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ABSTRACT

Learning representations of entities and relations in knowledge graphs is an active
area of research, with much emphasis placed on choosing the appropriate geometry
to capture tree-like structures. Box embeddings (Vilnis et al., 2018; Li et al., 2019;
Dasgupta et al., 2020), which represent concepts as n-dimensional hyperrectangles,
are capable of embedding trees when training on a subset of the transitive closure.
In Patel et al. (2020), the authors demonstrate that only the transitive reduction
is required, and further extend box embeddings to capture joint hierarchies by
augmenting the graph with new nodes. While it is possible to represent joint
hierarchies with this method, the parameters for each hierarchy are decoupled,
making generalization between hierarchies infeasible. In this work, we introduce
a learned box-to-box transformation which respects the geometric structure of
box embeddings. We demonstrate that this not only improves the capability of
modeling cross-hierarchy compositional edges, but is also capable of generalizing
from a subset of the transitive reduction.

1 INTRODUCTION

Representation learning for hierarchical relations is crucial in natural language processing because
of the hierarchical nature of common knowledge, for example, <Bird ISA Animal> (Athiwaratkun
& Wilson, 2018; Vendrov et al., 2016; Vilnis et al., 2018; Nickel & Kiela, 2017). The ISA relation
represents meaningful hierarchical relationships between concepts and plays an essential role in
generalization for other relations, such as the generalization of <organ PARTOF person> based on
<eye PARTOF of person>, and <organ ISA eye>. The fundamental nature of the ISA relation
means that it is inherently involved in a large amount of compositional human reasoning involving
other relations.

Modeling hierarchies is essentially the problem of modeling a poset, or partially ordered set. The
task of partial order completion, a general term to describe tasks which require learning a transitive
relation, was introduced in (Vendrov et al., 2016). The authors also introduce a model based on the
reverse product order on Rn, which essentially models concepts as infinite cones. Region-based
representations have been effective in representing hierarchical data, as containment between regions
is naturally transitive. Vilnis et al. (2018) introduced axis-aligned hyperrectangles (or boxes) that are
provably more flexible than cones, and demonstrated state-of-the-art performance in multiple tasks.

Thus far, not as much effort has been put into modeling joint hierarchies. Patel et al. (2020) proposed
to simultaneously model ISA and HASPART hierarchies from Wordnet (Miller, 1995). To do so,
however, they effectively augmented the graph by duplicating the nodes to create a single massive
hierarchy. Their model assigns two boxes BISA and BHASPART for each node n, which are unrelated,
and therefore misses out on a large amount of semantic relatedness between ISA and HASPART .

In this paper we propose a box-to-box transformation which translates and dilates box representations
between hierarchies. Our proposed model shares information between the ISA and HASPART
hierarchies via this transformation as well as cross-hierarchy containment training objectives. We
compare BOX-TRANSFORM MODEL with multiple strong baselines under different settings. We
substantially outperform the prior TWO-BOX MODEL while training with only the transitive reduction
of both hierarchies and predicting inferred composition edges. As mentioned above, our model’s
shared learned features should allow for more generalization, and we test this by training on a subset
of the transitive reduction, where we find we are able to outperform strong baselines. Finally, we
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perform a detailed analysis of the model’s capacity to predict compositional edges and transitive
closure edges, both from an overfitting and generalization standpoint, identifying subsets where
further improvement is needed.

2 RELATED WORK

Recent advances in representing one single hierarchy mainly fall in two categories: 1) representing
hierarchies in non-Euclidian space (eg. hyperbolic space, due to the curvature’s inductive bias to
model tree-like structures) 2) using region-based representations instead of vectors for each node in
the hierarchy (Erk, 2009). Hyperbolic space has been shown to be efficient in representing hierarchical
relations, but also encounters difficulties in training (Nickel & Kiela, 2017; Ganea et al., 2018b;
Chamberlain et al., 2017).

Categorization models in psychology often represent a concept as a region (Nosofsky, 1986; Smith
et al., 1988; Hampton, 1991). Vilnis & McCallum (2015) and Athiwaratkun & Wilson (2018)
use Gaussian distributions to embed each word in the corpus, the latter of which uses thresholded
divergences which amount to region representations. Vendrov et al. (2016) and Lai & Hockenmaier
(2017) make use of the reverse product order on Rn+, which effectively results in cone representations.
Vilnis et al. (2018) further extend this cone representation to axis-aligned hyperrectangles (or boxes),
and demonstrate state-of-the-art performance on modeling hierarchies. Various training improvement
methods for box embeddings have been proposed (Li et al., 2019; Dasgupta et al., 2020), the most
recent of which is termed GumbelBox after it’s use of a latent noise model where box parameters are
represented via Gumbel distributions.

Region representations are also used for tasks which do not require modeling hierarchy. In Vilnis
et al. (2018), the authors also model conditional probability distributions using box embeddings.
Abboud et al. (2020) and Ren et al. (2020) take a different approach, using boxes for their capacity to
contain many vectors to provide slack in the loss function when modeling knowledge base triples or
representing logical queries, respectively. Ren et al. (2020) also made use of an action on boxes similar
to ours, involving translation and dilation, however our work differs in both the task (i.e. representing
logical queries vs. joint hierarchies) and approach, as their model represents entities using vectors
and a loss function based on a box-to-vector distance. The inductive bias of hyperbolic space is
also exploited to model multiple relations, Ganea et al. (2018a) learn hyperbolic transformations for
multiple relations using Poincare embeddings, and show model improvement in low computational
resource settings. Patel et al. (2020), which our work is most similar to, represent joint hierarchies
using box embeddings. However, they represent each concept with two boxes ignoring the internal
semantics of the concepts.

Modeling joint hierarchies shares some similarities with knowledge base completion, however the
goals of the two settings are different. When modeling joint hierarchies you are attempting to
learn simultaneous transitive relations, and potentially learn relevant compositional edges involving
these relations. For knowledge base completion, on the other hand, you may be learning many
different relations, and primarily seek to recover edges which were removed rather than inferring new
compositional edges. Still, the models which perform knowledge base completion can be applied
to this task, as the data can be viewed as knowledge base triples with only 2 relations. There have
been multiple works that aim to build better knowledge representation (Bordes et al., 2013; Trouillon
et al., 2016; Sun et al., 2019; Balazevic et al., 2019a). Most relevant, Chami et al. (2020); Balazevic
et al. (2019b) recently proposed KG embedding methods which embeds entities in the Poincaré
ball model of hyperbolic space. These models are intended to capture relational patterns present in
multi-relational graphs, with a particular emphasis on hierarchical relations.

3 BACKGROUND

3.1 BOX LATTICE MODEL

Introduced in Vilnis et al. (2018), a box lattice model (or box model) is a geometric embedding which
captures partial orders and lattice structure using n-dimensional hyperrectangles. Formally, we define
the set of boxes B in Rn as

B(Rn) = {[x1, x1]× · · · × [xd, x
d]}, (1)
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where xi, xj ∈ R, and we represent all degenerate boxes where xi > xi with ∅. A box model for a
set S is a function Box : S → B(Rn) which captures some desirable properties of the set S. As the
name implies, the box lattice model is particularly suited to representing partial orders and lattice
structures.
Definition 1 (Poset). A partially ordered set, or poset, is a set P along with a relation � such that,
for each a, b, c ∈ P , we have

1. a � a (reflexivity)

2. if a � b and b � a then a = b (antisymmetry)

3. if a � b and b � c then a � c (transitivity)
Definition 2 (Lattice). A lattice is a poset where each pair of elements have a unique upper bound
called the join, denoted by ∧, and a unique lower bound called the meet, denoted by ∨.

The authors note that there are natural geometric operations which form a lattice structure on B:

Box(x) ∧ Box(y) :=
∏
i

[max(xi, yi),min(xi, yi)], (2)

Box(x) ∨ Box(y) :=
∏
i

[min(xi, yi),max(xi, yi)], (3)

In other words, the meet of two boxes is the smallest containing box, and the join is the intersection,
or ∅ if the boxes are disjoint. These geometric operations map very neatly to hierarchies, where the
meet of two nodes is their closest common ancestor and the join is the closest common descendent
(or ∅ if no such node exists). The ability of this model to capture lattice structure using geometric
operations makes it a natural choice to embed hierarchies.

3.2 PROBABILISTIC BOX MODEL TRAINING

In Vilnis et al. (2018), the authors also introduced a probabilistic interpretation of box embeddings and
a learning method which was improved upon in Li et al. (2019) and Dasgupta et al. (2020). By using a
probability measure µ on Rd (or by constraining the space to [0, 1]d), one can calculate box volumes as
µ(Box(X)). The pullback of this measure yields a probability measure on S, and thus the box model
can be imbued with valid probabilistic semantics. In particular, since the box space B is closed under
intersection, we can calculate joint probabilities by computing P (X,Y ) = µ(Box(X) ∧ Box(Y ))
and similarly compute conditional probabilities as

P (X | Y ) =
µ(Box(X) ∧ Box(Y ))

µ(Box(Y ))
. (4)

The conversion from a poset or lattice structure to probabilistic semantics is accomplished by assigning
conditional probabilities, namely a � b if and only if P (b | a) = 1. We note that the properties
required of the relation � follow as a natural consequence of the axioms for conditional probability.
Apart from providing rigor and interpretability, the calibrated probabilistic semantics also inform
and facilitate the training procedure for box embeddings, which is accomplished via gradient descent
using KL-divergence with respect to the aforementioned probability distribution as a loss function.

As one might expect, care must be taken to handle the case when boxes are disjoint, as there is no
gradient. In (Vilnis et al., 2018) the authors made use of the lattice structure to derive a lower bound
on the probability, and (Li et al., 2019) introduced an approximation to Gaussian convolution over
the boxes which similarly handled the case of disjoint boxes. (Dasgupta et al., 2020) improves this
further by taking a random process perspective, ensembling over an entire family of box models. The
endpoints of boxes are represented using Gumbel distributions, that is

GumbelBox(X) =
∏
i

[Xi, X
i], Xi ∼ MaxGumbel(µi, β), Xi ∼ MinGumbel(µi, β), (5)

where µ, β are the location and scale parameters of the Gumbel distribution respectively. The
MaxGumbel distribution is given by

f(x;µ, β) =
1

β
exp(−x−µβ − e

− x−µ
β ), (6)
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Figure 1: An overview of BOX-TRANSFORM MODEL on joint ISA and HASPART hierarchies.
Composition edges are created following certain rules and it should be correctly inferred for a well-
trained model. The ISA Wing box is transformed into a HASPART Wing box representing concepts
that has wings, and Bird is a subset of it. Same follows for Appendage, and the monotonicity in the
ISA space is preserved in HASPART space.

and the MinGumbel distribution given by negating x an µ. The Gumbel distribution was chosen
due to it’s min/max stability, making the set of Gumbel boxes closed under intersection, i.e. the
intersection of two Gumbel boxes is another Gumbel box. We denote the space of all such boxes as
G. The expected volume of a Gumbel box can be efficiently calculated analytically, and in Dasgupta
et al. (2020) the authors use this expected volume to calculate the conditional probabilities mentioned
in equation equation 4. This training method leads to improved performance on a number of tasks,
and is particularly beneficial when embedding trees, thus we will use this Gumbel box approach in
our setting.

3.3 MODELING JOINT HIERARCHIES

Many existing methods have been proposed for modeling a single hierarchy, however entities are
often simultaneously part of multiple hierarchies, for example hypernymy (i.e. ISA ) and meronomy
(i.e. HASPART ). Furthermore, useful information can be shared across inferred compositional edges
between the two hierarchies. For example, as shown in 1, based on <Bird,HASPART ,Wing> and
<Dove,ISA ,Bird>, we can infer<Dove,HASPART ,Wing>. Due to the compositional nature of these
relations, we can infer not only the per-relation transitive closure edges but also the compositional
edges, i.e <Dove, HASPART , Wing>.

Formally, for two hierarchical relations r1 and r2, composition edges can be formulated following
certain rules. In figure 1, the rules are designed as follows: for <Head,HASPART ,Tail>, < x1, ISA ,
Head> represent the sub-class of Head, and <Tail, ISA , x2 > is the super-class of Tail. Composition
edges can be generated as < x1,HASPART ,x2 >, < x1,HASPART ,Tail> or < Head ,HASPART
,x2 >. These compositional edges were identified in Patel et al. (2020), where it was observed that a
model which effectively captures both hierarchies should make the correct prediction not only over
the transitive closure of each individual relation but also on these compositional edges.

4 METHODS

4.1 BOX-TO-BOX TRANSFORMATION

As mentioned previously, our goal is to not only capture intra-relation transitivity, but also require
the model to capture cross-hierarchy compositional edges; that is, for a set S with two partial
orders �1, �2, we want a model capable of learning (a �1 b) ∧ (b �2 c) =⇒ a �2 c and
(a �2 b) ∧ (b �1 c) =⇒ a �2 c . Furthermore, we hope to do so without including these
compositional edges in our training data, in fact we will remove parts of these implications in the
data, with the expectation that the embedding parameters capture relevant structure which allows us
to recover them.

As shown in Dasgupta et al. (2020), Gumbel boxes are able to model hierarchies, we would like to
benefit from this capability, particularly for modeling the ISA hierarchy, and thus we seek to learn a
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function f1 : S → G, where

a �1 b ⇐⇒
E[µ(f1(a) ∩ f1(b))]

E[µ(f1(a))]
= 1. (7)

For a given Gumbel box,

f(x) =

d∏
i=1

[Xi, X
i], Xi ∼ MaxGumbel(µi, β), Xi ∼ MinGumbel(µi + ∆i, β). (8)

where the free parameters are µi and ∆i. To simultaneously model a second relation, we train a
function ϕ : G → G such that

a �2 b ⇐⇒
E[µ(ϕ(f1(a)) ∩ f1(b))]

E[µ(ϕ(f1(a)))]
= 1. (9)

For notational simplicity, we abbreviate f2 = ϕ ◦ f1.

We choose the transformation ϕ to operate on the “min” coordinate of a Gumbel box and the
“side-lengths”, that is, we transform a given Gumbel box

f(x) =

d∏
i=1

[Xi, X
i], Xi ∼ MaxGumbel(µi, β), Xi ∼ MinGumbel(µi + ∆i, β). (10)

to

ϕ (GumbelBox(X)) =

d∏
i=1

[Yi, Y
i], (11)

where

Yi ∼ MaxGumbel(θiµi + bi, β), and (12)

Y i ∼ MinGumbel(θiµi + bi + softplus(θi∆i + bi), β), (13)

and the θi, θi, bi, bi are learned parameters. This effectively translates and dilates the location
parameters of the Gumbel distributions which represent the “corners” of a given Gumbel box. We
call this model the BOX-TRANSFORM MODEL .

The softplus function is used here as a way to ensure the max coordinate remains larger than the min,
and it also provides a simple overflow protection for the expected box volume, as might happen with
side-lengths larger than one in high dimensions. While mathematically simple, this transformation
allows for parameter sharing between the embedding of a concept with respect to�1 and with respect
to �2. Importantly, the transformation is capable of capturing both a global translation and dilation as
well as a scaled transformation of the existing learned representation, allowing the absolute position
in space (which, for previous box embedding models, was irrelevant) to potentially capture relevant
features of the entities.
Remark 1. The lack of a transformation on f1(b) is not an oversight. Using figure 1 as an example, if
we consider the Bird box as representative of “all things which are birds”, and the HASPART Wing box
as the representative of “all thing which have wings”, then encouraging containment of the Bird box
inside the HASPART Wing box is quite natural. This conceptual motivation is precisely captured by
the lack of a transformation on f1(b). This also coincides with the probabilistic semantics discussed
in section 3.2, and is also the method employed by Patel et al. (2020), where this cross-hierarchy
containment objective is soley responsible for any flow of information between hierarchies in the
TWO-BOX MODEL .

4.2 CONNECTION TO TWO-BOX MODEL

There are two main differences between our model and the model introduced in (Patel et al., 2020)
which, for reasons which will become clear, we call the TWO-BOX MODEL . First, the TWO-BOX
MODEL preceeded the Gumbel box model, and instead uses the Soft box model from (Li et al.,
2019). To ensure that the benefits from our model are not conflated with the improvements from
using Gumbel boxes we also train a model using the method from (Patel et al., 2020) which makes
use of Gumbel boxes.
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Table 1: Details of the hypernymy and meronymy hierarchies and the composite edges formed by
composition of them.

Transitive
Reduction

Transitive
Closure

Validation
(pos/neg)

Test
(pos/neg)

Hypernym 84,363 661,127 28,838/288,380 28,838/288,380
Meronym 9,678 30,333 51,64/51,640 5,164/51,640
Composite Edge - - 94,807/948,070 94,806/948,070

Second, both models use different boxes to represent different relations, however the model from
(Patel et al., 2020) allows both boxes to have free parameters, relying on containment between
boxes representing different relations to pass information. Under the framework we have currently
presented, this would be equivalent to learning two functions, f1 and f2, both of which have separate
parameters for the min and side length of the boxes for each entity. While such a model has significant
representational capacity, we would expect that it would suffer greatly from a lack of generalization.
We evaluate this hypothesis by creating a second test, discussed in section 5.4, which removes edges
from the transitive reduction of the training data.

5 EXPERIMENTS

5.1 DATASET

We demonstrate the efficacy of BOX-TRANSFORM MODEL by using the joint hierarchy that has
been created by Patel et al. (2020) from WordNet (Miller, 1995). In this dataset, hypernymy (ISA )
and meronymy (HASPART ) are two hierarchical relations of WordNet over noun sysnets, which are
82, 114 in total. Individually, the hypernymy part of the hierarchy contains 82, 114 nodes (i.e., all the
synsets) with 84, 363 edges in its transitive reduction and the meronymy portion has 11, 235 synsets
(out of 82, 114 synsets) with 9, 678 edges in its transitive reduction.

Joint Hierarchy In order to evaluate the performance on the joint hierarchy, Patel et al. (2020)
created composition edges using the inter-relational semantics between hypernymy and meronymy. In
particular they use the following composition rules:

ISA ◦ ISA · · · ISA︸ ︷︷ ︸
0 or 1 or 2 times

◦ HASPART ◦ ISA ◦ ISA · · · ISA︸ ︷︷ ︸
0 or 1 or 2 times

= HASPART .
(14)

To illustrate from Figure 1,<Dove ISA Bird>∧<Bird HASPART Wing>∧<Wing ISA Appendage>
implies that <birds HASPART appendage>. In total, 189, 613 composition edges are generated
by the method described above for evaluation of the model on the joint hierarchy task. For each
test/validation edge, a fixed set of negative samples of size 10 was generated by corrupting the head
and tail 5 times each.

We provide the overall statistics for the dataset in the Table 1. We have also created a second
training dataset which further removes part of the transitive reduction to evaluate the models on their
generalization capability (refer to Section 5.4 & 5.5). The dataset used for those section has different
statistics and they are reported in the respective sections.

5.2 BASELINE MODELS AND TRAINING DETAILS

We compare BOX-TRANSFORM MODEL against geometric embedding methods as well as knowledge
base completion methods. We give a brief description for each baseline below.

1. TWO-BOX MODEL : As mentioned in 4.2, Patel et al. (2020) extends the idea of Box
embeddings (Vilnis et al., 2018; Li et al., 2019) to model joint hierarchies by defining two
boxes per node, one for each relation.

2. Order Embeddings: Vendrov et al. (2016) treats each concept as axis parallel cones in
positive orthant. We considered two different cone parameters for each entity following the
TWO-BOX MODEL (Patel et al. (2020)).
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3. Poincaré Embeddings: (Nickel & Kiela, 2017) & Hyperbolic Entailment Cones (Ganea
et al., 2018b): Tree-structured data are best captured in hyperbolic space (Chamberlain
et al., 2017). Thus in Nickel & Kiela (2017), the authors learn embedding on n-dimensional
Poincaré ball. For similar reasons, Ganea et al. (2018b) uses the hyperbolic space however
they extend the hyperbolic point embeddings to entailment cones. Again, for these models,
two separate parameters are considered for each entity.

4. TransE and RotatE (Bordes et al., 2013; Sun et al., 2019): This task can be posed as
knowledge base completion for a KB with only two relations. Thus we evaluate TransE
and RotatE which are simple yet effective methods for knowledge base embeddings, which
achieve state-of-the-art for many knowledge base embedding tasks. Unlike the two box
model (Patel et al., 2020) or the other baselines, these methods have shared representation
for each entity, and thus they are expected to generalise better on missing edges.

5. Hyperbolic KG Embeddings (Balazevic et al., 2019b; Chami et al., 2020): We also com-
pared our method against recently proposed KG embedding methods based on hyperbolic
embeddings to model hierarchical structures present in KGs. The Multi-Relational Poincaré
model (MuRP) (Balazevic et al., 2019b) learns relation-specific transforms of the entities
that are embedded in hyperbolic space. The RoTH (Chami et al., 2020) parameterize the
relation specific transformations as hyperbolic rotation, where as the AttH (Chami et al.,
2020) combines hyperbolic reflection and rotation using attention. We provide more training
related details in Appendix A.1.

5.3 COMPOSITION EDGES FROM TRANSITIVE REDUCTION

In order to demonstrate the ability of the model to capture partially ordered (tree-like) data most
embedding methods (Ganea et al., 2018b; Nickel & Kiela, 2017; Patel et al., 2020) train their model
on the transitive reduction and predict on the transitive closure. For an evaluation on modeling the
joint hierarchy, therefore, it is natural to train the models only on the transitive reduction of hypernymy
and meronymy and evaluate on the composition edges, as done in Patel et al. (2020). We report the
F1 score (with 1:10 negatives) for those edges in table 2. The threshold used for the classification is
determined by maximizing the F1 score on the validation set.

Table 2: Test F1 scores(%)of various methods
for predicting the Composition edges.

Methods F1 score

Poincaré Embeddings 43.8
Hyperbolic Entailment Cones 44.0
TransE 57.0
RotatE 51.0
Order Embeddings 68.5
MuRP 21.4
AttH 51.3
RotE 51.5
RotH 55.8
TWO-BOX MODEL (Patel et al., 2020) 68.1
TWO-BOX MODEL (with GumbelBox) 73.7
BOX-TRANSFORM MODEL 82.2

Table 3: Test F1 scores(%) of various methods for
generalization capability.

Methods F1 score

Poincaré Embeddings 33.5
Hyperbolic Entailment Cones 36.0
TransE 57.0
RotatE 55.0
Order Embeddings 54.5
MuRP 20.1
AttH 27.0
RotE 48.8
RotH 46.7
TWO-BOX MODEL (with GumbelBox) 58.9
BOX-TRANSFORM MODEL 63.9

From Table 2, we observe that BOX-TRANSFORM MODEL outperforms the other baselines by a
significant margin. As mentioned in Patel et al. (2020) and so do we observe that in the next section
5.4 that the Poincaré embeddings and Hyperbolic entailment cones do face difficulty in learning when
presented only with transitive reduction edges. However, the hyperbolic KG method Atth RoTH
are able to learn the composite edges to a certain extent. The performance gain of RotH over its
euclidean counterpart RotE can be attributed to its inductive bias towards modeling hierarchies. The
performance of Box embedding method as proposed by Patel et al. (2020) performs at par order
embedding method. However using GumbelBox formulation (Dasgupta et al., 2020), we observe
significant performance boost as GumbelBox improves the local identifiability of the parameter space.
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Still, the capability of the BOX-TRANSFORM MODEL to benefit from shared cross-hierarchy features
allows it to substantially outperform even this improved version of the TWO-BOX MODEL . This is
likely due to the fact that the inductive bias provided by the transformation is more in line with the
data; the model can benefit from the containments learned as a result of the ISA relation, and learn a
HASPART transformation which potentially preserves these containments.

5.4 LEARNING FROM INCOMPLETE TRANSITIVE REDUCTION

In Patel et al. (2020), and also in our previous experiment, we already observe that box embedding
methods are highly capable of to recovering the transitive closure (in our case, composition edges)
given the transitive reduction only. In this experiment, we train with even less of the transitive
reduction, moving some of these edges to the test set. Now, reconstruction of the closure and the
composition edges require models to generalize over the missing parts of the graph. We train on
9175 meronymy edges and 80372 hypernymy edges and test/validate on an aggregated pool of 251783
edges. Please refer to the Appendix A.2 for details on dataset creation and statistics.
From Table 3, we observe that BOX-TRANSFORM MODEL outperforms all the baseline methods by
a large extent. Although the two box model is performing worse than BOX-TRANSFORM MODEL , it
is able to beat other baselines. Out of the two Knowledge base completion methods TransE performs
the best and achieves comparative performance to two box model. Although the hyperbolic KG
embeddings were able to perform well on the composite edges, their generalization performance
is relatively lower than other KG embedding methods. We also observe that the RotE model that
was under performing in composite edges, outperforms RotH by some margin in this generalization
setting. We select the top three best performing methods for further analysis for each type of edges in
the graph.

5.5 PERFORMANCE ANALYSIS ON DIFFERENT SPLITS

Training on a subset of the transitive reduction showed that our model could generalize to composition
edges even with the absence of essential edges to make such prediction. We further perform evaluation
analysis using the same training data with the best-performed model selected by maximizing the f1
score on composition edges. We evaluate the model performance on the transitive closure for each
hierarchy (ISA and HASPART ), and the composition edges on the joint hierarchy.

Table 4: Single hierarchy F1 score (%) analysis on ISA and HASPART . The overall dataset is the
combination of overfitting, generalization and extended generalization

Type Overall
TC(X)

Overfitting
TC(X1)

Generalization
X-X1

Extended
Generalization

TC(X) - TC(X1)
-(X-X1)

TransE
ISA

52.9 52.1 66.5 46.0
Two Box Model 47.8 58.9 19.9 22.9

BOX-TRANSFORM MODEL 57.3 60.0 65.9 44.4

TransE
HASPART

59.9 63.0 56.1 48.3
Two Box Model 51.6 54.8 40.8 37.8

BOX-TRANSFORM MODEL 58.8 64.2 33.4 25.4

For each single hierarchy, some edges are removed from the transitive reduction X to create the
incomplete transitive reduction training data X1. Evaluating the transitive closure of X directly
evaluates the model’s performance on each hierarchy, denoted as TC(X). This can be further
divided into three categories: dataset that evaluates model ability to capture transitive closure of X1,
TC(X1), dataset that evaluates model generalization ability on missing edges X −X1, and dataset
that evaluates model’s extended generalization ability on TC(X)− TC(X1).
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Table 5: Joint hierarchy F1 score (%) analysis. The overall data is the combination of overfitting and
generalization.

Overall
COMP(X, Y)

Overfitting
COMP(X1, Y1)

Generalization
COMP(X, Y) - COMP(X1, Y1)

TransE 58.8 70.1 68.6
Two Box Model 62.5 72.7 63.6

BOX-TRANSFORM MODEL 69.6 86.1 70.0

Composition edges from the joint hierarchy can be analyzed the same way. COMP(X,Y ) represent
all the composition edges in the full wordnet dataset, composed by ISA transitive reduction X and
HASPART transitive reduction Y . It can be further divided into two categories: data that evaluate
model overfitting ability to capture COMP(X1, Y1) where X1 and Y1 is the corresponding training
ISA and HASPART data in section 5.4, and data that evaluate model generalization ability on learning
logical operations COMP(X,Y ) − COMP(X1, Y1). The detailed statistics on each of these splits
are provided in Appendix A.3. The evaluation dataset is created by randomly creating negative
examples with the pos: neg ratio 1:10. We select the top 3 best models from section 5.4, then choose
the threshold that maximized the F1 score for the validation data of each split and report the test
F1. As shown in table 4 and table 5, our model performs the best overall across different dataset
splits. BOX-TRANSFORM MODEL performs much better on the full transitive closure of ISA , and all
the composition edges. In general, BOX-TRANSFORM MODEL performs much better on transitive
closure and composition edges by a large margin in all overfitting settings. TransE does better on
predicting removed edges from the transitive reduction (which serves more as an analysis of the
model’s capability, as it is not a typical evaluation for partial order completion), however we note
that our model does surprisingly well on the ISA missing edges, which we attribute to the shared
semantics between the hierarchy made possible by this box-to-box transformation.

6 CONCLUSION

We proposed a box-to-box transformation which facilitates sharing of learned features across hierar-
chies. We demonstrate the BOX-TRANSFORM MODEL is capable of excellent performance when
predicting compositional edges across a joint hierarchy. Furthermore, the model does an excellent
job at modeling the transitive closure of each relation independently. In the future, extending from
two relations to modeling multiple relations is essential in order to obtain more generalization from
hierarchical ISA edges.
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A APPENDIX

A.1 TRAINING DETAILS

In our experiments, we have kept the number of parameters same across all the methods. We use 5
dimensional box embeddings for the Two Box Model (Patel et al., 2020). Since box embeddings are
specified using min and side length in the same dimension. Thus we compare with 10 dimensional
order embeddings, Poincaré embeddings, and hyperbolic entailment cones. However, since the above
mentioned methods has two different number of parameters for each node, we use 20 dimensional
vectors for RotatE, TransE to account for that. Our BOX-TRANSFORM MODEL uses 10 dimension
box embeddings for similar reason.

Hyperparameter range: We use Bayesian hypermeter optimizer with Hyperband algorithm
for all the methods using the web interface Biewald (2020). The hyperparameter ranges are
Gumbelβ ∈ [0.001, 3], Softplus temperature for box volume T ∈ [1, 30], lr ∈ [0.0005, 1], batch
size ∈ {8096, 2048, 1024, 512}, number of negative samples ∈ [2, 30] for all the methods. For max
margin trainging we searched for the margin ∈ [1, 50].

The best hyperparameters for our method and a few competitive baselines are provided in appropriate
config files along with the source code. We will make the code public after the anonymity period.

A.2 DATASET CREATION STEPS FROM SECTION 5.4

In order to remove edges from the transitive reductions, we iterate through the transitive reduction
edges of meronymy. With 0.5 probability we choose the edge for further processing. For each chosen
HASPART edge, we select an outgoing ISA edge and pair them. We drop the ISA edge from the pair
with 0.9 probability (the ratio of HASPART to ISA transitive reduction) and drop the HASPART edge
in case the ISA is not dropped already.

This procedure ensures that all the edge removals happen around the composition edges, thus, the
results reflect the models true capacity to generalize well for this joint hierarchy task. We evaluate the
model on the composition edges, the removed reduction edges, and the closure edges with 251783 in
numbers which we split into two parts for validation and test. In Table 3, we report the F1 score on
this aggregated evaluation data with 1:10 fixed true negatives.

A.3 DETAILS OF THE SPLITS FROM SECTION 5.5

Table 6: Dataset statistics for different parts of individual ISA and PARTOF hierarchy.

Hierarchy TC(X) TC(X1) X-X1 TC(X) - TC(X1)
- (X-X1)

IsA 61,667 51,195 3,991 6,481
HasPart 30,335 26,388 503 3,444

Table 7: Dataset statistics for different composition edges in Joint Hierarchy.

Hierarchy Comp(X, Y) COMP(X1, Y1) COMP(X, Y1)
- COMP(X1, Y1)

Joint Hierarchy 189,613 146,867 42,746

A.4 VISUALIZATION

We plot 2-dimensional box embeddings to inspect the quality of our proposed BOX-TRANSFORM
MODEL . We use the box embedding parameters of the best performing model of experiment 5.3
(Table 2). Note that, the model is 10 dimensional. However, for a perfectly trained model, we should
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observe containment along each dimension. Thus, we pick two dimensions randomly out of the 10-d
to visualize the embeddings.

(a) Example of Joint Hierarchy
extracted from the WordNet

dataset.

(b) We plot the transformed ISA box for ”Sedan” & ”Car” and
transformed HASPART box for ”Door”, ”Car Door”, ”Movable Barrier”
on the same space. The transformations do preserve the containment and
provide an consistent assignment of box embedddings for the example

on left.

Figure 2: 2-dimensional visualization of proposed Box embedding model.

From the example, the facts that <Car,HASPART ,CarDoor> and <CarDoor,ISA ,Door> would
infer that <Car,HASPART , Door>. We observe from the Figure 2 that the HASPART transformation
of the ”Car Door” and ”Door” successfully encloses the ISA transformation of the ”Car”, thus our
model is able infer that composition edge . All the other composite edges such as <Sedan,HASPART
, CarDoor>, <Sedan,HASPART , Door> etc. can be similarly inferred from the visualization.
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