, . . . , zBs ] // visual features (with θ
(m)
LN ).

17: P = [p1, . . . ,pBs ] // predict with tk,∀k, Eq. (1).
18: end for

A.5 TEMPLATES

Table 9 reports the templates we used in our study.

Table 9: The different templates used during the experiments.
Template

1: “a photo of a {class k}”
2: “itap of a {class k}”
3: “a bad photo of the {class k}”
4: “a origami {class k}”
5: “a photo of the large {class k}”
6: “a {class k} in a video game”
7: “art of the {class k}”
8: “a photo of the small {class k}”

15
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A.6 ADDITIONAL RESULTS

A.6.1 RESULTS FOR DIFFERENT HYPER-PARAMETERS

Table 10 to Table 31 report the test accuracy on CIFAR-10/100-C and TinyImageNet-C datasets with
different λ1 and λ2 values.

Table 10: Test accuracy (%) under different λ1 values (λ2 = 0.1) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.13 65.15 65.20 65.18 65.16 65.17 65.15 65.18 65.21 65.18
Shot Noise 67.35 67.34 67.34 67.37 67.36 67.35 67.34 67.33 67.34 67.34

Impulse Noise 62.27 62.26 62.25 62.20 62.23 62.25 62.25 62.23 62.22 62.25
Defocus Blur 82.33 82.33 82.32 82.32 82.36 82.37 82.33 82.33 82.34 82.34

Glass Blur 67.86 67.89 67.90 67.90 67.92 67.93 67.93 67.93 67.93 67.94
Motion Blur 81.41 81.41 81.41 81.41 81.41 81.41 81.41 81.42 81.44 81.43
Zoom Blur 83.34 83.36 83.39 83.42 83.42 83.42 83.45 83.43 83.42 83.40

Snow 83.81 83.82 83.81 83.80 83.80 83.80 83.77 83.78 83.75 83.75
Frost 83.33 83.34 83.34 83.35 83.35 83.35 83.35 83.35 83.36 83.36
Fog 82.26 82.29 82.30 82.30 82.31 82.31 82.34 82.32 82.35 82.35

Brightness 89.71 89.71 89.72 89.72 89.72 89.71 89.72 89.72 89.72 89.72
Contrast 84.99 84.99 85.00 84.98 84.97 84.97 84.96 84.96 84.97 84.97

Elastic Transform 76.05 76.04 76.04 76.04 76.05 76.06 76.06 76.07 76.06 76.08
Pixelate 76.95 76.94 76.96 76.96 76.96 76.95 76.95 76.95 76.93 76.92

JPEG Compression 70.21 70.21 70.22 70.21 70.21 70.19 70.17 70.18 70.19 70.20

Table 11: Test accuracy (%) under different λ1 values (λ2 = 0.2) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.29 65.17 65.23 65.17 64.99 64.99 64.93 64.93 64.82 64.75
Shot Noise 67.43 67.38 67.38 67.38 67.37 67.32 67.34 67.28 67.31 67.25

Impulse Noise 62.16 62.19 62.22 62.19 62.13 62.04 61.89 61.85 61.88 61.82
Defocus Blur 82.36 82.31 82.36 82.30 82.30 82.26 82.31 82.26 82.30 82.28

Glass Blur 67.87 67.76 67.68 67.68 67.62 67.63 67.58 67.54 67.54 67.61
Motion Blur 81.46 81.49 81.54 81.57 81.66 81.70 81.73 81.75 81.72 81.70
Zoom Blur 83.44 83.42 83.47 83.55 83.55 83.56 83.56 83.49 83.48 83.54

Snow 83.82 83.85 83.86 83.90 83.91 83.87 83.88 83.87 83.77 83.65
Frost 83.42 83.43 83.43 83.42 83.41 83.40 83.40 83.40 83.40 83.34
Fog 82.41 82.39 82.33 82.33 82.36 82.34 82.34 82.31 82.33 82.35

Brightness 89.78 89.79 89.75 89.77 89.75 89.75 89.76 89.74 89.73 89.74
Contrast 85.02 85.00 84.97 84.94 84.90 84.90 84.89 84.87 84.83 84.85

Elastic Transform 76.10 76.12 76.10 76.06 76.08 76.08 76.10 76.09 76.04 76.07
Pixelate 77.00 76.97 76.97 76.99 77.06 77.08 77.11 77.08 77.00 76.97

JPEG Compression 70.32 70.34 70.38 70.31 70.28 70.27 70.20 70.15 70.15 70.11

Table 12: Test accuracy (%) under different λ1 values (λ2 = 0.3) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.23 65.25 65.20 65.16 65.05 64.93 64.93 64.84 64.81 64.68
Shot Noise 67.46 67.44 67.38 67.34 67.33 67.27 67.31 67.24 67.27 67.16

Impulse Noise 62.18 62.13 62.20 62.10 62.07 61.99 61.92 61.99 61.98 61.90
Defocus Blur 82.46 82.33 82.39 82.40 82.40 82.37 82.34 82.28 82.29 82.34

Glass Blur 67.73 67.68 67.69 67.70 67.63 67.55 67.53 67.63 67.65 67.68
Motion Blur 81.61 81.61 81.68 81.70 81.74 81.74 81.73 81.75 81.73 81.66
Zoom Blur 83.49 83.51 83.52 83.52 83.53 83.54 83.58 83.54 83.56 83.56

Snow 83.91 83.95 83.94 83.96 83.98 83.94 83.93 83.85 83.79 83.70
Frost 83.43 83.43 83.44 83.41 83.43 83.40 83.36 83.35 83.36 83.38
Fog 82.35 82.31 82.29 82.30 82.35 82.37 82.40 82.36 82.33 82.34

Brightness 89.76 89.77 89.74 89.77 89.78 89.75 89.72 89.69 89.71 89.73
Contrast 85.05 84.98 84.98 84.96 84.92 84.92 84.89 84.86 84.85 84.84

Elastic Transform 76.11 76.15 76.11 76.02 76.01 76.10 76.14 76.13 76.11 76.09
Pixelate 77.06 77.13 77.11 77.16 77.19 77.14 77.16 77.08 77.05 77.01

JPEG Compression 70.38 70.45 70.48 70.38 70.33 70.28 70.24 70.20 70.13 70.13
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Table 13: Test accuracy (%) under different λ1 values (λ2 = 0.4) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.25 65.20 65.16 65.12 64.98 64.90 64.88 64.83 64.78 64.74
Shot Noise 67.37 67.37 67.38 67.37 67.28 67.21 67.25 67.26 67.22 67.28

Impulse Noise 62.16 62.18 62.05 62.06 62.01 61.98 61.95 61.98 62.04 61.98
Defocus Blur 82.42 82.35 82.36 82.36 82.36 82.37 82.34 82.34 82.33 82.32

Glass Blur 67.74 67.71 67.65 67.64 67.69 67.64 67.66 67.66 67.65 67.60
Motion Blur 81.68 81.71 81.69 81.70 81.68 81.73 81.75 81.70 81.64 81.65
Zoom Blur 83.55 83.56 83.57 83.61 83.63 83.59 83.58 83.58 83.60 83.61

Snow 84.00 84.03 84.05 84.02 84.00 83.98 83.90 83.84 83.81 83.72
Frost 83.49 83.45 83.42 83.40 83.40 83.39 83.40 83.36 83.38 83.38
Fog 82.35 82.34 82.34 82.36 82.35 82.39 82.36 82.35 82.37 82.30

Brightness 89.77 89.77 89.78 89.76 89.73 89.74 89.76 89.74 89.74 89.76
Contrast 84.99 84.97 84.98 84.93 84.92 84.86 84.86 84.84 84.86 84.83

Elastic Transform 76.14 76.09 76.09 76.08 76.12 76.18 76.19 76.16 76.19 76.15
Pixelate 77.06 77.10 77.09 77.14 77.11 77.16 77.09 77.09 77.08 77.05

JPEG Compression 70.45 70.45 70.42 70.39 70.32 70.28 70.28 70.15 70.17 70.20

Table 14: Test accuracy (%) under different λ1 values (λ2 = 0.5) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.25 65.18 65.12 65.08 65.02 64.90 64.87 64.84 64.80 64.68
Shot Noise 67.38 67.36 67.35 67.32 67.24 67.24 67.28 67.25 67.15 67.21

Impulse Noise 62.24 62.18 62.08 62.02 62.03 62.03 62.05 62.02 62.02 61.97
Defocus Blur 82.40 82.37 82.31 82.36 82.35 82.32 82.35 82.32 82.31 82.34

Glass Blur 67.69 67.65 67.68 67.73 67.69 67.64 67.64 67.62 67.57 67.58
Motion Blur 81.64 81.66 81.72 81.71 81.70 81.67 81.68 81.65 81.67 81.62
Zoom Blur 83.60 83.61 83.59 83.62 83.58 83.59 83.58 83.56 83.58 83.58

Snow 84.10 84.09 84.02 84.03 83.99 83.96 83.88 83.86 83.79 83.74
Frost 83.45 83.41 83.37 83.37 83.36 83.38 83.39 83.41 83.42 83.44
Fog 82.38 82.36 82.39 82.38 82.40 82.38 82.41 82.37 82.36 82.34

Brightness 89.75 89.71 89.75 89.75 89.77 89.77 89.76 89.76 89.74 89.74
Contrast 84.98 84.96 84.93 84.89 84.87 84.86 84.81 84.85 84.87 84.86

Elastic Transform 76.16 76.15 76.16 76.16 76.16 76.15 76.15 76.22 76.22 76.22
Pixelate 77.11 77.13 77.13 77.14 77.11 77.08 77.09 77.10 77.08 77.03

JPEG Compression 70.50 70.46 70.37 70.35 70.31 70.31 70.25 70.23 70.25 70.27

Table 15: Test accuracy (%) under different λ1 values (λ2 = 0.6) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.23 65.11 65.07 65.01 65.00 64.92 64.89 64.89 64.86 64.78
Shot Noise 67.31 67.38 67.36 67.29 67.34 67.28 67.27 67.14 67.20 67.14

Impulse Noise 62.18 62.07 62.08 62.05 62.08 62.12 62.05 62.02 62.00 61.97
Defocus Blur 82.34 82.39 82.37 82.41 82.35 82.35 82.33 82.35 82.34 82.33

Glass Blur 67.72 67.73 67.68 67.65 67.68 67.67 67.61 67.62 67.63 67.61
Motion Blur 81.68 81.66 81.67 81.61 81.63 81.63 81.62 81.62 81.61 81.58
Zoom Blur 83.59 83.58 83.57 83.56 83.57 83.53 83.52 83.53 83.56 83.54

Snow 84.09 84.09 84.07 84.04 83.99 83.99 83.91 83.83 83.81 83.77
Frost 83.42 83.43 83.44 83.42 83.40 83.39 83.39 83.43 83.46 83.49
Fog 82.39 82.39 82.41 82.43 82.37 82.40 82.40 82.39 82.38 82.39

Brightness 89.79 89.80 89.78 89.78 89.78 89.76 89.75 89.73 89.75 89.75
Contrast 84.94 84.92 84.90 84.90 84.89 84.85 84.87 84.85 84.87 84.88

Elastic Transform 76.21 76.25 76.24 76.23 76.24 76.27 76.24 76.23 76.24 76.22
Pixelate 77.06 77.10 77.14 77.09 77.07 77.10 77.09 77.07 77.07 77.07

JPEG Compression 70.45 70.40 70.42 70.34 70.31 70.31 70.26 70.28 70.30 70.27

A.6.2 RESULTS FOR LAION-C

Table 41 reports the test accuracy on LAION-C Li et al. (2025). The results conclusively prove that
the proposed dual regularization can enhance the performance within the OT optimization frame-
work (e.g., a reliable performance gain (+1.46% in Avg.)).
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Table 16: Test accuracy (%) under different λ1 values (λ2 = 0.7) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.14 65.11 64.98 64.99 64.96 64.90 64.95 64.89 64.85 64.83
Shot Noise 67.36 67.44 67.35 67.36 67.25 67.23 67.17 67.14 67.16 67.13

Impulse Noise 62.08 62.01 61.99 62.08 62.11 62.11 62.04 62.05 62.00 61.97
Defocus Blur 82.39 82.43 82.43 82.41 82.42 82.37 82.33 82.38 82.41 82.35

Glass Blur 67.75 67.71 67.66 67.67 67.68 67.63 67.68 67.68 67.66 67.60
Motion Blur 81.60 81.60 81.57 81.59 81.60 81.60 81.61 81.59 81.61 81.60
Zoom Blur 83.53 83.54 83.55 83.55 83.57 83.50 83.51 83.56 83.54 83.53

Snow 84.08 84.05 84.05 84.06 84.02 83.99 83.91 83.85 83.81 83.79
Frost 83.45 83.44 83.45 83.46 83.44 83.44 83.44 83.46 83.46 83.44
Fog 82.42 82.43 82.44 82.41 82.39 82.43 82.44 82.43 82.40 82.38

Brightness 89.81 89.78 89.79 89.80 89.77 89.77 89.78 89.76 89.77 89.78
Contrast 84.93 84.91 84.93 84.87 84.85 84.86 84.87 84.87 84.90 84.87

Elastic Transform 76.30 76.27 76.33 76.28 76.24 76.26 76.25 76.24 76.28 76.25
Pixelate 77.04 77.05 77.02 77.06 77.06 77.09 77.08 77.02 77.07 77.11

JPEG Compression 70.44 70.41 70.35 70.32 70.30 70.32 70.26 70.23 70.26 70.26

Table 17: Test accuracy (%) under different λ1 values (λ2 = 0.8) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.18 65.03 64.99 65.00 64.93 64.95 64.93 64.87 64.85 64.84
Shot Noise 67.42 67.36 67.34 67.30 67.26 67.22 67.16 67.13 67.15 67.18

Impulse Noise 62.00 62.04 62.06 62.07 62.09 62.05 62.05 62.05 62.03 61.99
Defocus Blur 82.45 82.44 82.42 82.44 82.46 82.38 82.41 82.42 82.42 82.39

Glass Blur 67.73 67.72 67.73 67.72 67.71 67.70 67.69 67.66 67.64 67.68
Motion Blur 81.61 81.56 81.57 81.59 81.59 81.59 81.59 81.59 81.58 81.60
Zoom Blur 83.55 83.53 83.55 83.56 83.59 83.53 83.51 83.50 83.49 83.50

Snow 84.02 84.04 84.03 84.02 84.07 84.02 83.96 83.89 83.81 83.84
Frost 83.49 83.46 83.44 83.46 83.47 83.47 83.46 83.44 83.44 83.47
Fog 82.44 82.43 82.46 82.47 82.44 82.41 82.38 82.43 82.41 82.40

Brightness 89.79 89.80 89.80 89.80 89.80 89.80 89.80 89.80 89.78 89.79
Contrast 84.90 84.91 84.88 84.85 84.85 84.87 84.88 84.90 84.88 84.90

Elastic Transform 76.25 76.25 76.27 76.28 76.33 76.30 76.26 76.27 76.26 76.18
Pixelate 77.00 77.01 77.03 77.04 77.04 77.01 77.01 77.02 77.04 77.07

JPEG Compression 70.42 70.34 70.31 70.35 70.32 70.31 70.26 70.27 70.28 70.25

Table 18: Test accuracy (%) under different λ1 values (λ2 = 0.9) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.08 65.04 64.98 65.01 64.91 64.95 64.92 64.89 64.92 64.85
Shot Noise 67.36 67.32 67.35 67.26 67.22 67.15 67.14 67.17 67.17 67.17

Impulse Noise 62.10 62.10 62.08 62.11 62.11 62.05 62.03 62.03 62.01 61.99
Defocus Blur 82.47 82.41 82.41 82.43 82.44 82.42 82.44 82.43 82.45 82.43

Glass Blur 67.82 67.78 67.76 67.74 67.71 67.68 67.67 67.68 67.72 67.67
Motion Blur 81.55 81.55 81.55 81.56 81.62 81.57 81.58 81.56 81.55 81.58
Zoom Blur 83.52 83.57 83.55 83.56 83.56 83.51 83.48 83.46 83.52 83.51

Snow 84.07 84.04 84.04 84.03 84.00 83.98 83.93 83.88 83.84 83.78
Frost 83.50 83.46 83.48 83.47 83.48 83.50 83.50 83.49 83.49 83.51
Fog 82.46 82.46 82.43 82.43 82.44 82.45 82.41 82.42 82.39 82.38

Brightness 89.79 89.80 89.80 89.80 89.81 89.82 89.81 89.78 89.77 89.77
Contrast 84.91 84.88 84.86 84.84 84.86 84.87 84.88 84.88 84.86 84.90

Elastic Transform 76.25 76.30 76.31 76.30 76.30 76.28 76.25 76.21 76.19 76.20
Pixelate 77.07 77.01 77.01 77.03 77.00 77.00 76.99 76.99 76.99 77.03

JPEG Compression 70.40 70.40 70.39 70.34 70.33 70.31 70.30 70.32 70.29 70.27

A.6.3 RESULTS FOR UPDATING TEXT ENCODER

Table 42 reports the test accuracy on CIAFR-10-C for updating both the image and text LayerNorm
parameters. It can be seen that optimizing the text encoder ϕ leads to negative effects.
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Table 19: Test accuracy (%) under different λ1 values (λ2 = 1.0) on CIFAR-10-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 65.17 65.11 65.02 64.98 64.93 64.95 64.92 64.92 64.91 64.94
Shot Noise 67.37 67.36 67.29 67.23 67.15 67.19 67.17 67.16 67.14 67.15

Impulse Noise 62.12 62.13 62.12 62.12 62.06 62.03 62.06 62.03 62.02 61.98
Defocus Blur 82.47 82.45 82.43 82.43 82.44 82.46 82.48 82.45 82.41 82.41

Glass Blur 67.83 67.80 67.77 67.75 67.72 67.71 67.70 67.72 67.71 67.69
Motion Blur 81.57 81.56 81.58 81.57 81.59 81.57 81.60 81.56 81.58 81.59
Zoom Blur 83.53 83.57 83.56 83.50 83.50 83.48 83.44 83.44 83.46 83.48

Snow 84.03 84.02 84.02 84.00 83.98 83.96 83.93 83.88 83.88 83.84
Frost 83.51 83.50 83.53 83.55 83.50 83.50 83.53 83.54 83.55 83.54
Fog 82.44 82.43 82.47 82.48 82.46 82.44 82.43 82.42 82.42 82.41

Brightness 89.77 89.79 89.82 89.82 89.81 89.82 89.77 89.76 89.77 89.76
Contrast 84.89 84.86 84.84 84.81 84.86 84.88 84.88 84.86 84.86 84.90

Elastic Transform 76.33 76.31 76.34 76.35 76.30 76.26 76.25 76.19 76.21 76.25
Pixelate 77.06 77.05 77.03 77.03 77.04 77.00 76.97 76.99 76.98 77.02

JPEG Compression 70.38 70.39 70.37 70.34 70.35 70.34 70.34 70.29 70.31 70.33

Table 20: Test accuracy (%) under different λ1 values (λ2 = 0.1) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.55 33.51 33.52 33.53 33.48 33.38 33.37 33.40 33.35 33.22
Shot Noise 35.23 35.16 35.15 35.12 35.20 35.13 35.12 35.04 34.87 34.81

Impulse Noise 30.61 30.63 30.58 30.53 30.52 30.50 30.43 30.33 30.36 30.31
Defocus Blur 53.77 53.86 53.87 53.82 53.78 53.73 53.62 53.59 53.57 53.52

Glass Blur 35.3 35.35 35.36 35.36 35.20 35.07 34.96 34.80 34.79 34.93
Motion Blur 52.81 52.76 52.75 52.75 52.66 52.67 52.61 52.64 52.58 52.55
Zoom Blur 56.83 56.77 56.73 56.77 56.72 56.62 56.67 56.58 56.52 56.42

Snow 54.24 54.19 54.26 54.21 54.24 54.26 54.20 54.19 54.27 54.23
Frost 54.91 54.89 54.88 54.85 54.87 54.82 54.79 54.87 54.89 54.85
Fog 53.87 53.79 53.74 53.80 53.93 53.90 53.99 53.95 53.95 53.89

Brightness 64.47 64.34 64.41 64.42 64.47 64.46 64.49 64.46 64.50 64.48
Contrast 54.87 55.03 54.94 54.88 54.77 54.74 54.66 54.64 54.70 54.64

Elastic Transform 43.47 43.47 43.51 43.53 43.49 43.39 43.30 43.24 43.17 43.11
Pixelate 45.31 45.20 45.21 45.25 45.21 45.26 45.23 45.19 45.14 45.01

JPEG Compression 41.07 40.86 40.97 41.02 40.90 40.89 40.76 40.67 40.50 40.48

Table 21: Test accuracy (%) under different λ1 values (λ2 = 0.2) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.51 33.57 33.48 33.47 33.44 33.41 33.43 33.37 33.29 33.25
Shot Noise 35.23 35.19 35.18 35.22 35.14 35.14 35.03 34.93 34.85 34.73

Impulse Noise 30.63 30.62 30.54 30.49 30.42 30.39 30.32 30.34 30.34 30.35
Defocus Blur 53.83 53.87 53.80 53.77 53.67 53.63 53.54 53.53 53.53 53.53

Glass Blur 35.36 35.31 35.27 35.18 35.03 34.91 34.81 34.87 34.94 34.94
Motion Blur 52.86 52.80 52.75 52.67 52.65 52.62 52.62 52.54 52.53 52.56
Zoom Blur 56.79 56.74 56.78 56.73 56.66 56.65 56.52 56.45 56.41 56.31

Snow 54.16 54.22 54.25 54.22 54.23 54.22 54.30 54.24 54.23 54.20
Frost 54.91 54.87 54.89 54.87 54.87 54.85 54.91 54.87 54.88 54.84
Fog 53.75 53.74 53.85 53.93 53.98 53.99 53.98 53.95 53.93 53.85

Brightness 64.34 64.42 64.46 64.48 64.49 64.50 64.49 64.55 64.52 64.52
Contrast 54.98 54.86 54.79 54.77 54.71 54.67 54.64 54.72 54.68 54.70

Elastic Transform 43.52 43.48 43.50 43.41 43.37 43.27 43.19 43.18 43.11 42.99
Pixelate 45.30 45.27 45.28 45.30 45.29 45.29 45.21 45.19 45.07 44.98

JPEG Compression 40.93 41.04 41.04 41.06 40.96 40.84 40.78 40.61 40.46 40.49

A.6.4 RESULTS ON FINE-GRAINED DATASET

The effectiveness of Lcos relies on the discriminative text prototypes, which can be a limitation in
extremely fine-grained datasets (e.g., Pets). To empirically evaluate the contribution of Lcos, we
validate the Lcos without LIM on fine-grained datasets (Please see the Table below). As reported
in the Table 43, introducing Lcos consistently improves upon CLIP-OT across all datasets. This
suggests that Lcos does not shift the model toward incorrect priors but acts as a reliable regularizer
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Table 22: Test accuracy (%) under different λ1 values (λ2 = 0.3) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.55 33.50 33.44 33.46 33.47 33.40 33.36 33.32 33.21 33.22
Shot Noise 35.23 35.17 35.21 35.14 35.08 35.02 34.98 34.86 34.81 34.68

Impulse Noise 30.61 30.48 30.51 30.41 30.34 30.30 30.31 30.39 30.42 30.34
Defocus Blur 53.77 53.77 53.74 53.64 53.56 53.56 53.53 53.53 53.57 53.52

Glass Blur 35.30 35.19 35.08 35.00 34.93 34.88 34.92 34.90 34.94 34.79
Motion Blur 52.81 52.73 52.69 52.65 52.59 52.58 52.51 52.52 52.49 52.49
Zoom Blur 56.83 56.79 56.69 56.69 56.58 56.50 56.42 56.39 56.30 56.24

Snow 54.24 54.28 54.26 54.20 54.22 54.29 54.26 54.24 54.21 54.21
Frost 54.91 54.92 54.95 54.97 54.91 54.93 54.97 54.84 54.82 54.77
Fog 53.87 53.90 53.95 53.98 53.90 53.95 53.95 53.92 53.90 53.92

Brightness 64.47 64.48 64.46 64.46 64.54 64.52 64.55 64.50 64.52 64.48
Contrast 54.87 54.84 54.78 54.75 54.72 54.75 54.72 54.70 54.72 54.74

Elastic Transform 43.47 43.41 43.38 43.30 43.23 43.20 43.12 43.04 42.93 42.83
Pixelate 45.31 45.31 45.29 45.29 45.31 45.19 45.18 45.16 45.03 44.96

JPEG Compression 41.07 41.09 41.03 40.98 40.88 40.80 40.72 40.56 40.51 40.41

Table 23: Test accuracy (%) under different λ1 values (λ2 = 0.4) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.52 33.46 33.44 33.50 33.39 33.29 33.29 33.24 33.25 33.22
Shot Noise 35.23 35.20 35.18 35.04 34.95 34.94 34.92 34.81 34.71 34.60

Impulse Noise 30.44 30.47 30.40 30.34 30.26 30.34 30.34 30.36 30.37 30.33
Defocus Blur 53.79 53.70 53.65 53.61 53.61 53.55 53.56 53.58 53.54 53.53

Glass Blur 35.16 35.07 35.00 34.94 34.93 34.92 34.86 34.90 34.81 34.70
Motion Blur 52.70 52.64 52.65 52.59 52.55 52.48 52.45 52.45 52.50 52.53
Zoom Blur 56.74 56.65 56.57 56.52 56.48 56.42 56.37 56.30 56.28 56.21

Snow 54.32 54.25 54.23 54.20 54.25 54.29 54.24 54.24 54.22 54.16
Frost 54.96 54.99 54.98 54.96 55.02 54.95 54.87 54.82 54.82 54.81
Fog 53.96 53.92 53.98 53.96 53.97 53.94 53.97 53.96 53.93 53.84

Brightness 64.48 64.48 64.52 64.53 64.55 64.54 64.48 64.46 64.44 64.48
Contrast 54.76 54.74 54.77 54.74 54.71 54.72 54.73 54.74 54.79 54.77

Elastic Transform 43.31 43.36 43.30 43.21 43.17 43.11 43.02 42.86 42.76 42.67
Pixelate 45.28 45.23 45.30 45.22 45.21 45.23 45.19 45.06 44.99 44.97

JPEG Compression 41.07 41.01 40.99 40.92 40.81 40.75 40.61 40.53 40.51 40.48

Table 24: Test accuracy (%) under different λ1 values (λ2 = 0.5) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.50 33.47 33.45 33.34 33.24 33.32 33.23 33.23 33.18 33.14
Shot Noise 35.19 35.15 35.05 34.95 34.94 34.91 34.89 34.72 34.60 34.45

Impulse Noise 30.47 30.43 30.38 30.27 30.32 30.30 30.38 30.38 30.34 30.38
Defocus Blur 53.69 53.65 53.69 53.68 53.62 53.63 53.61 53.58 53.57 53.49

Glass Blur 35.02 34.96 34.91 34.90 34.89 34.90 34.94 34.80 34.66 34.55
Motion Blur 52.67 52.63 52.58 52.51 52.48 52.42 52.44 52.50 52.49 52.48
Zoom Blur 56.57 56.58 56.54 56.43 56.36 56.35 56.29 56.30 56.23 56.20

Snow 54.23 54.20 54.22 54.24 54.27 54.27 54.27 54.21 54.20 54.20
Frost 55.00 55.01 55.01 54.95 54.95 54.89 54.86 54.85 54.82 54.83
Fog 53.95 53.93 53.93 53.95 53.99 53.99 53.93 53.92 53.85 53.84

Brightness 64.52 64.53 64.52 64.51 64.49 64.45 64.48 64.49 64.46 64.48
Contrast 54.77 54.70 54.77 54.78 54.81 54.81 54.80 54.81 54.80 54.75

Elastic Transform 43.23 43.18 43.15 43.13 43.05 43.00 42.86 42.75 42.60 42.52
Pixelate 45.22 45.23 45.21 45.21 45.20 45.13 45.04 44.99 45.01 44.95

JPEG Compression 41.01 41.00 40.94 40.84 40.80 40.66 40.56 40.51 40.48 40.39

within the OT framework. We will explore more discriminative text representations in future work
to solve the limitation of Lcos.

A.6.5 ECE VALUE FOR OTHER TTA TECHNIQUES WITH THE PROPOSED METHOD

We add more results about ECE value for other TTA techniques (TENT, TPT) with the proposed
dual approach (Table 44 and Table 45). As reported, adding the proposed method to TENT can
reduce the ECE value for certain noises such as Gaussian (0.08 vs. 0.12) and Shot (0.08 vs. 0.12).
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Table 25: Test accuracy (%) under different λ1 values (λ2 = 0.6) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.44 33.37 33.31 33.27 33.28 33.24 33.17 33.14 33.12 33.09
Shot Noise 35.14 35.07 34.88 34.93 34.89 34.86 34.72 34.57 34.49 34.39

Impulse Noise 30.44 30.36 30.30 30.35 30.30 30.36 30.38 30.34 30.35 30.34
Defocus Blur 53.79 53.75 53.77 53.65 53.67 53.61 53.56 53.56 53.52 53.45

Glass Blur 35.02 34.94 34.91 34.93 34.96 34.88 34.79 34.67 34.54 34.48
Motion Blur 52.60 52.56 52.59 52.52 52.50 52.48 52.46 52.47 52.49 52.43
Zoom Blur 56.61 56.53 56.45 56.40 56.33 56.32 56.27 56.25 56.21 56.12

Snow 54.18 54.16 54.17 54.17 54.24 54.21 54.18 54.16 54.17 54.14
Frost 55.01 55.01 54.98 54.97 54.89 54.86 54.88 54.88 54.85 54.80
Fog 53.95 53.92 53.95 53.97 53.98 53.97 53.89 53.87 53.84 53.79

Brightness 64.54 64.51 64.51 64.48 64.42 64.48 64.49 64.48 64.48 64.48
Contrast 54.74 54.77 54.82 54.81 54.82 54.86 54.84 54.82 54.79 54.74

Elastic Transform 43.18 43.10 43.08 43.03 42.93 42.82 42.71 42.62 42.55 42.47
Pixelate 45.22 45.16 45.17 45.16 45.07 45.01 45.02 44.98 44.95 44.90

JPEG Compression 40.97 40.99 40.83 40.82 40.76 40.57 40.51 40.49 40.48 40.41

Table 26: Test accuracy (%) under different λ1 values (λ2 = 0.7) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.32 33.28 33.30 33.27 33.18 33.16 33.14 33.17 33.09 33.04
Shot Noise 35.00 34.90 34.95 34.90 34.80 34.73 34.64 34.53 34.40 34.35

Impulse Noise 30.39 30.33 30.31 30.32 30.39 30.41 30.38 30.35 30.37 30.33
Defocus Blur 53.81 53.76 53.71 53.67 53.61 53.62 53.56 53.54 53.42 53.38

Glass Blur 34.96 34.93 34.90 34.92 34.85 34.72 34.65 34.58 34.43 34.37
Motion Blur 52.56 52.55 52.52 52.50 52.49 52.47 52.50 52.47 52.45 52.48
Zoom Blur 56.48 56.45 56.43 56.39 56.32 56.30 56.26 56.21 56.17 56.10

Snow 54.12 54.15 54.19 54.21 54.16 54.15 54.16 54.15 54.13 54.12
Frost 54.99 54.96 54.96 54.87 54.87 54.88 54.87 54.87 54.84 54.81
Fog 53.93 53.92 53.95 53.93 53.93 53.88 53.90 53.80 53.77 53.73

Brightness 64.54 64.50 64.45 64.48 64.48 64.52 64.48 64.48 64.51 64.49
Contrast 54.81 54.82 54.83 54.86 54.84 54.84 54.78 54.79 54.74 54.72

Elastic Transform 43.09 43.05 42.99 42.94 42.86 42.71 42.60 42.53 42.51 42.44
Pixelate 45.15 45.10 45.11 45.07 45.03 45.02 45.02 44.96 44.89 44.83

JPEG Compression 40.99 40.88 40.82 40.79 40.65 40.57 40.51 40.50 40.46 40.42

Table 27: Test accuracy (%) under different λ1 values (λ2 = 0.8) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.31 33.32 33.29 33.23 33.16 33.11 33.13 33.06 33.05 33.01
Shot Noise 34.95 34.91 34.88 34.85 34.72 34.70 34.54 34.43 34.34 34.23

Impulse Noise 30.35 30.31 30.28 30.35 30.39 30.40 30.36 30.38 30.35 30.28
Defocus Blur 53.75 53.76 53.66 53.69 53.62 53.59 53.55 53.44 53.41 53.36

Glass Blur 34.91 34.96 34.93 34.83 34.71 34.68 34.50 34.43 34.36 34.34
Motion Blur 52.55 52.57 52.55 52.56 52.52 52.49 52.47 52.49 52.47 52.46
Zoom Blur 56.47 56.45 56.39 56.34 56.28 56.30 56.27 56.24 56.20 56.11

Snow 54.11 54.16 54.16 54.14 54.18 54.17 54.12 54.14 54.16 54.13
Frost 54.97 54.91 54.87 54.82 54.84 54.86 54.83 54.86 54.85 54.81
Fog 53.97 53.92 53.92 53.91 53.87 53.85 53.82 53.79 53.76 53.74

Brightness 64.52 64.46 64.48 64.51 64.54 64.48 64.49 64.45 64.47 64.51
Contrast 54.87 54.86 54.87 54.86 54.84 54.83 54.81 54.75 54.74 54.75

Elastic Transform 43.00 43.00 42.94 42.80 42.67 42.64 42.55 42.50 42.44 42.45
Pixelate 45.14 45.09 45.04 44.99 45.02 44.98 44.95 44.91 44.88 44.84

JPEG Compression 40.88 40.80 40.79 40.75 40.64 40.58 40.51 40.47 40.44 40.44

Similar situation can be found using TPT (e.g., 0.06 vs. 0.07 with Frost). These results highlight the
effectivenss of the proposed method in reducing ECE.
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Table 28: Test accuracy (%) under different λ1 values (λ2 = 0.9) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.29 33.29 33.21 33.17 33.12 33.14 33.10 33.05 32.99 32.97
Shot Noise 34.90 34.85 34.86 34.74 34.72 34.56 34.42 34.32 34.25 34.21

Impulse Noise 30.31 30.33 30.32 30.38 30.38 30.39 30.38 30.35 30.28 30.30
Defocus Blur 53.74 53.70 53.69 53.64 53.60 53.56 53.50 53.41 53.37 53.39

Glass Blur 34.95 34.88 34.83 34.71 34.64 34.56 34.42 34.37 34.34 34.31
Motion Blur 52.59 52.60 52.59 52.54 52.53 52.51 52.47 52.46 52.48 52.45
Zoom Blur 56.41 56.42 56.32 56.29 56.27 56.27 56.23 56.16 56.13 56.11

Snow 54.15 54.11 54.14 54.18 54.16 54.16 54.16 54.15 54.13 54.15
Frost 54.91 54.84 54.84 54.80 54.82 54.85 54.86 54.87 54.84 54.80
Fog 53.94 53.91 53.87 53.87 53.86 53.81 53.79 53.78 53.74 53.72

Brightness 64.50 64.52 64.52 64.54 64.49 64.52 64.48 64.50 64.50 64.52
Contrast 54.88 54.87 54.85 54.84 54.81 54.79 54.78 54.75 54.73 54.73

Elastic Transform 43.03 42.94 42.80 42.66 42.62 42.60 42.51 42.46 42.43 42.35
Pixelate 45.11 45.01 45.02 45.03 44.96 44.95 44.93 44.94 44.84 44.90

JPEG Compression 40.81 40.77 40.73 40.65 40.57 40.57 40.58 40.51 40.50 40.44

Table 29: Test accuracy (%) under different λ1 values (λ2 = 1.0) on CIFAR-100-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 33.27 33.25 33.20 33.14 33.15 33.14 33.06 33.03 32.98 32.93
Shot Noise 34.86 34.89 34.74 34.66 34.56 34.44 34.32 34.28 34.20 34.23

Impulse Noise 30.33 30.32 30.39 30.40 30.40 30.41 30.38 30.38 30.28 30.31
Defocus Blur 53.74 53.67 53.62 53.60 53.59 53.49 53.45 53.39 53.39 53.42

Glass Blur 34.92 34.81 34.70 34.64 34.55 34.42 34.34 34.31 34.29 34.22
Motion Blur 52.62 52.59 52.57 52.54 52.53 52.51 52.48 52.47 52.48 52.48
Zoom Blur 56.36 56.32 56.32 56.28 56.25 56.22 56.21 56.16 56.17 56.13

Snow 54.13 54.15 54.16 54.17 54.19 54.14 54.17 54.14 54.16 54.18
Frost 54.87 54.85 54.83 54.84 54.85 54.85 54.87 54.81 54.82 54.73
Fog 53.90 53.89 53.86 53.87 53.85 53.80 53.79 53.76 53.75 53.75

Brightness 64.50 64.54 64.54 64.53 64.52 64.52 64.52 64.50 64.52 64.53
Contrast 54.89 54.85 54.85 54.82 54.81 54.78 54.77 54.72 54.71 54.75

Elastic Transform 42.90 42.73 42.65 42.63 42.59 42.54 42.47 42.44 42.40 42.32
Pixelate 45.03 45.00 44.95 44.97 44.97 44.91 44.95 44.91 44.91 44.88

JPEG Compression 40.80 40.77 40.71 40.59 40.54 40.57 40.54 40.47 40.47 40.40

Table 30: Accuracy (%) of the different approaches on Tiny-ImageNet and Tiny-ImageNet-C bench-
marks, using ViT-B/32 as backbone.

Dataset CLIP
ICLR’21

TENT
ICLR’21

TPT
NeurIPS’22

CLIPTT
WACV’25

WATT-S
NeurIPS’24

TDA
CVPR’24

CLIP-OT
Arxiv’25

CLIP-TTA
Ours

Tiny-Imagenet 58.29 57.72± 0.14 58.90± 0.15 59.85± 0.01 61.35± 0.17 62.36±0.13 63.69± 0.15 64.38±0.14

Gaussian Noise 7.08 8.01± 0.05 9.29± 0.03 14.44± 0.25 13.02± 0.07 24.01±0.26 21.36± 0.31 24.76±0.31
Shot Noise 9.41 10.04± 0.07 11.70± 0.07 17.44± 0.12 15.94± 0.07 28.21±0.11 24.51± 0.15 32.53±0.14
Impulse Noise 3.44 4.18± 0.02 4.85± 0.01 10.37± 0.16 6.90± 0.01 18.65±0.03 18.21± 0.14 24.68±0.09
Defocus Blur 21.71 24.53± 0.05 27.56± 0.10 31.46± 0.26 29.91± 0.13 36.77±0.11 36.25± 0.17 44.42±0.15
Glass Blur 9.12 10.09± 0.06 11.03± 0.10 15.84± 0.09 14.01± 0.10 22.58±0.13 23.08± 0.18 29.24±0.14
Motion Blur 34.52 36.94± 0.07 38.97± 0.05 41.34± 0.20 41.26± 0.04 37.38±0.22 47.78± 0.34 49.45±0.32
Zoom Blur 27.44 29.48± 0.06 34.29± 0.07 35.06±0.15 33.96± 0.07 36.59±0.07 40.96± 0.06 44.78±0.08
Snow 32.51 32.20± 0.03 34.45± 0.10 36.79±0.08 37.76± 0.09 33.23±0.11 41.28± 0.09 43.85±0.13
Frost 36.33 35.72± 0.02 37.13± 0.05 38.37±0.13 39.65± 0.03 35.94±0.15 46.03± 0.21 47.66±0.16
Fog 25.94 27.46± 0.04 28.89± 0.08 33.51±0.19 32.13± 0.08 38.17±0.12 39.93± 0.25 49.31±0.23
Brightness 40.15 39.79± 0.08 43.31± 0.10 46.52±0.06 46.93± 0.13 42.98±0.07 53.81± 0.09 57.9±0.09
Contrast 1.81 2.24± 0.04 3.15± 0.04 6.07±0.12 3.53± 0.02 14.70±0.09 12.94± 0.21 18.21±0.15
Elastic Transform 30.40 31.92± 0.05 33.88± 0.14 33.74±0.11 35.01± 0.13 42.38±0.11 41.53± 0.17 49.5±0.13
Pixelate 22.78 24.79± 0.03 27.70± 0.12 34.84±0.09 31.55± 0.08 34.97±0.11 42.90± 0.13 47.54±0.08
JPEG Compression 29.59 30.93± 0.13 33.60± 0.15 37.29±0.14 36.46± 0.11 40.64±0.13 42.88± 0.05 50.93±0.07

Mean 22.14 23.22 25.32 28.87 27.87 32.48 35.56 40.98

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 31: Test accuracy (%) under different λ1 values (λ2 = 0.1) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 23.87 24.10 24.26 24.44 24.59 24.59 24.67 24.61 24.46 24.76
Shot Noise 29.16 29.57 29.94 30.19 30.42 30.86 31.03 31.41 31.90 32.53

Impulse Noise 20.55 21.16 21.71 22.10 22.35 22.55 22.50 22.89 23.26 24.68
Defocus Blur 33.09 37.84 39.96 40.35 40.99 41.39 41.83 42.47 42.95 44.42

Glass Blur 26.81 26.87 26.99 27.38 27.80 28.14 28.46 28.32 28.61 29.24
Motion Blur 48.99 49.00 48.95 49.08 49.25 49.25 49.30 49.37 49.33 49.45
Zoom Blur 38.74 39.53 40.33 41.52 42.49 42.78 43.46 44.12 44.84 44.78

Snow 43.18 43.20 43.29 43.33 43.36 43.46 43.51 43.57 43.67 43.85
Frost 47.16 47.16 47.24 47.37 47.41 47.51 47.48 47.45 47.53 47.66
Fog 47.49 47.78 47.91 48.03 48.06 48.13 48.25 48.51 48.75 49.31

Brightness 56.75 57.00 57.09 57.21 57.36 57.44 57.59 57.68 57.71 57.9
Contrast 14.83 15.42 15.69 16.00 16.19 16.29 17.34 17.61 17.81 18.21

Elastic Transform 38.56 42.15 44.06 45.02 45.85 46.77 47.44 47.97 48.39 49.5
Pixelate 45.50 45.85 46.15 46.45 46.59 46.81 47.00 47.16 47.21 47.54

JPEG Compression 48.85 49.25 49.49 49.85 50.04 50.18 50.33 50.37 50.46 50.93

Table 32: Test accuracy (%) under different λ1 values (λ2 = 0.2) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 23.99 24.11 24.41 24.48 24.51 24.54 24.51 24.34 24.40 24.49
Shot Noise 29.49 29.86 30.06 30.29 30.65 30.83 31.21 31.70 31.80 31.91

Impulse Noise 21.04 21.52 21.96 22.21 22.36 22.33 22.59 23.02 23.32 23.50
Defocus Blur 38.26 39.80 40.12 40.82 41.15 41.64 41.99 42.48 42.92 43.65

Glass Blur 26.86 26.96 27.33 27.72 28.03 27.89 27.99 28.24 28.46 28.92
Motion Blur 48.93 49.00 49.14 49.22 49.24 49.30 49.35 49.36 49.44 49.51
Zoom Blur 39.43 40.25 41.35 42.22 42.67 43.17 43.87 44.35 44.75 44.32

Snow 43.23 43.25 43.34 43.38 43.46 43.49 43.65 43.67 43.70 43.74
Frost 47.18 47.27 47.34 47.40 47.37 47.39 47.42 47.55 47.56 47.53
Fog 47.58 47.75 47.96 47.96 48.04 48.13 48.30 48.62 48.89 48.96

Brightness 57.03 57.03 57.22 57.32 57.43 57.59 57.63 57.66 57.75 57.75
Contrast 15.29 15.56 15.83 15.97 16.16 16.25 17.33 17.71 17.81 18.01

Elastic Transform 41.92 43.70 44.83 45.57 46.51 47.14 47.74 48.03 48.45 48.81
Pixelate 45.93 46.19 46.45 46.59 46.80 47.00 47.13 47.20 47.28 47.40

JPEG Compression 49.19 49.32 49.76 49.95 50.14 50.18 50.31 50.44 50.47 50.66

Table 33: Test accuracy (%) under different λ1 values (λ2 = 0.3) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 24.11 24.30 24.35 24.41 24.46 24.46 24.24 24.29 24.36 24.25
Shot Noise 29.74 29.99 30.20 30.51 30.59 30.94 31.32 31.58 31.71 31.74

Impulse Noise 21.35 21.77 22.06 22.23 22.25 22.43 22.73 23.12 23.46 23.65
Defocus Blur 39.62 39.99 40.45 40.90 41.14 41.65 42.10 42.49 42.99 43.65

Glass Blur 27.01 27.36 27.54 27.82 27.67 27.85 27.86 27.95 28.39 28.96
Motion Blur 49.08 49.19 49.30 49.26 49.31 49.33 49.37 49.44 49.55 49.56
Zoom Blur 40.15 41.03 42.07 42.52 42.79 43.66 44.11 44.71 44.15 44.30

Snow 43.27 43.38 43.43 43.45 43.50 43.63 43.60 43.66 43.68 43.72
Frost 47.23 47.30 47.34 47.30 47.32 47.36 47.50 47.53 47.44 47.50
Fog 47.63 47.87 47.92 47.93 48.05 48.11 48.40 48.68 48.87 48.94

Brightness 57.05 57.20 57.31 57.46 57.51 57.59 57.63 57.69 57.75 57.77
Contrast 15.41 15.71 15.89 16.01 16.19 16.44 17.44 17.74 17.92 18.04

Elastic Transform 43.38 44.71 45.27 46.26 46.92 47.45 47.81 48.18 48.57 48.84
Pixelate 46.20 46.47 46.60 46.79 47.01 47.11 47.18 47.28 47.38 47.43

JPEG Compression 49.20 49.59 49.82 50.08 50.06 50.28 50.39 50.39 50.56 50.71
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Table 34: Test accuracy (%) under different λ1 values (λ2 = 0.4) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 24.22 24.21 24.31 24.36 24.37 24.17 24.18 24.25 24.18 24.16
Shot Noise 29.90 30.12 30.38 30.57 30.72 31.06 31.25 31.35 31.52 31.66

Impulse Noise 21.68 21.91 22.02 22.23 22.27 22.55 22.88 23.12 23.33 23.68
Defocus Blur 39.75 40.09 40.53 40.86 41.21 41.72 42.23 42.68 43.07 43.62

Glass Blur 27.28 27.46 27.62 27.52 27.73 27.73 27.73 27.81 28.18 28.83
Motion Blur 49.21 49.27 49.28 49.29 49.30 49.33 49.43 49.54 49.59 49.59
Zoom Blur 40.91 41.82 42.37 42.70 43.52 43.94 44.57 44.50 44.04 44.06

Snow 43.31 43.45 43.51 43.49 43.63 43.59 43.64 43.64 43.68 43.72
Frost 47.23 47.33 47.30 47.32 47.41 47.45 47.46 47.47 47.52 47.55
Fog 47.81 47.89 47.86 47.94 48.03 48.26 48.47 48.67 48.85 48.90

Brightness 57.21 57.33 57.46 57.49 57.58 57.58 57.64 57.68 57.74 57.84
Contrast 15.63 15.78 15.93 16.02 16.17 16.46 17.55 17.76 17.96 18.06

Elastic Transform 44.36 45.10 46.03 46.70 47.22 47.61 48.05 48.39 48.57 48.77
Pixelate 46.51 46.63 46.82 46.95 47.09 47.18 47.23 47.35 47.40 47.44

JPEG Compression 49.46 49.76 49.96 50.03 50.10 50.31 50.39 50.41 50.55 50.81

Table 35: Test accuracy (%) under different λ1 values (λ2 = 0.5) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 24.11 24.17 24.29 24.26 24.11 24.09 24.15 24.13 24.12 24.02
Shot Noise 29.98 30.19 30.42 30.53 30.85 31.06 31.09 31.18 31.36 31.52

Impulse Noise 21.81 22.02 22.18 22.18 22.46 22.64 22.89 23.12 23.39 23.60
Defocus Blur 39.67 40.00 40.44 40.79 41.12 41.77 42.27 42.61 42.97 43.63

Glass Blur 27.44 27.44 27.39 27.63 27.68 27.71 27.72 27.86 28.14 28.37
Motion Blur 49.27 49.28 49.28 49.34 49.39 49.46 49.58 49.58 49.62 49.56
Zoom Blur 41.53 42.06 42.56 43.33 43.77 44.07 44.74 44.04 44.10 44.03

Snow 43.44 43.47 43.49 43.60 43.58 43.59 43.70 43.74 43.70 43.71
Frost 47.27 47.24 47.30 47.40 47.39 47.39 47.42 47.48 47.52 47.56
Fog 47.84 47.82 47.84 47.93 48.13 48.38 48.52 48.71 48.84 48.95

Brightness 57.37 57.52 57.49 57.58 57.60 57.66 57.72 57.77 57.84 57.90
Contrast 15.69 15.79 15.92 16.13 16.30 16.72 17.65 17.82 17.95 17.91

Elastic Transform 44.97 45.82 46.41 46.95 47.28 47.69 48.15 48.42 48.58 48.71
Pixelate 46.65 46.77 46.93 47.04 47.13 47.21 47.35 47.36 47.45 47.49

JPEG Compression 49.69 49.91 49.97 50.02 50.22 50.37 50.42 50.46 50.61 50.90

Table 36: Test accuracy (%) under different λ1 values (λ2 = 0.6) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 24.12 24.25 24.20 24.08 23.98 24.05 24.09 23.99 23.88 23.81
Shot Noise 30.12 30.17 30.34 30.59 30.79 30.90 30.94 31.17 31.41 31.46

Impulse Noise 21.86 22.04 22.17 22.28 22.57 22.70 22.88 23.17 23.40 23.60
Defocus Blur 39.76 40.17 40.65 40.84 41.21 41.84 42.34 42.75 43.13 43.52

Glass Blur 27.37 27.32 27.52 27.54 27.56 27.64 27.75 27.98 28.09 28.23
Motion Blur 49.28 49.27 49.34 49.39 49.46 49.57 49.59 49.62 49.55 49.59
Zoom Blur 41.96 42.38 43.04 43.71 43.82 44.58 44.32 43.92 43.97 44.07

Snow 43.49 43.49 43.54 43.55 43.61 43.68 43.70 43.70 43.69 43.82
Frost 47.23 47.30 47.37 47.29 47.34 47.38 47.42 47.46 47.51 47.53
Fog 47.78 47.73 47.84 48.01 48.26 48.36 48.50 48.74 48.88 49.03

Brightness 57.47 57.48 57.59 57.63 57.66 57.70 57.76 57.83 57.89 57.98
Contrast 15.65 15.76 15.93 16.17 16.44 17.10 17.62 17.80 17.84 17.89

Elastic Transform 45.54 46.23 46.69 47.09 47.57 47.96 48.20 48.42 48.52 48.67
Pixelate 46.77 46.92 47.01 47.14 47.18 47.33 47.31 47.46 47.46 47.58

JPEG Compression 49.72 49.88 49.96 50.17 50.34 50.31 50.41 50.57 50.73 50.92
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Table 37: Test accuracy (%) under different λ1 values (λ2 = 0.7) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 24.18 24.13 23.95 23.92 23.98 24.06 23.94 23.87 23.79 23.65
Shot Noise 30.05 30.10 30.26 30.58 30.79 30.74 30.97 31.16 31.27 31.39

Impulse Noise 21.88 22.16 22.25 22.45 22.63 22.66 22.88 23.10 23.37 23.44
Defocus Blur 39.95 40.29 40.46 40.94 41.26 41.92 42.45 42.83 43.14 43.72

Glass Blur 27.28 27.50 27.50 27.50 27.63 27.75 27.89 27.98 28.09 28.13
Motion Blur 49.37 49.36 49.37 49.51 49.56 49.60 49.59 49.53 49.55 49.58
Zoom Blur 42.31 42.81 43.44 43.61 44.12 44.57 43.96 43.93 43.94 44.02

Snow 43.44 43.46 43.58 43.55 43.68 43.72 43.68 43.70 43.77 43.82
Frost 47.31 47.37 47.29 47.30 47.34 47.36 47.42 47.48 47.49 47.48
Fog 47.72 47.76 47.95 48.09 48.31 48.42 48.57 48.73 48.90 49.00

Brightness 57.52 57.59 57.60 57.64 57.71 57.77 57.81 57.91 57.98 57.99
Contrast 15.75 15.80 16.04 16.19 16.57 17.28 17.58 17.77 17.86 17.93

Elastic Transform 46.07 46.45 46.87 47.41 47.69 47.98 48.22 48.39 48.50 48.72
Pixelate 46.86 46.99 47.13 47.17 47.31 47.31 47.42 47.46 47.55 47.66

JPEG Compression 49.81 49.92 50.04 50.24 50.39 50.25 50.32 50.62 50.87 50.98

Table 38: Test accuracy (%) under different λ1 values (λ2 = 0.8) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 24.08 23.90 23.88 23.92 23.94 23.91 23.79 23.70 23.54 23.53
Shot Noise 29.96 30.05 30.33 30.55 30.63 30.69 30.93 31.12 31.18 31.17

Impulse Noise 21.99 22.22 22.37 22.53 22.61 22.67 22.85 23.06 23.23 23.38
Defocus Blur 40.04 40.20 40.66 41.04 41.47 42.14 42.51 42.94 43.29 43.83

Glass Blur 27.44 27.41 27.46 27.52 27.68 27.79 27.87 27.95 27.99 28.06
Motion Blur 49.37 49.41 49.47 49.52 49.60 49.60 49.53 49.57 49.55 49.58
Zoom Blur 42.59 43.17 43.59 43.87 44.52 44.04 43.78 43.86 43.83 44.02

Snow 43.47 43.53 43.57 43.62 43.69 43.71 43.70 43.73 43.75 43.78
Frost 47.32 47.26 47.27 47.33 47.35 47.39 47.40 47.45 47.43 47.46
Fog 47.73 47.88 48.03 48.15 48.32 48.47 48.62 48.77 48.90 49.00

Brightness 57.53 57.58 57.61 57.70 57.74 57.80 57.91 57.96 57.98 58.10
Contrast 15.72 15.94 16.14 16.36 16.60 17.38 17.61 17.73 17.85 17.83

Elastic Transform 46.26 46.65 47.04 47.52 47.83 48.06 48.21 48.39 48.52 48.83
Pixelate 47.00 47.12 47.13 47.26 47.34 47.38 47.44 47.53 47.62 47.74

JPEG Compression 49.91 50.03 50.09 50.25 50.26 50.23 50.46 50.76 50.92 50.99

Table 39: Test accuracy (%) under different λ1 values (λ2 = 0.9) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 23.85 23.83 23.85 23.86 23.80 23.72 23.64 23.47 23.46 23.40
Shot Noise 29.91 30.11 30.31 30.52 30.52 30.64 30.82 30.94 30.99 30.96

Impulse Noise 22.12 22.28 22.43 22.55 22.63 22.73 22.89 23.06 23.25 23.32
Defocus Blur 40.09 40.45 40.79 41.17 41.64 42.14 42.74 43.05 43.34 43.87

Glass Blur 27.50 27.47 27.44 27.60 27.74 27.86 27.90 28.00 28.06 27.88
Motion Blur 49.41 49.48 49.52 49.58 49.56 49.54 49.55 49.51 49.53 49.54
Zoom Blur 43.03 43.34 43.70 44.29 44.36 43.83 43.85 43.82 43.86 44.01

Snow 43.52 43.56 43.60 43.67 43.69 43.67 43.71 43.79 43.76 43.71
Frost 47.21 47.28 47.27 47.32 47.38 47.39 47.46 47.42 47.42 47.41
Fog 47.84 48.02 48.15 48.23 48.35 48.49 48.70 48.79 48.91 48.99

Brightness 57.59 57.62 57.71 57.71 57.81 57.89 57.94 57.95 58.09 58.14
Contrast 15.82 16.02 16.25 16.49 16.70 17.44 17.62 17.65 17.69 17.73

Elastic Transform 46.50 46.76 47.30 47.70 47.87 48.06 48.25 48.40 48.56 48.90
Pixelate 47.06 47.18 47.23 47.31 47.34 47.43 47.48 47.58 47.73 47.71

JPEG Compression 49.96 50.00 50.09 50.31 50.27 50.38 50.64 50.85 50.97 50.99
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Table 40: Test accuracy (%) under different λ1 values (λ2 = 1.0) on TinyImageNet-C dataset.

Corruption λ1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Gaussian Noise 23.78 23.74 23.75 23.72 23.67 23.60 23.48 23.40 23.31 23.24
Shot Noise 29.87 30.17 30.31 30.43 30.43 30.59 30.76 30.79 30.88 30.84

Impulse Noise 22.20 22.20 22.53 22.54 22.67 22.76 22.83 23.00 23.12 23.25
Defocus Blur 40.30 40.58 40.94 41.32 41.94 42.34 42.74 43.07 43.41 43.90

Glass Blur 27.50 27.46 27.62 27.74 27.74 27.85 27.89 27.88 27.87 27.83
Motion Blur 49.49 49.51 49.57 49.56 49.54 49.53 49.47 49.52 49.47 49.48
Zoom Blur 43.24 43.63 43.96 44.41 43.94 43.81 43.84 43.78 43.84 43.92

Snow 43.60 43.62 43.61 43.68 43.68 43.73 43.73 43.76 43.74 43.68
Frost 47.23 47.24 47.29 47.37 47.39 47.40 47.45 47.38 47.38 47.42
Fog 47.98 48.11 48.19 48.24 48.41 48.54 48.68 48.79 48.86 49.01

Brightness 57.66 57.69 57.70 57.82 57.87 57.95 57.97 58.09 58.13 58.19
Contrast 15.91 16.16 16.27 16.54 16.84 17.45 17.57 17.65 17.65 17.69

Elastic Transform 46.59 47.11 47.50 47.73 47.86 48.10 48.30 48.39 48.60 48.99
Pixelate 47.14 47.19 47.34 47.32 47.40 47.44 47.59 47.65 47.69 47.69

JPEG Compression 49.93 50.07 50.23 50.25 50.30 50.46 50.82 50.90 50.94 51.02

Table 41: Performance on LAION-C dataset for CLIP-DR and CLIP-OT (ViT-B-32). Bold indicates
the best result.

Methods LAION-C
mosaic geometric glitched luminance stickers vertical lines Avg.

CLIP 15.33 21.48 19.12 7.93 6.18 8.45 13.08
CLIP-OT 15.62 31.69 21.09 13.75 7.57 15.62 17.56
CLIP-DR 16.24 38.43 21.39 14.65 7.52 15.89 19.02

Table 42: Performance on CIFAR-10-C. Bold indicates the best result.
Methods Noises

CIFAR-10-C Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Avg.
w/ ϕ optimized 64.91 67.34 62.12 82.09 67.48 81.49 83.55 84.01 83.4 82.33 89.57 84.89 76.05 76.92 70.44 77.10
w/o ϕ optimized 65.25 67.38 62.24 82.4 67.69 81.64 83.6 84.1 83.45 82.38 89.75 84.98 76.16 77.11 70.5 77.24

Table 43: Accuracy (%) on fine-grained datasets. Bold indicates the best result.
Methods Datasets

EuroSAT Aircraft DTD Pets
CLIP-OT 34.87 26.50 43.59 77.30

CLIP-DR (w/o LIM ) 35.47 26.56 43.63 77.55
CLIP-DR 35.94 26.63 43.70 77.85

Table 44: ECE value on CIFAR-10-C for othet TTA techniques with the proposed method.
Methods Noises

Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG
TENT 0.12 0.12 0.05 0.02 0.04 0.02 0.01 0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.04

TENT (w/ ours) 0.08 0.08 0.05 0.02 0.02 0.01 0.01 0.03 0.03 0.03 0.03 0.04 0.02 0.02 0.03
TPT 0.05 0.04 0.03 0.06 0.03 0.02 0.03 0.06 0.07 0.06 0.07 0.09 0.04 0.03 0.03

TPT (w/ ours) 0.06 0.04 0.03 0.05 0.03 0.02 0.02 0.05 0.06 0.05 0.06 0.08 0.03 0.02 0.02

Table 45: ECE value on CIFAR-100-C for othet TTA techniques with the proposed method.
Methods Noises

Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG
TENT 0.24 0.19 0.1 0.06 0.31 0.03 0.05 0.04 0.03 0.03 0.06 0.04 0.05 0.02 0.02

TENT (w/ ours) 0.10 0.08 0.05 0.06 0.26 0.04 0.05 0.04 0.04 0.03 0.06 0.04 0.03 0.02 0.02
TPT 0.12 0.09 0.05 0.07 0.23 0.05 0.06 0.06 0.05 0.04 0.07 0.05 0.03 0.02 0.02

TPT (w/ ours) 0.07 0.06 0.03 0.08 0.19 0.05 0.07 0.06 0.05 0.05 0.07 0.05 0.02 0.02 0.02
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