
Centroid Affinity: How Deep Networks Represent
Features

Anonymous Author(s)
Affiliation
Address
email

Abstract

Understanding and identifying the features of a deep network (DN) is a focal1

point of interpretability research. A common characterisation of the features of a2

DN is that of directions in their latent spaces, known as the linear representation3

hypothesis (LRH). However, there are increasingly apparent limitations of the4

LRH and calls for strategies for understanding the functional behaviours of a5

DN’s features. In this work, we explore the connection between a DN’s functional6

geometry and its features. We demonstrate how a vector-summarisation of a DN’s7

Jacobians – called centroids – possesses a semantically coherent affine structure8

that arises from the linear separability of latent activations. Thus, we introduce9

centroid affinity as a complementary perspective to the LRH that is grounded10

in the functional properties of the DN. Importantly, we can continue to utilise11

LRH-leveraging tools, such as sparse autoencoders, to study the features of a DN12

through centroid affinity; with centroid affinity also facilitating the introduction13

of novel measures for exploring the features and circuits of DNs. Indeed, we14

demonstrate how centroid affinity can effectively and robustly interpret the features15

of the DINOv2 and GPT2 models. The corresponding code for this work can be16

found here.17

Functional Geometry Input Samples Corresponding Centroids

Figure 1: Centroid affinity identifies the meaningful features of a DN. Here we visualise the centroids
of a DN trained to classify the interior of a star-shaped polygon in the two-dimensional plane (see
Appendix A). More specifically, we sample points in the input space, centre plot, and visualise
their corresponding centroids, right plot. Centroids are computed using Proposition 2.3. The
corresponding functional geometry of the DN is visualised in the left plot (using SplineCam [1]).

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/centroid_affinity-E80C

1 Introduction18

What are the features of a deep network (DN)? Fundamentally, DNs systematically intertwine linear19

and nonlinear operations in a layer-wise fashion to induce expressive function approximators [2].20

Thus, features should refer to the regions of the input space that have a determined influence on the21

functional behaviour of the DN. With this, the practical question becomes how do we identify the22

features of a DN?23

In this paper, we propose an approach for identifying features using the functional geometry of a24

DN. Using the spline theory of deep learning [3], we demonstrate that a parametrisation of a DN’s25

functional geometry represents meaningful features as affine structures, a notion we formalise as26

centroid affinity. Since this parametrisation is accessible through Jacobian vector products, it follows27

that centroid affinity offers an appealing approach for identifying the features of a DN.28

To arrive at this, we first utilise prior works to introduce the notion of a feature and circuit of a DN,29

which we then explore through the perspective of a DN’s nonlinearities. Using the spline theory of30

deep learning, we contextualise this within the power diagram parametrisation of a DN’s functional31

geometry [4]. Allowing us to introduce centroid affinity as a complementary perspective to the32

prevailing linear representation hypothesis (LRH) [5, 6], which posits that features are represented as33

linear structures in the latent spaces of a DN.34

Evidence for the LRH was first teased out using text semantics in word-embedding models [7],35

before being supported in transformers [8]. The utility of this perspective is that it is simple36

and intuitive; which facilitated the development of a variety of computationally efficient tools to37

perform feature extraction [9–13] and understand the behaviours of DNs [14–19]. Furthermore, it is38

amenable to theoretical characterisation, allowing for the systematic study of DN features [6, 20, 21].39

However, there is a growing consensus that the LRH is limited in its capacity to provide a meaningful40

understanding of the DN’s function [22] that is consistent [23]. Fundamentally, it is agnostic to the41

input-output mapping [17, 24, 25] and is not easily contextualised within the DN’s input space [24].42

Thus, it is difficult to interpret the dictionaries of the so-called features extracted by these methods,43

which are often on the order of millions [26].44

Thus, secondly, we demonstrate that centroid affinity overcomes these limitations of the LRH to45

facilitate a function-aware study into the features of a DN. In particular, by considering a simple46

example, we demonstrate explicitly how centroid affinity ignores functionally meaningless features47

of a DN that are instead identified under the LRH.48

Although more functionally aware approaches for identifying the features of a DN are being proposed49

[27, 28], often only an approximation of their theoretical construction can be implemented in practice50

[29, 30]. Despite this, these approaches have offered a range of intuitive and interpretable insights51

[31, 32].52

So thirdly, we highlight how centroid affinity can efficiently explore the features of the DINOv253

[33] and GPT2 [34] models in a similarly insightful way. For the DINOv2 model, by training sparse54

autoencoders on centroids, we identify sparser, more meaningful, and more functionally relevant55

features compared to the features of sparse autoencoders trained on latent activations. On GPT2, we56

utilise novel centroid-based metrics to corroborate prior circuit analysis work [35].57

2 Background58

Features and Circuits. As articulated in Section 1, the features of a DN should relate the input59

space to the functional mapping.60

Definition 2.1. A feature of a DN is a region of the input space that predictably influences the61

functional behaviour of the DN.62

Influencing the functional behaviour of the DN could refer to anything from inducing a particular63

activation pattern in its nonlinearities, influencing the output logits in a consistent manner, or64

triggering an attention head, for example. We formalise the precise functional influence of a feature65

with circuits.66

Definition 2.2. A circuit of a DN constitutes a sub-component of the DN’s computational graph that67

is influenced by a feature.68

2

In Appendix B, we explain how this formalisation of features and circuits is analogous to prior work.69

Deep Networks and their Approximations. An L layer DN f : Rd → Rd(L)

, with the convention
that d(0) = d, is a composition of L functions f (ℓ) : Rd(ℓ−1) → Rd(ℓ)

which usually constitute
some sort of affine transformation followed by a nonlinearity. Using the spline approximation theory
[36, 37], DNs can be approximated to arbitrary precision or even characterised exactly [3] using
continuous piecewise affine splines. More specifically, one can write f(x) ≈ Aων(x)

x + bων(x)
,

where Aων(x)
∈ Rd(L)×d and bων(x)

∈ Rd(L)

are affine parameters specific to the linear region
ων(x) ⊆ Rd encompassing x. Here ν(x) identifies the equivalence class of x under the collection of
all equivalence classes V constructed by ∼ where x1 ∼ x2 if and only if x1 and x2 are in the same
linear region. In particular, one can construct these approximations for each function f (ℓ) to obtain

f(x) ≈ A
(L)

ω
(L)

ν(x)

(
. . .

(
A

(1)

ω
(1)

ν(x)

x+ b
(1)

ω
(1)

ν(x)

)
. . .

)
+ b

(L)

ω
(L)

ν(x)

,

where ω
(ℓ)
ν(x) ⊆ Rd(ℓ−1)

denotes the linear region for the mapping f (ℓ) encompassing f (1←ℓ−1)(x) ∈70

Rd(ℓ−1)

.1 Similarly, one can compute continuous piecewise affine approximations for sub-components71

of the DN, say f (ℓ1←ℓ2) : Rd(ℓ1−1) → Rd(ℓ2)

for 1 ≤ ℓ1 < ℓ2 ≤ L, for which we adopt a similar72

notation. When the DN employs continuous piecewise nonlinearities (e.g. ReLU), these spline73

approximations are exact [3].74

Henceforth, when we speak in terms of DN sub-components, we do so with the understanding that75

this covers everything from a single layer to the entire DN.76

Functional Geometry. The functional geometry of a DN sub-component refers to the arrangement77

of the linear regions of its continuous piecewise affine approximation. Namely, the functional78

geometry of the DN sub-component f (ℓ1←ℓ2) is the disjoint union of
{
ω
(ℓ1←ℓ2)
ν

}
ν∈V

, which is a79

partition of Rd(ℓ1−1)

into convex polytopes [4]. The particular arrangement of the linear regions80

characterises surprisingly many properties of the sub-component [38–40].81

On the one hand, the linear regions can be thought of as being bounded by the level-sets of the82

nonlinearities of the DN sub-component. Each nonlinearity has a level-set2 which is a hyperplane83

in its input space. As the hyperplane is projected back to the input space of the sub-component, it84

bends at the point of intersection with the level-sets of the preceding nonlinearities (see Figure 7). It85

is the intersection of these planes that forms the regions which constitute the DN sub-component’s86

functional geometry [1]. In particular, through this process one can contextualise the functional87

geometry of a component f (ℓ1←ℓ2) into the input space of the DN, Rd.88

On the other hand, it was shown in Balestriero et al. [4] that the functional geometry of f (ℓ1←ℓ2)

can be parametrised by a power diagram subdivision using a collection of centroid-radius pairs{(
µ
(ℓ1←ℓ2)
ν , τ

(ℓ1←ℓ2)
ν

)}
ν∈V

⊆ Rd(ℓ1−1) × R, such that

ω(ℓ1←ℓ2)
ν =

{
x ∈ Rd(ℓ1−1)

: ν = arg min
ν′∈V

(∥∥∥x− µ
(ℓ1←ℓ2)
ν′

∥∥∥2
2
− τ

(ℓ1←ℓ2)
ν′

)}
.

Proposition 2.3 (Balestriero et al. 4). Let Jx

(
f (ℓ1←ℓ2)

)
denote the Jacobian of f (ℓ1←ℓ2) at89

f (1←ℓ1−1)(x). Then, µ(ℓ1←ℓ2)
ν(x) =

(
Jx

(
f (ℓ1←ℓ2)

))⊤
1.90

From Proposition 2.3 it follows that the functional geometry can be parametrised with a vector that is91

computationally accessible through a Jacobian vector product.92

1It should be understood that in this context, ν(x) identifies the equivalence class on the linear regions in
Rd(ℓ−1)

.
2By level-set, we refer to the points in space – whether that be in the input space of the DN or the input space

of the nonlinearity – that activate the nonlinearity at its knots. For example, for the ReLU nonlinearity, the level
set would refer to the points that are zero when fed into the nonlinearity.

3

3 Centroid Affinity Identifies Features93

When the spline approximation is exact, say in the context of continuous piecewise affine DNs, clearly94

linear regions satisfy Definition 2.1. Indeed, the inputs within a linear region, by construction, induce95

the same activation pattern within the DN (see Figure 7). However, since DNs contain exponentially96

many linear regions [41], for purposes of interpretability, we need to refine the scope of Definition97

2.1 to meaningful features.98

Meaningful Features as Aligned Linear Regions. Humayun et al. [42] characterised the grokking99

phenomenon in DNs [43] – the observation that test accuracy can take substantially longer to100

saturate compared to the train accuracy – as the migration of linear regions from the training data101

to the decision boundary; which was compared with the phenomenon of circuit clean-up [44] – the102

observation that redundant circuits are discarded as the DN generalises. Since Humayun et al. [42]103

demonstrated that the region migration phenomenon – alignment of linear regions along a boundary104

in the input space – is a universal phenomenon of DN training dynamics and has a link to grokking,105

we will use this as an indicator of the meaningful features of a DN.106

Definition 3.1 (Informal). A feature of a DN is a collection of aligned linear regions in the input107

space. (Formalised in Appendix C).108

We will now further support and articulate Definition 3.1 with a simple example.3 Consider a fully109

connected ReLU network – with three hidden layers – of the form f : R2 → R, trained to perform110

the binary classification of a polygon in a two-dimensional plane (see Appendix A). More specifically,111

points within the polygon have label zero and points outside the polygon have label one. In this112

instance, we would expect a feature of the DN to be the polygon.113

Let us consider the last component of the DN, namely g(z) = Wσ(z),4 and focus on the kth114

nonlinearity. Suppose ϵek perturbs the input point z such that the nonlinearity becomes active.5 Then115

g (z+ ϵek) = g(z)+([z]k+ϵ)Wek. That is, such a perturbation is going to influence the confidence116

of the predicted class. Importantly, this contribution will not be present when the nonlinearity is117

inactive. Thus, regardless of the nature of this contribution, the DN is incentivised to place the118

level-set of the nonlinearity in a region where the output should change from one class to another.119

Therefore, the level-set of the nonlinearities should align themselves along the boundary of the120

polygon, which subsequently supports the characterisations of features as per Definition 3.1.121

Connection to the LRH. The level-set of a nonlinearity is a hyperplane in its input space, meaning122

it can only identify boundaries in the input space of the DN when they are linearly identifiable in its123

input space. For example, the kth nonlinearity of f can only utilise the polygon as a feature when the124

points inside and outside the polygon are linearly separable in the input space of the last layer of the125

DN. Indeed, in Figure 2 we see that the entire shape of the polygon is captured in the third layer, with126

the corresponding activations of the interior and exterior of the polygon being linearly separable.127

By generalising these arguments, we have that the features of the ℓth layer of a DN are the regions128

of the input space whose boundary is linearly identifiable within the input space of the ℓth layer and129

populated with the level-sets of the nonlinearities of the ℓth layer.130

This highlights a subtle, although complementary, difference from the LRH. The LRH posits that131

the latent activations of features form affine structures, which is a stronger condition than being132

linearly identifiable. Furthermore, the way the LRH is utilised and interpreted implies that any set133

of activations that form affine structures corresponds to features of the DN [45]. However, from134

the perspective of hyperplanes, even if a collection of latent activations forms a linearly identifiable135

boundary, we also require that the nonlinearities align themselves along this boundary to form a136

feature. For if no nonlinearities align themselves along this boundary, then moving along these affine137

structures would not induce a distinct difference in the functional behaviour of the DN, and thus not a138

feature as per Definition 2.1.139

3This simple example can also be followed in the repository, https://anonymous.4open.science/r/
centroid_affinity-E80C

4For simplicity, we have removed the bias term, although in practice this bias term is present.
5Since we are using the ReLU nonlinearity, active refers to the state of the activation being positive.

4

https://anonymous.4open.science/r/centroid_affinity-E80C
https://anonymous.4open.science/r/centroid_affinity-E80C

First Hidden Layer Second Hidden Layer Third Hidden Layer Activations Centroids

Figure 2: A DN migrates the level-sets of its nonlinearities to meaningful regions of the input space,
with earlier layers capturing coarser features which propagate back from the deeper layers. The
corresponding centroids form affine subspaces with the latent activations being linearly separable.
Here we train a fully connected ReLU DN with three hidden layers on the polygon classification task
of Figure 7. The DN has a width of 64 at each hidden layer. We visualise the functional geometry
of the first hidden layer component, the second hidden layer component, and the third hidden layer
component with the far left, left and centre plots, respectively. In the right and far right plots, we
project the latent activations and centroids in the input space of the third hidden layer onto their first
two principal components, respectively. Orange points correspond to input samples from outside of
the polygon, and blue points correspond to input samples from inside the polygon.

Therefore, linearity in latent activations is a sufficient representation of features of a DN, but it is not140

a necessary representation, as seen in Figure 2, where the activations of the interior of the polygon do141

not correspond to a direction in the latent space. Consequently, our framework provides a strategy for142

mitigating the identification of spurious features of a DN. For example, in Figure 2 we see that the143

activations of the external points of the polygon cluster into three directions; however, these will not144

correspond to different functional behaviours in the last hidden layer of the DN since its nonlinearities145

do not meaningfully partition the external regions of the polygon. Interestingly, the centroids align146

along two distinct linear directions. We will now formalise this observation.147

Centroid Affinity Identifies Meaningful Features. Above we supported Definition 3.1, by consid-148

ering the hyperplanes of the nonlinearities forming the regions. Fortunately, for practical purposes,149

we can reformulate this within the power diagram perspective of the functional geometry.150

Proposition 3.2 (Informal). The features of the ℓth layer of a DN are the collections of regions in its151

input space, Rd(ℓ−1)

, whose corresponding centroids form an affine subspace in Rd(ℓ−1)

. (Formalised152

and Proved in Appendix C).153

To contextualise the features of the ℓth layer in a larger sub-component, it suffices to propagate the154

regions back into the input space of the sub-component. As mentioned previously, this is done155

by iteratively taking the intersection with the regions of the previous layers of the sub-component,156

resulting in the refinement of the regions. For the corresponding centroids, it follows from Proposition157

2.3 that we perform a linear projection based on the activation pattern of the points in the region at158

the previous layers of the sub-component, which refines the original centroids into multiple centroids.159

Importantly, this refinement maintains the affine structure of the original centroids, although now a160

single feature at the ℓth layer may partition into multiple refined features in the input space of the161

sub-component. Thus, feature analyses of larger sub-components will often identify more granular162

features than feature analyses on smaller components. We formalise this reasoning with Theorem 3.3.163

Theorem 3.3 (Informal). The features of a DN sub-component are the collections of regions in its164

input space whose centroids form affine subspaces. (Formalised in Appendix C).165

To make this concrete, recall Figure 2 where the nonlinearities aligning along the boundary of the166

polygon identify the polygon as a feature of the last layer. Similarly, the second hidden layer identifies167

the three sides of the polygon as features, as the nonlinearities align along these boundaries (evidenced168

by the extending hyperplanes emanating from each of the three tips of the polygon). Consequently,169

with the far right plot of Figure 2, we support Proposition 3.2, since the centroids of the interior and170

exterior of the polygon form affine subspaces in the input space of the last layer. Whereas with Figure171

1 we support Theorem 3.3 since the centroids of the linear regions bounding the edges of the polygon172

form affine subspaces segmented according to which edge they identify; vividly demonstrating the173

hierarchical feature extraction capabilities arising due to their compositional nature of DNs. In174

5

particular, it becomes apparent from analysing the centroids that the features of the first hidden layer175

ought to be further dividing the three sectors of the polygon identified in the second hidden layer into176

the individual edges of the polygon – note this observation is challenging to make by just analysing177

the nonlinearities in Figure 2.178

In light of this and Theorem 3.3, we characterise this formalisation of the features of a DN as centroid179

affinity. In Section 4, we will explore how centroid affinity can be used to identify the features of a180

DN.181

Centroid Stability Identifies Circuits. To identify the circuits of a DN, one needs to quantify182

the relationship between components of a DN and features, which is usually done through attri-183

bution methods [46–48]. Based on our analyses, we propose to use the sensitivity of centroids to184

manipulations in the components of a DN as an attribution method.185

Formally, let f be a DN and f (i,ℓ) be the same DN but with the ith neuron of the ℓth manipulated.186

Then we can quantify the attribution of neuron i to the features of a collection of samples N as187

s
(i,ℓ)
N :=

1

|N |
∑
x∈N

∥∥∥µf
x − µf(i,ℓ)

x

∥∥∥
2∥∥∥µf

x

∥∥∥
2

, (1)

where µf
x and µf(i,ℓ)

x are the centroids of f and f (i,ℓ) at x respectively. By taking N to be Bϵ(x) =188 {
x′ ∈ Rd : ∥x− x′∥2 < ϵ

}
, we can quantify the attribution of a neuron to the local features of a189

sample point x.6190

4 Re-evaluating Interpretability Tools191

Activation Features Centroid Features Transcoder

Figure 3: Sparse autoencoders identify the meaningful affine
structures present in DN centroids, and are susceptible to
identifying linear structures in latent activations that have no
functional relevance to the DN. Transcoders are limited in
their capacity to reconstruct the features of a DN. In the left
and centre plots, we train a sparse autoencoder to reconstruct
the latent activations and softened centroids of the input
sample from Figure 9 at the last hidden layer of the DN,
respectively. In the right plot, we train a transcoder with
twice as many features as neurons in the hidden layers of the
DN of Section 3 to reconstruct the input-output mapping of
this DN. The functional geometry of the DN sub-component
is visualised in the left plot of Figure 1.

Based on centroid affinity, we ought192

to re-evaluate the application of inter-193

pretability tools. Here we consider194

the utilisation of sparse autoencoders195

[12, 13] and transcoders [49] for fea-196

ture and circuit extraction, and the197

analysis of point clouds.198

Our development of Theorem 3.3 con-199

sidered a DN utilising piecewise affine200

nonlinearities. However, in practice,201

one often utilises smooth nonlineari-202

ties (e.g. GELU [50]). Furthermore,203

for practical reasons, we found it to be204

useful to soften continuous piecewise205

affine nonlinearities to smooth non-206

linearities when studying centroids.207

Henceforth, when performing cen-208

troid analyses, we will be computing209

centroids of the softened DN, for ex-210

ample, the one where ReLUs are re-211

placed with GELUs. We justify this212

in Appendix E.213

4.1 Sparse Autoencoders214

Sparse autoencoders are a method for extracting an over-complete basis for a set of vectors [12, 13],215

with the aim of identifying meaningful directions. A sparse autoencoder has an architecture of216

the form g(z) = Wdecσ (Wencz+ benc), with Wenc ∈ Rdfeat×dact
, benc ∈ Rdfeat

, Wdec ∈ Rdact×dfeat
,217

where dact is the dimension of the set of vectors and dfeat is the size of the over-complete basis which218

6Henceforth, we will use s(i,ℓ) to denote s
(i,ℓ)

Bϵ(x)
unless stated otherwise.

6

is to be constructed. In the context of a DN, a sparse autoencoder is trained to reconstruct its latent219

activations with an added sparsity regularisation term. The idea is that the rows of Wdec would then220

constitute a dictionary of features, with the term σ (Wencz+ benc) giving the decomposition of the221

activation z in terms of these features.222

Under centroid affinity, it is not necessarily the case that the latent activations of features correspond223

to linear directions. This means that sparse autoencoders may not extract every feature, and may224

extract spurious features instead. For example, in Figure 3, the sparse autoencoder trained on latent225

activations identifies directions that are not functionally relevant (see Figure 2). Another problem226

with this approach is the neglect of any functional information.227

These problems can be mitigated by applying sparse autoencoders to reconstruct centroids rather than228

latent activations. In Figure 3, we see that sparse autoencoders trained on centroids only recover the229

affine structures of the centroids that correspond to the features of the DN.230

4.2 Transcoders231

Transcoders have a similar architecture to sparse autoencoders, except they are trained to reconstruct232

the input-output mapping of a DN sub-component rather than its activations [49]. Although this233

approach is more faithful to the function of the DN sub-component, it is inherently limited since the234

transcoder only has one hidden layer and so its functional geometry is not very expressive. In Figure235

3, we see that the transcoder’s functional geometry is not faithful to that of the DN sub-component,236

meaning it has not captured its underlying features.237

Transcoders were primarily constructed to overcome the apparent poly-semanticity of neurons in the238

multi-layer perceptron components of transformers [51], and facilitate circuit discovery. For this,239

we can instead use (1) to effectively attribute the influence of a neuron to features, which directly240

accounts for this poly-semanticity since centroids are necessarily influenced by the behaviour of241

multiple neurons.242

In our experiments, we consider the sensitivity of centroids to neuron pruning as a method for243

quantifying the influence between neurons and features. In Figure 4, we see that the neurons of the244

third hidden layer of the DN of Section 3 have a more encompassing effect on the entire boundary of245

the polygon, whereas, the neurons of the second layer are more directly linked to the external sectors246

of the polygon – as expected from our prior analyses.247

s(i,2) s(i,3) Centroid Affinity 2nd Layer t-SNE 3rd Layer t-SNE

Figure 4: Here we study the centroids of the softened DN of Section 3. In the far left and left plot,
we visualise the influence of neurons from the second and third hidden layer on the centroids of
points sampled in the input space. In the centre plot, we took individual points in the input space,
obtained a 128 sized sample of points within a 0.4 radius of this point, and computed the effective
dimension of the corresponding centroids. In the right and far right plot, we took the input sample
of Figure 9 and embedded – using t-SNE – their corresponding centroids obtained at the second and
third hidden layer. Points within the polygon are coloured grey, whilst the other points are coloured
depending on what sector of the input space they came from.

4.3 Point-Cloud Analysis248

Another standard practice in interpretability is studying point clouds of latent activations or feature249

directions using embedding methods [52], topological descriptors [53] or linear probes [8, 10].250

Although centroid affinity only posits centroids having an affine structure, from our simple example,251

we have seen that this structure is coherent. Namely, in Figure 1, the centroids possess an angular252

structure that is relevant to their structure in the input space.253

7

(a) Linear Probe Accuracy (b) Feature Firing Distribution (c) Activation Pattern Similarity

Figure 5: For the left and centre plots, we train sparse autoencoders on the latent activations and
centroids extracted from all the tokens of the DINOv2 feature extractor. More specifically, we train a
TopK sparse autoencoder on the extracted vectors from the Imagenette train dataset with an expansion
factor of 10 and sparsity values in the range {8, 16, 32, 64}. In the left plot, we measure the accuracy
of the corresponding linear probe, and in the centre plot, we measure the firing distribution of
the 32-K sparse autoencoder. In the right plot, we train a 32-K TopK sparse autoencoder with an
expansion factor of 4 just on latent activations and centroids extracted from the class token of the
DINOv2 feature extractor. We then record the activation similarity ratios for an input sample.

On the one hand, we can consider directly measuring the distribution of centroid affinity, using a254

notion of effective dimension,7 to identify feature boundaries. In Figure 4, we see that this identifies255

the external sectors and interior of the polygon as features of the input space.256

On the other hand, one can consider the embeddings of centroids to determine different clusters257

of features. Again, in Figure 4, we consider embedding the centroids at the second and last layer258

obtained from the samples of Figure 3. Before, we determined that the last layer of this DN captures259

the inside and outside of the polygon, whereas the previous layers coarsen this representation to the260

different sectors of the polygon. These observations are corroborated in the t-SNE embeddings [54]261

of Figure 4, where there is not much sector segmentation in the last layer centroids; whereas, the262

centroids of the second layer cluster more saliently depending on which sector of the input space the263

sample used to compute the centroid came from.264

We reproduce these findings for DNs trained to classify polygons of other shapes in Appendix F265

and extend the analysis of centroid structure to a convolutional neural network trained on MNIST in266

Appendix G.267

5 Experiments268

We now explore some of these ideas on larger models and datasets, including DINOv2 [33] – a Vision269

Transformer with registers [55] backbone pre-trained on ImageNet [56] – on Imagenette [57], and270

GPT2 [34].271

DINOv2 Feature Extraction with Sparse Autoencoders. Here we demonstrate that sparse autoen-272

coders trained on the centroids from a DINOv2 with registers model yield a sparser, more meaningful273

and more functionally relevant dictionary of features. Similar to Hindupur et al. [58], we extract the274

features of Imagenette using this model, and train a TopK sparse autoencoder [59] on these features.275

However, we additionally consider training a TopK sparse autoencoder on the centroids extracted276

from the last multi-layer perceptron block of the model.277

We compare the features of these sparse autoencoders in the following ways:8 train linear probes on278

the decompositions of the train set of Imagenette to classify its classes and then evaluate the accuracy279

of the probe on the decompositions of the test set of Imagenette, record the frequency at which the280

features of the sparse autoencoder fire on the test set of Imagenette, record the activation pattern281

similarity ratios of an input sample. The activation pattern similarity ratio is computed as follows: we282

sample an input point and record the Jaccard similarity between its sparse decomposition and the283

7Here we measure effective dimension using the exponential of the entropy of the normalised singular values.
8We additionally provide a more qualitative analysis in Appendix H.

8

sparse decomposition of the other points in the training distribution. We then compute the Jaccard284

similarity of its binarised latent activation in the feature extractor to the other points in the training285

distribution. The activation pattern similarity ratio is then this latter quantity divided by the former.286

In Figure 5, we observe that the features from the centroid sparse autoencoders yield linear probes287

with higher accuracy and have a more uniform firing distribution across the feature dictionary. In288

particular, the activation pattern similarity ratios are generally larger, which means similar feature289

decompositions correspond to similar activation patterns in the feature extractor. Therefore, with290

Figure 5 we demonstrate that sparse autoencoders trained with centroids yield sparser, more general291

and functionally relevant features.292

GPT2 Circuit Discovery. In Clement and Joseph [35], it was observed that in GPT2-Large, there293

is a neuron in the multi-layer perceptron component of the thirty-first layer, which is responsible for294

predicting the ”an” token. This was determined through performing ablations and observing the effect295

on the logits of the model. Through further manipulations, it was more generally concluded that this296

neuron works in concert with other neurons within the multi-layer perceptron block to capture the297

corresponding feature, which aligns with centroid affinity, where necessarily multiple neurons must298

contribute to construct regions of the input space which form the features of the DN. We support this299

by computing neuron attribution values with equation (1) using a neighbourhood of the last token300

embeddings at the input of the thirty-first layer on the prompt ”I climbed up the pear tree and picked301

a pear. I climbed up the apple tree and picked”.302

In Figure 6, we observe that the neuron identified by Clement and Joseph [35], marked in black, has303

an attribution value within the 99.8th percentile; with a select few other neurons also obtaining high304

attribution scores and the other neurons obtaining near-zero attribution scores.305

6 Discussion306

Figure 6: We prompt GPT2-Large to predict the ”an”
token, using the prompt ”I climbed up the pear tree and
picked a pear. I climbed up the apple tree and picked”.
In a neighbourhood of the embedding at the input of
the multi-layer perceptron block at the thirty-first layer
of the last token of this prompt, we compute neuron
attribution values for each neuron in the multi-layer
perceptron using (1). The neighbourhood is constructed
by sampling 256 points within a radius of 0.25 of the
embedding. We normalise these values to be between
zero and one. In black we indicate the 892nd neuron in
the multi-layer perceptron.

In this work, we have attempted to ad-307

dress the limitation of interpretability tech-308

niques derived under the LRH of not be-309

ing aware of the function of the DN. To310

do so, we appealed to the spline theory of311

deep learning to explore a parametrisation312

of the functional geometry of a DN, where313

the functional geometry of a DN refers to314

the arrangement of the linear regions of its315

continuous piecewise affine approximation.316

We demonstrated that the affine structure of317

the centroids of this parametrisation iden-318

tifies the features of a DN. Importantly, the319

emergence of this structure requires fea-320

tures to have linearly identifiable latent ac-321

tivations, which is not sufficient to also322

satisfy the LRH. Consequently, centroid323

affinity provides a perspective for identify-324

ing DN features that is less susceptible to325

identifying spurious or over-fitted features,326

something we demonstrated with experi-327

ments on a DINOv2 model. Importantly, to328

explore centroid affinity, we can continue329

to utilise interpretability techniques developed under the LRH; however, with novel centroid-based330

metrics, we can also interpret DNs such as GPT2.331

Although centroid affinity provides a principled and robust mechanism to extract the features of a DN,332

it has some limitations, and thus, we consider it a complementary perspective to the LRH. For example,333

features extracted using centroid affinity cannot be directly utilised for feature steering, unlike features334

extracted using the LRH. Moreover, exploring centroid affinity requires more computation compared335

to exploring the LRH; we quantify this for the Section 5 experiments in Appendix I.336

9

References337

[1] Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard Baraniuk.338

SplineCam: Exact Visualization and Characterization of Deep Network Geometry and Decision339

Boundaries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern340

Recognition, June 2023.341

[2] A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE342

Transactions on Information Theory, 39(3), 1993.343

[3] Randall Balestriero and Richard Baraniuk. A Spline Theory of Deep Learning. In Proceedings344

of the 35th International Conference on Machine Learning. PMLR, July 2018.345

[4] Randall Balestriero, Romain Cosentino, Behnaam Aazhang, and Richard Baraniuk. The346

Geometry of Deep Networks: Power Diagram Subdivision. In Neural Information Processing347

Systems, May 2019.348

[5] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna349

Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam350

McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy351

models of superposition. Transformer Circuits Thread, 2022.352

[6] Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the353

geometry of large language models. In Forty-First International Conference on Machine354

Learning, 2024.355

[7] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word356

Representations in Vector Space. In 1st International Conference on Learning Representations,357

2013.358

[8] Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world359

models of self-supervised sequence models. In Proceedings of the 6th BlackboxNLP Work-360

shop: Analyzing and Interpreting Neural Networks for NLP. Association for Computational361

Linguistics, December 2023.362

[9] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why should I trust you?”: Explaining363

the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International364

Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery,365

2016.366

[10] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas,367

and Rory sayres. Interpretability beyond feature attribution: Quantitative testing with concept368

activation vectors (TCAV). In Proceedings of the 35th International Conference on Machine369

Learning, July 2018.370

[11] Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.371

Nature Machine Intelligence, 2(12), December 2020.372

[12] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,373

Nick Turner, Cem Anil, Carson Denison, Amnda Askell, Robert Lasenby, Yifan Wu, Shauna374

Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Dodds-Hatfield, Alex Tamkin,375

Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan,376

and Christopher Olah. Towards Monosemanticity: Decomposing Language Models With377

Dictionary Learning. Transformer Circuits Thread, 2023.378

[13] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse379

autoencoders find highly interpretable features in language models. In The Twelfth International380

Conference on Learning Representations, 2024.381

[14] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. Man382

is to computer programmer as woman is to homemaker? debiasing word embeddings. In383

Proceedings of the 30th International Conference on Neural Information Processing Systems,384

2016.385

10

[15] Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith.386

Linguistic knowledge and transferability of contextual representations. In Proceedings of387

the 2019 Conference of the North American Chapter of the Association for Computational388

Linguistics: Human Language Technologies. Association for Computational Linguistics, June389

2019.390

[16] John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word391

representations. In Proceedings of the 2019 Conference of the North American Chapter of the392

Association for Computational Linguistics: Human Language Technologies. Association for393

Computational Linguistics, June 2019.394

[17] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,395

Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L396

Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,397

Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.398

Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Transformer399

Circuits Thread, 2024.400

[18] Andy Arditi, Oscar Balcells Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and401

Neel Nanda. Refusal in language models is mediated by a single direction. In The Thirty-Eighth402

Annual Conference on Neural Information Processing Systems, 2024.403

[19] Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto Yamada, Hui Liu, and Jiliang Tang. To-404

wards understanding jailbreak attacks in LLMs: A representation space analysis. In Proceedings405

of the 2024 Conference on Empirical Methods in Natural Language Processing. Association for406

Computational Linguistics, November 2024.407

[20] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent vari-408

able model approach to PMI-based word embeddings. Transactions of the Association for409

Computational Linguistics, 4, 2016.410

[21] Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and411

hierarchical concepts in large language models. In The Thirteenth International Conference on412

Learning Representations, 2025.413

[22] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas414

Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria415

Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi416

Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders,417

David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and Tom418

McGrath. Open Problems in Mechanistic Interpretability, January 2025.419

[23] Angus Nicolson, Lisa Schut, Alison Noble, and Yarin Gal. Explaining explainability: Recom-420

mendations for effective use of concept activation vectors. Transactions on Machine Learning421

Research, 2025.422

[24] Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically Interpreting423

Millions of Features in Large Language Models, December 2024.424

[25] Nikita Balagansky, Ian Maksimov, and Daniil Gavrilov. Mechanistic permutability: Match425

features across layers. In The Thirteenth International Conference on Learning Representations,426

2025.427

[26] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,428

Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma Scope:429

Open Sparse Autoencoders Everywhere All At Once on Gemma 2, August 2024.430

[27] Juhan Bae, Nathan Hoyen Ng, Alston Lo, Marzyeh Ghassemi, and Roger Baker Grosse. If431

influence functions are the answer, then what is the question? In Advances in Neural Information432

Processing Systems, 2022.433

[28] Daniel Murfet, Susan Wei, Mingming Gong, Hui Li, Jesse Gell-Redman, and Thomas Quella.434

Deep Learning is Singular, and That’s Good. IEEE Transactions on Neural Networks and435

Learning Systems, 34(12), December 2023.436

11

[29] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit437

Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina438

Nguyen, Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying439

Large Language Model Generalization with Influence Functions, August 2023.440

[30] Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The Local Learning441

Coefficient: A Singularity-Aware Complexity Measure, September 2024.442

[31] Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel443

Murfet. The Developmental Landscape of In-Context Learning, February 2024.444

[32] Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung,445

Adithya Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, Jeff Schneider, Eduard446

Hovy, Roger Grosse, and Eric Xing. What is Your Data Worth to GPT? LLM-Scale Data447

Valuation with Influence Functions, May 2024.448

[33] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil449

Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido450

Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan451

Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal,452

Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual453

features without supervision. Transactions on Machine Learning Research, 2024.454

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.455

Language models are unsupervised multitask learners. OpenAI, 2019.456

[35] Neo Clement and Miller Joseph. We Found An Neuron in GPT-2.457

https://www.lesswrong.com/posts/cgqh99SHsCv3jJYDS/we-found-an-neuron-in-gpt-2,458

February 2023.459

[36] Tom Lyche and Larry L Schumaker. Local spline approximation methods. Journal of Approxi-460

mation Theory, 15(4):294–325, 1975.461

[37] Larry Schumaker. Spline Functions: Basic Theory. Cambridge Mathematical Library. Cam-462

bridge University Press, Cambridge, 3 edition, 2007.463

[38] Randall Balestriero, Romain Cosentino, and Sarath Shekkizhar. Characterizing Large Language464

Model Geometry Helps Solve Toxicity Detection and Generation. In International Conference465

on Machine Learning, December 2023.466

[39] Romain Cosentino and Sarath Shekkizhar. Reasoning in Large Language Models: A Geometric467

Perspective, July 2024.468

[40] Ahmed Imtiaz Humayun, Ibtihel Amara, Cristina Nader Vasconcelos, Deepak Ramachandran,469

Candice Schumann, Junfeng He, Katherine A Heller, Golnoosh Farnadi, Negar Rostamzadeh,470

and Mohammad Havaei. What secrets do your manifolds hold? Understanding the local471

geometry of generative models. In The Thirteenth International Conference on Learning472

Representations, 2025.473

[41] Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the Number of474

Linear Regions of Deep Neural Networks. In Neural Information Processing Systems, February475

2014.476

[42] Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep Networks Always477

Grok and Here is Why. In High-Dimensional Learning Dynamics 2024: The Emergence of478

Structure and Reasoning, June 2024.479

[43] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:480

Generalization Beyond Overfitting on Small Algorithmic Datasets, January 2022.481

[44] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress482

measures for grokking via mechanistic interpretability. In The Eleventh International Conference483

on Learning Representations, September 2022.484

12

[45] Lewis Smith. The ‘strong’ feature hypothesis could be wrong, August 2024.485

[46] Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual486

associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,487

editors, Advances in Neural Information Processing Systems, 2022.488

[47] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.489

Interpretability in the wild: A circuit for indirect object identification in GPT-2 small. In The490

Eleventh International Conference on Learning Representations, 2023.491

[48] Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model492

behavior with path patching, 2023.493

[49] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM494

feature circuits. In The Thirty-Eighth Annual Conference on Neural Information Processing495

Systems, 2024.496

[50] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), June 2023.497

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,498

Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural499

Information Processing Systems, 2017.500

[52] Yuxiao Li, Eric J. Michaud, David D. Baek, Joshua Engels, Xiaoqing Sun, and Max Tegmark.501

The geometry of concepts: Sparse autoencoder feature structure. Entropy. An International and502

Interdisciplinary Journal of Entropy and Information Studies, 27(4), 2025.503

[53] Aideen Fay, Inés Garcı́a-Redondo, Qiquan Wang, Haim Dubossarsky, and Anthea Monod.504

Holes in latent space: Topological signatures under adversarial influence, 2025.505

[54] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of506

Machine Learning Research, 9(86), 2008.507

[55] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers508

need registers. In The Twelfth International Conference on Learning Representations, 2024.509

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep510

Convolutional Neural Networks. In Advances in Neural Information Processing Systems, 2012.511

[57] Jeremy Howard. Fastai/imagenette. fast.ai, July 2025.512

[58] Sai Sumedh R. Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba E. Ba. Projecting513

assumptions: The duality between sparse autoencoders and concept geometry. In ICML514

Workshop on Methods and Opportunities at Small Scale, 2025.515

[59] Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya516

Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The517

Thirteenth International Conference on Learning Representations, 2025.518

[60] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.519

Zoom in: An introduction to circuits. Distill, 2020.520

[61] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017.521

[62] Randall Balestriero and Richard G Baraniuk. From hard to soft: Understanding deep network522

nonlinearities via vector quantization and statistical inference. In International Conference on523

Learning Representations, 2018.524

13

A Motivating Example525

Throughout our discussion, we utilised a simple example to gain an intuition for how centroids identify526

the features of a DN. In Figure 7, we illustrate this example and indicate how the nonlinearities of the527

corresponding DN affect its functional geometry.528

Input Polygon Deep Network Functional Geometry

Figure 7: A DN has a functional geometry formed by its nonlinearities. Each nonlinearity identifies a
plane within the input space of the DN. These planes intersect to bound regions which construct the
features of the DN. On the left, we visualise the underlying data distribution that the DN is being
trained on. In the centre, we visualise a simplified schematic of the architecture of the DN. In this
schematic, we highlight the nonlinearities in the first, second and third hidden layers of the DN; each
of which constructs a hyperplane within the input space of the DN, which we identify in the right
plot. The right plot depicts the functional geometry of the DN (using SplineCam [1]), having trained
on the polygon of the left plot.

B Comparison to Prior Work529

Features. Definition 2.1 is analogous to the notion of a feature used in Park et al. [6], which530

provides a rigorous theoretical characterisation of the LRH. In particular, in Park et al. [6], a feature531

is a variable that leads to a particular output when caused by a context. In Definition 2.1, the concept532

would correspond to the region of the input space, the context would correspond to points within the533

region, and the particular output would be the induced functional behaviour.534

Since an underlying assumption of the machine learning paradigm is that there exists an underlying535

distribution on the input space from which inputs are drawn, the probabilistic notion of a variable536

used in Park et al. [6] is comparable to the notion of a region used in Definition 2.1. More specifically,537

a region of the input space can be thought of as a variable whose probability distribution is derived538

from the underlying distribution of the input space.539

Circuits. Circuits were initially introduced in Olah et al. [60] to deal with the apparent poly-540

semantic nature of neurons. That is, specific neurons were observed to trigger on seemingly semanti-541

cally disjoint inputs, whereas ensembles of neurons demonstrated more reliable activation patterns.542

Instead, our notion of a circuit arises naturally as the functional response to a feature. In particular,543

this functional response is likely to incorporate multiple neurons or components of a DN due to the544

DN’s compositional construction.545

C Formal Theory546

Definition C.1. A feature of the ℓth layer of a DN is a collection of regions constructed by hyperplanes547

whose normals have a pair-wise cosine similarity bounded below by 1− ϵ, and whose closest points548

to the origin have a pair-wise Euclidean distance bounded above by δ.549

Proposition C.2. The features in the ℓth layer of a DN are the collection of regions in its input550

space, Rd(ℓ−1)

, whose corresponding centroids form an affine subspace in Rd(ℓ−1)

with deviations551

proportional to approximately
√
2ϵ.552

14

Proof. Let the corresponding centroids and radii of the ℓth of the DN be
{(

µ
(ℓ)
ν , τ

(ℓ)
ν

)}
⊆ Rd(ℓ−1) ×553

R. Then suppose Π and Π̃ are hyperplanes forming the feature. Each hyperplane, say Π, corresponds554

to a boundary of two regions, such that555

Π =

{
x :

∥∥∥µ(ℓ)
1 − x

∥∥∥2
2
− τ

(ℓ)
1 =

∥∥∥µ(ℓ)
2 − x

∥∥∥2
2
− τ

(ℓ)
2

}
=

{
x :

〈
µ
(ℓ)
1 − µ

(ℓ)
2 ,x

〉
= c

}
,

for some constant c. Thus, Π has normal vector n1 := µ
(ℓ)
1 − µ

(ℓ)
2 . Similarly, we can assume Π̃ is

such that it has normal n2 := µ
(ℓ)
2 − µ

(ℓ)
3 . By assumption we have that

n1 · n2

∥n1∥2 ∥n2∥2
≥ 1− ϵ.

Thus, by using small angle approximations, the angle between the normal vectors θ is approximately
less than

√
2ϵ. In particular, n2 can be decomposed into components parallel and orthogonal to n1 as

n2 = ∥n2∥2 cos(θ)n̂1 + ∥n2∥2 sin(θ)û,

where n̂1 is the unit vector of n1 and û is normal to it. Consequently, we can write
µ
(ℓ)
1 = µ

(ℓ)
1 + 0 · d

µ
(ℓ)
2 = µ

(ℓ)
1 − ∥n1∥2 d

µ
(ℓ)
3 = µ

(ℓ)
2 + ∥n2∥2 cos(θ)d+ ∥n2∥2 sin(θ)û,

where d = n̂1. Therefore, since sin(θ) is of order
√
2ϵ, the proof is complete.556

Definition C.3. A feature of a DN sub-component is a collection of regions in its input space formed557

by a feature in the ℓth layer.558

Theorem C.4. The features of a DN sub-component are the collections of regions in its input space559

whose centroids form approximate affine subspaces.560

Proof. Suppose that the feature corresponds to a (ϵ, δ)-feature of the ℓth layer. Then by Proposition561

C.2, the centroids at the ℓth form an approximate affine subspace. Thus, for sufficiently small δ, the562

DN sub-component corresponds to an affine transformer, meaning the corresponding centroids within563

the input space of the DN sub-component also form an approximate affine subspace.564

D Emergence of Centroid Structure565

The centroid affinity of Figure 1 emerges gradually through training. At initialisation, the centroids566

have a similar arrangement to the input samples, due to the random initialisation of the DN. However,567

as training progresses, we observe that the centroids slowly migrate and align themselves. In particular,568

we can see the alignment of the centroids manifest before they arrive at their ultimate position.569

Epoch 0 Epoch 18 Epoch 27 Epoch 147 Epoch 512

Figure 8: Throughout the training of the DN of Section 3, we tracked the DN centroids of the input
samples of Figure 1.

15

E Softening Deep Networks570

We developed centroid affinity by studying the level-sets of nonlinearities, which is a property of571

continuous piecewise affine DNs (i.e. those implementing continuous piecewise affine nonlinearities,572

like ReLU). We argued that this was valid since any DN can be approximated by such continuous573

piecewise affine DNs. However, for these DNs, the centroids are discrete objects since they exist574

uniquely for each linear region, which may present a challenge since Theorem 3.3 is a necessarily con-575

tinuous utilisation of centroids. Therefore, here we consider the effect of using smooth nonlinearities576

on centroid affinity.577

Firstly, to allow for better analyses of continuous piecewise affine DNs, we will explore the effect578

of relaxing their nonlinearities to smooth nonlinearities. For example, for the DN of Section 3, we579

consider softening it by replacing the ReLU nonlinearities with GELU nonlinearities [50]. The GELU580

nonlinearity belongs to the swish family of nonlinearities [61], which are theoretically known to581

provide an appropriate softening of a ReLU DN’s functional geometry [62]. In Figure 9, we see that582

by softening the DN, we maintain and add more detail to the structure of the centroids.583

Input Sample ReLU Centroids GELU Centroids

Figure 9: Softening a DN with ReLU nonlinearities by replacing them with GELU nonlinearities
provides more detail to the structure of the centroids without affecting their overall structure. Here
we sample a grid of points in the input space of the polygon-classifying DN of Section 3, left plot,
and compute their corresponding centroids when the ReLU nonlinearity is maintained, centre plot,
and when the ReLU nonlinearity is replaced by the GELU nonlinearity, right plot.

Secondly, we determine whether our investigations of Section 4 hold for DNs trained from scratch584

using continuous nonlinearities. That is, for a DN with GELU nonlinearities, we perform the exact585

same training procedure for the DN considered in Section 3, and then analyse the resulting centroids.586

From Figure 10 we observe similar features as those identified for the ReLU DN considered in587

Section 4: when replacing the nonlinearity back to a ReLU we can observe its functional geometry588

using SplineCam [1] and we see the alignment of the nonlinearities around the polygon, when we589

observe the centroids of the input samples from Figure 9 we see the same affine structures that arose590

in the ReLU DN, computing centroid affinity for points in the input space again identifies the edges591

of the polygon as a feature, the influence of pruning neurons on the centroids is still effective as a592

neuron attribution metric.593

F Other Polygons594

In addition to the star-shaped polygon considered in the main text, in Figure 11 we corroborate the595

observed patterns when the input distribution is a bowtie-shaped and reuleaux-shaped polygon.596

G MNIST Centroid Structure597

Thus far, we have seen theoretically and in a simple example how the centroids of a DN have a598

semantically coherent structure; here, we demonstrate how this can be used to explore the feature599

boundaries of a DN trained on the MNIST classification task. For this, we train a DN with a600

16

Functional Geometry Centroids Centroid Affinity s(i,2) s(i,3)

Figure 10: Here we train a DN in the same manner as the one considered in the main-text, except we
use the GELU nonlinearity. In the far left plot, we replace the nonlinearities with ReLU such that we
can use SplineCam to visualise its functional geometry. In the left plot, we visualise the centroids
from the input samples of Figure 9. In the centre plot, we compute the centroid affinity of points in
the input space based on a sample of radius 0.4. In the right and far right plots, we consider the
sensitivities of centroids when pruning neurons from the second and third layers, respectively.

convolutional feature extractor followed by a linear layer on MNIST. After training, we sample two601

inputs from distinct classes and compute centroid affinity values – at the feature extractor component602

of the DN – along the linear interpolation between the samples. We observe in Figure 12 that there is603

a greater relative drop in centroid affinity between more distinct classes. More specifically, the 3 and604

6 classes are intuitively more distinct than the 4 and 9 classes; consequently, centroid affinity is lower605

along the interpolation between the 3 and 6 inputs since the features are more distinct. Whereas, if we606

similarly consider the effective dimensions of the latent activations, we do not observe any contextual607

change.608

H Qualitative Analysis of Features609

In Section 5, we demonstrated quantitatively that the features extracted from a sparse autoencoder610

trained to reconstruct centroids were semantically- and functionally-relevant to the input distribution611

and feature extractor. Here, we qualitatively support this and compare them to the features extracted612

by the sparse autoencoder trained to reconstruct latent activations. To do so, we randomly sample613

a point from the input distribution and identify the other inputs from the distribution with similar614

feature decompositions – as measured by Jaccard similarity.615

In Figure 13, we see that the sparse autoencoder trained to reconstruct centroids identifies similar616

features to those of the sparse autoencoder trained to reconstruct latent activations. This further617

supports that the centroids of a DN have a coherent structure that can be used to identify the features618

of the DN.619

I Computational Requirements.620

A valid concern with exploring centroid affinity is the computational burden it introduces into the621

process of interpretability, since it requires interrogating the Jacobians of a DN. Fortunately, though,622

this interrogation only requires considering Jacobian vector products (see Proposition 2.3), which are623

significantly cheaper to compute in common computational frameworks.624

In this section, we empirically quantify the computational burden incurred by considering centroids625

rather than latents in our main experiments of Section 5.626

DINO Feature Extraction. For this experiment, we compare the difference in computational time627

to extract the latent activations and centroids from the feature model. After these vectors are extracted,628

the computational pipeline is identical when using centroids or latent activations. We summarise629

the results in Table 1a. We see that extracting the centroid of the class token is only marginally630

slower than just extracting the latent activation, and that extracting the centroids of all the tokens only631

increases computation by 8%.632

GPT2 Circuit Discovery. Although there is no direct analogue of this experiment with latent633

activations, we can still argue that the computational burden is relatively benign. In particular,634

17

since we only compute centroids across the multi-layer perceptron block of the thirty-first layer, we635

only need to consider the Jacobian vector product for this component. This can be done by storing636

gradients of a forward pass across this block, which, in relation to performing a forward pass across637

the model, is insignificant.638

MNIST Centroid Structure. For this experiment, we compare the time necessary to perform the639

experiment with centroids or latent activations. More specifically, instead of considering the effective640

dimensions of the centroids of neighbourhoods of points, we compute the effective dimensions of the641

latent activations of neighbourhoods of points. We summarise the results in Table 1b, where we see642

that using centroids instead of latent activations requires 21% more computation time.643

Table 1: In this table, we compare the computation times (in seconds) for using the centroids of a DN
to perform interpretability to using latent activations.

(a) DINO Feature Extraction. Here we record the time taken (in seconds) to extract the centroids or latent
activations from a DINOv2 model on the training distribution of Imagenette.

Experiment With Centroids With Latent Activations

Figures 5a and 5b 685 684
Figure 5c 727 673

(b) MNIST Centroid Structure.

Experiment With Centroids With Latent Activations

Figure 12 323 266

18

Input Distribution Functional Geometry

Input Samples Centroids s(i,3)

Input Distribution Functional Geometry

Input Samples Centroids Centroid Affinity

Figure 11: Here we perform some of the same analyses of Section 4 but with a DN trained on a
bowtie-shape polygon, top two rows, and a reuleaux-shaped polygon, bottom two rows.

19

Figure 12: We train a DN on the MNIST classification. In the right plot, we consider the centroid
affinity of centroids at the feature extractor component of the DN – which constitutes three convolu-
tional layers. In the left plot, we similarly consider the effective dimensions of the latent activations.
For two training points of distinct classes, we compute the centroid affinity of samples along their
linear interpolation. In Figure 12 we visualise these affinities for samples from class pairs (3,6) and
(4,9).

20

Centroid Garbage-truck Feature Latent Garbage-truck Feature

Centroid Golf-ball Feature Latent Golf-ball Feature

Figure 13: For a sampled input, we compute its feature decomposition using the sparse autoencoders
of Figure 5c, and then identify the other inputs whose feature decompositions are most similar to this
using Jaccard similarity. More specifically, in the left column we consider the sparse autoencoder of
Figure 5c trained using centroids, and in the right column we consider the sparse autoencoder of
Figure 5c trained using latent activations. The central image of each plot represents the initial point
that is sampled from the input distribution, and the surrounding images are the identified inputs with
similar feature decompositions. Each row considers a specific input.

21

	Introduction
	Background
	Centroid Affinity Identifies Features
	Re-evaluating Interpretability Tools
	Sparse Autoencoders
	Transcoders
	Point-Cloud Analysis

	Experiments
	Discussion
	Motivating Example
	Comparison to Prior Work
	Formal Theory
	Emergence of Centroid Structure
	Softening Deep Networks
	Other Polygons
	MNIST Centroid Structure
	Qualitative Analysis of Features
	Computational Requirements.

