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ABSTRACT

In this paper, the distributed constrained optimal consensus problem of multi-
agent systems under a directed graph is investigated. We propose two projection-
based distributed constrained optimal consensus algorithms: one addressing set
constraints and the other tailored for general constraints. Only the relative state
is exchanged among agents in these two algorithms. In the stability analysis of
case with set constraints, we transform the distributed optimization problem into a
constrained leaderless consensus problem by adopting a sliding mode approach.
Building on this foundational transformation, we further develop a projection-
based distributed constrained optimal consensus algorithm to address general con-
straints. It is shown that the proposed algorithm achieves an ergodic convergence
rate of O( 1k ) with respect to the first-order optimality residuals. Numerical simu-
lations are conducted to validate the effectiveness of our theoretical results.

1 INTRODUCTION

In the past two decades, distributed optimization of multi-agent systems has drawn extensive atten-
tion. As a fundamental problem of distributed optimization, distributed optimal consensus refers
to construct an algorithm for each agent such that the states of agents converge to the optimal solu-
tion of a global objective function using local information. Early distributed optimal consensus of
multi-agent systems can be referred to (Shi et al., 2015) and (Kia et al., 2015). The distributed opti-
mization algorithm has diverse practical applications, including cooperative transportation (Chen &
Kai, 2018), energy management (Wang et al., 2024), distributed learning (Arjevani & Shamir, 2015).
For a comprehensive overview of recent advances in distributed optimization, one can refer to (Yang
et al., 2019; Shorinwa et al., 2024).

1.1 RELATED WORK

Many previous studies have developed distributed optimization algorithms under different types of
constraints. In relation to the work presented in this paper, we categorize the current advancements
into three groups based on the types of constraints as follows:
Unconstrained optimization: Distributed discrete time unconstrained optimization algorithms pri-
marily include DGD (Nedic & Ozdaglar, 2009; Tu et al., 2022), EXTRA (Shi et al., 2015), DEXTRA
(Xi & Khan, 2017), Exact-Diffusion (Yuan et al., 2018; Alghunaim, 2024), Gradient-Tracking (Pu
& Nedić, 2021), among others. Compared with the vanishing step-sizes in DGD, EXTRA, Exact-
Diffusion, and Gradient-Tracking uses constant step-size and has linear convergence speed O(C−k).
Be aware that due to the introduction of an integral term used to compensate gradient in equilibrium,
both EXTRA and DEXTRA demonstrate second-order dynamics.
Optimization with set constraints: Set constraints are considered in (Nedic et al., 2010; Liu &
Wang, 2015; Scaman et al., 2018; Mai & Abed, 2019; YU2, 2021). Distributed optimization prob-
lems with set constraints under an undirected graph are considered in (Nedic et al., 2010; Liu &
Wang, 2015; Scaman et al., 2018). Early projection-based algorithm considering is presented in
(Nedic et al., 2010). (Liu & Wang, 2015) proposes a distributed proportional-integral (PI) type
projection-based gradient method. Conic constraint sets are considered in (Scaman et al., 2018).
Different from the undirected graph case, general directed graph cases are considered in (Mai &
Abed, 2019; YU2, 2021; Wan et al., 2020). Due to the second-order dynamics in EXTRA, DEX-
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TRA, Exact-Diffusion, it is of challenge for incorporating projection algorithms in environments
with set constraints. This is precisely why the existing algorithms with set constraints adopt vanish-
ing step-sizes in (Mai & Abed, 2019; YU2, 2021; Wan et al., 2020). Moreover, vanishing step-sizes
are used in distributed gradient-tracking algorithm due to different set constraints (Cheng et al.,
2023). One drawback of utilizing diminishing step sizes is a slower convergence rate. Therefore, it
is desired to design a projection based algorithm with constant step-sizes.
Optimization with general constraints: Except for the set constraints considered in (Nedic et al.,
2010; Liu & Wang, 2015; Scaman et al., 2018; Mai & Abed, 2019; YU2, 2021; Wan et al., 2020),
general constraints include equality constraints and nonlinear inequality constraints, which can be
solved by primal-dual method (Gao, 2004). These nonlinear constraints bring more challenges to
the distributed optimization algorithm design. The existing algorithms on distributed optimization
algorithms addresses both the undirected graph scenario (Yang et al., 2016; Zhu et al., 2018) and
the directed graph scenario (Khatana & Salapaka, 2023). Besides the difficulties of projection oper-
ation, the existence of nonlinear inequality constraints has introduced significant complexities into
stability analysis, which is not considered in (Khatana & Salapaka, 2023).

1.2 CONTRIBUTION

From the above analysis, it becomes clear that existing distributed optimization algorithms have not
yet tackled scenarios that simultaneously incorporate directed topology graphs, fixed step sizes, and
general constraints. In this paper, we study the distributed constrained optimal consensus problem of
multi-agent systems under a directed graph using only relative state. The main challenge lies in the
fact that the nonlinear projection operator and nonlinear constraints hinder the stability analysis. To
address this challenge, we introduce an original analysis framework based on the sliding mode tech-
nique, which transforms the distributed constrained optimal consensus problem into a constrained
leaderless consensus problem. Compared with existing results (Nedic et al., 2010; Liu & Wang,
2015; Scaman et al., 2018; Mai & Abed, 2019; YU2, 2021; Wan et al., 2020; Gao, 2004; Yang et al.,
2016; Zhu et al., 2018; Khatana & Salapaka, 2023), the proposed algorithm makes the following
contributions:

Case with set constraints: we develop a distributed algorithm using only the interaction of
relative state under a balanced directed graph (Theorem 3.6). By using a sliding mode approach,
we transform the distributed constrained optimal consensus problem into a constrained leaderless
consensus problem. Within this transformed framework, we design a novel Lyapunov function and
conduct a comprehensive stability analysis to illustrate the effectiveness of our approach. Different
from undirected graphs considered in (Nedic et al., 2010; Liu & Wang, 2015; Scaman et al., 2018),
we consider the directed graph case. Compared with the methods with vanishing step-sizes (Mai &
Abed, 2019; YU2, 2021), our algorithm utilize the constant step-sizes which can achieve faster con-
vergence speed. By omitting local set constraints, our algorithm can be conducted under a directed
graph case, which is more general than EXTRA (Shi et al., 2015).

Case with general constraints: A projection-based algorithm is proposed for the case with
general constraints (Theorem 4.4). Different from the undirected graph case, our proposed algo-
rithm (Yang et al., 2016; Zhu et al., 2018) can be deployed under a directed graph. Compared with
(Khatana & Salapaka, 2023), we only communicate the relative state information. Unlike the sin-
gle system optimization algorithm in (Gao, 2004), we propose a novel algorithm to tackle general
constraints.

2 BACKGROUND AND PROBLEM STATEMENT

2.1 GRAPH THEORY

We use a directed graph to describe the network topology among N agents. Let GN
△
= (VN , EN )

be a directed graph with the node set VN
△
= {v1, ..., vN} and the edge set EN ⊆ VN × VN . An

edge (vi, vj) ∈ EN denotes that agent vj can obtain information from agent vi, but not vice versa.
Here, node vi is the parent node while node vj is the child node. A directed path from node vi to
node vj is a sequence of edges of the form (vi, vi,2), (vi,2, vi,3), . . ., (vi,k, vj), in a directed graph.
A directed tree is a directed graph, where every node has exactly one parent except for one node,
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called the root, and the root has directed paths to every other node. A directed spanning tree of a
directed graph is a direct tree that contains all nodes of the directed graph. A directed graph contains
a directed spanning tree if there exists a directed spanning tree as a subset of the directed graph. A
directed graph is balanced graph iff each node has the same in-degree and out-degree. For balanced
graphs, LT

N1N = 0N , and LN + LT
N is a symmetric Laplacian matrix of some undirected graph.

The adjacency matrix AN
△
= [aij ] ∈ RN×N of a directed graph (VN , EN ) is defined such that

aij > 0 if (vj , vi) ∈ EN , and aij = 0 if (vj , vi) ̸∈ EN . In this paper, self-edges are not allowed, i.e.,
aii = 0. The in-degree of node i is defined as follows: degin(vi) =

∑N
j=1 aij , i = 1, ..., N . Then,

DN = diag {degin (v1) , · · · , degin (vN )} is called the degree matrix of GN . The (non-symmetric)
Laplacian matrix of GN is defined as LN = DN − AN , with lii =

∑n
j=1,j ̸=i aij and lij = −aij ,

i ̸= j.

Assumption 2.1 The directed graph G is strongly connected and balanced.

We define a vector rN = ( 1
N , 1

N , . . . , 1
N ) ∈ R1×N and a matrix RN ∈ R(N−1)×N

RN =


−1 + (N − 1) v 1− v −v · · · −v

−1 + (N − 1) v −v 1− v
. . .

...
...

...
. . . . . . −v

−1 + (N − 1) v −v · · · −v 1− v

 , (1)

where v = N−
√
N

N(N−1) . Then, we have that U =

(
rN
RN

)
∈ RN×N is a unitary matrix, with

RN1N = 0, RNRT
N = IN−1, and RT

NRN = IN − 1
N 1N1T

N . By observing that x̃
△
= RNx is equal

to zero if and only if x = α1N for α ∈ R, which implies that the null space of RN is 1N . ∥x̃∥ can
be viewed as a measure of synchrony. When ∥x̃∥ = 0, the agents’ states achieve consensus.

2.2 MAIN LEMMAS

Lemma 2.1 (Scardovi et al., 2010) For a Laplacian matrix LN of graph GN with a spinning tree,
−RNLNRN is a Hurwitz matrix. Moreover, if GN is undirected, we have RNLNRN is negative-
definite and xTLNx = xTUTULNUTUx = xTRT

NRNLNRT
NRNx = x̃TRNLNRT

N x̃.

Theorem 2.2 (Theorem 3.14, (Rudin et al., 1964)) If a sequence of real numbers is decreasing and
bounded below, then its infimum is the limit.

2.3 CONVEX FUNCTION ANALYSIS

To facilitate the stability analysis, we have the following assumptions about the local objective
function. Let f ∈ C1,1(Rp), i.e., f : Rp → R is a continuously differentiable function and
its derivative ∇f(x) is locally Lipschitz continuous on Rp. ∇f(x) is locally Lipschitz contin-
uous if for any compact set U ⊂ Rp, i.e., there always exists a positive constant Ml ≥ 0
such that ∥∇f(x) − ∇f(y)∥ ≤ Ml∥x − y∥ for y, z ∈ U . f(x) is m-strongly convex iff
(∇f(y) − ∇f(x))T (y − x) ≥ m∥y − x∥2, ∀x, y ∈ Rp, where m > 0 is the strong convexity
constant. f(x) has Mf -Lipschitz gradient iff ∥∇f(y) − ∇f(x)∥2 ≤ Mf∥y − x∥2, ∀x, y ∈ Rp,
where Mf > 0 is Lipschitz constant.

For a C1,1 function f(x), ∇f(x) is differentiable almost everywhere so that its generalized
derivative in Clarke’s sense can be defined everywhere. The definition of the general Hessian matrix
is given as follows.

Definition 2.3 (Hiriart-Urruty et al., 1984) The generalized Hessian matrix of f at x0, denoted by
∂2f(x0), is the set of matrices defined as the convex hull of the set

co{M | ∃xi → x0 with f twice differentiable at xi and ∇2f(xi) → M}.

where co denotes the convex closure. From the above definition, ∂2f(x0) is a nonempty compact
convex set.
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2.4 CONVEX SET ANALYSIS

A set Ω ∈ Rn is called convex if λx + (1 − λ)y ∈ Ω, ∀x, y ∈ Ω, and λ ∈ (0, 1). Given a closed
convex set Ω ⊆ Rp, the projection PΩ(x) : Rp → Ω is defined as PΩ(x) = argminy∈Ω∥x−y∥. For
a convex set Ω, the projection variable satisfies the Lipschitz continuity ∥PΩ(x)−PΩ(y)∥ ≤ ∥x−y∥.

Lemma 2.2 (Khalil, 2002) Given a closed convex set Ω ⊆ Rn, µ = PΩ(v) if and only if µ ∈ Ω and
(µ− v)T (y − µ) ≥ 0 for any y ∈ Ω.

Clearly, by replacing µ with PΩ(y) in the inequality of Lemma, it follows that

(PΩ(y)− y)T (z − PΩ(y)) ≥ 0, ∀z ∈ Ω. (2)

Definition 2.4 The normal cone at point x with respect to the convex set Ω is defined as:

NΩ(x) = {v ∈ Rp | ⟨v, y − x⟩ ≤ 0 for all y ∈ Ω} .

Normal cone is always convex and is closed under positive scalar multiplication, i.e., for any
x, y ∈ NΩ(x), t1x+ t2y ∈ NΩ(x), ∀t1, t2 > 0.

Lemma 2.3 (Kinderlehrer & Stampacchia, 1980) For a convex set Ω ∈ Rp, we can define the
following function Vx,y = 1

2∥x− PΩ(y)∥2 − 1
2∥x− PΩ(x)∥2 which satisfies

(1) Vx,y ≥ 1
2∥PΩ(x)− PΩ(y)∥2;

(2) Vx,y is continuously differentiable and convex with respect to x ∈ Rp, and ∇xVx,y =
PΩ(x)− PΩ(y).

3 DISTRIBUTED OPTIMAL CONSENSUS ALGORITHM WITH SET CONSTRAINTS

In this section, we aim to design a distributed projection-based optimal consensus algorithm for
multiple first-order integrators using relative state information, without the need to communicate
virtual variables with neighbors. Different from the unconstrained case, the main challenge in the
algorithm design lies in the nonlinearity of the projection method.

3.1 PROBLEM STATEMENT

Each agent is assigned a local objective function fi : Rp → R and a local set constraint Ωi by a
nonempty closed convex set of Rp, which are only known by itself. The global objective function is
defined by

∑n
i=1 fi(q). Our aim is to design a distributed optimal consensus algorithm for such that

the state of each agent converges to the optimal solution of following problem

min

n∑
i=1

fi(x),

s.t. x ∈
∩

i=1,...,n

Ωi, (3)

using only relative state information, the local objective function information, and the local set
constraint.

Next, the following assumptions and definitions provides the optimality condition to the con-
strained optimization problem equation (3).

Assumption 3.1 (Existence) Let Ω be the intersection of all local closed convex sets. Ω is a non-
empty set, i.e., Ω =

∩n
i=1 Ωi ̸= ∅.

From Assumption 3.1, if there exists x ∈ Ω and y ∈ NΩ(x), then y ∈ NΩi(x) ⊆ NΩ(x) due to
Ω ⊆ Ωi, for all i = 1, . . . , n.

4
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Assumption 3.2 The local gradient of objective function ∇fi(x), and the gradient of nonlinear in-
equality constraint function ∇gik(x) is Mi-Lipschitz satisfying Hi(xi) ⪯ MiIp, Hgi(xi) ⪯ MgiIp,
∀Hi(xi) ∈ ∂2fi(xi), ∀Hgi(xi) ∈ ∂2gi(xi), ∀xi ∈ Rp.

From Assumption 3.2, fi(y) ≤ fi(x) +∇fT
i (x)(y − x) + Mi

2 ∥y − x∥2.

Assumption 3.3 The local objective function fi(x) is differentiable and mi-strongly convex which
means that any matrix in generalized Hessian matrix Hi(xi) ⪰ miIp, ∀Hi(xi) ∈ ∂2fi(xi), ∀xi ∈
Rp.

From Assumption 3.3, we also have fi(y) ≥ fi(x) +∇fT
i (x)(y − x) + mi

2 ∥y − x∥2.

Definition 3.4 x∗ is the optimal solution to the constrained optimization problem equation (3), if
and only if x∗ − PΩ(x

∗ −
∑n

i=1 ∇fi(x
∗)) = 0p. Or equivalently,

∑n
i=1 ∇fi(x

∗) ∈ NΩ(x
∗).

Definition 3.5 The distributed constrained optimal consensus problem is solved if for any initial
condition xi(0) ∈ Rp, all the agents can converge to the global optimal solution of equation (3),
i.e.,

lim
t→∞

xi(t) = x∗. (4)

3.2 ALGORITHM DESIGN

We introduce the following consensus algorithm

xi(k + 1) =xi(k)− T (xi(k)− PΩi
(xi(k)− αi(

n∑
j=1

aij(xi(k)− xj(k)) +∇fi(xi(k))

+ wi(k))))

wi(k + 1) = wi(k)− T

n∑
j=1

aij(xi(k)− xj(k)). (5)

Equilibrium analysis: Let the equilibrium of (xi(k), wi(k)) be (x∗
i , w

∗
i ). Then, we have

0p =− T (x∗
i (k)− PΩi

(x∗
i (k)− αi(

n∑
j=1

aij(x
∗
i − x∗

j ) +∇fi(x
∗
i ) + w∗

i )),

0p =T

n∑
j=1

aij(x
∗
i − x∗

j ). (6)

From equation (6), we have x∗
i = x∗

j and −αi(∇fi(x
∗) + w∗

i ) ∈ NΩi
⊆ NΩ, ∀i, j =

1, . . . , n. Exploiting the convexity property of the normal cone at x∗
i , we can conclude that∑n

i=1 α
−1
i [−αi(∇fi(x

∗
i ) + w∗

i )] = −
∑n

i=1 ∇fi(x
∗
i ) ∈ NΩi ⊆ NΩ. Therefore,

∑n
i=1 ∇fi(x

∗
i ) =

−
∑n

i=1 w
∗
i = 0p and x∗

i = x∗.

Stability analysis: Define the following auxiliary variables

si(k) = xi(k)− αi(

n∑
j=1

aij(xi(k)− xj(k)) +∇fi(xi(k)) + wi(k)),

µi(k) =PΩi
(si(k)).

If Ωi = Rp, µi will satisfy µi(k) = xi(k) +
1
T (xi(k + 1) − xi(k)) and can be viewed as a sliding

variable. Therefore, we can regard µi(k) as a projected sliding variable. By introducing µi(k), the
dynamics of xi in equation (5) can be written as

xi(k + 1) =xi(k)− T (xi(k)− µi(k)). (7)

5
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equation (7) can be understood as a first-order dynamics of xi tracking µi. Given that µi is the
projection of yi onto Ωi, taking the difference of yi yields

si(k + 1)− si(k) = T (µi(k)− xi(k))− Tαi

n∑
j=1

aij(µi(k)− µj(k))− αi(hi(k + 1)− hi(k)).

(8)

Define µ̃i = µi − x∗, x̃i = xi − x∗. Then, the error dynamics can be written as

x̃i(k + 1) =x̃i(k)− T (x̃i(k)− µ̃i(k))

si(k + 1) = si(k) + T (µ̃i(k)− x̃i(k))− Tαi

n∑
j=1

aij(µ̃i(k)− µ̃j(k))− αi(hi(k + 1)− hi(k)).

(9)

Note that equation (9) can be viewed as a constrained leaderless consensus problem, where µi satis-
fies the local constraint µi ∈ Ωi. Define the stack vectors µ̃ = (µ̃T

1 , . . . , µ̃
T
n )

T , s = (sT1 , . . . , s
T
n )

T ,
x̃ = (x̃T

1 , . . . , x̃
T
n )

T . The vector form of equation (9) can be written as

x̃(k + 1) =x̃(k)− T (x̃(k)− µ̃(k))

s(k + 1)− s(k) = T (µ̃(k)− x̃(k))− TαLµ̃(k)− α(h(k + 1)− h(k)). (10)

Theorem 3.6 Under Assumptions 2.1, 3.1, 3.2,and 3.3, the agents by using equation (5) will even-
tually converge to the optimal solution of problem equation (3), i.e., limt→∞[xi(t) − µ∗] = 0p,
i = 1, . . . , n.

Proof: The detail of proof is given in Appendix A.1.

4 DISTRIBUTED OPTIMAL CONSENSUS ALGORITHM WITH GENERAL
CONSTRAINTS

In this section, we aim to design a distributed projection-based optimal consensus algorithm using
relative state information, without the need to communicate virtual variables between neighbors. Dif-
ferent from the case with only set constraints, the introduction of additional equality and nonlinear
inequality constraints bring difficulties to the algorithm design.

4.1 PROBLEM STATEMENT

Our aim is to design a distributed optimal consensus algorithm such that the state of each agent
achieves the optimal solution of following problem

min

n∑
i=1

fi(x)

s.t. x ∈
∩

i=1,...,n

Ωi, gik(x) ≤ 0,

Aix = bi, i = 1, . . . , n, k = 1, . . . , pgi . (11)

using relative state measurements, the local objective function information, and the local general
constraints. Here, gik(x) is first-order differentiable convex function Ai ∈ Rpbi

×p. Next, the fol-
lowing assumptions and definitions provides the optimality condition to the constrained optimization
problem equation (11)

Assumption 4.1 (Slater’s condition) Let Ω be the intersection of all the local closed convex sets. Ω
is a non-empty set, i.e., Ω =

∩n
i=1 Ωi ̸= ∅. Furthermore, there exist x ∈ Rp such that

x ∈ relint(Ω), gik(x) < 0, Aix = bi, i = 1, . . . , n, k = 1, . . . , pgi .

where relint(·) denotes the relative interior of a set. From Assumption 4.1, if there exists x ∈ Ω and
y ∈ NΩ(x), then y ∈ NΩi(x) ⊆ NΩ(x) due to Ω ⊆ Ωi.

6
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Assumption 4.2 The gradient of nonlinear inequality constraint function ∇gik(x) is Mgi-Lipschitz
satisfying Hgi(xi) ⪯ MgiIp, ∀Hgi(xi) ∈ ∂2gi(xi), ∀xi ∈ Rp.

Lemma 4.1 (Yang et al., 2016) (KarushKuhnTucker (KKT) conditions) Under Assumptions 4.1 and
3.3, x∗ is the optimal solution to the constrained optimization problem equation (11), if and only if
there exist γ∗

ik ∈ R+, ν∗i ∈ Rpbi , x∗ ∈ Ω such that

−
n∑

i=1

[
∇fi(x

∗)−
pgi∑
k=1

γ∗
ik∇gik(x

∗)−AT
i ν

∗
i

]
∈ NΩ(x

∗),

gik(x
∗) ≤ 0, γ∗

ik ≥ 0, γ∗
ikgik(x

∗) = 0,

Aix
∗ = bi, ∀i = 1, . . . , n, k = 1, . . . , pgik .

4.2 DISTRIBUTED OPTIMAL CONSENSUS ALGORITHM CONSIDERING GENERAL
CONSTRAINTS

We introduce the following auxiliary variables to address specific types of constraints within the
optimization problem: wi corresponds to the consensus constraint, γik ∈ R+ corresponds to the
inequality constraints, and νi ∈ Rpbi corresponds to the equality constraint, i = 1, . . . , n, k =
1, . . . , pgi . Motivated by (11) in (Zhu et al., 2018), we introduce the following projection-based
algorithm

xi(k + 1) =xi(k)− T
[
xi(k) + PΩi

(xi(k)− αi(

n∑
j=1

aij(xi(k)− xj(k)) +∇fi(xi(k)) + wi(k)

+

pgi∑
k=1

γik(k)∇gik(xi(k)) +AT
i νi(k) + ανiA

T
i (Aixi(k)− bi)))

]
, (12)

and the differential dynamics of auxiliary variables is described by the following algorithm

wi(k + 1) =wi(k) + T

n∑
j=1

aij(xi(k)− xj(k)),

γik(k + 1) =(1− αγiT )γik(k) + Tαγi

{
γik(k) + gik(xi(k))−∇gTik(xi(k))

[
xi(k)

− PΩi
(xi(k)− αi(

n∑
j=1

aij(xi(k)− xj(k)) +∇fi(xi(k)) + wi(k)

+

pgi∑
k=1

γik(k)∇gik(xi(k)) +AT
i νi(k) + ανiA

T
i (Aixi(k)− bi)))

]}+

,

νi(k + 1) = νi(k) + Tανi(Aixi(k)− bi). (13)

with wi(0) = 0p, γik(0) ≥ 0, νi(0) ∈ Rpbi , and αγi, ανi ∈ R being positive gains used to adjust
convergence speed.
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Equilibrium analysis: Let the equilibrium of (xi, wi, γik, νi) be (x∗
i , w

∗
i , γ

∗
ik, ν

∗
i ). Then, we

have

0p =− x∗
i + PΩi(x

∗
i − αi(

n∑
j=1

aij(x
∗
i − x∗

j ) +∇fi(x
∗
i ) + w∗

i +

pgi∑
k=1

γ∗
ik∇gik(x

∗
i ) +AT

i ν
∗
i

+ ανiA
T
i (Aix

∗
i − bi))),

0p =

n∑
j=1

aij(x
∗
i − x∗

j ),

0 =− αγiγ
∗
ik + αγi

{
γ∗
ik + gik(x

∗
i )−∇gTik(x

∗
i )
[
x∗
i − PΩi(x

∗
i − αi(

n∑
j=1

aij(x
∗
i − x∗

j )

+∇fi(x
∗
i ) + w∗

i +

pgi∑
k=1

γ∗
ik∇gik(x

∗
i ) +AT

i ν
∗
i + ανiA

T
i (Aix

∗
i − bi)))

]}+

,

0pbi
= ανi(Aix

∗
i − bi). (14)

From equation (14), we can conclude that x∗
i ∈ Ωi, x∗

i = x∗
j , γ∗

ik = (γ∗
ik + gik(x

∗
i ))

+, Aix
∗
i −

bi = 0pbi
, ∀i, j = 1, . . . , n, k = 1, . . . , pgi . Therefore, we obtain that γ∗

ik ≥ 0, gik(x∗
i ) ≤ 0,

and γ∗
ikgik(x

∗
i ) = 0. From x∗

i ∈ Ωi and x∗
i = x∗

j , we find x∗
i ∈

∩
i=1,...,n

Ωi. Then we have

−αi(∇fi(x
∗
i ) + w∗

i +
∑pgi

k=1 γ
∗
ik∇gik(x

∗
i ) + AT

i ν
∗
i ) ∈ NΩi

⊆ NΩ(x
∗
i ). Utilizing the convexity

property of the normal cone, the equation
∑n

i=1 α
−1
xi [−αi(∇fi(x

∗
i ) + w∗

i +
∑pgi

k=1 γ
∗
ik∇gik(x

∗
i ) +

AT
i ν

∗
i )] = −

∑n
i=1[∇fi(x

∗
i )+

∑pgi

k=1 γ
∗
ik∇gik(x

∗
i )+AT

i ν
∗
i ] ∈ NΩ(x

∗
i ) holds. According to Lemma

4.1, x∗
i is the optimal solution x∗ of problem equation (11).

Stability Analysis: In this part, we have the following assumption

Assumption 4.3 γik(k) has upper bounds γ̄ik, the norm of ∇gik(xi) has upper bound ḡik.

Assumption 4.3 is required because these two terms need to be bounded to determine the control
gains. The determination of the upper bounds for γik(k) and ∇gik(xi) requires continuous experi-
mentation and testing, involving a process of trial and error to make progress.

Then, we introduce the following auxiliary variables

yµi(k) = xi(k)− αi(

n∑
j=1

aij(xi(k)− xj(k)) +∇fi(xi(k)) + wi(k)

+

pgi∑
k=1

γik(k)∇gik(xi(k)) +AT
i νi(k) + ανiA

T
i (Aixi(k)− bi)),

µi(k) =PΩi(yµi(k)).

By introducing µi(k), the dynamics of xi(k) in equation (12) can be written as
xi(k + 1) =xi(k)− T (xi(k)− µi(k)), (15)

and the dynamics of γik in equation (13) can be written as

γik(k + 1) =(1− αγiT )γik(k) + Tαγi

[
γik(k) + gik(xi(k))−∇gTik(xi(k))(x̃i(k)− µ̃i(k))

]+
.

(16)
Since µi is the projection of yµi onto Ωi, we take the difference of yµi and obtain

yµi(k + 1) ∈ yµi(k) + T (µi(k)− xi(k))− αi

[
T

n∑
j=1

aij(µi(k)− µj(k)) +∇fi(xi(k + 1))

−∇fi(xi(k)) +

pgi∑
k=1

αγiγik(k + 1)∇gik(xi(k + 1))−
pgi∑
k=1

αγiγik(k)∇gik(xi(k))

+ TανiA
T
i (Aiµi(k)− bi)

]
. (17)
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Note that for any a ∈ Rp, ∃x̄i(k) ∈ (xi(k), xi(k + 1)), ∃γ̄ik(k) ∈ (γik(k), γik(k + 1)) such that

aT [γik(k + 1)∇gik(xi(k + 1))− γik(k)∇gik(xi(k))]

=aT γ̄ik(k)∂
2gik(x̄i(k))(x̃i(k + 1)− x̃i(k)) + aT (γik(k + 1)− γik(k))∇gik(x̄i(k))

=TaT γ̄ik(k)∂
2gik(x̄i(k))(µ̃i(k)− x̃i(k)) + TaT

{
− αγiγik(k) + αγi

[
γik(k) + gik(xi(k))

−∇gTik(xi(k))(x̃i(k)− µ̃i(k))
]+}∇gik(x̄i(k)). (18)

where x̄i(k) is weighted average of xi(k) and xi(k − 1), γ̄ik(k) is weighted average of γik(k) and
γik(k + 1).

Next, we begin to construct the error dynamics for equation (7) and equation (17). Let µ̄ be
an interior point of feasible region according to Assumption 4.1, i.e., µ̄ ∈ relint(Ω), gik(µ̄) < 0,
Aiµ̄ = bi. Define the errors as µ̃i(k) = µi(k) − µ̄, x̃i(k) = xi(k) − µ̄. Note that we use µ̄ rather
than x∗ in the errors to facilitate the subsequent Lyapunov function design. Since we transform the
distributed constrained optimization problem equation (12) into a constrained leaderless consensus
problem equation (7) and equation (17) in the stability analysis, it has no influence to apply the same
displacement µ̄− x∗ to every µ̃i(k) and x̃i(k). Then, the error dynamics can be written as

x̃i(k + 1) =x̃i(k)− T (x̃i(k)− µ̃i(k)),

yµi(k + 1) ∈ yµi(k) + T (µ̃i(k)− x̃i(k))− αi

[
T

n∑
j=1

aij(µ̃i(k)− µ̃j(k)) +∇fi(xi(k + 1))

−∇fi(xi(k)) +

pgi∑
k=1

αγiγik(k + 1)∇gik(xi(k + 1))−
pgi∑
k=1

αγiγik(k)∇gik(xi(k))

+ TανiA
T
i Aiµ̃i(k)

]
,

γik(k + 1) =(1− αγiT )γik(k) + Tαγi

[
γik(k) + gik(xi(k))−∇gTik(xi(k))(x̃i(k)− µ̃i(k))

]+
.

(19)

Theorem 4.4 Under Assumptions 2.1, 3.3, 3.2, 4.1, 4.2, and 4.3, using equation (12) and equa-
tion (13), the agents will eventually achieve the optimal solution of problem equation (11), i.e.,
limt→∞[xi(t)− x∗] = 0p, i = 1, . . . , n.

Proof: The detail of proof is given in Appendix A.2

5 NUMERICAL RESULTS

We use numerical simulations on a group of 20 agents to verify the effectiveness of the proposed
algorithm. We conduct two algorithm simulations, one group has set constraints and another group
has general constraints.

We conduct out our algorithm under different balanced graphs, directed circle graph, random
directed graph with 180 edges, and complete graph to evaluate the algorithm convergence speed
under various topology. The local objective function is defined in the form of C1,1 quadratic function
fi(xi) =

∫ xi−x∗
i

0
(xi − x∗

i )
TAidx, i = 1, . . . , 20, which is the strongly convex case presented in

Example 1 of (Hiriart-Urruty et al., 1984). The set constraints are selected as Ωi = {x2| xi,2 ≤ 0.6},
the equality constraints are selected as xi,1 = 0.5, and the inequality constraints are selected as

x̂2
i,1 +

x̂2
i,2

(x̂i,2 + 1)2
≤ 0.01. From equation (30), we find that the maximum step size for the case

with set constraints is Tmax 1 = 0.038. From equation (42), the maximum step size for the case
with general constraints is Tmax 2 = 0.015. However, we find that the step size can be chosen as 0.1
in our experiment. The DPS algorithm (6) serves as a comparative algorithm as described in (Mai
& Abed, 2019). For this algorithm, the step-size is set to 1

50(t+1) under circle graph case, and to
1

500(t+1) under random graph and complete graph cases.
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Figure 1: The trajectory of residual. (a) case with set constraints. (b) case with general constraints.

As shown in (a) of Figure 1, compared to the DSP algorithm, our method with constant step sizes
may converge more slowly in the initial iterations. However, as the iterations proceed, it can maintain
a constant convergence rate. Under the same step size conditions, increasing network connectivity
is beneficial for improving the algorithm’s convergence speed. For a graph with low network con-
nectivity, such as a circle graph, the DSP algorithm may converge extremely slowly compared to
our algorithm. In (b) of Figure 1, we conduct two cases: one with inequality constraints and another
without. In the case without inequality constraints, where only equality constraints are introduced,
(12) indicates that greater network connectivity benefits the convergence speed. Conversely, in the
case with inequality constraints, lower network connectivity is advantageous for convergence speed
because the optimal solution lies on the boundary of the feasible region and is dominated by the
constraints. The introduction of inequality constraints slows down the convergence speed, as shown
in (b) of Figure 1.

6 CONCLUSION

In this paper, we have investigated the distributed constrained optimal consensus problem for multi-
agent systems under a directed graph. By employing the sliding mode method, we propose a
projection-based distributed constrained optimal consensus algorithm that utilizes only relative state
information for the optimization problem with set constraints. Furthermore, based on this frame-
work, we have explored the distributed optimization problem with general constraints. The simula-
tion results have illustrated that all agents can converge to the optimal solution with the proposed
algorithm.
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A APPENDIX

A.1 PROOF OF THEOREM 3.6

For equation (10), consider the following Lyapunov function candidate V1 = V1,1 + V1,2, where

V1,1(k) =−
n∑

i=1

[
fi(xi(k))− fi(x

∗)− (xi(k)− x∗)T∇fi(xi(k))
]
− 1

2

n∑
i=1

α−1
i x̃T

i (k)x̃i(k),

V1,2(k) =
1

2

n∑
i=1

α−1
i

[
(si(k)− x∗)T (si(k)− x∗)− (si(k)− µi(k))

T (si(k)− µi(k))
]
. (20)

Let Ṽ1,1(k) = V1,1(k+1)−V1,1(k). Taking the difference of the Lyapunov function V1,1(k) yields

Ṽ1,1(k) =

n∑
i=1

[−fi(xi(k + 1)) + fi(x
∗) + x̃T

i (k + 1)∇fi(xi(k + 1))− 1

2αi
x̃T
i (k + 1)x̃i(k + 1)

+ fi(xi(k))− fi(x
∗)− x̃T

i (k)∇fi(xi(k)) +
1

2αi
x̃T
i (k)x̃i(k)]

=

n∑
i=1

[−fi(xi(k + 1)) + fi(xi(k)) + x̃T
i (k + 1)∇fi(xi(k + 1))− x̃T

i (k)∇fi(xi(k))

+
1

2αi
(xi(k + 1)− xi(k))

T (xi(k + 1)− xi(k))−
1

αi
x̃i(k + 1)T (xi(k + 1)− xi(k))]

=

n∑
i=1

[fi(xi(k))− fi(xi(k + 1))−∇fi(xi(k))(xi(k)− xi(k + 1))

+ x̃T
i (k + 1)(∇fi(xi(k + 1))−∇fi(xi(k)))

+
1

2αi
(x̃i(k + 1)− x̃i(k))

T (x̃i(k + 1)− x̃i(k))−
1

αi
x̃i(k + 1)T (x̃i(k + 1)− x̃i(k))].

(21)

Note that for any a ∈ Rp, ∃x̄i(k) ∈ (xi(k), xi(k + 1)), and ∃Hi(k) ∈ ∂2fi(x̄i(k)) such that

aT [hi(k + 1)− hi(k)] =aTHi(k)(x̃i(k + 1)− x̃i(k))

=TaTHi(k)(ỹi(k)− x̃i(k)), (22)
where x̄i(k) is weight average of xi(k) and xi(k − 1), Hi(k) ∈ fi(x̄i(k)). By using equation (22),
we have

Ṽ1,1(k) ≤
n∑

i=1

[−1

2
mi∥xi(k + 1)− xi(k)∥2 + x̃T

i (k + 1)Hi(k)(xi(k + 1)− xi(k))

+
1

2αi
∥xi(k + 1)− xi(k)∥2 −

1

αi
x̃i(k + 1)T (xi(k + 1)− xi(k))]. (23)
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Substituting equation (15) into equation (23) yields

Ṽ1,1(k) ≤
n∑

i=1

[−1

2
(mi −

1

αi
)∥x̃i(k + 1)− x̃i(k)∥2 − T (x̃i(k)− T (x̃i(k)− µ̃i(k)))(Hi(k)

− 1

αi
)(x̃i(k)− µ̃i(k))]

≤
n∑

i=1

[−1

2
(mi −

1

αi
)∥x̃i(k + 1)− x̃i(k)∥2 − T x̃i(k)

T (Hi(k)−
1

αi
)(x̃i(k)− µ̃i(k))

+ T 2(x̃i(k)− µ̃i(k))(Hi(k)−
1

αi
)(x̃i(k)− µ̃i(k))]

≤ T 2(Mi −
1

2
mi −

1

2αi
)∥x̃i(k)− µ̃i(k))∥2 − T x̃i(k)

T (Hi(k)−
1

αi
)(x̃i(k)− µ̃i(k)).

(24)

The difference of V1,1 satisfies

Ṽ1,1(k) ≤
n∑

i=1

T 2(Mi −
1

2
mi −

1

2αi
)∥xi(k)− µ̃i(k))∥2

−
n∑

i=1

T x̃i(k)
T (Hi(x̄i)−

1

αi
)(x̃i(k)− µ̃i(k)). (25)

Let Ṽ1,2(k) = V1,2(k + 1)− V1,2(k). The difference of V1,2 satisfies

Ṽ1,2(k) =
1

2

n∑
i=1

α−1
i

[
(si(k + 1)− x∗)T (si(k + 1)− x∗)− (si(k + 1)− µi(k + 1))T (si(k + 1)

− µi(k + 1))
]
− 1

2

n∑
i=1

α−1
i

[
(si(k)− x∗)T (si(k)− x∗)− (si(k)− µi(k))

T (si(k)

− µi(k))
]

=
1

2

n∑
i=1

α−1
i

[
(si(k + 1)− x∗)T (si(k + 1)− x∗)− (si(k + 1)− µi(k + 1))T (si(k + 1)

− µi(k + 1)) + (si(k)− µi(k + 1))T (si(k)− µi(k + 1))
]
− 1

2

n∑
i=1

α−1
i

[
(si(k)

− x∗)T (si(k)− x∗)− (si(k)− µi(k))
T (si(k)− µi(k))− (si(k)− µi(k + 1))T (si(k)

− µi(k + 1))
]

=
1

2

n∑
i=1

α−1
i [−(si(k + 1)− si(k))

T (si(k + 1)− si(k)) + 2(si(k + 1)

− si(k))
T (si(k + 1)− x∗) + (si(k + 1)− si(k))

T (si(k + 1)− si(k))− 2(si(k + 1)

− si(k))
T (si(k + 1)− µi(k + 1)) + (si(k)− µi(k))

T (si(k)− µi(k))− (si(k)

− µi(k + 1))T (si(k)− µi(k + 1))
]

≤1

2

n∑
i=1

α−1
i

[
2(si(k + 1)− si(k))

T (µi(k + 1)− x∗)− (µi(k + 1)− µi(k))
T (µi(k + 1)

− µi(k))
]

(26)

Substituting equation (9) into equation (26), we have

Ṽ1,2(k) ≤
[
T (µ̃(k)− x̃(k))− TαLµ̃(k)− α(h(k + 1)− h(k))

]T
α−1(µ̃(k)− µ̃(k)

+ µ̃(k + 1))− 1

2
(µ̃(k + 1)− µ̃(k))Tα−1(µ̃(k + 1)− µ̃(k)) (27)
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By using young’s inequality,

Ṽ1,2(k) ≤
[
T (µ̃(k)− x(k))− TαLµ̃(k)− α(h(k + 1)− h(k))

]T
α−1(µ̃(k)− µ̃(k)

+ µ̃(k + 1))− 1

2
(µ̃i(k + 1)− µ̃i(k))

T (µ̃(k + 1)− µ̃(k))

≤− T µ̃T (k)Lµ̃(k)− T µ̃T (k)(H(k)− α−1)(µ̃(k)− x̃(k)) +
1

2

[
T (µ̃(k)− x̃(k))

− TαLµ̃(k)− TαH(k)(µ̃(k)− x̃(k))
]T

α−1
[
T (µ̃(k)− x̃(k))− TαLµ̃(k)

− TαH(k)(µ̃(k)− x̃(k))
]
− 1

2
(µ̃(k + 1)− µ̃(k))T (µ̃(k + 1)− µ̃(k))

≤− T µ̃T (k)(H(k)− α−1)(µ̃(k)− x̃(k))− (Tλmin(L̃)− ᾱT 2∥RLRT ∥2)∥R⊗µ̃∥

+

n∑
i=1

T 2

αi
(1−Miαi)

2∥µ̃i(k)− x̃i(k)∥2. (28)

Let Ṽ1(k) = V1(k + 1)− V1(k). The difference of the Lyapunov function V1 satisfies

Ṽ1(k) ≤− T (µ̃(k)− x̃(k))T (H(k)− α−1)(µ̃(k)− x̃(k))− (Tλmin(L̃)

− ᾱT 2∥RLRT ∥2)∥R⊗µ̃∥2 +
n∑

i=1

T 2

αi
(1−Miαi)

2∥µ̃i(k)− x̃i(k)∥2

+

n∑
i=1

T 2(Mi −
1

2
mi −

1

2αi
)∥x̃i(k)− µ̃i(k))∥2

≤− T

n∑
i=1

[mi −
1

αi
− T (Mi −

1

2
mi −

1

2αi
+

1

αi
(1−Miαi)

2)]∥x̃i(k)− µ̃i(k))∥2

− T (λmin(RL̃RT )− ᾱT∥RLRT ∥2)∥R⊗µ̃∥2. (29)

Let kTi =
mi− 1

αi

Mi− 1
2mi− 1

2αi
+ 1

αi
(1−Miαi)2

, Choosing step size T such that

T ≤ min
i=1,...,n

(kTi,
λmin(RL̃RT )

ᾱ∥RLRT ∥2
). (30)

Choosing β = mini=1,...,n(T [mi− 1
αi

−T (Mi− 1
2mi− 1

2αi
+ 1

αi
(1−Miαi)

2)], T (λmin(RL̃RT )−
ᾱT∥RLRT ∥2)). From the definition of step size, we have β > 0. Therefore, Then, equation (29)
can be written as

Ṽ1(k) ≤ −β∥x̃(k)− µ̃(k))∥2 − β∥R⊗µ̃∥2. (31)

According to Lemma 2.2, we have {V1(k)} is monotonously decreasing and limk→∞ V1(k) ∈
L∞. According to Cauchy criterion, limk→∞(V1(k + 1) − V1(k)) = 0np, limk→∞(x̃(k) −
µ̃(k)) = 0np, limk→∞ R⊗µ̃(k) = 0(n−1)p. Following the same procedure in
Equilibrium analysis, we have limk→∞ xi(k) = x∗. From equation (31), we have
limk→∞

1
k

∑k
t=1 ∥x̃(t) − µ̃(t))∥2, 1

k

∑k
t=1 ∥R⊗x̃(t)∥2, 1

k

∑k
t=1 ∥Aiµ̃i(t)∥2 < ∞ . From equa-

tion (7), limk→∞
1
k

∑k
t=1 ∥x̃i(t + 1) − x̃i(t))∥2 < ∞. Finally, the first-order optimality residuals

converge with a rate of O( 1k ), which completes the proof.
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A.2 PROOF OF THEOREM 4.4

For equation (19), consider the Lyapunov function candidate V2 = V2,1 + V2,2 with

V2,1 =
1

2

n∑
i=1

α−1
i

[
(yµi(k)− µ̄)T (yµi(k)− µ̄)− (yµi(k)− µi(k))

T (yµi(k)− µi(k))
]
.

V2,2 =−
n∑

i=1

[
fi(xi(k))− fi(µ̄)− (xi(k)− µ̄)T∇fi(xi(k))

]
− 1

2

n∑
i=1

α−1
i x̃T

i (k)x̃i(k)

+

n∑
i=1

pgi∑
k=1

γik(k)(−gik(xi(k)) +∇gTik(xi(k))x̃i(k)). (32)

Building on Lemma 2.3, we can establish the positive definiteness of V2,1 through the inequality
V2,1 ≥ 1

2

∑n
i=1 α

−1
i ||µ̃i(k)||2. From the strong convexity of fi, we have −[fi(xi(k)) − fi(µ̄) −

∇fT
i (xi(k))(xi(k)−µ̄)] ≥ mi

2 ∥xi(k)−µ̄∥2. Therefore, we conclude that V2,2 ≥
(

mi

2 − 1
2αi

)
x̃T x̃.

By choosing αi > 1
mi

, we can derive the positive definiteness of V2,2 with respect to x̃T x̃.
From the convexity of gik(xi(k)), we have −gik(xi(k)) + ∇gTik(xi(k))x̃i(k) ≥ −gik(µ̄) > 0.
From the above inequalities, we derive that

∑n
i=1

∑pgi

k=1 γik(k)(−gik(xi(k)) + ∇gTikx̃i(k)) ≥
−
∑n

i=1

∑pgi

k=1 γik(k)gik(µ̄) and V2,2 is positive definite with respect to γik. In summary, V2,2

is positive definite with respect to x̃T
i (k)x̃i(k) and γik(k) within our error definition.

Let Ṽ2,1(k) = V2,1(k + 1)− V2,1(k). Based on Lemma 2.3, the difference of V2,1 satisfies

Ṽ2,1(k) ≤
1

2

n∑
i=1

α−1
i

[
2(yµi(k + 1)− yµi(k))

T (µi(k + 1)− x∗)− (µi(k + 1)

− µi(k))
T (µi(k + 1)− µi(k))

]
≤1

2

n∑
i=1

α−1
i

[
2(yµi(k + 1)− yµi(k))

T (µi(k)− x∗) + (yµi(k + 1)

− yµi(k))
T (yµi(k + 1)− yµi(k))

]
. (33)

Substituting equation (17) into equation (33) yields

Ṽ2,1(k) ≤
n∑

i=1

α−1
i

{
T (µ̃i(k)− x̃i(k))− αi

[
T

n∑
j=1

aij(µ̃i(k)− µ̃j(k)) +∇fi(xi(k + 1))

−∇fi(xi(k)) +

pgi∑
k=1

αγiγik(k + 1)∇gik(xi(k + 1))−
pgi∑
k=1

αγiγik(k)∇gik(xi(k))

+ TανiA
T
i Aiµ̃i(k)

]}T

µ̃i(k) +
1

2

n∑
i=1

α−1
i ∥T (µi(k)− xi(k))− αi

[
T

n∑
j=1

aij(µi(k)

− µj(k)) +∇fi(xi(k + 1))−∇fi(xi(k)) +

pgi∑
k=1

αγiγik(k + 1)∇gik(xi(k + 1))

−
pgi∑
k=1

αγiγik(k)∇gik(xi(k)) + TανiA
T
i Aiµ̃i(k)

]
∥2. (34)
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By using equation (18) and Young’s inequality, we have

Ṽ2,1(k) ≤− T

n∑
i=1

µ̃T
i (k)(mi − α−1

i )(µ̃i(k)− x̃i(k))− T

n∑
i=1

µ̃T
i γ̄ikHgi(k)(µ̃i(k)− x̃i(k))

− T

n∑
i=1

µ̃T
i ∇gik(x̄i(k))

{
− αγiγik(k) + αγi

[
γik(k) + gik(xi(k))

−∇gTik(xi(k))(x̃i(k)− µ̃i(k))
]+}− T

n∑
i=1

ανiµ̃
T
i (k)A

T
i Aiµ̃i(k)

+ 2T

n∑
i=1

α−1
i (αiMi − 1)2∥µ̃i(k)− x̃i(k)∥2 − T (λmin(RL̃RT )

− 2ᾱT∥RLRT ∥2)∥R⊗µ̃∥2 + 2T 2
n∑

i=1

λmax(A
T
i Ai)α

2
νiµ̃

T
i (k)A

T
i Aiµ̃i(k)

+ 4

n∑
i=1

ḡ2ik∥
pgi∑
k=1

αγi(γik(k + 1)− γik(k))∥2 + 4

n∑
i=1

γ̄2
ik∥

pgi∑
k=1

αγi∇gik(xi(k + 1))

−∇gik(xi(k))∥2. (35)

Let Ṽ2,2(k) = V2,2(k + 1)− V2,2(k). Taking the difference of V2,2 yields

Ṽ2,2(k) ≤
n∑

i=1

T 2(Mi −
1

2
mi −

1

2αi
)∥x̃i(k)− µ̃i(k))∥2 −

n∑
i=1

T x̃i(k)
T (Hi(k)−

1

αi
)(x̃i(k)

− µ̃i(k)) +

n∑
i=1

pgi∑
k=1

γik(k + 1)(−gik(xi(k + 1)) +∇gTik(xi(k + 1))x̃i(k + 1))

−
n∑

i=1

pgi∑
k=1

γik(k)(−gik(xi(k)) +∇gTik(xi(k))x̃i(k)).

Note that

n∑
i=1

pgi∑
k=1

[
γik(k + 1)(−gik(xi(k + 1)) +∇gTik(xi(k + 1))x̃i(k + 1))− γik(k)(−gik(xi(k))

+∇gTik(xi(k))x̃i(k))
]

≤
n∑

i=1

pgi∑
k=1

[
γ̄ikHgik(k)(x̃i(k + 1)− x̃i(k))− (γik(k + 1)− γik(k))(−gik(x̄i(k))

+∇gTik(x̄i(k))˜̄xi(k))
]

=

n∑
i=1

pgi∑
k=1

[
THgik(k)(−x̃i(k) + µ̃i(k))− (γik(k + 1)− γik(k))(−gik(x̄i(k))

+∇gTik(x̄i(k))˜̄xi(k))
]
. (36)
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Let Ṽ2(k) = V2(k + 1)− V2(k). Then, we have

Ṽ2(k) ≤− T

n∑
i=1

[mi −
1

αi
+ γ̄ikλmin(Hgi(k))− T (Mi −

1

2
mi −

1

2αi
+

2

αi
(1−Miαi)

2

+ 4α2
γipgi

pgi∑
k=1

γ̄2
ikM

2
gik)]∥x̃i(k)− µ̃i(k))∥2 − T (λmin(RL̃RT )

− 2ᾱT∥RLRT ∥2)∥R⊗µ̃∥2 − T

n∑
i=1

(ανi − 2Tλmax(A
T
i Ai)α

2
νi)µ̃

T
i (k)A

T
i Aiµ̃i(k)

−
n∑

i=1

pgi∑
k=1

(γik(k + 1)− γik(k))(−gik(x̄i(k)) +∇gTik(x̄i(k))(˜̄xi(k)− µ̃i(k)))

+ 4

n∑
i=1

α2
γipgi

pgi∑
k=1

ḡ2ik∥(γik(k + 1)− γik(k))∥2. (37)

Note that

n∑
i=1

pgi∑
k=1

(γik(k + 1)− γik(k))(−gik(x̄i(k)) +∇gTik(x̄i(k))(˜̄xi(k)− µ̃i(k)))

=

n∑
i=1

pgi∑
k=1

(γik(k + 1)− γik(k))
[
− gik(xi(k)) +∇gTik(xi(k))(x̃i(k)− µ̃i(k))

+ gik(xi(k))− gik(x̄i(k))−∇gTik(x̄i(k))(xi(k)− x̄i(k))− (∇gik(xi(k))

−∇gik(x̄i(k)))
T (x̃i(k)− µ̃i(k))

]
. (38)

We next prove the negative definiteness of term (γik(k + 1) − γik(k))(−gik(xi(k)) +
∇gTik(xi(k))(x̃i(k)− µ̃i(k))).

(γik(k + 1)− γik(k))(−gik(xi(k)) +∇gTik(xi(k))(x̃i(k)− µ̃i(k)))

=

{
−T−1α−1

γi (γik(k + 1)− γik(k))
2, if (γik + gik(xi)−∇gTik(xi)(xi − µi)) ≥ 0.

(γik(k + 1)− γik(k))(−gik(xi(k)) +∇gTik(xi(k))(x̃i(k)− µ̃i(k))), else.

For the case (γik(k + 1) − γik(k))(−gik(xi(k)) + ∇gTik(xi(k))(x̃i(k) − µ̃i(k))) < 0, we have
γik(k+1)−γik(k) = −αγiγik(k) ≤ 0 and −gik(xi(k))+∇gTik(xi(k))(x̃i(k)−µ̃i(k)) > γik(k) =

−α−1
γi (γik(k+1)−γik(k)). Therefore, (γik(k+1)−γik(k))(−gik(xi(k))+∇gTik(xi(k))(x̃i(k)−

µ̃i(k))) ≤ −α−1
γi (γik(k + 1) − γik(k))

2. Therefore, (γik(k + 1) − γik(k))(−gik(xi(k)) +

∇gTik(xi(k))(x̃i(k) − µ̃i(k))) ≤ −T−1α−1
γi (γik(k + 1) − γik(k))

2 under any case. Therefore,
equation (38) can be written as

n∑
i=1

pgi∑
k=1

(γik(k + 1)− γik(k))(−gik(x̄i(k)) +∇gTik(x̄i(k))(˜̄xi(k)− µ̃i(k)))

≤−
n∑

i=1

pgi∑
k=1

T−1α−1
γi (γik(k + 1)− γik(k))

2 +

n∑
i=1

pgi∑
k=1

(γik(k + 1)− γik(k))(gik(xi(k))

− gik(x̄i(k))−∇gTik(xi(k))(xi(k)− x̄i(k)))

≤− 1

2

n∑
i=1

pgi∑
k=1

T−1α−1
γi (γik(k + 1)− γik(k))

2 +
1

2

n∑
i=1

pgi∑
k=1

Tαγi∥gik(xi(k))− gik(x̄i(k))

−∇gTik(xi(k))(xi(k)− x̄i(k))∥2. (39)
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From Assumption 3.2, gik(xi(k)) ≤ gik(x̄i(k)) + ∇gTik(x̄i(k))(xi(k) − x̄i(k)) +
Mgi

2 ∥xi(k) −
x̄i(k)∥2. Therefore, we have

n∑
i=1

pgi∑
k=1

(γik(k + 1)− γik(k))(−gik(x̄i(k)) +∇gTik(x̄i(k))(˜̄xi(k)− µ̃i(k)))

≤− 1

2

n∑
i=1

pgi∑
k=1

T−1α−1
γi (γik(k + 1)− γik(k))

2 +
1

4

n∑
i=1

pgi∑
k=1

TαγiMgi∥xi(k)− x̄i(k)∥2

≤− 1

2

n∑
i=1

pgi∑
k=1

T−1α−1
γi (γik(k + 1)− γik(k))

2 +
1

4

n∑
i=1

pgi∑
k=1

TαγiMgi∥xi(k + 1)− xi(k)∥2

=− 1

2

n∑
i=1

pgi∑
k=1

T−1α−1
γi (γik(k + 1)− γik(k))

2 +
1

4
T 3

n∑
i=1

pgi∑
k=1

α2
γiMgi∥x̃i(k)− µ̃i(k)∥2. (40)

Substituting equation (40) into equation (37) yields

Ṽ2(k) ≤− T

n∑
i=1

[mi −
1

αi
− T (Mi −

1

2
mi −

1

2αi
+

2

αi
(1−Miαi)

2 + 4α2
γipgi

pgi∑
k=1

γ̄2
ikM

2
gik

+
1

4
T

pgi∑
k=1

α2
γiMgi)]∥x̃i(k)− µ̃i(k))∥2 − T (λmin(RL̃RT )− 2ᾱT∥RLRT ∥2)∥R⊗µ̃∥2

− T

n∑
i=1

ανi(1− 2Tλmax(A
T
i Ai)ανi)µ̃

T
i (k)A

T
i Aiµ̃i(k)− T−1

n∑
i=1

pgi∑
k=1

(
1

2
α−1
γi

− 4Tα2
γipgi ḡ

2
ik)(γik(k + 1)− γik(k))

2. (41)

Let kTi =
mi− 1

αi

(Mi− 1
2mi− 1

2αi
+ 2

αi
(1−Miαi)2+4α2

γipgi

∑pgi
k=1 γ̄2

ikM
2
gik+

1
4

∑pgi
k=1 α2

γiMgi)
, and kν =

mini=1,...,n(
1

2λmax(AT
i Ai)ανi

), kγ = min i=1,...,n
k=1,...,pgi

( 1
8α3

γipgi
ḡ2
ik
). Choosing step size T such that

T ≤ min
i=1,2,...,n

(kT , kν , kγ ,
λmin(RL̃RT )

2ᾱλ2
max(RLRT )

). (42)

Let β̂ = mini=1,...,n(mi − 1
αi

−T (Mi − 1
2mi − 1

2αi
+ 2

αi
(1−Miαi)

2 +4α2
γipgi

∑pgi

k=1 γ̄
2
ikM

2
gik +

1
4T

∑pgi

k=1 α
2
γiMgi), T (λmin(RL̃RT ) − 2ᾱT∥RLRT ∥2), 1

2α
−1
γi − 4Tα2

γipgi ḡ
2
ik, Tανi(1 −

2Tλmax(A
T
i Ai)ανi)). According to Assumption 3.3, we can obtain

Ṽ2(k) ≤− β̂

n∑
i=1

∥x̃i(k)− µ̃i(k))∥2 − β̂∥R⊗µ̃∥2 − β̂

n∑
i=1

µ̃T
i (k)A

T
i Aiµ̃i(k)

− β̂

n∑
i=1

pgi∑
k=1

(γik(k + 1)− γik(k))
2.

From equation (37), we have µ̃i(k), x̃i(k), γik(k) are bounded. According to Lemma 2.2,
we have positive sequence {V (k)} is monotonously decreasing. By using Cauchy criterion,
limk→∞(x̃(k) − µ̃(k)) = 0np, limk→∞ R⊗µ̃(k) = 0(n−1)p, limk→∞ Aiµ̃i(k) = 0pbi

,
limk→∞(γik(k + 1) − γik(k)) = 0. Following the same procedure in Equilibrium analysis, we
have limk→∞ xi(k) = x∗. Based on equation (37), we also have limk→∞

1
k

∑k
t=1 ∥x̃i(t) −

µ̃i(t))∥2, 1
k

∑k
t=1 ∥R⊗µ̃(t)∥2, 1

k

∑k
t=1 ∥R⊗x̃(t)∥2, 1

k

∑k
t=1 ∥Aiµ̃i(t)∥2, 1

k

∑k
t=1(γik(k + 1) −

γik(k))
2 < ∞ . From equation (15), limk→∞

1
k

∑k
t=1 ∥x̃i(t + 1) − x̃i(t))∥2 < ∞. Therefore,

we have demonstrated that the first-order optimality residuals converge with a rate of O( 1k ), which
completes the proof.
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