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ABSTRACT

Self-supervised learning methods are state-of-the-art across a wide range of tasks
in computer vision, natural language processing, and multimodal analysis. Esti-
mating the epistemic – or model – uncertainty of self-supervised model predic-
tions is critical for building trustworthy machine learning systems in crucial appli-
cations, such as medical diagnosis and autonomous driving. Ensembling a neural
network is an effective approach to estimating uncertainty. However, deep ensem-
bles induce high computational costs and memory demand. This is even more
challenging in the case of self-supervised deep learning, where even a single net-
work is computationally demanding. Moreover, most existing model uncertainty
techniques are built for supervised deep learning. Motivated by this, we propose
a novel approach to making self-supervised learning probabilistic. We introduce
an uncertainty-aware training regime for self-supervised models with an ensemble
of independent sub-networks and a novel loss function for encouraging diversity.
Our method builds a sub-model ensemble with high diversity – and consequently,
well-calibrated estimates of model uncertainty – at low computational overhead
over a single model, while performing on par with deep self-supervised ensem-
bles. Extensive experiments across different tasks, such as in-distribution gen-
eralization, out-of-distribution detection, dataset corruption, and semi-supervised
settings, demonstrate that our approach increases prediction reliability. We show
that our method achieves both excellent accuracy and calibration, improving over
existing ensemble methods in a wide range of self-supervised architectures for
computer vision, natural language processing, and genomics data.

1 INTRODUCTION

Estimating uncertainty is an important component for developing reliable and trustworthy machine
learning algorithms used to make predictions for important decisions, such as medical diagnosis (Az-
izi et al., 2021), drug discovery (Jiménez-Luna et al., 2020), and autonomous driving (Kaya et al.,
2022; Can et al., 2022). In recent years, self-supervised learning methods have achieved cutting-
edge performance across a wide range of tasks in natural language processing (NLP; (Devlin et al.,
2018; Brown et al., 2020), computer vision (Chen et al., 2020; Bardes et al., 2021; Grill et al.,
2020), multimodal learning (Radford et al., 2021; Li et al., 2022; Shi et al., 2022), and bioinformat-
ics (Gündüz et al., 2021). In contrast to supervised techniques, these models learn representations
of the data without relying on costly human annotation.

Despite remarkable progress in recent years, self-supervised models do not allow practitioners to
inspect the model’s confidence. This problem is non-trivial, given the degree to which critical ap-
plications rely on self-supervised methods. Therefore, quantifying the predictive uncertainty of
self-supervised models is key to more reliable downstream tasks. Here, we follow the definition
of reliability as described by Plex (Tran et al., 2022), in which the ability of a model to work con-
sistently across many tasks is assessed. In particular, Tran et al. (2022) introduces three general
desiderata of reliable machine learning systems: a model should generalize robustly to new tasks, as
well as new datasets, and represent the associated uncertainty in a faithful manner.

Predictive uncertainty is classified as epistemic (model) and aleatoric (data) uncertainty. Aleatoric
uncertainty is inherent to the data and arises from natural stochasticity in observations, for instance,
due to class overlap, label noise, or multi-label disagreement. On the other hand, epistemic uncer-
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tainty concerns the learning hypothesis parameterized through model weights. It is caused by limited
data or knowledge and is therefore reducible. Addressing this source of uncertainty is crucial in order
to build methods that generalize robustly to unseen data and avoid wrong, overconfident predictions.
Importantly, evaluating the quality of predictive uncertainties is challenging, as the ‘ground-truth’
uncertainty is usually not available.

Bayesian neural networks (BNNs; Neal (2012)) and neural ensemble networks (Hansen & Salamon,
1990) are the common approaches for capturing distributions over parameters of neural networks.
While the Bayesian paradigm, with its principled approach to inference, is the canonical answer to
the problem of uncertainty quantification, it is not well-suited to self-supervised methods. Bayesian
deep learning, which usually requires samples from the posterior distribution, scales poorly to the
large architectures that prevail in this field and relies fundamentally on the availability of true la-
bels y for maximum-a-posterior (MAP) estimation. During pretext-task learning (pretraining) in
self-supervised and unsupervised problems, we do not have access to such label information. This
prevents us from taking advantage of BNNs during the pretraining of self-supervised models.

On the other hand, deep ensembles (Lakshminarayanan et al., 2017) have been proposed as a heuris-
tic alternative to Bayesian learning. By adding additional parameter instances through training
multiple networks in parallel, deep ensembles make learning probabilistic. Despite their lack of
theoretical foundation, deep ensembles have been successful in practice and become gold standard
in estimating uncertainty of neural networks. The high performance of deep ensembles, however,
comes at the expense of drastically increased costs. Subsequent work, such as BatchEnsemble
(Wen et al., 2020), Masksemble (Durasov et al., 2021), MIMO (Havasi et al., 2021), and FiLM-
Ensemble (Ozgur Turkoglu et al., 2022) has attempted to address this problem by creating ensembles
more efficiently. While these models succeed at speeding up training and/or inference, they exhibit
a substantial performance gap compared to the deep ensemble, lacking both prediction quality and
calibration.

In this work, we introduce a simple and scalable framework for incorporating predictive uncertainty
estimates into the self-supervised learning approach while preserving performance with a negligible
increase in computational cost. Our contributions can be summarized as follows:

• We propose a novel way to extend self-supervised learning to be probabilistic, which en-
ables self-supervised models to provide uncertainty information for predictions.

• We develop a complementary uncertainty-aware loss function to enforce diversity among
the independent sub-networks.

• We perform extensive empirical analyses to highlight the benefits of learning probabilistic
representations. We demonstrate that this inexpensive probabilistic modification achieves
very competitive (in most cases, better) predictive performance: 1) on in-distribution (IND)
and out-of-distribution (OOD) tasks; 2) in semi-supervised settings; 3) learns a better pre-
dictive performance-uncertainty trade-off than compared baselines (i.e., exhibits high pre-
dictive performance and low uncertainty on IND datasets as well as high predictive perfor-
mance and high uncertainty on OOD datasets).

2 RELATED WORK

Self-supervised learning For most large-scale modeling problems, learning under full supervi-
sion is severely inhibited by the scarcity of annotated samples. Self-supervised learning techniques,
which solve pretext tasks (Devlin et al., 2018) to generate labels from (typically abundant) unla-
beled data, have proven to be a powerful remedy to this bottleneck. The learned feature maps can
serve as a starting point for downstream supervised tasks, such as classification, object detection or
sentiment analysis, with a substantially reduced need for labeled examples (Jaiswal et al., 2020). Al-
ternatively, the downstream application may directly use the extracted representation for problems
such as anomaly OOD detection. Self-supervision has been shown to enhance robustness against
numerous sources of corruption and to even improve on purely supervised approaches in certain
tasks (Hendrycks & Dietterich, 2019). However, its success depends on the quality of pretraining,
for which (Tran et al., 2022) recently proposed a number of desiderata. While there have been
attempts to make pretraining more robust by preventing embedding collapse (Bardes et al., 2021)
or boosting performance in OOD detection (Winkens et al., 2020; Sehwag et al., 2021), the aspect
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Figure 1: Illustration of our proposed method. Given a batch X of input samples, two different views
x̃ and x̃′ are produced for each sample, which are then encoded into representations by the encoder
network fθ. The representations are projected to the ensemble of independent sub-networks gm,
where each sub-network produces embedding vectors z and z′. The mean value of these embeddings
are passed to the self-supervised loss, while their standard deviation is used for the diversity loss.
Finally, the total loss is computed by combination of the two loss components.

of uncertainty-awareness has been studied to a lesser extent in the self-supervised context. Moti-
vated by this, we present a simple way to make self-supervised learning uncertainty-aware during
pretext-task learning.

Model uncertainty estimation and uncertainty-awareness Uncertainty can be viewed as a state
of missing information in which it is impossible to exactly describe an outcome of interest (Ghahra-
mani, 2015). In predictive modeling, awareness of such uncertainty is obviously desirable. Un-
certainty estimation helps practitioners assess the trustworthiness of model outcomes, thereby per-
mitting suitable interventions when the model is likely to be wrong. Bayesian learning handles
uncertainty in a natural manner but is not applicable to self-supervised learning in the absence of la-
beled data. For example, SNGP (Liu et al., 2020) creates uncertainty-awareness via the preservation
of input-space distances. Subsequent studies, including modifications using Mahalanobis instead of
Euclidean distances (Vazhentsev et al., 2022), suggest that SNGP works well in representation learn-
ing for computer vision and NLP tasks. Crucially, however, the underlying single-model approach is
inherently unable to capture the epistemic part of uncertainty. The stochastic embeddings learned in
(Park et al., 2022) resolve this but depend on the use of contrastive learning, as does loss-temperature
scaling (Zhang et al., 2021), and a number of Gaussianity assumptions. (Hu & Khan, 2021) promote
a more holistic approach rooted in evidential learning yet rely on additional datasets from outside
the training manifold. Sidestepping such shortcomings, we propose to employ the well-established
ensembling approach to enforce uncertainty-awareness in a simple and effective manner.

Ensemble learning Deep Ensembles (Lakshminarayanan et al., 2017) comprise a set of M neural
networks that independently train on the same data using random initialization. Deep ensembles
often outperform other approaches in terms of calibration and predictive accuracy (Ovadia et al.,
2019; Gustafsson et al., 2020; Ashukha et al., 2020), but their naive application incurs high com-
putational complexity, as training, memory, and inference cost multiplies with the number of base
learners. BatchEnsemble (Wen et al., 2020) introduces multiple low-rank matrices with little train-
ing and storage demand, whose Hadamard products with a shared global weight matrix mimic an
ensemble of models. FiLM-Ensemble (Ozgur Turkoglu et al., 2022) uses feature-wise linear mod-
ulation to construct an ensemble for uncertainty estimation. Masksensemble (Durasov et al., 2021)
builds upon Monte Carlo dropout (Gal & Ghahramani, 2016) and proposes a learnable (rather than
a random) selection of masks used to drop certain network neurons. MIMO (Havasi et al., 2021)
uses ensembles of sub-networks diverging only at the beginning and end of the parent architecture
– thus sharing the vast majority of weights – in order to obtain multiple predictions with a single
forward pass. At test time, several copies of each sample are fed to the enlarged input layer, and the
multi-head last layer returns an according number of predictions. Although these methods reduce
the inference time and computational resources required at training, the benefits are limited to larger
pretraining model that is used in self-supervised learning.
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3 METHOD

We propose a simple principle to: 1) estimate uncertainty during pretraining of self-supervised deep
learning, and 2) improve predictive uncertainty. As depicted in Figure. 1, our proposed method can
be readily applied to the most recent trends in self-supervised learning (Caron et al., 2021; Grill
et al., 2020; Chen et al., 2020; Devlin et al., 2019; Gündüz et al., 2021; Klein & Nabi, 2022) and is
based on a joint embedding architecture. In the following sections, we first describe our proposed
uncertainty-aware self-supervised model, followed by the diversity loss, and then discuss ensemble
diversity and computational cost.

Uncertainty-aware self-supervised learning via independent sub-networks

Given a randomly sampled mini-batch of data X = {xk}Nk=1, x ∈ X ⊆ Rp, the transformer
function derives two augmented views x̃ = τ(x), x̃′ = τ ′(x) for each sample in X . The augmented
views are obtained by sampling τ, τ ′ from a distribution over suitable data augmentations, such as
masking parts of sequences (Baevski et al., 2022; Devlin et al., 2019), partially masking image
patches (He et al., 2022), or applying image augmentation techniques (Chen et al., 2020).

The two augmented views x̃ and x̃′ are then fed to an encoder network fθ with trainable parame-
ters θ ⊆ Rd. The encoder (e.g., ResNet-50 (He et al., 2016), ViT (Dosovitskiy et al., 2020)) maps
distorted samples to a set of corresponding features. We call the output of the encoder the repre-
sentation. Afterwards, the representation features are transformed by M independent sub-networks
{gϕm}Mm=1 with trainable parameters ϕm. The ensemble constructs from the representation M
different q-dimensional embedding vectors {zm}Mm=1, {z′

m}Mm=1, respectively, for x̃ and x̃′. We
modify the conventional self-supervised loss and replace the usual zm, z′

m with the mean values
z̄, z̄′ over m = 1, . . . ,M . Averaging over the embeddings generated by the M sub-networks im-
proves predictive performance. For example, in the case of contrastive learning (Chen et al., 2020),
the self-supervised loss ℓssl with temperature t > 0 and cosine similarity sim(·, ·) is computed as:

ℓssl (x̃k, x̃
′
k) = − log

exp(sim(z̄k, z̄
′
k)/t)∑2N

i=1 I[k ̸=i] exp(sim(z̄k, z̄i)/t)
. (1)

Diversity is a key component of successful model ensembles (Fort et al., 2019). To this end, we
design a new loss function for encouraging diversity during the training of the sub-networks. We
define the diversity regularization term ℓdiv as a hinge loss over the difference of the standard devia-
tion across the embedding vectors {zk,m}Mm=1, {z′

k,m}Mm=1 to a minimum diversity of α > 0. The
standard deviation is the square root of the element-wise variance {σ2

k,o}
q
o=1:

σ2
k,o = 1

M−1

∑M
m=1(zk,m,o − z̄k,o)

2 + ϵ, (2)

where ϵ > 0 is a small scalar preventing numerical instabilities. The diversity regularization function
is then given by:

ℓdiv (x̃k, x̃
′
k) =

∑q
o=1 max (0, α− σk,o) + max(0, α− σ′

k,o). (3)

The objective of the diversity loss is to encourage disagreement among sub-networks by enforcing
the element-wise standard deviations to be close to α > 0 and to thus prevent the embeddings from
collapsing to the same vector. Figure 2a motivates the importance of the diversity loss on the total
sum of standard deviation between different sub-networks, which increases by adding the diversity
loss. The total loss is calculated by combining the self-supervised loss (Eq. 1) and the diversity loss
(Eq. 3), where the degree of regularization is controlled by a tunable hyperparameter λ ≥ 0:

ℓ (x̃k, x̃
′
k) = ℓssl (x̃k, x̃

′
k) + λ · ℓdiv (x̃k, x̃

′
k) . (4)

Finally, the total loss is aggregated over all the pairs in minibatch X:

Ltotal =
1
N

∑N
k=1 ℓ (x̃k, x̃

′
k). (5)
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Figure 2: (a) Total standard deviation: sum of all standard deviations between independent sub-networks
during training. Training with diversity loss (Eq. 3) increases the standard deviation and improves the diversity
between independent sub-networks. (b) Diversity analysis: prediction diversity disagreement vs. achieved
accuracy on CIFAR-10. Our method is on par with the deep self-supervised ensemble in terms of both accuracy
and diversity disagreement. Models in the top right corner are better.

Diversity analysis Diversity is an important feature for powerful model ensembles and reflects
the degree of independence among its members (Zhang & Ma, 2012). We follow (Fort et al.,
2019) to quantify the diversities among the ensemble of sub-networks. Specifically, we report
the diversities in terms of disagreement score between the members’ predictive distributions. Di-
versity disagreement is defined as the fraction of distance disagreement divided by 1 - accuracy,
where the distance disagreement between two classification models hi and hj is calculated as
1
N

∑N
k=1

[
hi(xk) ̸= hj(xk)

]
, with N denoting the number of samples. Figure 2b compares the

diversity disagreement between our method, a deep ensemble, and the single-network baseline.
The results clearly indicate that our proposed method achieves comparable results with deep self-
supervised ensembles in terms of both accuracy and diversity disagreement.

Computational cost We analyze the efficiency of our proposed method in terms of the resources
needed for training. Table. 1 compares the relative cost of our proposed method with the self-
supervised baseline and ensembles in terms of the number of parameters, memory demand, and
computation time. A more detailed description of relative cost is provided in Figure. 6 Appendix A.

Table 1: Computational cost in 4 DGX-A100 40G GPUs (PyTorch) on CIFAR 10.

Method Members Parameters(M) Memory / GPU Time / 800-ep.

Baseline (SSL) 1 28 9 G 3.6 (h)
SSL-Ensemble 3 3×28 3×9 G 3× 3.6 (h)
SSL-Ensemble 10 10×28 10×9 G 10×3.6 (h)
Our method 3 37 9.2 G 3.6 (h)
Our method 10 68.1 10 G 3.8 (h)

4 EXPERIMENTAL SETUP

We perform several experiments with a variety of self-supervised methods to improve reliability
during both pretext-task learning and downstream tasks (fine-tuning). The source code and our mod-
els are provided in https://anonymous.4open.science/r/Uncertainty_aware_
SSL-95D7/README.md

Deep self-supervised network architecture Our proposed approach builds on two recent popular
self-supervised models in computer vision: i) SimCLR (Chen et al., 2020) is a contrastive learning
framework that learns representations by maximizing agreement on two different augmentations
of the same image, employing a contrastive loss in the latent embedding space of a convolutional
network architecture (e.g., ResNet-50 (He et al., 2016)), and ii) DINO (Caron et al., 2021) is a
self-distillation framework in which a student vision transformer (ViT; Dosovitskiy et al. (2021))
learns to predict global features from local image patches supervised by the cross-entropy loss from
a momentum teacher ViT’s embeddings. Furthermore, we study the impact of our approach in NLP
and modify SCD (Klein & Nabi, 2022), which applies the bidirectional training of transformers
to language modeling. Here, the objective is self-supervised contrastive divergence loss. Lastly,
we implement a probabilistic version of Self-GenomeNet (Gündüz et al., 2021), a contrastive self-
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supervised learning algorithm for learning representations of genome sequences. More detailed
descriptions of the employed configurations are provided in Appendix A.3.

Deep independent sub-networks We implement M independent sub-networks on top of the en-
coder, for which many possible architectures are conceivable. For our experiments on computer
vision datasets, we consider a convex architecture where each network includes a multi-layer per-
ceptron (MLP) with two layers of 2048 and 128 neurons, respectively, with ReLU as a non-linearity
and followed by batch normalization (Ioffe, 2017). Each sub-network has its own independent set
of weights. For the NLP dataset, the projector MLP contains three layers of 4096 neurons each, also
using ReLU activation’s as well as batch normalization. For the genomics dataset, our ensemble of
sub-networks includes one fully connected layer with an embedding size of 256.

Optimization For all experiments on image datasets based on DINO and SimCLR, we follow the
suggested hyperparameters and configurations by the paper (Caron et al., 2021; Chen et al., 2020).
Implementation details for pretraining with DINO on the 1000-classes ImagetNet dataset without
labels are as follows: coefficients ϵ, α, and λ are respectively set to 0.0001, 0.15, and 2 in Eq.2,
3, and 4. We provide more details in ablation studies (Section 6) on the number of sub-networks
and the coefficients λ and α used in the loss function. The encoder network fθ is either a ResNet-
50 (He et al., 2016) with 2048 output units when the baseline is SimCLR (Chen et al., 2020) or ViT-
s (Dosovitskiy et al., 2020) with 384 output units when the baseline is DINO (Caron et al., 2021).
The best prediction and calibration performance is achieved when the number of sub-networks is 5.
The training protocol follows the suggested settings by Caron et al. (2021).

Datasets We use the following datasets in our experiments: CIFAR-10/100 (Krizhevsky, 2009)
are subsets of the tiny images dataset. Both datasets include 50,000 images for training and 10,000
validation images of size 32 × 32 with 10 and 100 classes, respectively. SVH (Netzer et al., 2011)
is a digit classification benchmark dataset that contains 600,000 32 × 32 RGB images of printed
digits (from 0 to 9) cropped from pictures of house number plates. ImageNet (Deng et al., 2009),
also known as ILSVRC 2012, contains 1,000 classes, with 1.28 million training images and 50,000
validation images. For the NLP task, we train on a dataset of 1 million randomly sampled sentences
from Wikipedia articles (Huggingface, 2021) and evaluate our models on 7 different semantic tex-
tual similarity datasets from the SentEval benchmark suite (Conneau & Kiela, 2018): MR (movie
reviews), CR (product reviews), SUBJ (subjectivity status), MPQA (opinion-polarity), SST-2 (sen-
timent analysis), TREC (question-type classification), and MRPC (paraphrase detection). The
T6SS effector protein dataset is a public real-world bacteria dataset (SecReT6, (Li et al., 2015))
with actual label scarcity. The sequence length of the genome sample is 1000nt in all experiments.

Tasks We examine and benchmark a model’s reliability on different tasks considering evaluation
protocols by self-supervised learning (Chen et al., 2020) and Plex’s benchmarking tasks (Tran et al.,
2022). Specifically, we evaluate our model on the basis of uncertainty-aware IND generalization,
OOD detection, semi-supervised learning, corrupted dataset evaluation (see Section 5), and
transfer learning to other datasets and tasks (see Section B.2) .

Evaluation metrics We report prediction/calibration performance with the following metrics,
where upward arrows indicate that higher values are desirable, et vice versa. Top-1 accuracy ↑:
share of test observations for which the correct class is predicted. AUROC ↑: area under the ROC
curve arising from different combinations of false-positive and false-negative rates (here: with pos-
itive and negative classes referring to being in and out of distribution, respectively) for a gradually
increasing classification threshold. Negative log-likelihood (NLL) ↓: negative log-likelihood of
test observations under the estimated parameters. Expected calibration error (ECE);(Naeini et al.,
2015) ↓: mean absolute difference between accuracy and confidence (highest posterior probability
among predicted classes) across equally-spaced confidence bins, weighted by relative number of
samples per bin. Thresholded adaptive calibration error (TACE); (Nixon et al., 2019)) ↓: modi-
fied ECE with bins of equal sample size, rather than equal interval width, and omitting predictions
with posterior probabilities falling below a certain threshold (here: 0.01) that often dominate the
calibration in tasks with many classes.

Compared methods We compare our method to the following contenders. Baseline: self-
supervised architectures (i.e., SimCLR, DINO, SCD, or Self-GenomeNet, depending on the task)
without probabilistic modification. Ensemble-SSL: deep ensemble comprising multiple of the
aforementioned baseline networks. Monte Carlo (MC) dropout: (Gal & Ghahramani, 2016)
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baseline networks with dropout regularization applied during pretraining of baseline encoder.
BatchEnsemble: baseline encoder with BatchEnsemble applied during pretraining.

5 RESULTS AND DISCUSSION

In-distribution generalization IND generalization (or prediction calibration) quantifies how well
model confidence aligns with model accuracy. We perform several experiments on small and large
image datasets as well as the genomics dataset to evaluate and compare the predictive performance
of our proposed model in IND generalization. Here, the base encoder fθ is frozen after unsupervised
pretraining, and the model is trained on a supervised linear classifier. The linear classifier is a fully
connected layer followed by softmax, which is placed on top of fθ after removing the ensemble of
sub-networks. High predictive scores and low uncertainty scores are desired.

Figure 3 illustrates the predictive probability of correctness for our model on CIFAR-10, CIFAR-
100, ImageNet, and T6SS dataset in terms of Top-1 accuracy, ECE, and NLL, respectively. Based
on Figure 3, our method achieves better calibration (ECE and NLL) than the deep ensemble of self-
supervised models, MC-dropout, and BatchEnsemble, with substantial margins at large ensemble
sizes. More detailed descriptions are provided in Appendix B.1 (Tables 5, 6, 7, and 8).
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Figure 3: Uncertainty-awareness: IND generalization in terms of (a) top-1 Accuracy (b) ECE
(c) NLL averaged over in-distribution on test samples of CIFAR-10/100, ImageNet, T6SS datasets.
Here, we compare our method with BatchEnsemble (BatchEns), MC-dropout (MCDO), ensemble
of deep self-supervised networks (SSL-Ens), as well as the baseline. Detailed descriptions of IND
generalization for each dataset are presented in Appendix B.1 (Tables 5, 6, 7, and 8).

Out-of-distribution detection OOD detection shows how well a model can recognize test samples
from the classes that are unseen during training (Geng et al., 2020). We perform several experiments
to compare the model generalization from IND to OOD datasets, and to predict the uncertainty of the
models on OOD datasets. Evaluation is performed directly after unsupervised pretraining without a
fine-tuning step. Table 2 shows the AUROC on different OOD sets for our model, baseline and deep
self-supervised ensemble. Our approach improves over all compared methods.

Table 2: OOD detection. Results reported using AUROC show our method enhances the baseline up to 6%.

IND OOD Baseline Ensemble-SSL Our method

CIFAR-100

SVHN 84.22 84.95 88.00
Uniform 91.65 90.53 97.57
Gaussian 90.00 89.42 94.10

CIFAR-10 74.71 74.80 75.18

CIFAR-10

SVHN 95.03 96.68 97.07
Uniform 96.73 91.64 99.05
Gaussian 96.39 93.24 99.24

CIFAR-100 91.79 91.59 91.87

Semi-supervised evaluation We explore and compare the performance of our proposed method in
the low-data regime. Again, the encoder fθ is frozen after self-supervised pretraining, and the model
is trained on a supervised linear classifier using 1% and 10% of the dataset. The linear classifier is
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a fully connected layer followed by softmax. Table 3 shows the result in terms of top-1 accuracy,
ECE, and NLL. The results indicate that our method considerably outperforms other methods in the
low-data regime – both in terms of calibration and accuracy.

Table 3: Semi-supervised evaluation: Top-1 accuracy (ACC), ECE, and NLL for semi-supervised CIFAR-
10/100 classification using 1% and 10% training examples.

Method CIFAR-10 (1%) CIFAR-10 (10%) CIFAR-100 (1%) CIFAR-100 (10%)

ACC ECE NLL ACC ECE NLL ACC ECE NLL ACC ECE NLL

Baseline 89.1 0.075 0.364 91.1 0.039 0.274 56.2 0.097 2.01 59.5 0.086 1.79
SSL-Ensemble 90.1 0.056 0.334 92.2 0.050 0.257 59.7 0.081 1.86 62.6 0.053 1.48
Our method 90.4 0.018 0.296 92.6 0.016 0.249 59.3 0.060 1.71 62.4 0.042 1.56

Corrupted dataset evaluation Another important component of model robustness is its ability
to make accurate predictions when the test data distribution changes. Here, we evaluate model
robustness under covariate shift. We employ a configuration similar to the one found in Tran et al.
(2022). Figure 4 summarizes the improved performance across metrics of interest. The results
confirm that our method outperforms the baseline and achieves comparable predictive performance
as a deep self-supervised ensemble – both in terms of calibration (TACE) and AUROC.
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Figure 4: Performance under dataset corruption (CIFAR-10/100 with five levels of increasing pertur-
bation), evaluation in terms of AUROC and TACE for several types of corruption (vertical spread).

6 ABLATION STUDY

In order to build intuition around the behavior and the observed performance of the proposed
method, we further investigate the following aspects of our approach in multiple ablation studies
exploring: (1) the number M of sub-networks, (2) the role of each component of the proposed loss,
and (3) the impact of our approach at the time of pretraining vs. at the finetuning step.

Number of sub-networks We train M individual deep neural networks on top of the representation
layer. The networks receive the same inputs but are parameterized with different weights and biases.
Here, we provide more details regarding our experiments on IND generalization by considering
varying M . Fig. 5a compares the performance in terms of top-1 accuracy, ECE, and NLL for
CIFAR-10 and CIFAR-100. Based on the quantitative results depicted in Fig. 5a, the predictive
performance improves in both datasets when increasing the number of sub-networks (M ) until a
certain point. For example, in the case of CIFAR-10, when M = 3, our performance is 91.9%;
increasing M to 10 levels top-1 accuracy up to 92.6%, while the ECE and NLL decrease from 0.026
and 0.249 to 0.023 and 0.222, respectively. These findings underline that training our sub-networks
with a suitable number of heads can lead to a better representation of the data and better calibration.

Analysis of loss The total loss (Eq. 4) is calculated by the combination of self-supervised loss
(Eq. 1) and diversity loss (Eq. 3), where the mean value of the embeddings across the ensemble of
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Figure 5: Ablation study on number M of sub-networks (a) and on hyperparameters of our proposed
loss (b) λ and (c) α.

sub-networks is fed to the self-supervised loss, and the corresponding standard deviation is used for
the diversity loss. First, we note that the use of our diversity regularizer indeed improves uncertainty
awareness. The results in Fig. 3 show the impact of our loss function in relation to the baseline.
By comparing the first and fifth rows of Table 5, it can be inferred that our proposed loss function
results in a much lower ECE (0.016) than the network trained by SimCLR (baseline) with 0.039 on
CIFAR-10 dataset. Similarly, the first and third rows of Table 7 compare the predictive probability
of correctness of DINO (baseline) and our model on ImageNet.

Second, we explore different hyperparameter configurations to find the optimal values for α and λ
in Fig. 5b,5c. Note that, in practice, α and λ must be optimized jointly. The best top-1 accuracy in
our case is achieved when α and λ are set to 0.08 and 1.5, respectively, on the CIFAR-10 dataset.

Efficient ensemble of sub-networks at pretraining vs. finetuning We performed additional exper-
iments to study the impact of efficient ensemble and uncertainty-aware loss i) during pretraining, ii)
during finetuning, and iii) during both pretraining and finetuning. As shown in Table 4, pretraining
with an ensemble of sub-networks is beneficial, and additional fine-tuning with multiple head can
further improve performance.

Table 4: Pretraining vs. Finetuning: Expected calibration error averaged over uncertainty-aware
evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) TACE (↓)

Baseline 92.5 0.039 0.238 0.133
Pretrain-UnSub 92.6 0.032 0.226 0.131
Finetune-UnSub 92.6 0.021 0.222 0.103
Pretrain-UnSub + Finetune-UnSub 92.8 0.023 0.227 0.115

7 CONCLUSION

In this paper, we presented a novel uncertainty-aware self-supervised framework. We achieved high
predictive performance and good calibration using a simple yet effective idea – an ensemble of in-
dependent sub-networks that can estimate model uncertainty during pretraining of a self-supervised
framework. We introduced a new loss function to encourage diversity among different sub-networks.
It is straightforward to add our method to many existing self-supervised learning frameworks during
pretraining. Our extensive experimental results show that our proposed method outperforms, or is
on par with, an ensemble of self-supervised methods in many different experimental settings.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In International Conference on Learning
Representations, 2020.

Shekoofeh Azizi, Basil Mustafa, Fiona Ryan, Zachary Beaver, Jan Freyberg, Jonathan Deaton,
Aaron Loh, Alan Karthikesalingam, Simon Kornblith, Ting Chen, et al. Big self-supervised
models advance medical image classification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3478–3488, 2021.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. data2vec:
A general framework for self-supervised learning in speech, vision and language. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
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José Jiménez-Luna, Francesca Grisoni, and Gisbert Schneider. Drug discovery with explainable
artificial intelligence. Nature Machine Intelligence, 2(10):573–584, 2020.

Berk Kaya, Suryansh Kumar, Carlos Oliveira, Vittorio Ferrari, and Luc Van Gool. Uncertainty-
aware deep multi-view photometric stereo. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 12601–12611, 2022.

Tassilo Klein and Moin Nabi. Scd: Self-contrastive decorrelation for sentence embeddings. Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL),
2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, volume 30, 2017.

Jun Li, Yufeng Yao, H Howard Xu, Limin Hao, Zixin Deng, Kumar Rajakumar, and Hong-Yu Ou.
Secret6: a web-based resource for type vi secretion systems found in bacteria. Environmental
microbiology, 17(7):2196–2202, 2015.

Manling Li, Ruochen Xu, Shuohang Wang, Luowei Zhou, Xudong Lin, Chenguang Zhu, Michael
Zeng, Heng Ji, and Shih-Fu Chang. Clip-event: Connecting text and images with event structures.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16420–16429, 2022.

Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshmi-
narayanan. Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via
Distance Awareness. In Proceedings of the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020),. arXiv, 2020.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of AAAI’15, pp. 2901–2907. AAAI Press,
2015.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning, 2011.

Jeremy Nixon, Mike Dusenberry, Ghassen Jerfel, Timothy Nguyen, Jeremiah Liu, Linchuan Zhang,
and Dustin Tran. Measuring Calibration in Deep Learning, 2019.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems,
volume 32, 2019.
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A IMPLEMENTATION DETAILS

A.1 COMPUTATION COST ANALYSIS

Figure 6 illustrates relative computation cost – as compared to the baseline – in terms of the num-
ber of parameters, computation time, and memory required between our model and a deep self-
supervised ensemble.

Figure 6: The test time cost (purple, dotted) and memory cost (purple, dashed) of our model w.r.t.
the ensemble size. The figures are relative to the cost incurred by a single model (green). Inference
time cost and memory cost of a deep self-supervised ensemble are plotted in blue.

A.2 DATA AUGMENTATION FOR COMPUTER VISION DATASETS

We define a random transformation function T that applies a combination of crop, horizontal flip,
color jitter, and grayscale. Similar to Chen et al. (2020), we perform crops with a random size from
0.2 to 1.0 of the original area and a random aspect ratio from 3/4 to 4/3 of the original aspect
ratio. We also apply horizontal mirroring with a probability of 0.5. Then, we apply grayscale
with a probability of 0.2 as well as color jittering with a probability of 0.8 and a configuration of
(0.4, 0.4, 0.4, 0.1). However, for ImageNet, we define augmentation based on the original DINO
from their official repository. In all experiments, at the testing phase, we apply only resize and
center crop.

A.3 HYPERPARAMETERS FOR SELF-SUPERVISED NETWORK ARCHITECTURES

SimCLR (Chen et al., 2020): we use ResNet-50 as a backbone, a loss temperature of 0.07, batch
size 512, and a cosine-annealing learning rate scheduler. The embedding size is 2048, and we train
for 800 epochs during pretraining. DINO (Caron et al., 2021): we use ViT-small as a backbone,
patch size 16, batch size 1024, and a cosine-annealing learning rate scheduler. The embedding size
is 384/1536, and we train for 100 epochs during pretraining.

B ADDITIONAL RESULTS

B.1 UNCERTAINTY-AWARENESS IND GENERALIZATION

Tables 5, 6, and 7 present results for the predictive performance and calibration of our model on
CIFAR-10, CIFAR-100, and ImageNet, respectively. Based on Table 5, our method achieves better
calibration than the deep ensemble of self-supervised networks, MC-dropout, and BatchEnsemble,
with substantial margins at large ensemble sizes.
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Table 5: Uncertainty-Awareness: IND Generalization: Top-1 accuracy, ECE and NLL averaged
over in-distribution on test samples of the CIFAR-10 dataset. The best score for each metric is
shown in bold, and the second-best is underlined.

Method Top-1 Acc (%) (↑) ECE (↓) NLL (↓)

# member (M ) 3 5 10 3 5 10 3 5 10

Baseline 92.8 ± 0.4 0.039 ± 0.002 0.233 ± 0.011
SSL-Ensemble 92.8± 0.1 93.0± 0.2 94.2 ± 0.3 0.043± 0.02 0.033± 0.01 0.029 ± 0.02 0.221± 0.011 0.226± 0.009 0.199± 0.004
MC Dropout 65.7± 0.2 66.3± 0.2 66.4± 0.2 0.083± 0.014 0.077± 0.009 0.075± 0.005 0.66± 0.012 0.637± 0.002 0.593± 0.006
BatchEnsemble 69.1± 04 72.1± 0.3 71.9± 0.2 0.064± 0.011 0.061± 0.008 0.062± 0.005 0.613± xx 0.58± 0.007 0.551± 0.004
Our method 92.6± 0.2 92.9± 0.1 93.6± 0.1 0.021± 0.004 0.019± 0.002 0.016 ± 0.001 0.241± 0.010 0.221± 0.005 0.193 ± 0.003

Table 6: Uncertainty-Awareness: IND Generalization: Top-1 accuracy, ECE and NLL averaged
over in-distribution on test samples of the CIFAR-100 dataset. The best score for each metric is
shown in bold, and the second-best is underlined.

Method Top-1 Acc (%) (↑) ECE (↓) NLL (↓)

# member (M ) 3 5 10 3 5 10 3 5 10

Baseline 68.9 ± 0.3 0.086 ± 0.014 1.28 ± 0.05
SSL-Ensemble 70.6± 0.12 71.4± 0.5 72.0 ± 0.2 0.12± 0.01 0.122± 0.01 0.119± 0.04 1.09± 0.01 1.12± 0.01 1.06± 0.02
MC Dropout 46.3± 0.1 45.2± 0.4 48.2± 0.1 0.077± 0.012 0.081± 0.002 0.071± 0.002 2.66± 0.11 2.37± 0.02 2.43± 0.06
BatchEnsemble 44.1± 03 45.2± 0.2 46.1± 0.1 0.073± 0.01 0.071± 0.08 0.068 ± 0.001 2.43± 0.03 2.64± 0.007 2.51± 0.004
Our method 67.7± 0.1 68.8 ± 0.1 70.1± 0.0 0.067± 0.001 0.063± 0.001 0.048 ± 0.000 0.114± 0.005 0.116± 0.0002 1.06 ± 0.001

Table 7: Uncertainty-Awareness: IND Generalization: Top-1 accuracy, ECE and NLL averaged
over in-distribution on test samples of the ImageNet dataset. The best score for each metric is shown
in bold, and the second-best is underlined.

Method Top-1 Acc (%) (↑) ECE (↓) NLL (↓)

Baseline 73.8 ± 0.3 0.013 ± 0.015 1.05 ± 0.01
SSL-Ensemble 75.1 ± 0.1 0.014 ± 0.000 0.98 ± 0.01
Our method 74.0 ± 0.0 0.010 ± 0.000 1.03 ± 0.01

Table 8: Uncertainty-Awareness: IND Generalization: Top-1 accuracy, ECE and NLL averaged
over in-distribution on test samples of the T6SS Identification dataset. The best score for each
metric is shown in bold, and the second-best is underlined.

Method Top-1 Acc (%) (↑) ECE (↓) NLL (↓)

Baseline 75.9 ± 2.0 0.100 ± 0.006 0.502 ± 0.020
SSL-Ensemble 80.2 ± 0.7 0.099 ± 0.014 0.471 ± 0.011
Our method 76.7 ± 2.3 0.108 ± 0.006 0.492 ± 0.024

We also performed experiments on a dataset of 1-dimensional genomic sequences – the T6SS iden-
tification of effector proteins– to demonstrate that uncertainty-aware subnetworks can also be read-
ily combined with existing models for 1-dimensional datasets and models. Based on Table 8, our
method improves the accuracy and the calibration compared to the baseline.
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B.2 TRANSFER TO OTHER TASKS AND DATASET

We further assess the generalization capacity of the learned representation on learning a new task
in NLP. We train our model without any labels on a dataset of sentences from Wikipedia (Hugging-
face, 2021) and fine-tune the pretrained representation on seven different semantic textual similarity
datasets from the SentEval benchmark suite (Conneau & Kiela, 2018): MR (movie reviews), CR
(product reviews), SUBJ (subjectivity status), MPQA (opinion-polarity), SST-2 (sentiment analy-
sis), TREC (question-type classification), and MRPC (paraphrase detection). Then, we evaluate
on the test set of each dataset. Figure 7 provides a comparison of transfer learning performance of
our self-supervised approach for different tasks. Our results in Figure 7 indicate that our approach
performs comparably to or better than the baseline method.
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Figure 7: Transfer to other dataset and tasks: Comparision of Sentence embedding performance
on semantic textual similarity tasks .

We test the performance of the trained model on ImageNet (Deng et al., 2009) on CIFAR-
10 Krizhevsky (2009) dataset where the model is trained for 100 epochs.

Table 9: Transfer to other dataset: Expected calibration error averaged over uncertainty-aware
evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) TACE (↓)

Baseline 73.5 0.038 0.78 0.20
Our method 73.9 0.030 0.75 0.18
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