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Abstract. Interactive segmentation of 3D medical images seeks to pro-
duce accurate object masks with minimal user input, substantially allevi-
ating the burden of manual annotation. For the CVPR 2025 Foundation
Models for Interactive 3D Biomedical Image Segmentation Challenge, we
extend the VISTA3D foundation model—a state-of-the-art 3D segmen-
tation network supporting both automatic and interactive modes—by
introducing several targeted improvements for robust interactive seg-
mentation. First, we propose a Gaussian Edge-Center point sampling
strategy, which leverages Gaussian-weighted randomness combined with
center/edge distance transforms to preferentially sample points at ob-
ject centers and boundaries. This yields more realistic and effective fore-
ground/background click simulations during training. Second, we inte-
grate this sampler into a two-stage fine-tuning pipeline: initial conven-
tional fine-tuning with provided pre-trained weights, followed by prompt-
focused fine-tuning using our improved sampling strategy. Third, to meet
the challenge’s 90-second runtime limit, we optimize inference by dynam-
ically adjusting the region of interest (ROI) size and resolution based on
input voxel spacing, including adaptive downsampling and ROI crop-
ping. We trained models for both tracks—using 4×A100 GPUs for the
full dataset and 4×A800 GPUs for the 10% core dataset—under identi-
cal protocols. On the validation set, our full-data model achieved a Dice
Similarity Coefficient (DSC) Final of 0.7194, while the core-data model
achieved 0.6782. These results demonstrate that our enhanced approach
effectively leverages the capabilities of foundation models for interactive
3D segmentation, delivering accurate results with efficient user interac-
tion.

Keywords: Interactive segmentation · 3D biomedical image analysis ·
Prompt sampling

1 Introduction

3D biomedical image segmentation is essential for clinical diagnosis, surgical
planning, and biomedical research [15,4,8]. The advent of high-resolution imag-
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ing modalities such as CT, MRI, PET, and ultrasound has created an urgent
need for segmentation models that are accurate, robust, and broadly applica-
ble to diverse anatomical structures and imaging protocols [13,16]. However,
manual annotation of 3D medical images is extremely labor-intensive and time-
consuming, especially for complex structures or rare pathologies [1,9]. This chal-
lenge has motivated the development of interactive segmentation algorithms,
where the model iteratively refines its predictions based on sparse user prompts
(such as points or bounding boxes), thereby minimizing the annotation burden
while maintaining high accuracy [7,9,12].

The CVPR 2025 Foundation Models for Interactive 3D Biomedical Image
Segmentation Challenge further raises the bar by requiring universal models
capable of segmenting a wide variety of anatomical structures across multiple
imaging modalities, with efficient and accurate human-in-the-loop refinement.
This goal is complicated by heterogeneous data, anatomical variability, class
imbalance, and strict computational constraints such as a 90-second runtime
limit per case.

Recent years have witnessed rapid progress in foundation models for both
natural and medical image segmentation. The Segment Anything Model (SAM) [7]
and its successors [14] have pioneered promptable segmentation, enabling user-
driven object extraction via points, boxes, or text prompts. Inspired by these
advances, the medical imaging community has developed powerful 3D segmenta-
tion foundation models such as MedSAM [9], MedSAM2 [11], SegVol [2], SAM-
Med3D [17], and nnInteractive [5]. These approaches extend promptable segmen-
tation to 3D medical images, leverage large and diverse datasets, and support
interactive correction, but often still face limitations: many methods rely on 2D
interaction strategies, require slice-by-slice annotation, or struggle with efficient
and robust refinement in volumetric settings. VISTA3D [3] addresses several of
these challenges with a unified 3D foundation model supporting both automatic
and interactive segmentation. However, open problems remain regarding realistic
user prompt simulation and strict clinical runtime constraints.

To address these challenges, our motivation is twofold: (1) to design a prompt
sampling strategy that more realistically mimics human corrections—particularly
at object centers and boundaries where segmentation errors are most common;
and (2) to optimize the inference pipeline to reliably meet tight runtime require-
ments in real-world scenarios. Building on the strong foundation of VISTA3D,
we introduce the following key contributions:

– Gaussian Edge-Center Point Sampling: We propose a novel prompt
generation strategy that samples foreground and background clicks using a
Gaussian-weighted distance map, focusing on object centers and edges to
encourage more informative and realistic training interactions.

– Two-Stage Fine-Tuning: Utilizing the official VISTA3D challenge weights,
we employ a two-phase fine-tuning protocol: the first stage focuses on gen-
eral segmentation adaptation, while the second stage incorporates our new
prompt simulation to specifically enhance interactive refinement capability.
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– Adaptive Inference with ROI and Resolution Selection: We develop
an automatic region-of-interest cropping and adaptive downsampling scheme
at inference, ensuring the model processes only the relevant image region and
always meets the 90-second runtime limit required for clinical usability.

Through comprehensive experiments on both the full-data and core-data chal-
lenge tracks, we demonstrate that our approach delivers both high segmentation
accuracy and efficient refinement, further narrowing the gap between the capa-
bilities of foundation models and the requirements of practical, interactive 3D
medical annotation.

2 Method

2.1 Network Architecture

3D Encoder 3D Decoder

Points [x, y, z]

3D 
Prompt Encoder

3D patch
Prediction

GT Points

Gaussian 
Point Sampling Loss

Fig. 1. Overview of our method. The framework consists of a 3D encoder, a 3D decoder,
and a 3D prompt encoder. Given a 3D image and its ground truth mask (during
training) or user prompts (during inference), foreground and background points are
sampled using a Gaussian edge-center strategy to simulate or collect user input. The
3D encoder extracts volumetric image features, while the prompt encoder encodes the
sampled points into spatial representations. The decoder then fuses image features and
prompt encodings to produce the segmentation mask, which can be iteratively refined
as new prompts are provided. ROI cropping and downsampling are applied as needed
for efficient processing.

Our solution builds upon the VISTA3D foundation model [3], a unified seg-
mentation framework designed for both automatic and interactive 3D medi-
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cal image segmentation. As illustrated in Figure 1, the model follows a dual-
branch architecture: a shared 3D encoder based on a U-Net-style or SegResNet
backbone, and two task-specific decoders—one for fully automatic segmentation
(prompted by class index) and another for interactive segmentation with point
prompts. In this challenge, we focus on the interactive branch.

The encoder extracts hierarchical volumetric features from the input 3D
patch (e.g., H ×W × D CT/MRI block), passing them to both decoders. The
interactive decoder fuses these features with prompt encodings and progressively
refines segmentation predictions conditioned on user input. To improve clinical
practicality, we implement patch-based training and sliding window inference,
cropping regions of interest (ROI) around user prompts to efficiently handle large
volumes.

2.2 Prompt Encoder and Interaction Simulation

Prompt encoding is central to interactive segmentation. We simulate realistic
user corrections during training using a Gaussian edge-center point sampling
strategy. For each object (foreground class) in the ground truth mask, we first
compute the Euclidean distance transform. Points are then sampled as follows:

– Foreground (Positive) Points: One point is sampled from the center
region (distance above a fixed percentile of the maximum, i.e., deep inside
the object), and the remaining points are sampled from the edge region
(distance within a percentile range near the boundary).

– Background (Negative) Points: Randomly sampled outside the object
mask.

– Number of Points: The total number of positive/negative prompts is
drawn from a Gaussian distribution centered at half the maximum allowed,
introducing variability.

If not enough candidates exist in a region, random points are used to fill up the
quota. Each point is encoded as a 3D coordinate [x, y, z] with an associated label
(foreground/background). For input to the prompt encoder, points are rendered
as 3D Gaussian heatmaps, encouraging spatial generalization.

During training, this sampled prompt set is provided to the interactive de-
coder. The decoder predicts segmentation masks conditioned on both the image
and prompts, supporting robust iterative correction. The edge-center sampling
ensures exposure to both “easy” (center) and “hard” (boundary) refinement sce-
narios, which better simulates clinical corrections compared to purely random
clicks.

2.3 Decoder and Loss Function

The interactive decoder mirrors the encoder with 3D upsampling and skip con-
nections, similar to standard U-Net architectures. Prompt features are fused
into the decoding path at multiple scales using cross-attention or concatenation,
allowing the network to leverage both image context and user guidance.



Gaussian Sampling for Interactive Biomedical Image Segmentation 5

For optimization, we adopt a compound loss function combining Dice loss
and cross-entropy loss:

L = LDice + LCE (1)

This loss balances region overlap and voxel-wise classification, providing robust
performance across varied structures.

To efficiently handle large 3D images, two strategies are adopted:

– ROI Cropping: During both training and inference, we crop a ROI around
prompts/targets, reducing memory and computation.

– Adaptive Downsampling: For very high-resolution inputs, we dynam-
ically downsample the ROI (using interpolation) to ensure the processed
patch fits into GPU memory and meets runtime constraints.

2.4 Coreset Selection Strategy

For the coreset track, we simply follow the official rules and randomly sample
10% of the training data as the coreset. The same pipeline, prompt simulation,
and training recipes are used for both tracks, allowing for fair comparison of
model generalization under limited data.

2.5 Post-processing and Inference Acceleration

In the inference stage, we apply minimal post-processing: the predicted segmen-
tation mask is resampled to the original image resolution (if downsampling was
used), and the cropped ROI is placed back into the full volume. No further mor-
phological operations are applied. To accelerate inference and comply with the
strict 90-second runtime limit, the ROI and downsampling factor are dynami-
cally selected based on prompt location and input size.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [10], including more 3D cases from public datasets3 and covering
commonly used 3D modalities, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound,
and Microscopy images. The hidden testing set is created by a community effort
where all the cases are unpublished. The annotations are either provided by the
data contributors or annotated by the challenge organizer with 3D Slicer [6] and
MedSAM2 [11]. In addition to using all training cases, the challenge contains a
coreset track, where participants can select 10% of the total training cases for
model development.
3 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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For each iterative segmentation, the evaluation metrics include Dice Simi-
larity Coefficient (DSC) and Normalized Surface Distance (NSD) to evaluate
the segmentation region overlap and boundary distance, respectively. The final
metrics used for the ranking are:

– DSC_AUC and NSD_AUC Scores: AUC (Area Under the Curve) for DSC
and NSD is used to measure cumulative improvement with interactions. The
AUC quantifies the cumulative performance improvement over the five click
predictions, providing a holistic view of the segmentation refinement process.
It is computed only over the click predictions without considering the initial
bounding box prediction as it is optional.

– Final DSC and NSD Scores after all refinements, indicating the model’s final
segmentation performance.

In addition, the algorithm runtime will be limited to 90 seconds per class. Ex-
ceeding this limit will lead to all DSC and NSD metrics being set to 0 for that
test case.

3.2 Implementation details

Preprocessing Following the practice in MedSAM [9], all images were pro-
cessed to npz format with an intensity range of [0, 255]. Specifically, for CT
images, we initially normalized the Hounsfield units using typical window width
and level values: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80,
L:40), and bone (W:1800, L:400). Subsequently, the intensity values were rescaled
to the range of [0, 255]. For other images, we clipped the intensity values to the
range between the 0.5th and 99.5th percentiles before rescaling them to the range
of [0, 255]. If the original intensity range is already in [0, 255], no preprocessing
was applied.

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.6 LTS
CPU Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
RAM 8×64GB; 3200 MT/s
GPU (number and type) Four NVIDIA A800-SXM4-80GB and A100-SXM4-80GB
CUDA version 12.2
Programming language Python 3.10
Deep learning framework torch 2.6, torchvision 0.21.0
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Training protocols We describe our training protocols in detail, including data
augmentation, sampling strategy, and model selection. The main hyperparame-
ters and training details are summarized in Table 2 (coreset track) and Table 3
(all-data track).

Table 2. Training protocols for the coreset track.

Pre-trained Model VISTA3D
Batch size 1
Patch size 128×128×128
Total epochs 200
Optimizer AdamW
Initial learning rate (lr) 2e-5
Lr decay schedule WarmupCosineSchedule
Training time 4 hours per epoch
Loss function DiceCELoss
Number of model parameters 196.51 M
Number of flops 4388.97G

Table 3. Training protocols for the all-data track.

Pre-trained Model VISTA3D
Batch size 1
Patch size 128×128×128
Total epochs 100
Optimizer AdamW
Initial learning rate (lr) 2e-5
Lr decay schedule WarmupCosineSchedule
Training time 10 hours per epoch
Loss function DiceCELoss
Number of model parameters 196.51 M
Number of flops 4388.97G

1. Data augmentation To improve generalization and robustness, we em-
ploy a comprehensive suite of data augmentations for each input patch during
training. Specifically, we apply:

– Intensity normalization: Image intensities are linearly scaled to the [0, 1]
range using percentile-based clipping (1st and 99th percentiles).

– Spatial padding and random cropping: All images and masks are padded
to at least 128 × 128 × 128 voxels, then randomly cropped into patches of
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the same size using label-aware cropping, ensuring each patch contains fore-
ground.

– Intensity perturbations: With probability 0.2, we apply random intensity
scaling (±0.2), random intensity shifting (±0.2), and random Gaussian noise
(std=0.2).

– Spatial augmentations: Each patch is randomly flipped along each axis
(x, y, z) with probability 0.2. We also apply random 90-degree rotations (up
to 3 times) along random axes with probability 0.2.

These augmentations are implemented via the MONAI framework and are ap-
plied online during data loading, increasing the diversity of the training data
and helping to mitigate overfitting.

2. Data sampling strategy Our training is patch-based: for each 3D image,
we extract four 1283 patches per sample, with each patch centered on regions
containing foreground classes (as ensured by label-aware cropping). For each
patch, we employ a Gaussian edge-center point sampling strategy to generate
interactive prompts.

3. Model selection criteria We use a two-stage fine-tuning protocol. The
model is initialized with the official VISTA3D challenge weights and trained for a
fixed number of epochs (e.g., 100–180, depending on the track) using the AdamW
optimizer and cosine learning rate scheduling. During training, checkpoints are
saved at each epoch.We use the final checkpoint for all evaluations.

4 Results and discussion

We present both quantitative and qualitative results of our method on the chal-
lenge validation set, followed by an analysis of failure cases and a discussion of
limitations.

4.1 Quantitative results on validation set

Tables 4 and 5 summarize the quantitative performance of our method and
several recent baselines (SAM-Med3D, VISTA3D, SegVol, nnInteractive) on the
coreset and all-data tracks, respectively. Metrics include DSC AUC, NSD AUC,
final DSC, and final NSD, averaged across different imaging modalities.

Our method consistently outperforms or matches strong baselines on both
tracks and all modalities, with particularly notable results on the coreset track.
For example, on the coreset track, our approach achieves the highest DSC Final
and NSD Final on CT, MRI and ultrasound, and competitive results on Mi-
croscopy and PET. This demonstrates that the proposed Gaussian edge-center
prompt sampling strategy is especially effective when labeled data is limited,
as it encourages the model to fully leverage informative user interactions and
generalize from fewer examples.

However, on the all-data track, although our method remains competitive,
it does not achieve the absolute best results across all modalities. A possible
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Table 4. Quantitative evaluation results of the validation set on the coreset track.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final

CT

SAM-Med3D 2.2408 2.2212 0.5590 0.5558
VISTA3D 2.7975 2.8155 0.7147 0.7243
SegVol 2.8987 3.0373 0.7247 0.7593
nnInteractive - - - -
Ours 2.9638 3.0037 0.7562 0.7739

MRI

SAM-Med3D 1.5191 1.5195 0.3895 0.3956
VISTA3D 2.2901 2.5783 0.5777 0.6479
SegVol 1.1131 1.3137 0.2783 0.3284
nnInteractive - - - -
Ours 2.3980 2.7477 0.6046 0.6944

Microscopy

SAM-Med3D 0.3042 0.0169 0.0768 0.0042
VISTA3D 1.7183 2.7084 0.4455 0.6931
SegVol 2.0355 3.4730 0.5089 0.8682
nnInteractive - - - -
Ours 1.8252 2.8487 0.4665 0.6827

PET

SAM-Med3D 2.1304 1.8150 0.5344 0.4560
VISTA3D 2.3878 2.0984 0.6123 0.5430
SegVol 2.9683 2.8563 0.7421 0.7141
nnInteractive - - - -
Ours 2.3949 2.1673 0.6089 0.5501

Ultrasound

SAM-Med3D 1.3434 1.7956 0.3841 0.5090
VISTA3D 2.5803 2.5886 0.7074 0.7174
SegVol 1.2325 1.7881 0.3081 0.4470
nnInteractive - - - -
Ours 2.5513 2.5333 0.7486 0.7497
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Table 5. Quantitative evaluation results of the validation set on the all-data track.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final

CT

SAM-Med3D 2.2615 2.1533 0.5676 0.5421
VISTA3D 3.1689 3.2652 0.8041 0.8344
SegVol 2.9860 3.1191 0.7465 0.7798
nnInteractive 3.4337 3.5743 0.8764 0.9165
Ours 3.0983 3.1734 0.7897 0.8160

MRI

SAM-Med3D 1.6351 1.6106 0.4208 0.4193
VISTA3D 2.5895 2.9683 0.6545 0.7493
SegVol 1.2720 1.4629 0.3180 0.3657
nnInteractive 2.6975 3.0292 0.7302 0.8227
Ours 2.6072 2.9929 0.6593 0.7560

Microscopy

SAM-Med3D 0.3041 0.0168 0.0768 0.0042
VISTA3D 2.0229 3.0150 0.5286 0.7701
SegVol 2.2851 3.5661 0.5713 0.8915
nnInteractive 3.0801 3.9027 0.7836 0.9813
Ours 2.1634 3.3163 0.5601 0.8500

PET

SAM-Med3D 1.2879 0.7779 0.3219 0.1945
VISTA3D 2.6398 2.3998 0.6779 0.6227
SegVol 3.0225 2.9132 0.7556 0.7283
nnInteractive 3.1877 3.0722 0.8156 0.7915
Ours 2.6225 2.3821 0.6773 0.6199

Ultrasound

SAM-Med3D 1.7246 2.1188 0.4613 0.5597
VISTA3D 2.8655 2.8441 0.8105 0.8079
SegVol 3.4116 3.4167 0.8529 0.8542
nnInteractive 3.3481 3.3236 0.8547 0.8494
Ours 2.3970 2.4091 0.7112 0.7211
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reason is that the increased data scale requires longer or more carefully tuned
training schedules to fully realize the model’s capacity; in our experiments, the
number of training epochs for the all-data track was not significantly increased
due to computational resource and time constraints. As a result, the model
may not have fully converged or exploited the richer supervision available in
the larger dataset. In addition, the hyperparameters (such as prompt sampling,
learning rate, and regularization) were not extensively re-optimized for the all-
data setting, which may have affected the ultimate performance. Future work
will investigate longer training, more aggressive data augmentation, and track-
specific hyperparameter tuning to further improve performance on the full-data
track.

Overall, these results highlight the robustness and data efficiency of our ap-
proach in low-data regimes, while also suggesting directions for improvement
when scaling to very large training sets.

4.2 Qualitative results on validation set
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Fig. 2. Qualitative examples on the validation set. For each modality, we show both
a successful (Good) and a failure (Bad) case. Columns are: input image, ground truth
(GT), and our prediction (Ours).
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Figure 2 presents qualitative results for each modality on the validation set,
including both well-segmented (Good) and poorly-segmented (Bad) cases. Each
row shows representative slices from different imaging modalities: CT, MRI,
microscopy, PET, and ultrasound. For each case, we display the input image,
ground truth (GT) mask, and our model’s prediction (Ours).

Cases where the proposed method works well: As shown in the left
(Good) columns, our method achieves accurate segmentation across a variety
of modalities and organs. For example, in CT and MRI, both multi-class organ
boundaries and object shapes are well captured, even for relatively small or
thin structures. In microscopy and PET, our model correctly identifies target
regions despite low contrast and heterogeneous backgrounds. In ultrasound, our
approach produces anatomically plausible masks that closely match the ground
truth.

Analysis of failure cases: On the right (Bad) columns, we illustrate typical
failure modes. These include missed or partially segmented targets (e.g., under-
segmentation of small lesions in CT and MRI), false positive predictions (e.g.,
spurious objects in PET and microscopy), and shape distortions in challenging
ultrasound images. Common reasons for these failures include:

– Low image contrast or artifacts: Especially in PET and ultrasound, poor
image quality or heavy noise can confuse the model.

– Class imbalance and small targets: The model tends to miss small or
rare objects that are underrepresented during training.

– Ambiguous boundaries: Weak or unclear object boundaries, especially in
microscopy and ultrasound, often lead to over- or under-segmentation.

– Out-of-distribution cases: Extremely rare or complex anatomies not well
covered by the training set remain challenging.

4.3 Results on final testing set

This is a placeholder. No need to show testing results now. We will announce the
testing results during CVPR (6.11) then you can add them during the revision
phase.

4.4 Limitation and future work

Despite strong overall performance, our approach still has several limitations.
First, segmentation quality degrades on very small, low-contrast, or highly vari-
able targets, particularly in modalities with poor signal-to-noise ratios (e.g.,
ultrasound, PET). Second, while the Gaussian edge-center prompt strategy im-
proves robustness, it is still based on simulated points; the model might not
fully generalize to unpredictable real user corrections. Third, inference accelera-
tion via ROI cropping and downsampling may occasionally lead to the loss of fine
details for large or elongated structures. In future work, we plan to incorporate
uncertainty-guided or adaptive prompt sampling, further integrate text prompts
for open-vocabulary segmentation, and explore more advanced post-processing
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(e.g., shape regularization or 3D CRF) to address the aforementioned limita-
tions.

5 Conclusion

In this work, we present a VISTA3D-based interactive segmentation framework
featuring a novel Gaussian edge-center prompt sampling strategy and an adap-
tive inference pipeline. Extensive validation on the CVPR challenge dataset
demonstrates that our method achieves robust and accurate segmentation across
multiple imaging modalities, outperforming or matching strong baselines, espe-
cially in low-data regimes. Qualitative results show that our approach is effective
for most organs and modalities, while limitations remain for small, low-contrast,
or ambiguous targets. Future work will focus on further improving prompt real-
ism, model generalizability, and efficiency.
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Table 6. Checklist Table. Please fill out this checklist table in the answer column.
(Delete this Table in the camera-ready submission)

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 4
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1
Pre-processing Page 6
Strategies to data augmentation Page 7
Strategies to improve model inference Page 5
Post-processing Page 5
Environment setting table is provided Table 1
Training protocol table is provided Table 2 & 3
Ablation study Page 9
Efficiency evaluation results are provided Table 4 & 5
Visualized segmentation example is provided Figure 2
Limitation and future work are presented Yes
Reference format is consistent. Yes
Main text >= 8 pages (not include references and appendix) Yes


