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ABSTRACT

In this paper, the distributed constrained optimal consensus problem of multi-
agent systems under a directed graph is investigated. We propose two projection-
based distributed constrained optimal consensus algorithms: one addressing set
constraints and the other tailored for general constraints. Only the relative state
is exchanged among agents in these two algorithms. In the stability analysis of
case with set constraints, we transform the distributed optimization problem into a
constrained leaderless consensus problem by adopting a sliding mode approach.
Building on this foundational transformation, we further develop a projection-
based distributed constrained optimal consensus algorithm to address general con-
straints. It is shown that the proposed algorithm achieves an ergodic convergence
rate of O(%) with respect to the first-order optimality residuals. Numerical simu-
lations are conducted to validate the effectiveness of our theoretical results.

1 INTRODUCTION

In the past two decades, distributed optimization of multi-agent systems has drawn extensive atten-
tion. As a fundamental problem of distributed optimization, distributed optimal consensus refers
to construct an algorithm for each agent such that the states of agents converge to the optimal solu-
tion of a global objective function using local information. Early distributed optimal consensus of
multi-agent systems can be referred to (Shirefall, P0ITY) and (Kia“ef-all, Z0T5). The distributed opti-
mization algorithm has diverse practical applications, including cooperative transportation (Chen &
Kai, PTY), energy management (Wang et all, 2024), distributed learning (Arjevani & Shamii, 2015).
For a comprehensive overview of recent advances in distributed optimization, one can refer to ([Yang
ef all, 0TY9; Shorinwa ef all, P024).

1.1 RELATED WORK

Many previous studies have developed distributed optimization algorithms under different types of
constraints. In relation to the work presented in this paper, we categorize the current advancements
into three groups based on the types of constraints as follows:

Unconstrained optimization: Distributed discrete time unconstrained optimization algorithms pri-
marily include DGD (Nedic & Ozdaglai, 2009; Tuefall, 2027), EXTRA (Shiefall, 2015), DEXTRA
(Xi& Khan, 20OT7), Exact-Diffusion (Ynan ef all, DOTR; [Alghunaim, 2024), Gradient-Tracking (Pii
& Nedid, PO7T), among others. Compared with the vanishing step-sizes in DGD, EXTRA, Exact-
Diffusion, and Gradient-Tracking uses constant step-size and has linear convergence speed O(C~*).
Be aware that due to the introduction of an integral term used to compensate gradient in equilibrium,
both EXTRA and DEXTRA demonstrate second-order dynamics.

Optimization with set constraints: Set constraints are considered in (Nedic_ef-all, POT{; Cm-&
Wang, POTY; Scaman_efall, POTR; Mai & Abed, P0T9; [YII2, 2021). Distributed optimization prob-
lems with set constraints under an undirected graph are considered in (Nedic_ef-all, P0OT0; Cin-&

Wang, P0OTS; Scaman_ef all, DOTY). Early projection-based algorithm considering is presented in
(Nedic”efall, POT0). (Ciu & Wang, P0T3) proposes a distributed proportional-integral (PI) type
projection-based gradient method. Conic constraint sets are considered in (Scaman ef all, DOTS).
Different from the undirected graph case, general directed graph cases are considered in (Mai &
Abed, DOTY; [Y1T2, POZT; Wan_ef-all, P020). Due to the second-order dynamics in EXTRA, DEX-
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TRA, Exact-Diffusion, it is of challenge for incorporating projection algorithms in environments
with set constraints. This is precisely why the existing algorithms with set constraints adopt vanish-
ing step-sizes in (Mai-& Abed, 20TY; YV1I2, POZ21; Wan_ef all, Z02(]). Moreover, vanishing step-sizes
are used in distributed gradient-tracking algorithm due to different set constraints (Cheng et all,
2073). One drawback of utilizing diminishing step sizes is a slower convergence rate. Therefore, it
is desired to design a projection based algorithm with constant step-sizes.

Optimization with general constraints: Except for the set constraints considered in (Nedic ef-all,
2010; Ciu & Wang, 2019; Scaman_ef all, POTX; Mai & Abed, 20OTY; Y12, Z021; Wan et all, DO20),
general constraints include equality constraints and nonlinear inequality constraints, which can be
solved by primal-dual method (Gad, 2004). These nonlinear constraints bring more challenges to
the distributed optimization algorithm design. The existing algorithms on distributed optimization
algorithms addresses both the undirected graph scenario (Yang et all, P0T6; Zhu ef all, POTH) and
the directed graph scenario (Khafana & Salapaka, 2073). Besides the difficulties of projection oper-
ation, the existence of nonlinear inequality constraints has introduced significant complexities into
stability analysis, which is not considered in (Khafana & Salapakd, Z0773).

1.2 CONTRIBUTION

From the above analysis, it becomes clear that existing distributed optimization algorithms have not
yet tackled scenarios that simultaneously incorporate directed topology graphs, fixed step sizes, and
general constraints. In this paper, we study the distributed constrained optimal consensus problem of
multi-agent systems under a directed graph using only relative state. The main challenge lies in the
fact that the nonlinear projection operator and nonlinear constraints hinder the stability analysis. To
address this challenge, we introduce an original analysis framework based on the sliding mode tech-
nique, which transforms the distributed constrained optimal consensus problem into a constrained
leaderless consensus problem. Compared with existing results (Nedicef all, POT0; Ciu & Wang,
2001; Scaman et all, POIN; Mair & Abed, PO1Y; Y U2, PO21; Wan et all, PO2U; (aq, 2004; [Yang et all,
D016, Zhu ef all, POTR; Khatana & Salapaka, P(073), the proposed algorithm makes the following
contributions:

Case with set constraints: we develop a distributed algorithm using only the interaction of
relative state under a balanced directed graph (Theorem Bf). By using a sliding mode approach,
we transform the distributed constrained optimal consensus problem into a constrained leaderless
consensus problem. Within this transformed framework, we design a novel Lyapunov function and
conduct a comprehensive stability analysis to illustrate the effectiveness of our approach. Different
from undirected graphs considered in (Nedicef-all, PO0T0; Ciu & Wang, P0TY; Scaman_ef all, POTR),
we consider the directed graph case. Compared with the methods with vanishing step-sizes (Mai &
Abed, POTY; Y2, 2O2T), our algorithm utilize the constant step-sizes which can achieve faster con-
vergence speed. By omitting local set constraints, our algorithm can be conducted under a directed
graph case, which is more general than EXTRA (Shiefall, POTY).

Case with general constraints: A projection-based algorithm is proposed for the case with
general constraints (Theorem E4). Different from the undirected graph case, our proposed algo-
rithm ([Yang et all, PUTH; IZhn_ef all, POTR) can be deployed under a directed graph. Compared with
(Khatana & Salapaka, 2023), we only communicate the relative state information. Unlike the sin-
gle system optimization algorithm in (Gaq, 2004), we propose a novel algorithm to tackle general
constraints.

2 BACKGROUND AND PROBLEM STATEMENT

2.1 GRAPH THEORY

We use a directed graph to describe the network topology among N agents. Let Gy 2 (Vn,EN)

be a directed graph with the node set Vy 2 {v1,...,un} and the edge set Ey C Vi X V. An
edge (v;,v;) € En denotes that agent v; can obtain information from agent v;, but not vice versa.
Here, node v; is the parent node while node v; is the child node. A directed path from node v; to
node v; is a sequence of edges of the form (v;,v; 2), (vi2,vi,3), - .., (i, v;), in a directed graph.
A directed tree is a directed graph, where every node has exactly one parent except for one node,
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called the root, and the root has directed paths to every other node. A directed spanning tree of a
directed graph is a direct tree that contains all nodes of the directed graph. A directed graph contains
a directed spanning tree if there exists a directed spanning tree as a subset of the directed graph. A
directed graph is balanced graph iff each node has the same in-degree and out-degree. For balanced
graphs, E%l N =0px,and Ly + 117]\", is a symmetric Laplacian matrix of some undirected graph.

The adjacency matrix Ay £ [ai;] € RNXN of a directed graph (W, En) is defined such that
a;; > 0if (v;,v;) € En, and a;; = 01if (vj,v;) & En. In this paper, self-edges are not allowed, i.e.,
a;; = 0. The in-degree of node i is defined as follows: deg;, (v;) = Zjvzl a;j,i =1,...,N. Then,

Dy = diag {deg;, (v1),--- ,degin (vn)} is called the degree matrix of G . The (non-symmetric)
Laplacian matrix of Gy is defined as Ly = Dy — Ay, with [;; = Z;”:l i @ij and L = —a;j,
i# .

Assumption 2.1 The directed graph G is strongly connected and balanced.

We define a vector 7y = (%, %, ceey %) € RN and a matrix Ry € R -DxN
-1+(N-1)v 1=v —v - —v
-1+(N-1)v —v 1—-v .
By = Wb o : (1)
: . —v
—“1+(N-1)v —v e —v 1-w

h — N—vVN .
where v = G5y Ry
Ryly =0,RyRY =In_1,and Ry Ry = Iy — & 1x1%. By observing that & = Rz is equal
to zero if and only if x = aly for & € R, which implies that the null space of Ry is 1. ||Z|| can
be viewed as a measure of synchrony. When ||Z|| = 0, the agents’ states achieve consensus.

Then, we have that U = ( '~ > € RY*N is a unitary matrix, with

2.2 MAIN LEMMAS

Lemma 2.1 (Scardovi et all, POI0) For a Laplacian matrix Ly of graph Gy with a spinning tree,
—RNLnRp is a Hurwitz matrix. Moreover, if Gy is undirected, we have Ry Ly Ry is negative-
definite and 2" Lyx = zTUTULNUT Uz = xTR%RNENR%RNx = :ETRNﬁNR%:E.

Theorem 2.2 (Theorem 3.14, (Rudin_et all, 1964)) If a sequence of real numbers is decreasing and
bounded below, then its infimum is the limit.

2.3 CONVEX FUNCTION ANALYSIS

To facilitate the stability analysis, we have the following assumptions about the local objective
function. Let f € CLY(RP), ie,, f : R? — R is a continuously differentiable function and
its derivative V f(z) is locally Lipschitz continuous on RP. V f(x) is locally Lipschitz contin-
uous if for any compact set U C RP, ie., there always exists a positive constant M; > 0
such that [|Vf(z) — Vf(y)|| < M|z — y|| for y,z € U. f(x) is m-strongly convex iff
(Vfly) — V(@) (y —x) > ml|y — z||?, Va,y € RP, where m > 0 is the strong convexity
constant. f(z) has M -Lipschitz gradient iff |V f(y) — Vf(z)||* < M¢|ly — z|* Va,y € RP,
where My > 0 is Lipschitz constant.

For a Cb! function f(z), V f(x) is differentiable almost everywhere so that its generalized
derivative in Clarke’s sense can be defined everywhere. The definition of the general Hessian matrix
is given as follows.

Definition 2.3 (Hiriart-Urruty et all, 1984) The generalized Hessian matrix of f at x, denoted by
02 f(xg), is the set of matrices defined as the convex hull of the set

Co{ M| 3x; — xo with f twice differentiable at x; and V* f(x;) — M}.

where ¢o denotes the convex closure. From the above definition, 0 f(x¢) is a nonempty compact
convex set.
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2.4 CONVEX SET ANALYSIS

A set Q € R is called convex if Az + (1 — Ay € Q, Vz,y € £, and A € (0,1). Given a closed
convex set {2 C R”, the projection Pq(z) : R? — 2 is defined as Pq () = argmin, ¢ q ||z — y. For
a convex set {2, the projection variable satisfies the Lipschitz continuity || Po(z) — Po(y)|| < ||lz—y]l.

Lemma 2.2 (Khalil, P002) Given a closed convex set Q@ C R"™, u = Pq(v) if and only if u € Q and
(=) (y — p) > 0 foranyy € Q.

Clearly, by replacing p with Po(y) in the inequality of Lemma, it follows that
(Pa(y) —y)"(z — Pa(y) >0, Vz € Q. 2)

Definition 2.4 The normal cone at point x with respect to the convex set ) is defined as:

No(z) ={veRP | (v,y—x) <O0forally € Q}.

Normal cone is always convex and is closed under positive scalar multiplication, i.e., for any
x,y € Ng)(l‘), tix +toy € NQ(.’E), Viti,to > 0.

Lemma 2.3 (Kinderlehrer & Stampacchid, 198(1) For a convex set ) € RP, we can define the
following function V, , = %|lx — Po(y)||* — 1|z — Po(x)||? which satisfies

(1) Vay > 3l|Pa(z) — Pa(y)|*

(2) Vi is continuously differentiable and convex with respect to x € RP, and V,V, , =
Po(z) — Po(y).

3 DISTRIBUTED OPTIMAL CONSENSUS ALGORITHM WITH SET CONSTRAINTS

In this section, we aim to design a distributed projection-based optimal consensus algorithm for
multiple first-order integrators using relative state information, without the need to communicate
virtual variables with neighbors. Different from the unconstrained case, the main challenge in the
algorithm design lies in the nonlinearity of the projection method.

3.1 PROBLEM STATEMENT

Each agent is assigned a local objective function f; : RP — R and a local set constraint {2; by a
nonempty closed convex set of RP, which are only known by itself. The global objective function is
defined by Y_." | fi(¢). Our aim is to design a distributed optimal consensus algorithm for such that
the state of each agent converges to the optimal solution of following problem

minzn:fi(a:),
i=1
st.x € m Q;, 3)

i=1,...,n

using only relative state information, the local objective function information, and the local set
constraint.

Next, the following assumptions and definitions provides the optimality condition to the con-
strained optimization problem equation (3).

Assumption 3.1 (Existence) Let 2 be the intersection of all local closed convex sets. ) is a non-
empty set, i.e., @ =(\_, Q; #0.

From Assumption B, if there exists € Q and y € Nq(x), theny € Nq,(x) C Ng(z) due to
QC Qg foralli=1,...,n.
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Assumption 3.2 The local gradient of objective function V f;(x), and the gradient of nonlinear in-
equality constraint function NV g;i,(x) is M;-Lipschitz satisfying H;(x;) = M;1,, Hy;(x;) = My1,
VHz(a:z) S 82fi($i); VHgL(JEZ) S 6292‘(33,'), VJ?Z € RP.

From Assumption B2, f;(y) < fi(z) + V[T (2)(y — z) + 24ty — =]

Assumption 3.3 The local objective function f;(z) is differentiable and m;-strongly convex which
means that any matrix in generalized Hessian matrix H;(z;) = m;1,, VH;(z;) € 9*fi(x;), Va; €
RP.

y — x|

From Assumption B3, we also have f;(y) > fi(z) + V[T (z)(y — x) + %

Definition 3.4 x* is the optimal solution to the constrained optimization problem equation (B), if
and only if t* — Po(z* — Y i, V fi(z*)) = 0,. Or equivalently, > V f;i(z*) € Ng(z*).

Definition 3.5 The distributed constrained optimal consensus problem is solved if for any initial
condition x;(0) € RP, all the agents can converge to the global optimal solution of equation (B),
Le.,

lim a;(t) = z*. @)

t—o0

3.2 ALGORITHM DESIGN

We introduce the following consensus algorithm

zi(k +1) =wi(k) = T(2i(k) — Pa, (zi(k) — ai(z aij(zi(k) — ;(k)) + Vfi(xi(k))
+wi(k))))

Equilibrium analysis: Let the equilibrium of (x;(k), w;(k)) be (z}, w}). Then, we have

0, = — T(a} (k) — Pa,(a} (k) — ai(Y_ aij (2] — @5) + Vfila]) +w))),
j=1

0, =T ajj(x} —}). (6)
j=1

From equation (B), we have z; = x} and —o;(Vfi(z*) + wf) € Nq, € Ngq, Vi,j =
1,...,n. Exploiting the convexity property of the normal cone at x}, we can conclude that
S e =i (Vi(ad) +w))] = = Y1, Vfi(z}) € Na, C Nq. Therefore, Y1 | Vfi(z}) =
— > wf=0pand 2} = z*.

Stability analysis: Define the following auxiliary variables
si(k) = zi(k) — @i(z aij(zi(k) — x;(k)) + V fi(zi(k)) + wi(k)),
j=1

pi(k) =Pq,(si(k)).

If Q; = RP, u; will satisfy p;(k) = z;(k) + %(xz(k: + 1) — z;(k)) and can be viewed as a sliding
variable. Therefore, we can regard p; (k) as a projected sliding variable. By introducing p;(k), the
dynamics of x; in equation (B) can be written as

zi(k +1) =x;(k) — T'(2i(k) — pi(k)).- )
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equation () can be understood as a first-order dynamics of x; tracking p;. Given that p; is the
projection of y; onto €2;, taking the difference of y; yields

si(k+1) = si(k) =T(i(k) = xs(k)) — Tai Yy aij(pa(k) — pj (k) — i (h(k + 1) = hi(k)).
i=1

3
Define fi; = p; — x*, T; = x; — x*. Then, the error dynamics can be written as

Ti(k + 1) =2;(k) — T'(2i(k) — f1:(k))

si(k+1) =s;(k) + T(f1i(k) — 2i(k)) — Ty Zaij(ﬂi(k) — f1j(k)) — ai(hi(k + 1) — hy(k)).

©)
Note that equation (H) can be viewed as a constrained leaderless consensus problem, where p; satis-
fies the local constraint ji; € €;. Define the stack vectors i = (af,... g2)T, s = (sT,...,sD)T,
z=(2T,..., )T, The vector form of equation (H) can be written as
E(k+1) =i(k) — T(2(k) — i(k))
s(k+1)—s(k) =T(u(k) — z(k)) — TaLli(k) — a(h(k+ 1) — h(k)). (10)
Theorem 3.6 Under Assumptions 20, I, B2,and B3, the agents by using equation (B) will even-
tually converge to the optimal solution of problem equation (B), i.e., lim;_, oo [z;(t) — u*] = 0,,
t=1,...,n.
Proof: The detail of proof is given in Appendix Bl |

4 DISTRIBUTED OPTIMAL CONSENSUS ALGORITHM WITH GENERAL
CONSTRAINTS

In this section, we aim to design a distributed projection-based optimal consensus algorithm using
relative state information, without the need to communicate virtual variables between neighbors. Dif-
ferent from the case with only set constraints, the introduction of additional equality and nonlinear
inequality constraints bring difficulties to the algorithm design.

4.1 PROBLEM STATEMENT

Our aim is to design a distributed optimal consensus algorithm such that the state of each agent
achieves the optimal solution of following problem

miani(fU)
=1
stz e ﬂ Qia gzk(x) < Oa
=1,...,n
Aw=b,i=1,...nk=1...p,. (11)

using relative state measurements, the local objective function information, and the local general
constraints. Here, g;; () is first-order differentiable convex function A; € RP¥ *P. Next, the fol-
lowing assumptions and definitions provides the optimality condition to the constrained optimization
problem equation (IT)

Assumption 4.1 (Slater’s condition) Let §) be the intersection of all the local closed convex sets. )
is a non-empty set, i.e., ) = ﬂ?zl Q; # 0. Furthermore, there exist x € R? such that

x € relint(Q), gix(z) <0, Az =b;, i=1,...,n, k=1,...,p,,.

where relint(-) denotes the relative interior of a set. From Assumption BT, if there exists € 2 and
y € Nq(z), then y € Ng;(z) C Ng(x) dueto Q C Q;.



Under review as a conference paper at ICLR 2025

Assumption 4.2 The gradient of nonlinear inequality constraint function ¥V g;i,(x) is Mg;-Lipschitz
satisfying Hgi(z;) = My;L,, VHy(z;) € 0%g;(x;), Vo; € RP.

Lemma 4.1 (Yang et all, 2016) (KarushKuhnTucker (KKT) conditions) Under Assumptions and
B3, x* is the optimal solution to the constrained optimization problem equation (), if and only if
there exist 7y}, € R, vy € RPY, o* € Q such that

n pgi

=Y [Vfila™) = Y viVan(e™) — ATvi] € Na(a™),
i=1 k=1

gik(z") <0, v >0, vigik(z”) =0,
Aix* =b,Vi=1,...,n, k=1,...,pg,,.

4.2 DISTRIBUTED OPTIMAL CONSENSUS ALGORITHM CONSIDERING GENERAL
CONSTRAINTS

We introduce the following auxiliary variables to address specific types of constraints within the
optimization problem: w; corresponds to the consensus constraint, v;; € RT corresponds to the
inequality constraints, and v; € RPb corresponds to the equality constraint, ¢ = 1,...,n, k =
1,...,pg,. Motivated by (11) in (Zhu_efall, P(0IR), we introduce the following projection-based
algorithm

wilk+ 1) =4(k) = T [ (k) + Po, (w:(k Zaw 2i(k) = a3 (k) + V fi(a (k) + wi(k)

Pg;

+ Z ik () Vg (@i(k) + ATvi(k) + i AT (Agzi(k) = b)) (12)
and the differential dynamics of auxiliary variables is described by the following algorithm

(k+]. +TZCL7,] xz - (k))7
Yik(k +1) =(1 — ayT)vin(k) + T%i{%k(k) + gi (@i (k) — Vg (i(k)) [2: (k)

— Po,(2i(k) — o Zau zi(k) — x5 (k)) + Vfi(zi(k)) + wi(k)

Pg;

+ Z'sz: ngk xl(k)) + AzTVl(k) + al/l (A Ty (k) bl)))] }+a

with w;(0) = 0, 7ix(0) > 0, v;(0) € RP?, and oy, ou; € R being positive gains used to adjust
convergence speed.
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Equilibrium analysis: Let the equilibrium of (x;,w;, vik, vi) be (xf,w], v, v)). Then, we

have
Pg;
0p = — 2] + Po, (2] — ai(D_ aij(x} — a3) + Vfi(a]) + wi + Y v Vein(a]) + Al vy
j=1 k=1
+ i A (A — b)),
0, = ay(z} —x7),
j=1
0=—ayvy + aw‘{ﬁk + gin(x7) — szk( )[33 (z} — Zau T; — 33
Pg; +
Vi)l > v Vaa) + AT+ anAl (At b))}
k=1
OPb,; = Oé,,,(A7$: — bl) (14)

From equation (Id), we can conclude that =} € €, 2} = z}, v}, = (v + gin(al) T, Al —
bi = 0p, . Vi,j = 1,...,n, k = 1,...,pg,. Therefore, we obtain that v}, > 0, glk( M § 0,
and 759 (zf) = 0. From zf € ; and 2} = z}, we find zf € () ;. Then we have

J’
1=1,...,n

—oi(Vfi(al) +wr + 0 v Vair(xr) + ATvf) € No, € Ng(x}). Utilizing the convexity
property of the normal cone, the equation Y7 | ot [—ai(V fi(xF) +wi + 307 V5. Vi (x}) +
AT = =30 [V filzh)+ qu’ 5. Vair(xr)+Alvy] € NQ( Z)holds. According to Lemma
BT, =} is the optimal solutlon x* of problem equation (I[T).

Stability Analysis: In this part, we have the following assumption
Assumption 4.3 ;. (k) has upper bounds ¥, the norm of V g;i.(x;) has upper bound g;j.

Assumption B3 is required because these two terms need to be bounded to determine the control
gains. The determination of the upper bounds for 7, (k) and Vg;x(x;) requires continuous experi-
mentation and testing, involving a process of trial and error to make progress.

Then, we introduce the following auxiliary variables

yui(k) = i(k) — (D aij(wi(k) — 25 (k)) + V fi(wi (k) + w; (k)

Pg;

+§:%k Wain(zi(k)) + ATvi(k) + i AT (Asi(k) — b)),

pi(k) =Pao, (ym(k))
By introducing p;(k), the dynamics of z;(k) in equation (IZ) can be written as

zi(k +1) =zi(k) — T(zi(k) — pi(k)), (15)
and the dynamics of ~; in equation (I3) can be written as

Yir(k + 1) =(1 — ayi )ik (k) + Ty [vin (k) + gin(zi(k)) — Vi, (zi(k)) (@i (k) — fui(k))] "

(16)
Since p; is the projection of y,,; onto §);, we take the difference of y,,; and obtain
Yui(k +1) € yui(k) + T(pi(k) — zi(k)) — o [TZ aij(pi(k) — i (k) + V fi(zi(k + 1))
Pg; Pg;
— Vfi(zi(k)) + Z ayiYik(k + 1)Vgin(zi(k + 1)) Z oy iYik (K)V gin (z:(k))
k=1
+T%mﬂ&mm—mﬁ an
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Note that for any a € R?, 37;(k) € (x;(k), z;(k + 1)), 3y (k) € (vix(k), vir(k + 1)) such that
a ik (k + 1) Vg (@i (k + 1)) = 7ir (k) Vair (i (K))]
=a" Yk (k)02 gir (2 (k) (T (k + 1) — &;(k)) + a” (vir(k + 1) — 7 (k) Vgar (i (k)
=Ta" 5, (k)0 gir (i (k) (A (k) — Z:(k)) + TCLT{ — ik () + o [ir (k) + gan (w:(K))

— Vgh (i) @:(k) — (k)] "} gan (@3 (k). (18)

where Z; (k) is weighted average of x;(k) and z;(k — 1), %1 (k) is weighted average of ;. (k) and
Yir(k +1).

Next, we begin to construct the error dynamics for equation () and equation (). Let i be
an interior point of feasible region according to Assumption B, i.e., i € relint(2), gi(f) < 0,
A;i = b;. Define the errors as i;(k) = pu;(k) — i, Z;(k) = z;(k) — [i. Note that we use [ rather
than z* in the errors to facilitate the subsequent Lyapunov function design. Since we transform the
distributed constrained optimization problem equation (I2) into a constrained leaderless consensus
problem equation () and equation () in the stability analysis, it has no influence to apply the same
displacement i — x* to every [i;(k) and Z;(k). Then, the error dynamics can be written as

Ti(k +1) =i(k) = T(2:(k) — f1i(F)),

Yui(k+1) € ypi(k) + T(fi(k) - ) — @i {TZ% fui(k) — (k) + V fi(zi(k + 1))
- vfz( z zl:avz'}/zk k + 1)ngk xz k + 1 zawq/zk szk( ( ))
k=1
+ Tam‘AzTAiﬂi(k)}v

- - +
ik (k4 1) =(1 = @y T)yin (k) + Towy [vir (k) + gan (@i (k) — Vi (za(k) (@i(k) — (k)] "
(19)
Theorem 4.4 Under Assumptions Z0, B3, B2, B, B2, and B3, using equation ([2) and equa-
tion (I3), the agents will eventually achieve the optimal solution of problem equation (1), i.e.,
limy o[z (t) — 2| =0, i =1,...,n

Proof: The detail of proof is given in Appendix A2

5 NUMERICAL RESULTS

We use numerical simulations on a group of 20 agents to verify the effectiveness of the proposed
algorithm. We conduct two algorithm simulations, one group has set constraints and another group
has general constraints.

We conduct out our algorithm under different balanced graphs, directed circle graph, random
directed graph with 180 edges, and complete graph to evaluate the algorithm convergence speed

under various topology. The local objective function is defined in the form of C*'! quadratic function

filz) = [37 " (wi — 27)T Ayda, i = 1,...,20, which is the strongly convex case presented in
Example 1 of (Hiriart-Urruty et all, T984). The set constraints are selected as §2; = {x2| z; 2 < 0.6},

the equahty constraints are selected as x; ;1 = 0.5, and the inequality constraints are selected as

’L 2
( z 2 + 1)
with set constraints is T},,x1 = 0.038. From equation (B2), the maximum step size for the case
with general constraints is Ti,.x 2 = 0.015. However, we find that the step size can be chosen as 0.1
in our experiment. The DPS algorithm (6) serves as a comparatlve algorithm as described in (Mai
& Abed, POTY). For this algorithm, the step-size is set to = under circle graph case, and to

Af 1+ < 0.01. From equation (BO), we find that the maximum step size for the case

(t+1)

m under random graph and complete graph cases.
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10t T T T - 10t F

DPS-Random

|z(k)—z

(24)-Circle-Without inequality constraint
Complete-Without inequality constraint
-Random-Without inequality constraint
-Circle-With general constraint
-Complete-With general constraint
-Random-With general constraint

Relative error
5

24)
(24)
(24)
(24)
(24)
(24)

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
iteration number: k iteration number: k

(@) (b)

Figure 1: The trajectory of residual. (a) case with set constraints. (b) case with general constraints.

As shown in (a) of Figure [, compared to the DSP algorithm, our method with constant step sizes
may converge more slowly in the initial iterations. However, as the iterations proceed, it can maintain
a constant convergence rate. Under the same step size conditions, increasing network connectivity
is beneficial for improving the algorithm’s convergence speed. For a graph with low network con-
nectivity, such as a circle graph, the DSP algorithm may converge extremely slowly compared to
our algorithm. In (b) of Figure [, we conduct two cases: one with inequality constraints and another
without. In the case without inequality constraints, where only equality constraints are introduced,
(12) indicates that greater network connectivity benefits the convergence speed. Conversely, in the
case with inequality constraints, lower network connectivity is advantageous for convergence speed
because the optimal solution lies on the boundary of the feasible region and is dominated by the
constraints. The introduction of inequality constraints slows down the convergence speed, as shown
in (b) of Figure .

6 CONCLUSION

In this paper, we have investigated the distributed constrained optimal consensus problem for multi-
agent systems under a directed graph. By employing the sliding mode method, we propose a
projection-based distributed constrained optimal consensus algorithm that utilizes only relative state
information for the optimization problem with set constraints. Furthermore, based on this frame-
work, we have explored the distributed optimization problem with general constraints. The simula-
tion results have illustrated that all agents can converge to the optimal solution with the proposed
algorithm.
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A APPENDIX

A.1 PROOF OF THEOREM 3.6

For equation (I), consider the following Lyapunov function candidate V; = V; 1 4V o, where

n

Via(k) = = 3 [filwa(k) — fila®) = (k) — )V fila(k —fza*? #(h),
=1
Via(k Za—l si(k) = )T (su(k) — 2°) = (ss(k) — (k) (sa(k) — e (R))].  20)

Let \7171 (k) = Vi1(k+1) — Vi1(k). Taking the difference of the Lyapunov function V; 1 (k) yields

Vi () = D =il + 1) + fia™) + 2 O+ DV k4 1) = 5 (b + Dl +1)

i=1 %

+(ai(0) = fia") = T O fiar(R) + 5T (03 (6)

Z[ filzi(k + 1)) + filzi(k) + & (k + D)V fi(zi(k + 1)) — & (k)V fi(zi(k))

L ik + 1) — 2 (B)T @l + 1) — (k) — —FaCk + DT (i(k + 1) — (k)]

20[; (673

n

= [filwi(k) = filwi(k + 1)) = V i (k)) (@i (k) — z:(k + 1))

=1

+ &7 (k+1)(Vfi(zi(k + 1)) = Vfi(i(k)))

L Gk 1) — 2(0) T @k 1) — 54(R)) — —:(k + )7 @ik + 1) — 2:(k))].

+ 20 o
(21)

Note that for any a € R?, 37;(k) € (xi(k),z;(k + 1)), and 3H,(k) € 9? f;(z;(k)) such that
a’ [hi(k +1) = hi(k)] =a” H; (k) (:(k + 1) — &:(k))
=Ta" H;(k)(@i(k) — 7:(K)), (22)
where Z;(k) is weight average of x;(k) and z;(k — 1), H;(k) € f;(Z;(k)). By using equation (22),
we have

Vil Z wmluxl (k+1) — z;(k)|)? + 27 (k + 1) H; (k) (2 (k 4+ 1) — 2;(k))

+ Enwi(k +1) — 2 (k)||* - aix(k + )T (zi(k + 1) — z5(k))]. (23)

12
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Substituting equation () into equation (Z3) yields

Vua(h) < Z — S = F 1) = B2 = T (6) — T () — (k) (Hi(h)
- i)(@(k) ~ i)
< Z = Dtk + 1) = S — Ta(0 (H(k) = )0 - (k)
T2 (R) = D) () = ) 3:(0) — i)
< T2 = i = @) = )P = T (k)T (HLh) = )@ () = (b)),
(24)
The difference of V4 1 satisfies
Fah) £ 7200~ S S~ )2
=T (3 — D)@~ ) es)
Let Vio(k) = Vig(k+1)—W 2(; The difference of V;  satisfies
Via(k Zofl d(k4+1) =2 (si(k +1) — %) — (si(k+ 1) — pa(k 4+ 1) (s5(k + 1)

— gtk + )] = 5 3 [(silh) = 27 (s (0) — ) = (s 6) — ) 5 (1)
- ,uz(k))]

Zofl i+ 1) =) (si(k+1) —2*) — (si(k + 1) — (b + 1))T (s:(k + 1)

— ik + 1)) + (si(k) = ps(k + 1) (i (k) — ps(k +1))] = 5 Z@_l si(k
— ") (si(k) — 2*) = (si(k) — pa(k)T (s5(k) = pa(k)) = (s (k) pi(k +1)7 (si(k)
— pi(k +1))]

,% zn:% —(5i(k+1) — 5;(E) T (5(k + 1) — 54(k)) + 2(s4(k + 1)

1=

= si(k))" (si

(si(k+1) —a") + (si(k + 1) — s (k)" (si(k + 1) — si(k)) — 2(si(k + 1)
—si(k) " (si(k 4+ 1) = pi(k + 1)) + (si(k) — pa (k)" (si(k) — pa(k)) — (si(k)
l(k + 1)) ( (k) - Mz(k + 1))}
% Z 2(si(k +1) = si(k) (ualk +1) = 2*) = (pa(k + 1) — s (k)" (s (k + 1)
- uz(k))] (26)
Substituting equation (8) into equation (Z8), we have
Via(k) <[T(a(k) — #(k)) — TaLi(k) — a(h(k+1) — hk))] o~ (k) — (k)
+ ik + 1)) - %(ﬁ(k +1) = (k) o  ((k + 1) = ji(k)) @7)
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By using young’s inequality,

Va2 (k) <[T((k) = 2(k)) = Talfi(k) — a(h(k +1) = h(k)] o™ (i(k) - fi(k)
+ ik +1)) - gwk +1) = (k)" (B + 1) = (k)
< TT (R)LR) — T (B)(H () — 0~ ) (k) — 3(k) + 5 [T((k) — (k)
— TaLfi )—TaH(k>(ﬂ<k)—:E(k>)]Ta‘ [T (k) = &(k)) — TaLi(k)
~ TaH (k) i) — #(8))] — 5 (ak -+ 1) — A Gilh +1) — k)
< — T (k) (H (k) = o™ ") (k) = (k) = (TAwin(£) - aT2||R£RT||2>||R®ﬂ||

+ZE(1 — M;o)?|| s (k) — Z4(K)|)*. (28)

Let Vi (k) = Vi(k + 1) — Vi (k). The difference of the Lyapunov function V; satisfies

Vi(k) < =T (k) — 2(k)" (H(k) — o~ ") (k) = (k) = (TAmin (L)

_ - "L T2 ~ N
—OJQWRﬁRTH%WR®MW-F§:E;(1—A@aDﬂWJk)—xﬂkmz

i=1

= 1 L _
£ ST, - s — 5 R) — ()P
i=1 ¢
i = 2 = T(M; = s — 5+ (1= Miaa () — (k)
- o sz 2, o 187 £ i
T (RERT) - aTIRERT2)[Roil 29)

m;— -

o4
T 1 TN
sMi— 5t 5; (1-M;a;)

Let kr; =

- 5, Choosing step size 1" such that

. mm(RﬁRT)
T S . min (kT“ W

1=1,...,n

(30)

Choosing 8 = min;—1 ., (T[m;— O% —T(M;—3m;— % + ai(l — M;0)®)], T Amin (RLRT) —

aT||RLRT||?)). From the definition of step size, we have 3 > 0. Therefore, Then, equation (Z9)
can be written as

.....

Vi(k) < =Bll@(k) — ak))II* — Bl Re > €3]

According to Lemma P2, we have {V;(k)} is monotonously decreasing and limy_, Vi(k) €
L. According to Cauchy criterion, limg_,oo (Vi(k + 1) — Vi(k)) = Opnp, limy_,oo(E(k) —
k) = Opp, limp oo Refi(k) = O@p—1)p. Following the same procedure in

*

Equilibrium analysis, we have limg_ ., x;(k) = z*. From equation (BI), we have

. E oo~ k . k -
s £ i [7(0) = OIS (RO & S A < oo . From equa-
tion (@), limg o0 £ Zt L2t + 1) — ;(¢))||* < oo. Finally, the first-order optimality residuals
converge with a rate of O(%) which completes the proof.

14
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A.2 PROOF OF THEOREM 4.4

For equation (I9), consider the Lyapunov function candidate V5 = V5 1 4 V5 o with

Vo1 = %Zafl (i (k) — )" (i (k) — 1) — (ypi(k) — (k)T (yus (k) — pa(K))].

n

Vaz == 3 [Filaak) = fil) = (ealh) — BV fia ()] — Z o '] (k)i (k)
S () g s (R)) + Vg s ()4 (8). (32)
1=1 k=1

Building on Lemma 23, we can establish the positive definiteness of V5 ; through the inequality
Vo > 2570 a; Y|fii(k)||2. From the strong convexity of fi, we have —[f;(z;(k)) — fi(i) —
V(@i (k))(2i(k) — )] > % ||2i (k) — a]|*. Therefore, we conclude that V5 5 > (% - 2(11) ' 7.
By choosing a; > %, we can derive the positive definiteness of Vo with respect to Z77.
From the convexity of g;x(w;(k)), we have —g;x(z;(k)) + Vgk (z;(k))i:(k) > —gi(n) > 0.
From the above inequalities, we derive that "1 | S0% vir (k) (—gix (zi(k)) + Vghii(k)) >

ZZ 1 Zk 1 Yik(k)gir () and V5 o is positive definite with respect to v;;. In summary, V5o
is positive definite with respect to Z7 (k)Z;(k) and ~;1 (k) within our error definition.

8

Let ‘721(k) = V5,1(k+ 1) — Va1 (k). Based on Lemma 3, the difference of V5 ; satisfies

Vaa(8) 3 D o 200+ 1) = ) Gk 1) =) = G+ 1)
= i (k)T ik +1) = pa(k))]
<5 20 20+ 1) =) 0) =) + (1)

- ym(k)) (ypi(k +1) = yui(k))]. (33)

l\.'))—‘

Substituting equation (I[4) into equation (B3) yields

Vo (k) <3 o T ua(k) — (k) — o [T Z aiy (s (k) — iy (k) + ¥ filws(k + 1)

i=1
Pg; Pg;

- sz( z + Z a'yz’)/zk k + 1)ngk -Tz k + 1 Z a'yz’)/zk v.gzk(xz(k))
k=1

T n n
4 Tan AT AR} 7alh) + 5 3 a7 ITGualh) = () — s [T Y iy (i)
i=1 j=1
= 1j(K)) + V fi(wi(k + 1)) = V fi(zi(k)) + Z ayiik(k + 1) Vgir(ai(k + 1))
k=1
Pg;
= 3 @i (k) Vigan (w4(k)) + T AT Afa(b)| 12 (34)

15
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By using equation (I¥) and Young’s inequality, we have

Vau(k) < =T il (k)(mi — o ") (s (k) — &3(k)) — T i Y Hi (k) (f1i (k) — (k)

i=1 =1
-7y il Vg,k(i:,(k)){ i (k) + i [yan (k) + gir (s (k))

~ D ) E) ~ ]}~ Y ouad (AT A (k)

+20> oy M (aiM; — 1)) fii (k) — &(k)]|* = T(Amin(RLRT)
=1

— 2aT||RLRY|))[Refll* + 2T Amax (A Ai)alif (k) AT Asju (k)

i=1
n Pg; n Pg;
+4 ZQ?kH Z i (vik (k4 1) = yar (k) |I” + 42 Vel Z i Vgir(2i(k + 1))
i= k=1 i=1 k=1
— Vair(z: ()2 (35)

Let \722(k:) = Vao(k + 1) — V2 (k). Taking the difference of V5 o yields

" 1 1

Vas(k) < D T2(M; = 5m; - —)II (k) — (k)| - ZT% Hi(k) = ) (E(k)
3 9) + 32 vinh 1) (=g + 1) + Vg sk + 1) (k + 1)
=1 k=1
S S e () g (1)) + Vg i (1)),
1=1 k=1
Note that
> Z [%‘k(k? + 1) (=gin(@i(k + 1)) + Vg (wi(k + 1)Zi(k + 1)) — vk (k) (=gin (i (k))
=1 k=1
+ gk (i k)i (k))]
< Z Z {Vzngzk xz k + 1) - xz(k)) - (’Yik(k + 1) - Vzk(k))( gzk(j (k))
1=1 k=1
+ Vb (5 (k)F:(k))]
=33 [T ) (-000) + s(8) — (o + 1) = 7))
=1 k=1
+ Vgh @ (k)F:(R))] (36)

16
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Let Va(k) = Va(k + 1) — Vi (k). Then, we have

1
)<— TZ = o Tk Amin (Hoi(k) = T(M; = 5m; =

2 20&1' (67

+403,p,, Z'sz M lIZi(k) = Ai(k)1? = T(Amin(RERT)
k=1

= 2aT||RLRT|*)[Refill* = T (i — 2T Amax (AT Ad)ag) il (k)AT Aifii (k)

-3 i(m(/ﬂ + 1) — Yin (k) (—gin (@i (k) + Vi (2:(k) (Zi (k) — fis(k)))
=1 k=1
+4Za3¢pgii§?k\|(vik(k+1) — ik (k)| (37)
1=1 k=1
Note that

S ek 1) — i () (— s (24(0)) + VT (@) (a(k) — s (B)))
i=1 k=1

= Z i(m(k +1) — (k) [ — gin(zi(k)) + Vi (@:(k))(Z:(k) — fis(k))
i=1 k=1
+ gik (@i (k) — gin(Zi(k)) — Vi (Z: (k) (w:(k) — 24(k)) — (Vgir (z:(k))
— Vair(zi(k)" (2 Z(k) fii(k))]. (38)

We next prove the negative definiteness of term (vir(k + 1) — 7ir(k))(—gir(zi(k)) +
Vgl (@i(k)(@i(k) — i (k))).

(vire(k + 1) = vir (k) (= gir(25(k)) + Vi (2:(k)) (Z: (k) — i (K)))

)
_ { —T‘la,;il(%k(k +1) — vir (k)2 if (yir + g (z:) — ngk(wz)( T — i) > 0.
(yir (k4 1) = ik (k) (—gir (zi(k)) + Vgl (zi (k) (Zi(k) — fui(K))), else.

For the case (yik(k + 1) — vir (k) (—gir (i (k) + Vgii (i (k))(Z: (k) — f1i(k))) < 0, we have
Yir(k+1) =ik (k) = —ayivin (k) < 0and —gig (2:(k)) + Vg, (i (k) (Zi (k) — (k) > yir(k) =

—a (i (k+1) =i (k). Therefore, (yir(k+1) —yir(k))(— gzk(xZ(k))+v91k( zi(k))(Zi(k) —
pi(k) < —ai (vik(k + 1) — %k(’f))2~ Therefore, (vir(k + 1) — vk (k))(—gin(wi(k)) +

Vb (@i(k))(Z:(k) — (k) < =T 'a L(vir(k + 1) — vix(k))? under any case. Therefore,
equation (BX) can be written as

n Pg;

Z Z(%‘k(k + 1) = Yin (k) (—gin (@i (k) + Vi (2:(k) (Zi (k) — fis(k)))
i=1 k=1
Z ZT o, Y(yir(k +1) — v (k Z Z Yir(k + 1) — vir (k) (gir (2:(F))
i=1 k=1 =1 k=1
— gik(Z:(k)) — Vi (:(k)) (@i (k) — 2:(k)))
<——ZZT a 'ylk (k4+1) —vix(k 2+%ZZT0472H911< (xi(k)) — gir(Ti(k))
i=1 k=1 i=1 k=1
— Vi (i(k)) (zi(k) — Z:(k))||. (39)

17
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From Assumption B2, g (z;(k)) < gi(Zi(k)) + Vokh (Zi(k))(z:(k) — Z:i(k)) + Mj‘” x;(k) —
7;(k)||?. Therefore, we have
n Pg;
Z Z(%k(k + 1) = v () (—gik (Ti (k) + Vi (2:(k) (Zi(k) — fui(K)))
i=1 k=1
1 Pg; 12 Pg;
<-3 SN T (an(k 4+ 1) — yin (k) + y SO  TaniMyi|li(k) — zi(k)|)?
i=1 k=1 i=1 k=1
1 n Pg; 1 n Pg;
<= 52 T (b + 1) = yk(k)? + 5 ZZT%Mngxz(k +1) — zi(k)|?
i=1 k=1 i=1 k=
1 Pyg; n Pgl
—_ 52 T~ o ! (vik(k + 1) — ik (k) + T3ZZ% gillEi (k) — i (k)||%. (40)
i=1 k=1 i=1 k=1
Substituting equation (Ed) into equation (B4) yields
1 12 &
) < — o Zm — _
TZ T(M; — 5mi o T ab(l M;a;)? + 402 ,py, ;%kM
1 DPg;
+ ZTZ a2 Mgi)][1Zi(k) = a(k))[1? = T(Amin(RERT) — 28T [RLRY )| R al|®
k=1
n  Pg; 1
- TZ am - max(A A; )Oém)lh (k)A?Azﬂz<k) -T! Z (505;1'1
i=1 k=1
- 4T0477:Pg7¢97:k)(%k(k +1) — 7 (k))%. (41)
Let kr; = : : oy and k, =

p
(Mi_Emi_ﬁ = (1 M; 0‘1)2"‘40‘%1’% Zkgll Vi M2 et T 2l ol ol M 9i)’
), k,y =min j=1,..n (%) Choosing step size 1" such that

: 1
min;— N AT
i=1n( 2max (AT A7) i 8a3,pg, 92,

)\mm (RﬁRT)

< i .

Ts mn (kb 5052 (RERTY @
Let 3 = min, 1, ,n(ml—a%—T(ML émz g—k (1—Mozz) —|—4o¢,ﬂpgl Ek 1'ylkMng—|—
1szgb ) T(A mln(RﬁRT) - ZO‘T”RERTH )v 5 ;zl - 4T0‘wpg7‘,gzk’ Toyi(1 —
2T Amax (AT A )am-)). According to Assumption B3, we can obtain

BZH% i{(k)|? = BIRel* - /D’Zm k) AT Aifui (k)
n Pg;
=B (viklk +1) = ir(k))*.
=1 k=1

From equation (B1), we have fi;(k), Z;(k), vx(k) are bounded. According to Lemma P2,
we have positive sequence {V(k)} is monotonously decreasing. By using Cauchy criterion,
llmkﬁoo(‘%(k) - ﬂ(k)) = OTLP’ limy, 00 R@ﬁ(k) = O(n—l);m limg,—, 00 Al.az(k) = OPbi’
limg 00 (yir (K + 1) — vix(k)) = 0. Following the same procedure in Equilibrium analysis, we
have limg_,o 2;(k) = x*. Based on equation (Bd), we also have limy_, o, % Zle |Z:(t) —
a2 4 2 IReB(02, + Tiny IReFOI2, § iy 1A (0§ ooy (in(k + 1) —
~ik(k))? < oo . From equation (I3), limy_0o L S8 [|:(t + 1) — #;(t))||> < oco. Therefore,
we have demonstrated that the first-order optimality residuals converge with a rate of O(%), which
completes the proof.
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