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ABSTRACT

Due to the asynchronous sensing of changes in illumination by event cameras,
they are highly energy-efficient and therefore exhibit great potential especially in
mobile, low power scenarios. Moreover, they are able to acquire sparse data with a
high temporal resolution in the order of milliseconds and achieve a large dynamic
range. This enables the recording of reliable data with minimal motion blur even
during rapid movements and in low light scenarios. SNNs are particularly suit-
able for the processing of event data due to their asynchronous and spike-based
functionality while their low energy consumption enables their deployment in au-
tomotive embedded applications. However, recent spiking object detectors do not
leverage the full temporal information and only consider a single, fixed-size sam-
ple of the event data. In this paper, we propose the first sequence-aware SNN,
which processes long sequences of the event stream data and predicts bounding
boxes with a frequency of 40 Hz. In combination with a SSD network design, we
achieve a 26.88 mAP on the Gen1 Automotive Detection Dataset.

1 INTRODUCTION

Particularly in highly dynamic scenes, standard frame-based cameras reveal their poor performance
in terms of motion blur and nighttime sensing. Their static frame rate further hinders capturing
rapid movements of cars and trains, which can cover meters in mere milliseconds. This poses
a critical limitation, especially in autonomous driving scenarios where such delays may result in
fatal consequences. Therefore, event cameras recently emerged, which neglect information about
the absolute intensity and instead asynchronously record logarithmic intensity changes in order to
achieve a high temporal resolution in the magnitude of microseconds. They further cover a high
dynamic range (about 140 dB compared to 60 dB by standard cameras), which allows the detection
of movements even in low light settings. Combined with their low power consumption, this makes
event cameras highly suitable for the usage in automotive edge applications.

However, the inherent sparsity and temporal nature of the event data makes it difficult to apply tra-
ditional frame-based object detection approaches. A more natural approach to processing events
involves the use of Spiking Neural Networks (SNNs) (Gerstner & Kistler, 2002), which communi-
cate using sparse and asynchronous 1-bit spikes. Consequently, SNNs can replace multiplications in
a traditional Artifical Neural Network (ANN) with additions or simple memory readouts, resulting
in a reduced number of machine operations. This makes SNNs very compelling at a time when
energy consumption is a critical issue, particularly in autonomous vehicles.

Real world scenarios demand continuous data stream processing, making it advantageous to utilize
information from previous time steps for future object detection. SNNs preserve the system’s state
by encoding it as the membrane potential within each spiking neuron. If no input current arrives,
this potential decays over time, which means that SNNs are able to naturally handle cases in which
no events are detected. However, current spiking object detectors, like the one by Cordone et al.
(2022), only consider the time steps in a single time interval and then reset the internal state of the
SNN after one prediction, which is illustrated in Figure 1a. Instead, we propose Sequence-SOD,
our sequence-aware approach trained on extended sequences encompassing multiple labels across
different time points in event data. This method preserves the spiking neurons’ inner states, as
depicted inFigure 1b. Theoretically, this enables us to predict bounding boxes at every time step
resulting in a remarkable frequency of about 40 Hz.
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Figure 1: Resetting methods of the inner state of SNNs.

The following summarizes the key contributions of this paper:

• We introduce a novel sequence-aware training approach for object detection using SNNs,
which considers whole sequences of event data including multiple labels at different points
in time, in order to be more performant in real time applications.

• Our approach is able to predict bounding boxes on real world automotive event data with a
frequency of 40 Hz.

• We evaluate the influence of event data augmentation on the performance of SNNs in object
detection, as well as compare the energy consumption of our SNN architecture with the
equivalent ANN.

2 RELATED WORK

2.1 SPIKING NEURAL NETWORKS

The work of Maass & Markram (2004) has shown that in theory SNNs have exactly the same ex-
pressive power as ANNs. In addition, they are not only more energy efficient but also show a greater
potential in handling event data compared to ANNs (Deng et al., 2019).

When modelling SNNs, the most common design is the Leaky Integrate-and-Fire (LIF) neuron
model, whose discretized variant can be described in the following way (Wu et al., 2019):

U [t] = βU [t− 1]︸ ︷︷ ︸
decay

+WX[t]︸ ︷︷ ︸
input

−Sout[t− 1]θ︸ ︷︷ ︸
reset

. (1)

The spiking functionality integrates the weighted sum of the incoming spikes WX[t] into the mem-
brane potential U of the spiking neuron. U exponentially decays with a rate β to decrease the
influence of temporally uncorrelated data. When the membrane potential reaches a certain threshold
θ an output spike is generated and U is reset accordingly.

The disadvantage of this spiking behavior is that it is non-differentiable and therefore the common
backpropagation algorithms from ANN training are not directly transferable. So far, three alternative
approaches for the challenging training of SNNs have been proposed: Biology-inspired training,
conversion from ANNs, and direct training.

Biologically plausible methods, such as Spike-timing-dependent plasticity (STDP) (Toyoizumi
et al., 2004), adjust the weights of synapses based on the correlation of the spike behavior of pre- and
post-synaptic neurons. However, the localization of updates makes it difficult to train deep networks,
rendering biological approaches insufficient for complex tasks such as object detection.

Another option is the conversion of a pre-trained ANN into a SNN by weight-normalization, as there
is a correlation between the ReLU activation and the firing rate of a spiking neuron (Rueckauer
et al., 2017). However, this requires the input to be rate encoded, which means that the number
of spikes has to be proportional to the pixel intensity. Consequently, achieving approximately the
same accuracy as the pre-trained ANN requires very high latency, defeating the goal of low energy
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consumption (Bendig et al., 2023). Furthermore, event data is not suitable as input for ANNs due to
its inherent sparsity and asynchronous nature.

The most promising approach is direct training using surrogate gradients (Neftci et al., 2019). To
overcome the non-differentiability of the binary spikes, the gradient is approximated during the
backward pass. This also has the advantage of defining a small gradient even when no spike occurs,
ensuring the presence of a training signal in such scenarios.

2.2 EVENT-BASED OBJECT DETECTION

The main challenges in event-based object detection lie in the sparsity and asynchronous nature of
event data, which pose major difficulties for standard ANNs as well as current clock-based Graphic
Processing Units (GPUs).

Common approaches for event-based object detection, especially using conventional ANNs, encom-
pass techniques such as: Event frame (an accumulation of events either over a certain period of time
or number of events) (Zhao et al., 2022; Shair & Rawashdeh, 2022), Time-surface (storing times-
tamp information of the events for each location) (Mitrokhin et al., 2018) or a custom input layer
(weighted accumulation of events over time, based on convolution) (Cannici et al., 2019). However,
these approaches are limited to the processing of one event sample at a time due to the incapability
of standard ANNs to maintain an inner state over time. Consequently, during the processing of an
event stream, previous temporal information will get lost. This limitation leads us to choose utilizing
a SNN instead.

The Recurrent Event-camera Detector (RED) (Perot et al., 2020) incorporates ConvLSTM cells and
feed-forward convolutional layers in their recurrent architecture, allowing them to retain temporal
information within one sequence. Other works Gehrig & Scaramuzza (2023); Li et al. (2022) also
integrate recurrent layers and attention mechanisms to process sequences of event data. However,
these methods only partially include recurrent neurons, limiting their expressiveness concerning the
inner state. Additionally, these works process multiple time steps of one time interval simultane-
ously, diminishing the potential prediction frequency that event streams allow for. In our paper
we opt for a fully spiking architecture, which contains spiking neurons at each layer. This choice
does not only lead to an increased capacity for storing temporal information, but also allows for the
sequential processing of each time step.

SNNs naturally process asynchronous and sparse data and are capable of storing a network state in
the membrane potential of the spiking neurons. They handle small time steps of event data sequen-
tially, allowing a high prediction frequency. The authors of Cordone et al. (2022) present a complete
spiking neural network for object detection. Their method, however, only considers individual time
intervals as samples, not utilizing the full potential of event sequences during training. In order to
fully leverage the temporal information in the event stream, our approach considers extended event
sequence samples, encompassing multiple annotations at various time points. This approach not
only aligns more closely with real world automotive applications but also allows a rapid prediction
frequency of 40 Hz. Additionally, our use of a SNN retains the current network state’s information
while ensuring low energy consumption for potential embedded applications.

3 METHOD

Seeking to fully leverage the temporal resolution of event data, our object detection approach pro-
cesses entire sequences of events containing multiple labels at different time steps, rather than pro-
cessing individual event samples one at a time. In our approach, events are initially accumulated
into small time intervals. Each event interval is then divided into 5 equally-sized time steps of which
are fed to the network sequentially. The output is averaged over 5 time steps for the bounding box
and class prediction. Notably, the membrane potentials of the spiking neurons are not reset between
samples (time intervals), which allows previous information to be maintained and thus facilitates
high frequency predictions after each time step.
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Figure 2: Visualization of different sampling techniques. Our work operates on entire sequences,
instead of individual samples.

3.1 SEQUENTIAL EVENT DATA PROCESSING

The pixels of an event camera register logarithmic intensity changes in an asynchronous manner.
An event occurring at the pixel position (xi, yi) at time ti is commonly defined as a tuple ei =
(xi, yi, ti, pi). Depending on if the brightness increases or decreases, events have either a positive
or negative polarity pi ∈ {1,−1}.

Due to the challenges associated with training deep SNNs on neuromorphic hardware, we simu-
late the computations in form of time steps on a GPU. Consequently, processing event data asyn-
chronously becomes computationally infeasible, leading us to accumulate events in short time inter-
vals ∆t = [ta, tb) of 125 ms.

Inspired by the event data handling in Gehrig & Scaramuzza (2023), we choose a simple pre-
processing method creating event histograms E in the shape (T, 2, H,W ) with T representing the
number of time steps discretized from ∆t and (H,W ) denoting the height and width of the event
sensor. We choose to not further divide the time steps into time bins, since Cordone et al. (2022)
showed that time bins do not improve the performance for T ≥ 5. Moreover, we accumulate events
of different polarities separately in two channels. A stream of events E is thus processed in the
following way:

E(τ, p, x, y) =
∑
ei∈E

δ(τ − τi)δ(p− pi)δ(x− xi)δ(y − yi)

τi =

⌊
ti − ta
tb − ta

· T
⌋
,

(2)

with δ(·) as the Kronecker delta function.

Additionally, we consider whole sequences of the event stream during the training with a sequence
length of s, which is visualized in Figure 2. One training sequence includes s time intervals, each
containing an event histogram with T = 5 time steps over ∆t = 125ms. Since bounding box
labels in our selected dataset are generated based on the corresponding RGB images, they are in-
termittently available rather than continuously present, appearing at different points in time with
varying frequencies. Consequently, not all time intervals within an event sequence contain bound-
ing boxes. We ensure that at least one label is present in each training sequence. The inner state
of an SNN, reflected in the membrane potential of its neurons, retains information from prior event
inputs. This stored information, temporally correlated with subsequent inputs, contributes to future
predictions. Unlike prior spiking object detection methods that reset the membrane potential after
each label occurrence, our SNN maintains its inner state consistently throughout the processing of
sequences with multiple labels at varying time points. Previous methods failed to harness the full
potential of temporal information within event data. Processing whole sequences compels the net-
work to prioritize essential temporal cues. Individual spiking neurons have a finite capacity and as
the input sequence lengthens, they must process an increasing volume of incoming data over time.
Consequently, the network is forced to learn a more meaningful inner state representation of the cur-
rent scenario, discarding redundant information to process new stimuli. Multiple labels at different
points in time prompt the network to generate accurate predictions not only at the sequence’s end
but after every time step within it. This compels the network to consistently maintain an expressive
inner state representation, facilitating ongoing predictions in an continuous stream of information.
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3.2 NETWORK ARCHITECTURE

For consistent comparability, our approach follows the methodology of Cordone et al. (2022) by
adopting the SSD object detection framework (Liu et al., 2016) with a Spiking DenseNet (depth of
121 and a growth rate of 24) as its backbone. The dense connectivity pattern of DenseNet (Huang
et al., 2017) enhances the propagation of gradients, which is especially important for SNNs since
the gradient can only be approximated. Following the example of Cordone et al. (2022), we replace
the ReLU activations with Parametric Leaky Integrate-and-Fire (PLIF) (Fang et al., 2021) neurons,
which in contrast to conventional LIF neurons include the decay rate β as a trainable parameter.

The DenseNet architecture includes batch normalization, which seems to play a crucial role in the
training of our SNN. However after the training, it is possible to construct a mathematically equiv-
alent network that absorbs the batch normalization parameters into the convolutional layers (Jacob
et al., 2018). Therefore, our network can be seen as a pure SNN during inference, leveraging all the
advantages in terms of energy efficiency of the spiking computations.

In contrast to previous recurrent object detectors, which process all time steps simultaneously as an
input of shape (2T,H,W ), our spiking approach processes an input tensor of shape (2, H,W ) at
each time step. The final prediction of the bounding boxes and classes is calculated by accumulat-
ing the network output over T time steps and dividing it by T . Beyond the initial five time steps
(equivalent to 125 ms), this can be done with a sliding window approach for the rest of the sequence.
Consequently, the network is theoretically able to output bounding box predictions after every 25
ms time step (= 40 Hz), effectively leveraging the high temporal resolution of the event camera.
However, the prediction frequency relies on the input data and may improve with smaller time steps,
albeit potentially impacting performance negatively.

4 EXPERIMENTS AND RESULTS

4.1 SETUP

Dataset As we focus on object detection on event data in an automotive setting, we test our method
on the Gen1 Automotive Detection Dataset (de Tournemire et al., 2020). The dataset contains 39 h
of event camera recordings from diverse driving scenarios with a resolution of 304 px × 240 px. Its
255 k labels consist of bounding boxes for pedestrians and cars provided at a frequency between 1
and 4 Hz. In the fashion of previous work (Li et al., 2022; Gehrig & Scaramuzza, 2023; Perot et al.,
2020), we do not consider small bounding boxes with any side length ≤ 10 px or a diagonal ≤ 30
px. The minimal distance between bounding boxes in the dataset is 250 ms. Therefore we construct
the sequence samples every 125 ms to ensure temporal alignment of time steps and labels.

Since it is a widely used metric for object detection, we report the mean Average Precision (mAP)
over 10 IoU thresholds with the starting value 0.5, an increment of 0.05, and an ending value of
0.95.

Implementation We adopt standard training strategies based on the implementation of Cordone
et al. (2022), utilizing an AdamW optimizer with a weight decay of 1 × 10−4 and implementing a
cosine decay for the learning rate. Additionally, we train with a batch size of 14 and an in initial
learning rate of 4 × 10−5. For the event data input, we consider sequences of length strain = 5,
where each time interval consists of a discretized 125 ms time window which is further divided into
T = 5 time steps. Just like Cordone et al. (2022), we utilize the Focal Loss (Lin et al., 2020) for
the classification task, since it efficiently addresses the class imbalance issue, as well as a smooth
L1 loss for the box regression. Inspired by the work of Gehrig & Scaramuzza (2023), we study the
influence of data augmentation ,including horizontal flipping and zooming in/out in Section 4.2.2.

4.2 ABLATION STUDY

In this section, we explore the key factors that considerably influence our approach’s performance.
We investigate the effect of sequence length during training and assess the influence of event data
augmentation on training our SNN. The experiments are conducted on the Gen1 Automotive Detec-
tion Dataset, and evaluated using the best-performing models after 110 epochs.
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Table 1: Evaluation of different training sequence lengths strain on various test sequence lengths
stest of the Gen1 Automotive Detection Dataset.

strain stest ∆t in ms mAP AP50 AP75 APcar APped

1 1 125 23.38 47.23 20.97 35.39 11.36
1 5 125 23.63 47.74 21.02 35.42 11.83
1 full 125 23.04 45.89 20.68 35.17 10.92
5 1 125 25.26 50.98 21.88 36.09 14.43
5 5 125 25.31 50.99 21.89 36.05 14.57
5 full 125 25.30 51.49 21.91 35.87 14.72
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Figure 3: Visualization of the predictions on the Gen1 Automotive Detection Dataset with different
training sequence lengths along with the ground truth bounding boxes, showing the network behav-
ior in different scenarios (varying density of events and varying number of objects).

4.2.1 SEQUENCE LENGTH

Table 1 shows the results obtained by training our network on a single time interval strain = 1 and
a longer sequence length strain = 5. We test the resulting networks on different sequence lengths
stest, including full sequences of the test split of the Gen1 Automotive Detection Dataset. A se-
quences is considered full if the maximum distance between labels is 200 time intervals. Sequences
with higher distances are split in order to avoid excessive computation on data without any label.
The data suggests a proportional performance increase corresponding to the length of the training
sequence. This incline is observed across both object classes and different IoU thresholds. Training
on longer sequences compels the network to prioritize the storage of important temporal information
in its inner network state. The capacity of a single spiking neuron is limited, and during the process-
ing of larger amounts of data, the network has to restrict the information flow in order to achieve the
desired firing of the output neurons. A longer sequence can also contain multiple labels at different
points in time, pushing the network to output correct predictions at any time. Therefore, even when
tested on short sequences the network trained with strain = 5 performs better. The data further
shows that the performance of the strain = 1 training decreases slightly when tested on the full
sequence, indicating that the network is not able to fully leverage past temporal information because
its membrane potentials are reset. Especially, its prediction for pedestrians dropped, posing a harder
challenge due to more variety in movement. Figure 3 visualizes the results for the networks trained
on sequence lengths 1 and 5 tested on full sequences. It can be seen that the network trained on
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Table 2: Application of geometrical augmentation methods for the training on sequence length 5
and tested on full sequences.

h-flip zoom-in zoom-out mAP AP50 AP75 APcar APped

25.30 51.49 21.91 35.87 14.72
✓ 25.40 51.03 22.11 36.19 14.61

✓ 26.85 53.41 23.63 37.80 15.90
✓ 26.29 52.75 23.18 37.66 14.93

✓ ✓ ✓ 26.88 52.79 24.65 37.90 15.86

Table 3: Comparison to State-of-the-Art on the test split of the Gen1 Automotive Detection Dataset.
Information that was approximated or does not apply is marked with a star *. The results for the
⋄ marked papers were taken from Gehrig & Scaramuzza (2023). Furthermore, the object detection
methods YOLOv3 and YOLOX have been presented by Redmon & Farhadi (2018) and Ge et al.
(2021) respectively.

Method Backbone Arch. Det. Head Seq Aug ∆t mAP Params (M)
Inception + SSD (Iacono et al., 2018)⋄ CNN CNN SSD ✗ - - 30.1 > 60*
RRC-Events (Chen, 2018)⋄ CNN CNN YOLOv3 ✗ - - 30.7 > 100*
YOLOv3 Events (Jiang et al., 2019)⋄ CNN CNN YOLOv3 ✗ - - 31.2 > 60*
RED (Perot et al., 2020) CNN RNN SSD ✓ ✗ 50 40.00 24.1
ASTMNet (Li et al., 2022) (T)CNN RNN SSD ✓ ✗ * 46.7 > 100*
RVT-B (Gehrig & Scaramuzza, 2023) Transformer RNN YOLOX ✓ ✓ 50 47.2 18.5
RVT-S (Gehrig & Scaramuzza, 2023) Transformer RNN YOLOX ✓ ✓ 50 46.5 9.9
ODSNN (Cordone et al., 2022) DenseNet121-24 SNN SSD ✗ ✗ 100 18.9 8.2
S-SOD (ours) DenseNet121-24 SNN SSD ✗ ✗ 125 23.38 8.2
S-SOD (ours) DenseNet121-24 SNN SSD ✓ ✗ 125 25.30 8.2
S-SOD (ours) DenseNet121-24 SNN SSD ✓ ✓ 125 26.88 8.2

longer sequences is more capable of detecting multiple entities even with a small number of events
in one time interval, as in Figure 3a. Furthermore, it better differentiates between multiple object
instances due to past temporal cues, as demonstrated in Figure 3d.

4.2.2 DATA AUGMENTATION

Following the example of Gehrig & Scaramuzza (2023), we examine the effect of the following
randomized event data augmentations on the performance of our SNN: Horizontal flipping, zooming
in, and zooming out. We randomly choose whether to use no augmentation, or flipping and/or
zooming, and then apply this choice to a whole sequence. For any resizing operation we use exact
nearest neighbor interpolation in order to keep the data in its binary format. To zoom in, we crop
the sample randomly along its spatial dimensions and then resize it to the original resolution. For
zooming out, we down-sample the whole sequence spatially and place it at a random location within
a zero tensor of the original size. Our parameter choice with respect to the randomness follows
the one of Gehrig & Scaramuzza (2023). Table 2 shows the results of the different augmentation
methods applied to the training based on sequence length 5. We can see that augmentation plays
an important role for the training of SNNs. Zooming is most effective, especially for pedestrians,
which usually appear smaller than cars in real world data, possibly due to an increased focus on
particular features of otherwise small objects.

4.3 BENCHMARK COMPARISON

In this section, we contrast our sequence-aware SNN approach Sequence-SOD with previous ap-
proaches which include some form of inner state representation, evaluating their performance on the
Gen1 Automotive Detection Dataset. A summary of the outcomes is presented in Table 3.

The results already show, how Recurrent Neural Networks (RNNs) are able to vastly outperform
traditional Convolutional Neural Networks (CNNs) in event-based object detection. This is due to
their capacity to save temporal information in their inner state and using this information for future
predictions. The results also show a gap between RNNs and SNNs in general, due to the challenges

7



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120 140
Convolutional Layers

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Av
er

ag
e 

Sp
ik

e 
R

at
e

conv
denseblock
transition
regression_head
classification_head

Figure 4: Average Spike Rates over all time steps for each convolutional layer.

of training the latter. In our work, we demonstrate for the first time the importance of a temporal
inner state for SNNs. This can be seen by comparing our results to the only other spiking event
object detector by Cordone et al. (2022). The numbers indicate that training on longer sequences
indeed improves the performance by enforcing a meaningful inner state representation, which is able
to discard dispensable information and prioritize significant temporal cues. Therefore, our method
is able to set a new State-of-the-Art for SNNs in event-based object detection with an approximately
8% higher mAP.

4.4 ENERGY CONSUMPTION

Apart from their naturally suitable ability to process event data, a very significant advantage of
SNNs is in terms of energy efficiency. In comparison to traditional ANNs, in which all neurons are
activated for every iteration, SNNs have sparse activations. Furthermore, Multiply and Accumulate
(MAC) operations for the synaptic weights are replaced by Accumulate (AC) operations in SNNs,
since the spikes are represented only by zeros and ones.

Following the convention of previous work (Kim et al., 2022), we determine the energy consumption
in terms of the total number of FLoating Point Operations (FLOPs) on standard CMOS technology.
For a standard ANN, the FLOPs for multiplication and accumulation in a convolutional layer are
both calculated by:

FLOPsMult
conv,l = FLOPsAc

conv,l = k2 ×Hout ×Wout × Cin × Cout, (3)

with k as the kernel size, (Hout,Wout) as the output feature map height and width as well as
Cin, Cout as the number of input and output channels respectively.

Since spiking neurons only consume energy when a spike occurs, their FLOPs of a layer l reduce
based on the spike rate Rl. An average spike rate can be computed as the total number of spikes in
a layer for all time steps divided by the number of neurons in l:

Rl =

∑
t∈{1,...,T},n∈Nl

Sn
t

|Nl|
, (4)

with Nl as the set of neurons in layer l and Sn
t as the binary spike if neuron n fired at time step t. The

resulting spike rates per layer for our Sequence-SOD with strain = 5 and stest = 1 on the Gen1
Automotive Detection Dataset are shown in Figure 4. Averages over entire parts of the network are
presented in Table 4.

Additionally, our network contains maxpool layers, which do not perform traditional floating-point
operations. We estimate their FLOPs for ANNs and SNNs as an accumulation operation in the
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Table 4: Energy consumption of an ANN and a SNN.

Method Network FLOPsMult FLOPsAc Rl E(mJ) EANN/EMethod

ANN
Backbone 2295.49 M 2298.21 M - 10.56 1×
Heads 351.32 M 351.32 M - 1.61 1×
Overall 2646.81 M 2649.53 M - 12.17 1×

SNN
Backbone - 2298.21 M 0.0235 0.05 199×
Heads - 351.32 M 0.0960 0.05 31×
Overall - 2649.53 M 0.0296 0.10 116×

following way:
FLOPsAc

mp,l = k2 ×Hout ×Wout × Cin. (5)

We can now obtain the overall inference energy of an ANN (EANN ) and of the equivalent SNN
(ESNN ) across all layers l of a network N :

EANN =
∑
l∈N

FLOPsMult
conv,l × EMult +

(
FLOPsAc

conv,l + FLOPsAc
mp,l

)
× EAc (6)

ESNN =
∑
l∈N

(
Rl × FLOPsAc

conv,l + FLOPsAc
mp,l

)
× EAc, (7)

where EMult = 3.7 pJ and EAc = 0.9 pJ are the energy consumed by a 45nm CMOS process for a
32bit Floating Point multiplication and accumulation operation respectively (Horowitz, 2014). The
results of our analysis can be found in Table 4, showing a great superiority of the SNN compared to
the equivalent ANN in terms of energy efficiency. It is important to note however, that the energy
consumption of SNNs depends on the specific data set and the resulting spike rates in contrast to
ANNs, which always execute the same number of operations. Moreover, SNNs can only achieve
this level of energy efficiency, when deployed on neuromorphic hardware.

5 DISCUSSION AND LIMITATIONS

The training of SNNs on GPUs poses a great challenge, since GPUs are based on synchronous and
parallel computing while the operations in SNNs are event-based. Therefore, the training can only
be simulated using time steps and enforces a certain degree of accumulation of events into a more
dense representation. This makes it especially difficult to train on long sequences of input data,
because the gradient has to be computed over all time steps of a whole sequence, leading to a trade-
off between training time and performance. Using longer sequences that contain multiple labels may
result in a stronger training signal, however this signal will be distributed during backpropagation
along the space and time dimensions of the network.

Furthermore, ANNs still suffer from lower accuracies compared to traditional ANNs and RNNs. Our
method would greatly benefit from better training methods for SNNs, which are still an ongoing
research topic. Still, SNNs can achieve a great reduction on energy requirements compared to
equivalent ANN architectures.

6 CONCLUSION

We introduce a novel sequence-aware training approach for event-based object detection with SNNs.
Our approach uses longer sequences, which include multiple labels at different points in time, during
the training time in order to mimic real world usage. This allows the network to prioritize the storage
of important temporal cues within its internal memory that is represented by the membrane potential
of the nodes. This leads to an increased detection performance. Our network is further not only able
to process short, single-label samples, but also longer sequences of continuous event streams with
a high prediction frequency of 40 Hz. Future research avenues may explore the implementation of
truncated backpropagation techniques in order to determine the full potential of very long training
sequences while avoiding the great computational overhead of the full gradient.
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