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Abstract
Pretraining and finetuning models has become
increasingly popular. But there are still serious
impediments in Imitation Learning from Obser-
vation (ILfO) with pretrained models. This study
identifies two primary obstacles: the Embodiment
Knowledge Barrier (EKB) and the Demonstration
Knowledge Barrier (DKB). The EKB emerges
due to the pretrained models’ limitations in han-
dling novel observations, which leads to inac-
curate action inference. Conversely, the DKB
stems from the reliance on limited demonstra-
tion datasets, restricting the model’s adaptabil-
ity across diverse scenarios. We propose sepa-
rate solutions to overcome each barrier and ap-
ply them to Action Inference by Maximising Evi-
dence (AIME), a state-of-the-art algorithm. This
new algorithm, AIME-NoB, integrates online in-
teractions and a data-driven regulariser to miti-
gate the EKB. Additionally, it uses a surrogate
reward function to broaden the policy’s appli-
cability, addressing the DKB. Our experiments
on tasks from the DeepMind Control Suite and
Meta-World benchmarks show that AIME-NoB
significantly enhances sample efficiency and per-
formance, presenting a robust framework for over-
coming the challenges in ILfO with pretrained
models.

1. Introduction
We have been going through a paradigm shift from learn-
ing from scratch to pretraining and finetuning, in particular
in Computer Vision (CV) (He et al., b; Radford et al., a;
He et al., a) and Natural Language Processing (NLP) (De-
vlin et al.; Radford et al., b; Ouyang et al.; Touvron et al.,
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a;b) fields due to the increasing availability of foundation
models (Bommasani et al.) and ever-growing datasets. How-
ever, it is still unclear how to adapt this new paradigm into
decision-making, in particular what type of models we need
to pretrain and how these models can be adapted to solve
downstream tasks. Recent work (Zhang et al.; DeMoss
et al.; Sekar et al.; Rajeswar et al.; Hansen et al., a) showed
that pretrained latent space world models enable successful
and efficient transfer to new tasks with either reinforcement
learning (Sekar et al.; Rajeswar et al.; Hansen et al., a) or
Imitation Learning from Observation (ILfO) (Zhang et al.;
DeMoss et al.). ILfO (Torabi et al., a;b; Baker et al.; Zhang
et al.; DeMoss et al.; Liu et al., a), especially from videos
(Baker et al.; Zhang et al.; Liu et al., a; DeMoss et al.), is a
more promising approach in this new paradigm since it does
not require a handcrafted reward function which is hard to
define for many real-world tasks.

But there are challenges when using pretrained models in
ILfO. To quantify these we introduce two new barriers,
which we call the Embodiment Knowledge Barrier (EKB)
and the Demonstration Knowledge Barrier (DKB). The EKB
describes the shortcomings of a pretrained model when con-
fronted with novel observations and actions beyond its train-
ing experience. The DKB describes the generalisation from
a limited number of expert demonstrations in imitation learn-
ing (Ho & Ermon). Approaches like BCO(0) (Torabi et al.,
a) and AIME (Zhang et al.) typically suffer from these two
knowledge barriers. First, these algorithms depend on the
pretrained model to infer missing actions from observation
sequences. Thus, when the model has not seen a specific
observation before, it may not know enough about the em-
bodiment to infer the correct action. Second, if the policy
optimisation is only guided by limited demonstrations can
lead to a policy that generalises poorly, working well in
some scenarios but not in others.

To better showcase the two barriers, in Figure 1 left, we
evaluate both AIME (Zhang et al.) and BCO(0) (Torabi
et al., a) and their oracle versions w.r.t. different number of
demonstrations on walker-run task. Both algorithms pretrain
a model from a large embodiment dataset and use that to
infer the actions for the observation-only demonstrations.
The oracle versions remove the need to infer the missing
actions, thus removing the EKB. As we can see from the

1



Overcoming Knowledge Barriers: Online ILfO with Pretrained World Models

Figure 1. Main idea of this paper. On the left, we plot the performance of BCO(0) and AIME together with their oracle versions w.r.t.
different number of demonstrations on walker-run task. The purple region between the oracle version and the expert is the Demonstration
Knowledge Barrier (DKB) while the orange region between the algorithm and its oracle version represents the Embodiment Knowledge
Barrier (EKB). On the right, we present the solutions proposed in this paper to overcome the two barriers. The blue parts represent the
original version of the algorithms that suffer from the knowledge barriers. Orange parts demonstrate the solution for EKB, where the
agent is allowed to interact with the environment and use Donline together with Dbody to update the world model. Purple parts show the
solution for DKB, where a surrogate reward model is pretrained and used to label the online dataset Donline and then used as an RL signal
for policy learning.

figure, the two algorithms are always upper-bounded by the
corresponding oracle version, and the difference between
them represents the EKB. On the other hand, even if given
the true actions of the expert, imitation performance may
still be impacted by a limited number of demonstrations
providing insufficient coverage of the state space. Thus,
the difference between the oracle version and the expert
performance represents the DKB.

In this paper, we study how to resolve these barriers to im-
prove the performance of ILfO approaches, in particular
of AIME. For the EKB, we extend the setting from offline
to online by allowing the agent to further interact with the
environment to gather more data to train the world model.
While for the DKB, we introduce a surrogate reward func-
tion to allow the policy to essentially train on more data. We
demonstrate that the proposed modifications significantly
improve the performance on nine tasks in DeepMind Con-
trol Suite (DMC) (Tunyasuvunakool et al.) and six tasks in
Meta-World (Yu et al.).

We summarise our contributions as follows:

• We identify and thoroughly analyse the two knowl-
edge barriers, namely EKB and DKB, in the current
pretrained-model-based ILfO methods.

• We propose AIME-NoB as an extension of the state-
of-the art AIME algorithm by resolving the two knowl-
edge barriers. Specifically, AIME-NoB uses online
interaction with data-driven regularisation to solve the

EKB and learn a surrogate reward function enlarging
state coverage to solve the DKB.

• We evaluate AIME-NoB on 15 tasks from two bench-
marks and the results demonstrate AIME-NoB signifi-
cantly outperforms previous state-of-the-art methods
both in terms of final performance and sample effi-
ciency. We also show how the EKB and the DKB are
resolved by the proposed modifications with ablation
studies.

2. Preliminary
We mostly follow the problem setup as described in Zhang
et al.. We consider a POMDP problem defined by the tuple
{S,A, T,R,O,Ω}, where S is the state space, A is the
action space, T : S × A → S is the dynamic function,
R : S → R is the reward function, O is the observation
space, which is image in this paper, and Ω : S → O is the
emission function. The goal is to find a policy π : S → A
which maximises the accumulated reward, i.e.

∑
t rt.

We presume the existence of three datasets of the same em-
bodiment available to our agent. The embodiment dataset
Dbody contains trajectories {o0, a0, o1, a1 . . . } that repre-
sent past experiences of interacting with the environment.
This dataset provides information about the embodiment for
the algorithm to learn a world model. In addition, we also
allow the agent to interact with the environment to collect
new data in a replay buffer Donline. Note that, although the
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simulator will give us the reward information, the agent is
not allowed to use them, and we only use the reward for eval-
uation purpose. The demonstration dataset Ddemo contains
a few expert trajectories {o0, o1, o2 . . . } of the embodiment
solving a certain task defined by Rdemo. The crucial dif-
ference between this dataset and the other two datasets is
that the actions are not provided anymore since they are not
observable from a third-person perspective. The goal of our
agent is to learn a policy π from Ddemo which can solve the
task defined by Rdemo as well as the expert who generated
Ddemo.

2.1. World Models

A World Model (Ha & Schmidhuber) is a generative model
which models a probability distribution over sequences of
observations, i.e. p(o1:T ). The model can be either uncon-
ditioned or conditioned on other factors, such as previous
observations or actions. When the actions taken are known,
they can be considered as the condition, i.e. p(o1:T |a0:T−1),
and the model is called embodied (Zhang et al.).

In this paper, we consider variational latent world models
where the observation is governed by a Markovian hidden
state. In the literature, this type of model is also referred
to as a State-Space Model (SSM) (Karl et al.; Hafner et al.,
b;a; Becker-Ehmck et al.; Klushyn et al.). Such a variational
latent world model involves four components, namely

encoder zt = fϕ(ot),

posterior st ∼ qϕ(st|st−1, at−1, zt),

prior st ∼ pθ(st|st−1, at−1),

decoder ot ∼ pθ(ot|st).

fϕ(ot) is the encoder to extract the features from the obser-
vation; qϕ(st|st−1, at−1, zt) and pθ(st|st−1, at−1) are the
posterior and the prior of the latent state variable; while
pθ(ot|st) is the decoder that decodes the observation distri-
bution from the state. ϕ and θ represent the parameters of
the inference model and the generative model respectively.

Typically, the model is trained by maximising the Evidence
Lower Bound (ELBO) which is a lower bound of the log-
likelihood, or evidence, of the observation sequence, i.e.
log pθ(o1:T |a0:T−1). Given a sequence of observations, ac-
tions, and states, the objective function is

ELBO =

T∑
t=1

J rec
t − JKL

t , (1)

where J rec
t = log pθ(ot|st), (2)

JKL
t = DKL[qϕ||pθ]. (3)

The objective function is composed of two terms: the first
term J rec is the likelihood of the observation under the
inferred state, which is usually called the reconstruction

loss; while the second term JKL is the KL divergence be-
tween the posterior and the prior distributions of the latent
state. To compute the objective function, we use the re-
parameterisation trick (Kingma & Welling; Rezende et al.)
to autoregressively sample the inferred states from the ob-
servation and action sequence.

In summary, a world model is trained by solving the optimi-
sation problem as

ϕ∗, θ∗ = argmax
ϕ,θ

E{o,a}∼Dbody,s∼qϕ [ELBO]. (4)

2.2. AIME

AIME is a state-of-the-art algorithm that uses a pretrained
world model to solve ILfO in an offline setting. Specifically,
it uses the pretrained world model as an implicit inference
model by solving for the best action sequence that makes the
demonstration most likely under the trained world model.
The imitation can be done jointly with the action inference
using amortised inference and the re-parameterisation trick
by solving the following optimisation problem

ψ∗ = argmax
ψ

Eo∼Ddemo,s∼qϕ∗,θ∗ ,a∼πψ [ELBO], (5)

where ψ is the parameter for policy πψ(at|st). The result-
ing objective is very similar to Equation (4), with a subtle
difference of the sampling path. That is in the new objective,
only the observations are sampled from the dataset and both
states and actions are sampled iteratively from the learned
model and the policy, respectively.

3. Methodology
In this section we will analyse the EKB and DKB for
AIME. Based on the analysis we introduce a solution for
each knowledge barrier and combine them into AIME-NoB,
where NoB stands for No Barriers. The general framework
of the solutions is shown in Figure 1 and the pseudocode of
AIME-NoB is in Algorithm 1 in Appendix A.

3.1. Resolving the EKB

The most natural way to solve the EKB is to allow the agent
to further interact with the environment. New experiences
can minimise the error in the pretrained model in proximity
of the policy πψ and gain more embodiment knowledge
relevant for the task at hand. Torabi et al. (a) proposed a
modified version of BCO(0) called BCO(α) which intro-
duced such an interaction phase. However, from their and
our empirical results, it did not resolve the EKB since there
remains a gap between BCO(α) and the BC oracle when
the environment is complex. In fact, as we will show in
the following, the idea of adding online interactions is not
straightforward to successfully implement in practice.
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As shown in recent works in Offline RL, continuing training
an actor-critic from the offline phase in the online phase re-
quires certain measures to combat the shift of objective (Lee
et al.; Ball et al., 2023; Nakamoto et al.). A similar story
also applies when extending AIME from purely offline to
online. The most dominant problem we found is overfitting
to the newly collected dataset.

As the training progresses iteratively between data collec-
tion, model training and policy training, in the early phase
of training there are only a few new trajectories available
for training the model. Because the world model is highly
expressive, it may overly favour similar trajectories in the
new data, leading to a high ELBO. Normally, this may not
be a big problem since, eventually, more and more data will
be collected to combat this overfitting. But since AIME also
depends on the ELBO to train the policy, it quickly causes
the policy training to diverge.

In order to address the overfitting issue, we need a reg-
ulariser for model learning. Instead of designing ad-hoc
methods to regularise the model in the parameter space, we
adopt a data-driven approach. From the model’s perspective,
the overfitting is caused by a sudden shift of the training
data from a large and diverse pretraining dataset to a small
and narrow replay buffer. So one way to make the shift
not as sudden is to append the pretraining dataset to the
replay buffer, so that the distribution of the training data will
change smoothly. However, this causes data efficiency prob-
lems since the replay buffer is relatively small compared
to the pretraining dataset so that uniformly sampling from
them together limits using the new data. Instead, we con-
sider sampling separately from both datasets. We modify
the objective in Equation (4) to

ϕ∗, θ∗ = argmax
ϕ,θ

αE{o,a}∼Dbody,s∼qϕ [ELBO]

+(1− α)E{o,a}∼Donline,s∼qϕ [ELBO]. (6)

The amount of data we sample from the pretraining dataset
is controlled by a hyper-parameter α, which represents how
much regularisation we put upon the model. Here we mainly
consider setting α = 0.5, so that we sample the data evenly
from both datasets. We justify our choice in the ablation
section with Figure 4b.

This finding contradicts Rajeswar et al. and Hansen et al.
(a), where the pretrained world models do not need such a
data-driven regulariser. We conjecture that unlike AIME,
these approaches mainly use their world models purely as
generative models to predict states and rewards given action
sequences, which is only indirectly influenced by overfitting
the ELBO.

3.2. Resolving the DKB

Based on the discussion from the previous sections, the
straightforward way of solving the DKB is also to increase
the number of demonstrations available to the agent. How-
ever, expert demonstrations are difficult and expensive to
collect. Increasing the size of the demonstration dataset is
not always feasible in real-world applications. In order to
propose a more practical solution, we need to look deeper
into what is the real cause of the DKB.

The policy-learning part of the AIME algorithm is essen-
tially behaviour cloning, and it is only conducted on the
demonstration dataset. So for the states covered in the
demonstration dataset, the policy is given clear guidance
about what to do, while for other states, the behaviour is
undefined. AIME solely relies on the generalisation abilities
of the learned latent state and the trained policy network
to extrapolate the correct behaviour. In particular for small
demonstration datasets, this can be unreliable or even impos-
sible. Therefore, if we can enlarge the space of the covered
states, we should reduce the DKB (Ross et al.).

Generative Adversarial Imitation Learning (GAIL) style
algorithms (Ho & Ermon; Peng et al.; Torabi et al., b; Liu
et al., a) are examples of this solution. Instead of directly
learning from the demonstration, they adversarially train a
discriminator to assess how closely each state matches the
demonstration dataset. When learning the policy, they treat
the discriminator’s output as a reward and encourage visiting
states that are more likely to belong to the demonstrations.
This modification provides guidance for newly visited states
in the replay buffer, allowing the space of supported states
to grow over the course of training.

However, this benefit is not clearly separable in GAIL since
it is always entangled with the adversarial training of the
discriminator. A recent work MAHALO (Li et al.) shows
further evidence of the importance of the size of the cov-
ered space. The authors studied a similar ILfO setup with
embodiment and demonstration datasets. They compared
two variants: for one they train an inverse dynamics model
(IDM) from the embodiment dataset and use it to label the
demonstration dataset, while for another they train a reward
model from the demonstration dataset by labelling all time
steps with a reward of 1, and then use it to label the embod-
iment dataset. Finally, they run the same offline RL algo-
rithm on both labelled datasets. The results show the second
variant attains a much better performance even though the
labelling from the reward model is not as meaningful as the
actions from the IDM.

Based on these insights, we propose to introduce a surro-
gate reward providing guidance signal for the agent on the
replay buffer dataset. Due to the instability of adversarial
training (Goodfellow et al.; Arjovsky et al.; Ho & Ermon)
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and our focus on the pretraining paradigm, we opt to adopt
the VIPER algorithm (Escontrela et al.). Instead of training
a discriminator, VIPER trains a video prediction model on
the demonstration datasets and treats the likelihood of the
video prediction model as the reward for policy learning, i.e.
rVIPER
t = log pν(ot|o<t). Using this reward, we train the

policy with a dreamer-style actor-critic algorithm based on
imagination in the latent space of the world model (Hafner
et al., a). In order to do this, we first need to modify the re-
construction term in Equation (1) by adding an extra term for
decoding the VIPER reward, i.e. log pθ(rVIPER

t |st). Then,
we further train a value estimator Vξ(st) using TD(λ)-return
estimates, i.e.

V λξ (st) = (1− λ)

∞∑
n=1

λn−1V
(n)
ξ (st) (7)

with V (n)
ξ (st) =

t+n∑
t′=t+1

γt
′−t−1rVIPER

t′ + γnVξ(st+n).

Using this estimate, we optimise our value function by min-
imising the MSE, i.e.

ξ∗ = argmin
ξ

(Vξ(st)− V λξ′ (st))
2. (8)

As is common practice, we use a target value network with
parameters ξ′ to stabilise training, whose parameters are
updated using Polyak averaging with a learning rate τ in
every iteration.

Using this value estimate, we extend the policy objective of
Equation (5) to

ψ∗ = argmax
ψ

Eo∼Ddemo,s∼qϕ,θ,a∼πψ [ELBO]

+βE{o,a}∼Donline,s∼qϕ,a′∼πψ,s′∼pθ [V
λ
ξ′ (s

′)],

(9)

where β is a hyper-parameter for balancing the two terms.
We set β = 0.1 by default based on the difference of default
learning rate in AIME and Dreamer.

4. Experiments
We aim to answer the following questions: a) How does the
proposed AIME-NoB compare with state-of-the-art methods
on common benchmarks? b) How well does the proposed
modification resolve the EKB and the DKB? c) How do dif-
ferent choices of hyper-parameters influence the results? In
order to answer these questions, we design our experiments
on DMC and Meta-World benchmarks.

4.1. Datasets

For the DMC benchmark, we choose nine tasks across six
embodiments following Liu et al. (a) and use their published

dataset as the demonstration datasets. Each dataset contains
only 10 trajectories to reflect the scarcity of expert demon-
strations. For the embodiment dataset, in order not to leak
the task information from the pretraining phase, we follow
Rajeswar et al. and run a Plan2Explore (Sekar et al.) agent
for each embodiment with 2M environments steps and use
its replay buffer as the embodiment dataset. Different to
them taking the model directly from the Plan2Explore agent
as the pretrained model, we follow Zhang et al. to retrain
the model for 200k gradient steps to get a better model.

For Meta-World benchmark, we use the data and model
from Hansen et al. (a). The embodiment dataset was created
from the replay buffer datasets. The open-sourced replay
buffer datasets contain 40k trajectories for each of the 50
tasks with only state information. In order to fit to our
image observation setup, we render the images by resetting
the environment to the initial state of each trajectory and
then executing the action sequence. The details can be found
in Appendix E.

Following the idea of not leaking too much about the task
information, inspired by the common practice in offline RL
benchmarks (Fu et al.), we use the first 200 trajectories from
each replay buffer and form a dataset with 10k trajectories
in total. We call this dataset MW-mt50. To further study the
out-of-distribution transfer ability of the pretrained model,
we follow the difficulty classification of the tasks from (Seo
et al., a) and only use the 39 easy and medium difficulty
tasks to generate the datasets and the 11 tasks hard and very
hard tasks as hold-out tasks. We uniformly sample 250
trajectories from the first 10k trajectories from each of the
39 tasks and form a dataset with 9750 trajectories in total.
We refer to this dataset as MW-mt39. Hence, MW-mt39
contains some expert behaviour solving the tasks, while
MW-mt50 consists of mostly exploratory behaviour.

As the demonstration datasets, we use the single-task poli-
cies open-sourced by TD-MPC2 and collect 50 trajectories
for each tasks. We ensure that every trajectory in the demon-
stration dataset is successful. Since there are 500 steps
in a DMC trajectory and only 100 steps in a Meta-World
trajectory, the resulting datasets are roughly the same size.

4.2. Implementation

For the world model, we use the RSSM architecture (Hafner
et al., b) with the hyper-parameters in Hafner et al. (a) for
DMC tasks. In addition, we use the KL Balancing trick
from Hafner et al. (c) to make the training more stable. For
Meta-World, since the visual scene is more complex, we use
the M size model from Hafner et al. (d), but still with the
continuous latent variable to be aligned with other models
used in this paper. The policy network is implemented with
a two-layer MLP, with 128 neurons for each hidden layer.
All the models are trained with Adam optimiser (Kingma &
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Figure 2. Benchmark results and 9 DMC tasks. Return are calculated by running the policy 10 times with the environment and taking the
average return. The results are averaged across 5 seeds with the shade region representing 95% CI.

Ba). More details about the hyper-parameters can be found
in Appendix C.

For the VIPER model, in the original paper, the authors
first pretrain a VQ-GAN (Esser et al.) and then train a
GPT-style auto-regressive model in the quantised space for
prediction. For simplicity of the implementation, in this
paper, we consider training an unconditioned latent world
model as in Seo et al. (b) to model the VIPER reward. We
use the same RSSM architecture of the model learning for
DMC, only removing the condition of the actions, and we
train the VIPER model for each task separately. Especially
during training, we find training such a powerful model from
scratch on a small dataset can easily result in over-fitting.
Thus, we empirically choose to train the model only for 500
gradient steps for DMC models and 1000 gradient steps for
Meta-World models. We show evidence of overfitting in
Appendix F. Due to the large scale of the ELBO, we also
apply symlog (Hafner et al., d) when computing the VIPER
reward. Another difference with the original VIPER paper
is that we do not use intrinsic motivation as the exploration
bonus as the authors suggested, since the AIME loss for
policy learning already provides task-related guidance for
exploration. We only apply an entropy regulariser to the
policy as is common practice. We further show the synergy
between AIME and VIPER in Appendix G.

4.3. Benchmark Results

The benchmark results of DMC are shown in Figure 2. We
compare AIME-NoB with AIME (Zhang et al.), BCO(α)
(Torabi et al., a) and PatchAIL (Liu et al., a), a GAIL
style algorithm. AIME-NoB significantly outperforms the
PatchAIL baseline in 7 out of 9 tasks in terms of sample
efficiency. Benefiting from the pretrained world model,
AIME-NoB typically can reach expert performance within
200k environment steps. Compared with BCO(α), updating
the model is regularised and is benefiting more from the
online interaction to resolve the EKB. Compared with the
original offline AIME, AIME-NoB reliably improves per-
formance, especially in hard tasks such as walker-run and
hopper where offline AIME did not manage to make any
progress.

However, there are still two tasks for which AIME-NoB
does not show much progress, namely cartpole-swingup and
quadruped-run. For cartpole-swingup, we observe that the
policy learns to move the cart out of the scene so that the
static image yields a high likelihood from the video predic-
tion model. A similar phenomenon was also discussed in
the original VIPER paper (Escontrela et al.). For quadruped-
run, we conjecture that it is due to visual difficulties of a
reconstruction-based model. When the quadruped is ini-
tialised on the ground, due to the symmetric structure of the
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Figure 3. Benchmark results and 6 Meta-World tasks. Trajectories are only counted as success when it success at the last time steps and
the success rates are calculated with 10 policy rollouts. The results are averaged across 5 seeds with the shade region representing 95% CI.

robot, it is impossible to figure out which action corresponds
to which leg, and it easily leads the action inference process
to diverge. We additionally show AIME-NoB can work on
these tasks with the help of the true reward in Appendix G.

The benchmark results of Meta-World are shown in Figure 3.
We choose four hard or very hard tasks, namely disassemble,
assembly, hand-insert and push; and two medium difficult
tasks, namely sweep and hammer. While PatchAIL does not
work on these tasks at all, AIME and AIME-NoB can make
progress on them. AIME-NoB using either of the pretrained
models outperforms AIME in all tasks. On hard and very
hard tasks, AIME with the mt50 model is better than AIME
with the mt39 model. This is because they contain an unseen
novel object by the mt39 model creating a large EKB. But
in the online setting of AIME-NoB, the two models are
mostly on par. Moreover, using the mt50 models is better
than using the mt39 models on average, which may imply
covering diverse behaviour is more valuable than knowing
the expert directly.

4.4. Ablation Results

We conduct our ablation studies on walker-run task from
DMC.

How well does the proposed methods resolve knowledge
barriers? In order to show how well AIME-NoB resolves
the two knowledge barriers, we the same experiment as in
Figure 1 by providing the agent with different numbers of
demonstrations. The result is shown in Figure 4a. As we dis-
cussed before, MBBC as an oracle method that circumvents
the EKB is a strict upper bound for AIME. And AIME-
NoB which addresses both the EKB and DKB achieves
much better results and is an upper bound for MBBC. From

AIME-NoB can achieve near-expert performance with as
few as 5 demonstrations for this challenging task.

Influence of the data regulariser ratio α. We set the regu-
lariser ratio α from [0.0, 0.25, 0.5, 0.75] and plot the results
in Figure 4b. As we can see from the result, as long as
we enable the regulariser, i.e. set α > 0, we get reliable
improvements over the course of training. But if we disable
the regulariser by setting α = 0, the learning exhibits high
variance. In some cases, it fails to work entirely, while in
others, learning only begins once sufficient new data accu-
mulates in the replay buffer. As we discussed in Section 3.1,
without the regulariser, in the early stage of the training, the
model can easily overfit to the replay buffer, and it explains
the early flattening phase of the training. As the training
progresses, more and more data is available from the replay
buffer, and it can establish the regulariser on its own, which
explains the dramatic growing phase of the curves.

We also plot the MSE between the inferred actions and
the true actions during the training process. From that we
can see that a higher regulariser ratio offers more stable
inference of the actions in the early phase of training.

Influence of the value gradient loss weight β. We set
the weight β from [0.0, 0.01, 0.05, 0.1, 0.5, 1.0] and plot
the results in Figure 4c. As the result shows, having a
small β slows learning progress toward convergence. On
the other hand, setting β to a much larger value will improve
the sample-efficiency without causing instability. For the
sample efficiency, since we only have 10 demonstrations,
DKB dominates over EKB as shown in Figure 4a. Thus,
having a larger β will make the learning much faster. In
terms of the stability, as we discussed in 3.2, AIME loss and
the value gradient loss operate on different regions of the

7



Overcoming Knowledge Barriers: Online ILfO with Pretrained World Models

100 101 102 103

Number of Demonstrations

0

200

400

600

800

Re
tu

rn

walker-run

AIME-NoB
MBBC (oracle)
AIME
expert
random

(a) Demonstration efficiency.

0.0 0.5 1.0
Env Steps 1e6

0

200

400

600

800

1000

Re
tu

rn

walker-run

0.0
0.25
0.5
0.75
expert

0.0 0.5 1.0
Env Steps 1e6

0.0

0.5

1.0

Ac
tio

n 
M

SE

walker-run

(b) Ablation of α.

0.0 0.2 0.4 0.6 0.8 1.0
Env Steps 1e6

0

200

400

600

800

Re
tu

rn

walker-run
0.0
0.01
0.05

0.1
0.5

1.0
expert

(c) Ablation of β.

Figure 4. (a) Performance of AIME-NoB, MBBC, AIME w.r.t. different number of demonstrations. For AIME-NoB, we do not show the
result for more than 100 demonstrations since it is already saturated to the expert. (b) Ablation for the choice of the regulariser ratio α.
The left figure shows the mean return over 10 trajectories while the right figure shows the MSE between the inferred actions and the true
actions. (c) Ablation for the choice of the weight of the value gradient loss β. All results are averaged across 5 seeds with the shaded
region representing a 95% CI.

environment states. This could make their influence on the
policy independent of each other.

5. Related Work
Imitation Learning from Observation. ILfO (Torabi et al.,
a;b; DeMoss et al.; Li et al.; Baker et al.; Zhang et al.; Liu
et al., a) has become more popular in recent years due to
their potential to utilise internet-scale videos for behaviour
learning. Most of the previous works (Torabi et al., a;b; Li
et al.) study the problem only with the true state as observa-
tion. Recent works (DeMoss et al.; Baker et al.; Zhang et al.;
Liu et al., a) have started to shift toward image observations
as a more general setting. Our work is a continuation of this
journey.

Pretrained Models for Decision-Making. Inspired by the
tremendous progress made in recent years in CV and NLP
fields with the power of pretrained models, the decision-
making community is also trying to follow the trend. Most
recent works focus on the use of Large Language Model
(LLM) for decision-making. A prompted model is used for
producing trajectories and plans (Chen et al., 2023a; Huang
et al., 2022; Ahn et al.; Di Palo et al., 2023), code (Vemprala
et al., 2023; Liang et al.; Singh et al., 2022; Chen et al.,
2023b; Huang et al., 2023) or for modifying the reward
(Ma et al., 2023; Mahmoudieh et al., 2022). There are
also other people studying the benefit of pretrained visual
models for visuomotor tasks (Shah & Kumar; Majumdar
et al.; Hansen et al., b; Parisi et al.) while others try to train
large policy networks directly with transformers (Vaswani
et al.) and huge datasets (Brohan et al., b;a; Reed et al.).
However, there is only little attention being put on pretrained
world models (Zhang et al.; Rajeswar et al.; Sekar et al.),
which are natively developed by the model-based decision-
making community and perfectly fit into the pretraining and
finetuning paradigm. Our work explores this overlooked

domain and showcases its potential.

6. Discussion
In this paper, we identify two knowledge barriers, namely
the EKB and the DKB, which as we show limit the per-
formance of state-of-the-art ILfO methods using pretrained
models. We thoroughly analyse the underlying cause of
each barrier and propose practical solutions. Specifically,
we propose to use online interaction with a data-driven reg-
ulariser to solve the EKB and surrogate reward labelling
to reduce the DKB. Combining these solutions, we pro-
pose AIME-NoB and showcase its efficiency compared to
state-of-the-art ILfO methods. Our ablation studies show
how each knowledge barrier is addressed by the proposed
solution and how their hyper-parameters influence the per-
formance.

However, the proposed solutions still have drawbacks. First,
the data-driven regulariser is not practical when the model is
pretrained on huge datasets – cf. foundation models popular
in the fields of CV and NLP. Reducing the amount of data
needed for the regulariser could greatly improve the usability
of the method. Second, although having pretrained models
is beneficial, having too many pretrained components can be
detrimental for model selection. Especially in AIME-NoB,
the world model and the VIPER model share a very similar
interface. Designing a shared model that can serve both
interfaces could ease the use of the method. Last but not
least, due to the high demand of computing resources, we
only study the pretrained world model on a very small scale.
It will be an interesting direction to study these model at
larger scales.

We hope our work can shed some light on the future de-
velopment of ILfO method and bring more attention to the
great potential of pretrained world models.
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Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Algortihm

Algorithm 1 AIME-NoB

Input: Embodiment dataset Dbody, Demonstration dataset Ddemo, Pretrained world model parameters ϕ, θ, Pretrained
VIPER model pν , regulariser ratio α, value gradient weight β, batch size B
Initialise policy and critic parameters ψ, ξ randomly.
for i = 1 to policy pretraining iterations do

Draw a batch of demonstrations o1:T ∼ Ddemo

Update policy parameters ψ with Equation (5).
end for
Initialize Donline → ∅.
for i = 1 to Environment Interaction budget do

Collect a new episode {o1:T , a1:T } with the current policy πψ
Estimate reward using VIPER rVIPER

1:T = pν(o1:T )
Append {o1:T , a1:T , rVIPER

1:T } to Donline

# Update world model
Draw α · B samples bbody ∼ Dbody

Draw (1− α) · B samples bonline ∼ Donline

Define combined batch b = bbody ∪ bonline
Finetune model with batch b using Equation (6).
# Update policy
Sample a batch from Ddemo

Update policy parameters ψ with Equation (9).
Update value function parameters ξ with Equation (8).

end for

B. Compute Resources
All the experiments are run on a local cluster with a few A100 and RTX8000 instances. All the experiments are tuned to use
less than 10GB of GPU memory so that they can run in A100 MIG. World models pretraining requires about 24 GPU hours,
while VIPER models require negligible time for training. Each DMC experiment requires about 40 GPU hours while each
Meta-World experiment requires about 24 GPU hours.

C. Hyper-parameters
Here, we document the detailed hyper-parameters for all the trained models in Table 1.

D. Source of Datasets
We use the expert trajectories from Liu et al. (a) at https://osf.io/4w69f/?view_only=
e29b9dc9ea474d038d533c2245754f0c. The authors didn’t provide a License for their dataset. Besides, we use
the replay buffer dataset from Hansen et al. (a) at https://huggingface.co/datasets/nicklashansen/
tdmpc2/tree/main/mt80. The authors provide the dataset under the MIT License. Moreover, we use the replay buffer
dataset from Zhang et al. at https://github.com/argmax-ai/aime/tree/main/datasets. The authors
provide the dataset under the CC BY 4.0 License.

E. Details for Resetting Meta-World Tasks
To generate the image observation datasets from the TD-MPC2 replay buffer (Hansen et al., a), we modify the Meta-World
codebase to reset the environment to the initial state of the trajectory from the first observation. Luckily, the starting position
of the robot arm is always the same for each task, so that we do not need to apply inverse kinematics to solve for the initial
pose of the robot arm. For the object and the target position, for most of the tasks, the internal reset position can be computed
by making a constant shift on the object position and the target position in the observations. There are, however, also a few
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edge cases which we handle differently.

In button-press-topdown and button-press-topdown-wall, the object’s true position only appears in the observation upon the
second time step, presumably due to some simulator delay in the resetting process. So for these two tasks, the initial state is
reset by the second observation.

For basketball and box-close, it seems like there is some internal collision detection that will alter the object and robot
position after the task is reset, so computing the exact reset value from the observation is not possible. For these two tasks,
we instead resort to a search-based method. To be specific, we use a gradient-free optimiser from (Liu et al., b) to search
over the resetting space of the object and find the reset position that minimises the L2 distance with the true observation.

More details of the implementation can be found in the code.

F. Overfitting of the VIPER Models
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Figure 5. Correlation of the VIPER reward and the real reward with models trained with different numbers of gradient steps. Each point
represents one trajectory. We can clearly see the model gradually overfitting and losing the correlation with the real reward when training
for more than 1000 gradient steps.

To better illustrate the overfitting problem for VIPER models and justify our choice of training fewer iterations, we train the
VIPER models for a varying number of gradient steps and evaluate the correlations between the VIPER reward and the true
reward on both the expert dataset from PatchAIL, where the VIPER model is trained on, and the replay buffer dataset from
Zhang et al..

Specifically, we train the same VIPER model with {100, 500, 1000, 2000, 5000, 100000} gradient steps and plot the result
in Figure 5. As we can clearly see, when training with less than or equal to 1000 gradient steps, VIPER reward has a very
nice correlation with the true reward, with the middle-range performance even like a linear correlation. The best model could
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Figure 6. Additional ablation on DMC tasks by exploring the synergy between AIME and VIPER model. Return are calculated by running
the policy 10 times with the environment and taking the average return. The results are averaged across 5 seeds with the shade region
representing 95% CI.

be selected from 500 and 1000 gradient steps. However, as we train the model for longer, the VIPER reward for the expert
trajectories is boosted even higher, and as a side effect, it also relatively boosts up the VIPER reward for low-performance
trajectories. This is because, when overfitting the expert trajectories, the model increases the marginal likelihood of all the
observations in the expert trajectories to a higher value, which also includes a few frames of the robot lying on the ground at
the very beginning of each trajectory after reset. For these low-performance trajectories, the robot remains mainly stuck
around the initial position and struggles on the ground. This artifact of the overfitted VIPER reward creates a sharp local
maximum in the low-performance region that the agent can hardly get away from.

G. Additional Experiments
Synergy between AIME and VIPER model. We also find there is a synergy between AIME and VIPER model. As we
showed in Appendix F, one inherent problem of VIPER reward is that it not only incentivises the expert behaviour as the
optimal, but also a stationary behaviour with very low reward as a local maxima. In order to work with the VIPER reward,
the agent needs to have the ability to escape from the local maxima region. AIME offers the IL loss to imitate the expert
demonstrations and can achieve decent performance even when pretrained offline, which helps to escape the local maxima.
To better show the synergy, we provide additional ablation results with the VIPER reward in Figure 6. In the experiments,
we include two other variants: the AIME-NoB w/o AIME is to remove the AIME IL loss from the online policy learning, so
that the policy is pretrained by AIME loss but finetuned with only RL loss from the VIPER reward; while the VIPER is
following the implementation in the original VIPER paper with RL loss on both the VIPER reward for the task and intrinsic
reward for exploration. From the result, we can clearly see that without the help of AIME IL loss, VIPER reward cannot
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Figure 7. Additional benchmark results on 3 DMC tasks with an additional variant of AIME-NoB with the true reward. Return are
calculated by running the policy 10 times with the environment and taking the average return. The results are averaged across 5 seeds with
the shade region representing 95% CI.

reliably motivate the agent to learn good behaviours. Even when in walker tasks, the w/o AIME variant can solve the tasks
to a certain extent; it depends strongly on the random seeds. In conclusion, the good performance of AIME-NoB cannot be
achieved by either AIME IL loss or VIPER RL loss alone but by a combination of both.

Improving AIME-NoB with better rewards. We show additional results on the 3 not-so-well-performing DMC tasks,
namely cartpole-swingup, cheetah-run and quadruped-run, in 7. In the plot we add a new variant using the true reward from
the environment to replace the VIPER reward. As the results show, if we had a better estimation of the surrogate reward,
AIME-NoB could also achieve good performance on these tasks.

17



Overcoming Knowledge Barriers: Online ILfO with Pretrained World Models

Table 1. AIME-NoB hyper-parameters use for each benchmark.

DMC META-WORLD

WORLD MODEL

CNN STRUCTURE HA & SCHMIDHUBER HAFNER ET AL. (D)
CNN WIDTH 32 48

MLP HIDDEN SIZE 512 640
MLP HIDDEN LAYER 2 3
MLP ACTIVATIONS LAYERNORM + SWISH

DETERMINISTIC LATENT SIZE 512 1024
STOCHASTIC LATENT SIZE 30

FREE NATS 1.0
KL BALANCING 0.8

POLICY

HIDDEN SIZE 128
HIDDEN LAYER 2

ACTIVATION ELU
DISTRIBUTION TANH-GAUSSIAN

VALUE NETWORK

HIDDEN SIZE 128
HIDDEN LAYER 2

ACTIVATION ELU
TARGET EMA DECAY 0.95

TRAINING

BATCH SIZE 50 16
HORIZON 50 64

TOTAL ENV STEPS 1M 500k
UPDATE RATIO 0.1
GRADIENT CLIP 100

POLICY ENTROPY REGULARISER WEIGHT 1e-4
MODEL LEARNING RATE 3e-4
POLICY LEARNING RATE 3e-4

VALUE NETWORK LEARNING RATE 8e-5
DISCOUNT FACTOR γ 0.99

TD-LAMBDA PARAMETER λ 0.95
IMAGINE HORIZON 15

AIME-NOB SPECIFIC

POLICY PRETRAINING ITERATIONS 2000
DATA-DRIVEN REGULARISER RATIO α 0.5

VALUE GRADIENT LOSS WEIGHT β 0.1
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