
Activation Transport Operators

Anonymous Author(s)
Affiliation
Address
email

Abstract

The residual stream mediates communication between transformer decoder layers1

via linear reads and writes of non-linear computations. While sparse-dictionary2

learning-based methods locate features in the residual stream, and activation patch-3

ing methods discover circuits within the model, the mechanism by which features4

flow through the residual stream remains understudied. Understanding this dynamic5

can better inform jailbreaking protections, enable early detection of model mis-6

takes, and their correction. In this work, we propose Activation Transport Operators7

(ATO), linear maps from upstream to downstream residuals k layers later, evalu-8

ated in feature space using downstream SAE decoder projections. We empirically9

demonstrate that these operators can determine whether a feature has been linearly10

transported from a previous layer or synthesised from non-linear layer computation.11

We develop the notion of transport efficiency, for which we provide an upper bound,12

and use it to estimate the size of the residual stream subspace that corresponds to13

linear transport. We empirically demonstrate the linear transport, report transport14

efficiency and the size of the residual stream’s subspace involved in linear transport.15

This compute-light (no finetuning, <50 GPU-h) method offers practical tools for16

safety, debugging, and a clearer picture of where computation in LLMs behaves17

linearly. Our code is available at https://anonymous.4open.science/r/ato.18

1 Introduction19

Transformer layers modify token-wise residual stream states through a sequence of attention and20

MLP updates Elhage et al. [2021]. Much of what can be read from these vectors is linear—decoders,21

probes, and logit-lens all apply affine maps—yet what gets written into the stream is the result of22

nonlinear mechanisms (LayerNorm, softmax attention, gating in MLPs) Razzhigaev et al. [2024].23

Many interpretability tools focus either on locating where a behaviour “lives” or decoding what24

a representation “means” but they rarely study explicit operators that predict and reconstruct how25

specific features move from one site in the network to another.26

On the intervention side, variants of activation and path patching reliably identify layers, heads, and27

positions that are causally important for a behaviour Goldowsky-Dill et al. [2023], Kramár et al. [2024].28

Ferrando and Voita [2024] present Information Flow Routes, which push further by constructing29

global, causally validated flow graphs for predictions, yet—like patching—it characterizes influential30

paths without yielding an explicit map that predicts downstream hidden states. On the decoding31

side, logit and tuned lenses nostalgebraist [2020], Belrose et al. [2025], provide affine readouts from32

intermediate residuals into vocabulary space, and sparse autoencoders (SAEs) recover monosemantic33

features at scale Cunningham et al. [2023]. Furthermore, in their recent study, Lawson et al. [2025]34

use multi-layer SAEs to study layer similarity, suggesting some evidence of a split between feature35

transport and non-linear feature recomputation. Meanwhile, activation steering methods demonstrate36

powerful control via learned activation edits but focus on exogenous behaviour shaping rather than37

explaining endogenous feature flow Rodriguez et al. [2024].38
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Figure 1: ATO predicts downstream residual stream vector. Using an SAE, we identify activated
features. True and predicted residuals are projected onto SAE decoder vectors and compared.

This work aims to bridge attribution and representation analysis by introducing Activation Transport39

Operators (ATOs)—explicit, regularised linear maps that predict downstream residual vectors from40

upstream residuals. ATOs are learned from paired activations collected during ordinary forward41

passes. Crucially, ATOs are not a claim that the network is globally linear, but they serve as a test42

for local linear preservation of a specific feature between two sites in the stream (Figure 1). High43

predictive and causal scores indicate linear transport, while failure indicates downstream feature44

synthesis or nonlinear recomputation.45

Our core contributions are as follows: 1) we formally define Activation Transport Operators46

and empirically study our method using available LLMs and SAEs, evaluating it with per-feature47

predictive fidelity and causal ablation, and 2) we introduce the notion of transport efficiency, and48

show its link to the size of the communication subspace of the residual stream.49

2 Methodology50

We study downstream features in a decoder-only transformer through the lens of the residual stream.51

Let vl,i ∈ Rd denote the upstream residual vector at layer l and token position i. For a feature52

f identified at layer l+k by its downstream SAE decoder direction d
(l+k)
f ∈ Rd, the feature is53

“observed” at (l+k, j). Our objective is to test whether the downstream activation aligned with f54

can be linearly attributed to earlier residual states. To this end, we learn an affine, rank-constrained55

transport operator:56

Tr : Rdmodel →Rdmodel , v̂l+k,j = Tr vl,i + b,

where we rank-constrain the transport operator by computing the singular value decomposition:57

Tr = UrSrV
⊤
r with rank r ≤ dmodel (and b ∈ Rdmodel ). Location pairs (l, i)→ (l+k, j) are sampled58

using explicit policies, which we refer to as j-policies. In this work, we use a single j-policy: same-59

token (j=i), which maps upstream to downstream for the same position in a sequence. However, in60

future work, we plan to explore more complex policies, such as attention-reader Top-K, delimiter-61

pair, and copy-target. The operator is fitted on many such pairs with ridge, lasso, or elasticnet62

regularisation. Importantly, evaluation is done in feature space rather than on raw residuals. We63

compare the downstream decoder projections:64

atrue = (d
(l+k)
f )⊤vl+k,j , apred = (d

(l+k)
f )⊤v̂l+k,j = (d

(l+k)
f )⊤(Tr vl,i + b) (1)

using regression metrics (specifically, R2 and MSE). High agreement indicates that the component of65

the downstream state relevant to f is transported through a low-dimensional linear channel. On the66

other hand, poor agreement (despite reasonable upstream sources and policies) suggests the activation67

is synthesised locally by later non-linear computations.68

We causally validate the transport operators by ablating the upstream site (l, i) (i.e., zeroing or pro-69

jecting out the upstream gate) and injecting the reconstructed vector v̂l+k,j at the target. Restoration70
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of the feature projection and associated behaviour (e.g., structured-format correctness or continuation71

accuracy) provides direct evidence of linear transport along the learned operator. Additionally, we72

compare the results with the zero intervention, which involves completely ablating the downstream73

residual vector by setting it to zero [Mohebbi et al., 2023, Olsson et al., 2022]. We include this74

comparison to quantify the maximum corruption we can introduce to the residual stream, thereby75

measuring the model error (e.g. perplexity increase) if the residual stream contains no information at76

layer l+k. We expect this to be significantly larger than the error induced by transport operators.77

Transport efficiency To better understand the process of feature transport, we seek to find the78

upper bound for R2 of our rank-r transport operator. Hence, we define the R2
ceiling as the maximal79

R2 value achievable by any linear predictor at rank r. In this analysis, we shift our focus to the task80

of predicting downstream residual stream vectors, stacked in matrix Y ∈ RN×dmodel from upstream81

residual stream vectors, stacked in matrix X ∈ RN×dmodel . Assuming zero-mean, the ceiling for82

transport efficiency at rank r is given by: R2
ceiling(r, Y ) = 1

dmodel

∑r
i=1 ρ

2
i , where ρ2i are the squared83

canonical correlations. In Appendix A we rigorously derive this upper bound. Therefore, we can84

define the transport efficiency as: Eff = R̃2(r, ŶT )/R
2
ceiling(r, Y ) ∈ [0, 1], where R̃2(r, ŶT ) is the85

R2 metric of rank-r-ATO-predicted downstream residual vectors in whitened Y space. We need to86

transform the ATO predictions to the whitened Y space to allow for apples–to–apples comparison of87

explained variance. Transport efficiency plateaus when increasing ATO’s rank does not enhance the88

relative predictive ability of the operator. This can be observed in Figure 3 with k = 10.89

Estimating the dimensionality of Linear Transport Subspace (LTS) We use the notion of90

effective dimensionality [Del Giudice, 2020] to define the dimensionality of the subspace of the91

residual stream with linear transport: deff = (
∑

i ρ
2
i )

2/
∑

i(ρ
2
i )

2.92

Experimental setup We discuss the setup and experimental details in Appendix B.93

3 Results94
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Figure 2: Per-feature R2 of operators depend on both the target layer depth and the leap size k.

Most linear transport occurs in nearby layers and deteriorates over large distances Comparing95

the per-feature R2 between full-rank operators shows that those trained for small leaps (k = 1, k = 496

for target layer 10) successfully transport a significant number of features (R2 > 0.95). While this97

number is deteriorating with the growing leap size k, we also find that feature transport is generally98

less common in the later layers of the transformer, even with small ks (shown as per-plot distribution99

shifts in Figure 2). This suggests that information management in the residual stream may have two100

regimes. In early layers, the stream has the capacity to accept new features without the need to evict101

existing ones, hence we observe more transport. Once the residual stream fills up with information,102

later layers in the model prioritise newly synthesised or non-linearly transformed features, deleting103

old information from the stream, further supporting the idea introduced by Elhage et al. [2021].104
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Transport efficiency and LTS size depend on the transport distance Figure 3 shows that105

transport efficiency over longer leaps (k=7, 10) saturates early and at lower values, indicating a106

smaller linear transport subspace (i.e. deff = 1453, and deff = 1291, respectively). On the other hand,107

in the adjacent-layer case (k=1), we observe almost linear improvement of transport efficiency with108

ATO rank, approaching R2
ceiling near full rank. Such result is consistent with a larger set of linearly109

transported directions, size of which is estimated at deff = 2198. The dimensionality of the LTS110

should guide ATO rank selection: choosing r above the LTS size yields no population gain beyond111

the CCA ceiling: extra rank mainly fits noise, which may inflate training R2 but will not generalise.112

Using ATOs yields only marginal perplexity increase We compare perplexity for the unedited,113

ATO-patched and zero-intervened models. ATOs raise perplexity only slightly, with the effect growing114

with leap size k. The zero-intervened model is significantly worse (similar to using ATO with a null115

vector), and provides an upper bound on degradation. However, even at k=10 the increase is 7.1% of116

max degradation, and for k<5, it stays below 1.2%. Trends in Figure 4 hold beyond the ablations of 5117

out of 256 sequence positions; applying ATOs to all positions yields at most a 13.5% increase at k=10118

(with upper-bound perplexity of 12.4529). Thus, ATOs substantially recover language-modelling119

ability otherwise lost under zero-intervention, supporting their use for targeted diagnostics and edits.120
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Figure 3: Transport efficiency for the target layer
10 with different leap (k) values.
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Limitations Our study has several limitations. First, we used a single, trivial same-token j-121

policy, which biases results toward local transport and may miss attention-mediated cross-token122

routing—exploring IFR-guided or data-driven j selection is left for future work. Second, we evaluated123

only a narrow set of layers and offsets on a single model, we cannot claim that linear transport is124

pervasive across architectures or depths without broader replication. Finally, in this work we do125

not present feature-targeted editing built with our operators, which we aim to tackle in a follow-up126

work. In principle, leveraging feature-specific transport between layers could allow low-compute127

inference-time corrections of the generated text.128

4 Conclusions129

We introduced Activation Transport Operators (ATOs): explicit, regularised linear maps that predict130

a downstream residual vector from upstream residuals and are evaluated in SAE feature space. High131

predictive and causal scores indicate linear transport of a feature, while failure suggests downstream132

synthesis or nonlinear recomputation. Empirically, we find that transport is strongest over short133

layer distances and weakens with depth and leap size, suggesting an early-layer regime where the134

residual stream behaves as a shared linear channel followed by later layers that prioritise synthesis135

and recomposition. Our transport efficiency metric quantifies how close an operator gets to the best136

possible linear prediction, while the efficiency analysis implies that the dimensionality of the Linear137

Transport Subspace is tightly linked to optimal rank of ATO. Taken together, ATOs provide a simple,138

testable method for mapping feature flow. We expect richer j-policies and multi-source operators to139

reveal attention-mediated routing and to enable feature-targeted, low-compute edits during inference.140
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A Transport efficiency224

Assuming zero-mean, we define the following covariance matrices:225

ΣXX = 1
NX⊤X, ΣY Y = 1

N Y ⊤Y, ΣY X = 1
N Y ⊤X, ΣXY = Σ⊤

Y X .

We employ canonical cross-correlation analysis (CCA) to find directions a ∈ Rdmodel (in downstream226

residual stream) and b ∈ Rdmodel (in upstream residual stream) maximizing the correlation between227

the scalar canonical variates, u = Y a, and v = Xb, subject to Var(u) = Var(v) = 1. Hence, we228

use the whitening trick to meet the unit variance condition: Ỹ = Y Σ
−1/2
Y Y , and X̃ = X Σ

−1/2
XX .229

Now the covariances of the modified matrices are identities: 1
N Ỹ ⊤Ỹ = Idmodel ,

1
N X̃⊤X̃ = Idmodel .230

The whitened cross-covariance is given by C = 1
N Ỹ ⊤X̃ = Σ

−1/2
Y Y ΣY X Σ

−1/2
XX ∈ Rdmodel×dmodel .231

Let the singular value decomposition breakdown of the whitened cross-covariance matrix be C =232

U diag(ρ1, ρ2, . . .)V
⊤, with singular values ρ1 ≥ ρ2 ≥ · · · ≥ 0. By definition, these ρi are the233

canonical correlations. In other words, in this normalised space, CCA decomposes the relationship234

between X and Y into orthogonal channels, with each channel strength ρi, which quantifies how well235

that specific Y direction can be predicted from X . For completeness, the corresponding canonical236

directions are ai = Σ
−1/2
Y Y U:i and bi = Σ

−1/2
XX V:i.237

Furthermore, we analyse the matrix K = CC⊤. This matrix has the following singular value238

decomposition: K = U diag(ρi)V
⊤V diag(ρi)U

⊤ = U diag(ρ2i )U
⊤. Importantly, whitening Y ,239

implies the optimal linear predictor with rank constraint r captures at most the top-r canonical modes.240

Therefore, the fraction of explained variance is: R2
ceiling(r, Y ) = 1

dmodel

∑r
i=1 ρ

2
i .241

B Experimental setup242

We conduct experiments using Gemma 2 2B model with hidden dimension dmodel = 2304, and a243

suite of pre-trained sparse autoencoders Gemma Scope Team et al. [2024], Lieberum et al. [2024].244

We use SAEs trained on the post-layer residual stream with the canonical L0 sparsity target and245

16,384-dimensional latent space. For training and evaluation of the transport operators, we collect246

post-layer residual stream hidden states computed over 250,000 tokens from the uniformly subsampled247

SlimPajama dataset Soboleva et al. [2023], available under Apache 2.0 license. We subsequently248

split the dataset into 60% train, 20% validation and 20% test splits. For each layer, we identify ∼5%249

high-quality SAE features, which we use in the operator evaluation by processing 120,000 dataset250

tokens and applying heuristics preferring features with high semantic coherence (low token entropy),251

centred probability mass in the unembedding space projections, as well as most significant causal252

effects. Furthermore, we filter out highly redundant and dead features.253

To study the dynamics of feature transport throughout the model, we investigate target decoder254

layers 10 and 20 and compare the reconstruction of the same set of features per target layer, offset255

by k = {1, . . . , 9}. We implement transport operators as L2-regularised ridge regression models,256

trained using 5-fold cross-validation with grid search over regularisation parameter α, and choose a257

model with the highest R2 score. To evaluate the models, we measure the reconstructions of transport258

operators with regards to the selected SAE features. To address the inherent sparsity of SAE features,259

we ensure predicting only activated latents. Furthermore, we analyse only those, which activated at260

least ten times in the test dataset and achieved R2 > −1.261

In the transport efficiency study, we evaluate transport operators by computing whitened R2 of the262

rank-r-ATO-predicted downstream residuals, for all values r starting with 1 and incremented by 50263

until dmodel.264

In the causal validation, we compare the unedited and ablated models by computing perplexity265

over a held-out subset over 100 sequences of 256 tokens. We experiment with 3 configurations of266

distinct token positions, to which the modification is applied: only one position, five positions, and267

all positions in a sequence. In the first two cases, we randomly choose positions from throughout the268

sequence and average the resulting perplexity over 3 sets of positions for robustness. We perform all269

computation in single precision (float32) using M1 Pro and M2 Max hardware.270
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