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ABSTRACT

Polymers are important and numerous. While the structure synthesis and property
annotation for polymers require expensive equipment and a long time of effort,
small molecules without annotations have been collected from various sources
and at a large scale. However, there is a lack of studies for effective transfer learn-
ing from molecules without labels (as the source domain) to polymers with labels
(as the target domain). This paper proposes to extract the knowledge underlying
the large set of source molecules as a specific set of useful graphs to augment the
training set for target polymers. We learn a diffusion probabilistic model on the
source data and design two new objectives to guide the model’s denoising pro-
cess with target data to generate target-specific labeled graphs. Experiments from
unlabeled molecules to labeled polymers demonstrate that our transfer learning
approach outperforms existing semi/self-supervised learning approaches.

1 INTRODUCTION

Polymers in materials are macromolecules, composed of many repeating units. Their attractive
properties are broadly applied to plastic cups, aerospace structures, etc. Given a graph structure in
the repeating unit, the accurate prediction of the polymer property is important to the novel material
discovery. However, both polymer synthesis and annotation require specialized knowledge, as well
as lengthy and costly experiments in wet labs Hsissou et al. (2021). It requires us to utilize the large
set of molecules at hand to transfer useful knowledge to the target of polymer property prediction.

However, annotating numerous chemical properties for molecules suffers similar time and cost is-
sues as annotating polymer properties. It challenges the transfer learning from source molecules to
target polymers because the source is unlabeled. Existing semi/self-supervised learning usually can-
not effectively transfer knowledge across two domains. Semi-supervised learning like self-training
improperly assigns polymer properties to small molecules and may overlook useful knowledge con-
tained in molecules with low prediction confidence. Self-supervised learning leverages knowledge
from all source molecules. But the knowledge extracted from hand-crafted tasks in self-supervised
learning may conflict with the knowledge required in the target polymer domain. Aromatic rings, for
instance, are a prevalent structure in molecules Maziarka et al. (2020) and are considered valuable in
self-supervised tasks Zhang et al. (2021). However, polymer properties such as oxygen permeability
can be more related to non-aromatic rings in some cases Liu et al. (2022), which would be over-
looked if not using tailored self-supervised tasks specifically for the target task. As self-supervised
tasks strive for universality across various targets, the transferred knowledge may force the property
predictor in the target domain to focus more on aromatic rings, leading to poor prediction.

To address the above problems, we propose a Data-Centric Transfer learning framework (DCT). It
extracts knowledge from all source molecules and avoids the use of self-supervised learning that has
inappropriate hand-crafted tasks. We use a diffusion probabilistic model (known as diffusion model)
to capture the data distribution of source data, leveraging its capability of distribution coverage, sta-
tionarity, and scalability Dhariwal & Nichol (2021). At the stage of performing a particular target
task for polymer property prediction, the reverse process in the diffusion model, guided by two novel
target-related optimization objectives, generates new target-specific labeled examples. Minimal suf-
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Figure 1: The diffusion model in DCT: It performs target-specific data augmentation using two target-related
optimization objectives I1 and I2 in the reverse process. The model was trained on source graphs to learn the
general data distribution. Then it generates (G′, y′ = y) based on the graphs (G, y) from the target domain in
the reverse process. It perturbs G with D steps and optimizes G′ to be minimally similar to G (Objective I1)
and sufficiently preserve the label of G (Objective I2).

ficient knowledge from the source molecules is transferred into these augmented examples, and then
to enhance the training of prediction models in the target domain.

2 PRELIMINARY

Given a target task for polymer property prediction, there are N labeled graphs: {(Gi, yi)}Ni=1.
The prediction model f consists of a GNN and a multi-layer perceptron (MLP). We consider Graph
Isomorphism Networks (GIN) Xu et al. (2019) to encode graph structures. Given a polymer graph G
(e.g, in Figure 1), GIN updates the representation vector of node v in the graph at l-layer as follows.

hl
v = MLPl

(1 + ϵ) · hl−1
v +

∑
u∈N (v)

hl−1
u

 , (1)

where ϵ is a learnable scalar and u ∈ N (v) is one of node v’s neighbor nodes. After stacking L
layers, we could get the predicted label ŷ after a READOUT function (e.g., summation) on the graph:

ŷ = MLP
(

READOUT
({

hL
v | v ∈ G

}))
. (2)

However, f is hardly well-trained since the labeled polymers are limited. Fortunately, we have a
large number of unlabeled molecules that can be utilized as the source data for transfer learning.

3 DCT: A TRANSFER LEARNING FRAMEWORK WITH DIFFUSION MODEL

3.1 LEARNING DATA DISTRIBUTION FROM SOURCE DOMAIN

As in Figure 1, the diffusion model corrupts the source graphs (molecules) to a standard normal
distribution by slowly perturbing the data with noise in T steps. Then the model learns the time-
dependent gradient field of the perturbed data distribution to generate graphs from noise. Given a
graph G from the source domain, we use continuous time t ∈ [0, T ] to index multiple diffusion steps
{G(t)}Tt=1, such that G(0) follows the original data distribution and G(T ) follows a prior distribution
like the normal distribution. The forward diffusion is a stochastic differential equation (SDE):

dG(t) = f
(
G(t), t

)
dt+ g(t) dw, (3)

where w is the standard Wiener process (Brownian motion), f(·, t) : G → G is the drift coefficient
and g(t) : R → R is the diffusion coefficient. f(G(t), t) and g(t) relate to the amount of noise added
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to the graph at each infinitesimal step t. The reverse-time SDE uses scores of the perturbed graphs,
or ∇G(t) log pt(G

(t)), for denoising and graph generation from T to 0 Song et al. (2021):

dG(t) =
[
f(G(t), t)− g(t)2∇G(t) log pt(G

(t))
]
dt+ g(t)dw, (4)

where pt(G
(t)) is the marginal distribution at time t in forward diffusion. w is a reverse time

standard Wiener process. dt here is an infinitesimal negative time step. The score ∇G(t) log pt(G
(t))

is unknown in practice and it is approximated by the score function s(G(t), t) with score matching
techniques Song et al. (2021). On graphs, Jo et al. (2022) used two GNNs to develop the score
function s(G(t), t) to de-noise both node features and graph structures.

3.2 GENERATING LABELED GRAPHS IN TARGET DOMAIN

Given a labeled polymer graph (G, y) from the target domain, the new labeled graph (G′, y′) is ex-
pected to provide useful knowledge to augment the training set in the target domain. We name it
the augmented graph throughout this section. The augmented graph is desired to have two proper-
ties: (1) Target relatedness and (2) Diversity. Target relatedness indicates that (G′, y′) are from the
graph/label spaces of the target domain where (G, y) come from and thus transfer sufficient target
knowledge into the training set. Diversity indicates the augmentation aims to learn from source to
create diverse target data points, which should contain minimal target knowledge about G. Other-
wise, G′ would cause severe over-fitting issues in the target domain if G′ was too similar to G.

Both optimizations of the augmented graphs G′ can be formulated using mutual information I(· ; ·):
Definition 3.1 (Sufficiency for Data Augmentation). The augmented graph G′ sufficiently preserves
the target label of the original graph G if and only if I(G′; y) = I(G; y).
Definition 3.2 (Minimal Sufficiency for Data Augmentation). The Sufficiency is minimal for data
augmentation if and only if I(G′;G) ≤ I(Ḡ;G), ∀Ḡ is sufficient.

Specifically, the augmented graph G′ could be optimized using any (G, y) from the target domain:

min
I1

max
I2

EG [I1 (G′;G) + I2 (G′; y)] . (5)

For the first objective, we use the leave-one-out variant of InfoNCE Poole et al. (2019); Oord et al.
(2018) as the upper bound estimation. For the i-th labeled graph (Gi, yi),

I1 ≤ Ibound(G
′
i;Gi) = log

p(G′
i|Gi)∑M

j=1,j ̸=i p(G
′
i|Gj)

, (6)

where G′
i is the augmented graph. When G′

i is optimized, Gi makes a positive pair; {Gj} (j ̸= i)
are M − 1 negative samples of labels that do not equal yi. (M is a hyperparameter.) We use cosine
similarity and a softmax function to calculate p(G′

i|Gj) =
exp(sim(G′

i,Gj))∑M
j=1 exp(sim(G′

i,Gj))
. In practice, we

extract statistical features of graphs to calculate their similarity. Details are in appendix B.2.

For the second objective, we denote the predicted label of the augmented graph G′ by f(G′). We
maximize the log likelihood log p (y|f(G′)) to maximize I2(G′; y). Specifically, after the predictor
f is trained for several epochs in the target domain, we freeze its parameters and use it to optimize
the augmented graphs so they are target-related:

L(G′) = Ibound (G
′;G)− log p (y|f(G′)) . (7)

Framework details: After the diffusion model learns the data distribution from the source domain,
given a labeled graph G from a specific target domain, DCT perturbs it for D (D ≪ T ) steps.
The perturbed noisy graph, denoted by G̃(D), stays inside the target-specific graph and label space,
rather than the noise distribution (at step T ). To reverse the noise in it and generate a target-specific
augmented example G′, DCT integrates the loss function in Eq. (7) into the score function s(·, t) for
minimal sufficient knowledge transfer:

dG̃(t) =
[
f(G̃(t), t)− g(t)2

(
s(G̃(t), t)− α∇G̃(t)L(G̃(t))

)]
dt+ g(t)dw, (8)
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where α is a scalar for score alignment between s and ∇L to avoid the dominance of any of them:

α =
∥s(G̃(t), t)∥2

∥∇G̃(t)L(G̃(t))∥2
. (9)

Because G̃(t) is an intermediate state in the reverse process, the noise in it may fail the optimizations.
So, we design a new sampling method named double-loop sampling for accurate loss calculation.
It has an inner-loop sampling using Eq. (4) to sample Ĝ(t), as the denoised version of G̃(t) at the
reverse time t. Then ∇ĜL(Ĝ(t)) is calculated as an alternative for ∇G̃(t)L(G̃(t)). Finally, an outer-
loop sampling takes one step to guide denoising using Eq. (8).

In Figure 1, DCT iteratively creates the augmented graphs (G′, y′), updates the training dataset
{(Gi, yi)}, and trains the polymer property predictor f in the target domain. In each iteration,
n graphs of the lowest property prediction loss are selected to create the augmented graphs. The
predictor is better fitted to these graphs for more accurate sufficiency estimation of the augmentation.

4 RESULTS AND CONCLUSION

Target Task and metric: The use of polymers in material discovery, such as designing new mem-
branes, has the potential to reduce global energy consumption, greenhouse gas emissions, and pollu-
tion Sholl & Lively (2016). We focus on four polymer regression tasks: GlassTemp, MeltingTemp,
ThermCond, and O2Perm. The dataset statistics are presented in Table 1, indicating that the datasets
are small and require extra knowledge to train the GNN predictor. They are used to predict different
polymer properties such as glass transition temperature (◦C), melting temperature (◦C), thermal
conductivity (W/mK) and oxygen permeability (Barrer). GlassTemp and MeltingTemp are collected
from PolyInfo, which is the largest web-based polymer database Otsuka et al. (2011). The Therm-
Cond dataset is from molecular dynamics simulation and is an extension of the dataset used in Ma
et al. (2022). The O2Perm dataset is created from the Membrane Society of Australasia portal,
consisting of a variety of gas permeability data Thornton et al. (2012). Since a polymer is built
from repeated units, researchers often use a single unit graph with polymerization points as polymer
graphs to predict properties. Different from molecular graphs, two polymerization points are two
special nodes (see “∗” in Figure 1), indicating the polymerization of monomers Cormack & Elorza
(2004). We use the mean absolute error (MAE) to evaluate the model performance. For all the
polymer tasks, we randomly split by 60%/10%/30% for training, validation, and test.

Baseline and implementation: Besides GIN, there are three lines of baseline methods: (1) self-
supervised learing methods include EDGEPRED, ATTRMASK, CONTEXTPRED in Hu et al. (2019),
INFOMAX Velickovic et al. (2019), JOAO You et al. (2021), GRAPHLOG Xu et al. (2021), and D-
SLA Kim et al. (2022), (2) semi-supervised learning methods include INFOGRAPH Sun et al. (2020)
and self-training with selected unlabeled molecular graphs (ST-REAL) and generated molecular
graphs (ST-GEN), (3) graph data augmentation (GDA) methods include FLAG Kong et al. (2022)
and GREA Liu et al. (2022). Implementation details for baselines are in appendix C.1. For DCT, we
use source molecules from 113K QM9 Ramakrishnan et al. (2014) and tune three hyper-parameters:
the number of perturbation steps D ∈ [1, 10], the number of negative samples M ∈ [1, 10], and
top-n % labeled polymer graphs of lowest property prediction loss selected for data augmentation.

Preliminary Results and Conclusion: We report the mean and standard deviation of the model
performance over 10 runs with randomly initialized parameters, as shown in Table 2. DCT is the best
solution and reduces MAE relatively by 1.9% ∼ 10.2% compared to the best baseline on different
target polymer tasks. In contrast, the self-supervised learning approaches often struggle to transfer
knowledge from source molecules to target polymers and underperform the GIN trained only in the
target domain with limited polymers. These preliminary results show that using DCT for knowledge
transfer across domains is a promising direction.
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Table 1: Statistics of datasets for polymer property prediction.

Dataset # Graphs Task Type # Task Avg./Max # Nodes Avg./Max # Edges

GlassTemp 7,174 Regression 1 36.7 / 166 79.3 / 362
MeltingTemp 3,651 Regression 1 26.9 / 102 55.4 / 212
ThermCond 759 Regression 1 21.3 / 71 42.3 / 162
O2Perm 595 Regression 1 37.3 / 103 82.1 / 234

Table 2: Mean(Std) results on tasks of polymer property prediction. The best mean is bonded. The
best baseline is underlined. The MAE for ThermCond is scaled × 100.

GlassTemp MeltingTemp ThermCond O2Perm
# Training Graphs 4,303 2,189 455 356

GIN 26.4(0.2) 40.9(2.2) 3.25(0.19) 201.3(45.0)

Se
lf-

Su
pe

rv
is

ed

EDGEPRED 27.6(1.4) 47.4(2.8) 3.69(0.50) 207.3(41.7)

ATTRMASK 27.7(0.8) 45.8(2.6) 3.17(0.32) 179.9(30.8)

CONTEXTPRED 27.6(0.3) 46.7(1.9) 3.15(0.24) 191.2(35.2)

INFOMAX 27.5(0.8) 46.5(2.8) 3.31(0.25) 231.0(52.6)

JOAO 27.5(0.2) 46.0(0.2) 3.55(0.26) 207.7(43.7)

GRAPHLOG 29.5(1.3) 50.3(3.3) 3.01(0.17) 229.7(48.3)

D-SLA 27.5(1.0) 51.7(2.5) 2.71(0.08) 257.8(30.2)

Se
m

i-
SL INFOGRAPH 30.8(1.2) 51.2(5.1) 2.75(0.15) 207.2(21.8)

ST-REAL 26.6(0.3) 42.3(1.2) 2.64(0.07) 256.0(17.5)

ST-GEN 26.8(0.3) 42.0(0.9) 2.70(0.03) 262.2(10.1)

G
D

A FLAG 26.6(1.3) 44.2(2.0) 3.05(0.10) 177.7(60.7)

GREA 26.7(1.0) 41.1(0.8) 3.23(0.18) 194.0(45.5)

DCT (Ours) 23.7(0.2) 38.0(0.8) 2.59(0.11) 165.6(24.3)
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A APPENDIX

B ADDITIONAL METHOD DETAILS

B.1 UPPER BOUNDING THE MUTUAL INFORMATION

In Eq. (6), we use a leave-one-out variant of InfoNCE (Ibound) to derive the upper bound of mutual
information. We summarize the derivation Poole et al. (2019) here.

I1(G′;G) = Ep(G,G′)

[
log

p(G′|G)

p(G′)

]
= Ep(G,G′)

[
log

p(G′|G)q(G′)

q(G′)p(G′)

]
= Ep(G,G′)

[
log

p(G′|G)

q(G′)

]
−KL(p(G′)||q(G′))

≤ Ep(G,G′)

[
log

p(G′|G)

q(G′)

]
(10)

The intractable upper bound is minimized when the variational approximation q(G′) matches the
true marginal p(G′) Poole et al. (2019). For each Gi, its augmented output G′

i, and M − 1 negative
examples with different labels, we could approximate q(G′

i) =
1

M−1

∑
j ̸=i p(G

′
i|Gj). So, we have

I1(G′
i, Gi) ≤ log

p(G′
i|Gi)

1
K−1

∑M
j=1,j ̸=i p(G

′
i|Gj)

= log
p(G′

i|Gi)∑M
j=1,j ̸=i p(G

′
i|Gj)

+ log(M − 1)

= Ibound(G
′
i;Gi) + constant

(11)

B.2 EXTRACTION OF STATISTICAL FEATURES ON GRAPHS

For each polymer graph, we concatenate the following vectors or values for feature extraction.

• the sum of the degree in the graph;
• the vector indicating the distribution of atom types;
• the vector containing the maximum, minimum and mean values of atoms weights in a

molecule or polymer;
• the vector containing the maximum, minimum, and mean values of bond valence.

B.3 TECHNICAL DETAILS FOR GRAPH DATA AUGMENTATION WITH DIFFUSION MODEL

Instantiations of SDE on Graphs According to Song et al. (2021), we use the Variance Exploding
(VE) SDE for the diffusion process. Given the minimal noise σmin and the maximal noise σmax, the
VE SDE is:

dG = σmin

(
σmax

σmin

)t√
2 log

σmax

σmin
dw, t ∈ (0, 1] (12)

The perturbation kernel is derived Song et al. (2021) as:

p0t(G
(t) | G(0)) = N

(
G(t);G(0), σ2

min

(
σmax

σmin

)2t

I

)
, t ∈ (0, 1] (13)

On graphs, we follow Jo et al. (2022) to separate the perturbation of adjacency matrix and node
features:

p0t(G
(t) | G(0)) = p0t(A

(t) | A(0))p0t(X
(t) | X(0)). (14)
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The Sampling Algorithm in the Reverse Process for Graph Data Augmentation We adapt
the Predictor-Corrector (PC) samplers for the graph data augmentation in the reverse process. The
algorithm is shown in Algorithm 1.

Algorithm 1 Diffusion-Based Graph Data Augmentation with PC Sampling
Input: Graph G with node feature X and adjacency matrix A, the denoising function for node feature sX
and adjacency matrix sA, the fine-tune loss Laug, Lagevin MCMC step size β, scaling coefficient ϵ1
A(D) ← A+ zA; zA ∼ N (0, I)

X(D) ← X+ zX ; zX ∼ N (0, I)
for t = D − 1 to 0 do

Ĝ(t+1) ∼ p0t+1(Ĝ(t+1)|G(t+1)) {inner-loop sampling with another PC sampler}
SA = 1

2
sA(G(t+1), t+ 1)− 1

2
α∇A(t)Laug(Ĝ(t+1))

SX = 1
2
sX(G(t+1), t+ 1)− 1

2
α∇X(t)Laug(Ĝ(t+1))

Ã(t) ← A(t+1) + g(t)2SA + g(t)zA; zA ∼ N (0, I) {Predictor for adjacency matrix}
X̃(t) ← X(t+1) + g(t)2SX + g(t)zX ; zX ∼ N (0, I) {Predictor for node features}
A(t) ← Ã(t) + β

2
SA + ϵ1

√
βzA; zA ∼ N (0, I) {Corrector for adjacency matrix}

X(t) ← X̃(t) + β
2
SX + ϵ1

√
βzX ; zX ∼ N (0, I) {Corrector for node features}

end for
return G′ = (A(0),X(0))

C ADDITIONAL EXPERIMENT DETAILS

C.1 BASELINES AND IMPLEMENTATION

When implementing GIN Xu et al. (2019), we tune its hyper-parameters for different tasks with
an early stop on the validation set. We generally implement pre-training baselines following their
own setting. The pre-trained GIN models with self-supervised tasks such as EDGEPRED, ATTR-
MASK, CONTEXTPRED in Hu et al. (2019), INFOMAX Velickovic et al. (2019) are available. So
we directly use them. For other self-supervised methods, we implement their codes with default
hyper-parameters. Following their settings, we use 2M ZINC15 Sterling & Irwin (2015) to pre-train
GIN models for polymer property prediction. For self-training with real unlabeled molecules and
INFOGRAPH Sun et al. (2020), we use 113K QM9 Ramakrishnan et al. (2014). For self-training
with generated molecules graphs, we train the diffusion model Jo et al. (2022) on the real QM9
dataset and then produce the same number of generated unlabeled molecules. To train the diffusion
model in our DCT, we also use QM9 Ramakrishnan et al. (2014).
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