
Large Language Model Guided Graph Clustering

Puja Trivedi
University of Michigan
pujat@umich.edu

Nurendra Choudhary
Amazon Inc.

nurendc@amazon.com

Edward W. Huang
Amazon Inc.

ewhuang@amazon.com

Vassilis N. Ioannidis
Amazon Inc.

ivasilei@amazon.com

Karthik Subbian
Amazon Inc.

ksubbian@amazon.com

Danai Koutra
University of Michigan
dkoutra@umich.edu

Abstract
Graph clustering on text-attributed graphs (TAGS), i.e., graphs that include nat-
ural language text as additional node information, is typically performed using
graph neural networks (GNNs), which forego the text in lieu of embeddings.
While GNN methods ensure scalability and effectively leverage graph topology,
text attributes contain rich information that can be leveraged using large language
models (LLMs). However, many real-world applications have limited hardware
resources or LLM API call budgets that prevent their naive use. To reconcile these
constraints when performing clustering on TAGs, we propose an active learning
framework that performs graph clustering using LLM refinment (GCLR) by
selectively prompting an imperfect LLM oracle for feedback and, subsequently,
finetuning the GNN-based clustering solution to incorporate the feedback. GCLR
uses different prompting strategies to improve the LLM’s reliability as an oracle
and uses noise-controlling fine-tuning to handle this imperfect, but useful feed-
back. Extensive experiments demonstrate that GCLR can significantly improve
clustering performance over state-of-the-art GNN methods.

1 Introduction
Graph clustering seeks to perform an unsupervised assignment of nodes to different clusters such
that the resulting assignments capture salient topology and uncover useful concepts [1–3]. Most
modern, performative clustering methods utilize graph neural network (GNN) encoders due to their
expressivity [4], scalability, and ability to effectively handle vector-valued node attributes [5, 6].
Recently, however, there has been growing interest in text-attributed graphs (TAGs) [7, 8], where
natural language text is available as an additional node attribute. GNNs are not able to directly handle
text and instead utilize semantic embeddings, potentially limiting performance. To this end, a variety
of (pre/co/joint) training-based [9–13] and graph specific prompting-based strategies [14–18] have
been recently proposed for using large language models (LLMs) [19, 20] in conjunction with GNNs
on supervised tasks, e.g., link prediction, node classification, and graph classification, to directly
handle this text. While clustering on TAGs could also benefit from joint LLM+GNN methods, it not
only remains unclear how to adapt existing supervised approaches for unsupervised graph clustering,
but also is prohibitively expensive in many real-world applications due to relatively significant
hardware requirements, incurred through training or hosting LLMs, or API expenditure, incurred by
prompting over large sets of nodes.

Our Work. To this end, we propose GCLR (Graph Clustering with LLM Refinement), a flexible
active learning framework specifically designed for clustering on TAGS. It uses carefully designed
prompting strategies to elicit more reliable and useful feedback for clustering from the LLM and
uses simple strategies when fine-tuning to improve tolerance to noisy labels, overall outperforming
GNN-based clustering methods. (See Fig. 1 for an overview.)

P. Trivedi et al., Large Language Model Guided Graph Clustering (Extended Abstract). Presented at the Third
Learning on Graphs Conference (LoG 2024), Virtual Event, November 26–29, 2024.



Large Language Model Guided Graph Clustering

Figure 1: Overview of GCLR, active learning framework for refining graph clustering solutions.

Related Work. Please see App. B for a detailed discussion of related work. In brief, we note that
recent approaches that seek to combine graphs/ GNNs and natural-language/LLMs can be categorized
as being “predictors" (the LLM provides predictions), “enhancers" (sentence transformers or other
LLMs are used to provide input node features), or “aligners" (GNNs and LLMs jointly trained to
perform the task) [21]. Various mechanisms, including prompting [22], fine-tuning [23], variational
expectation maximization [24], joint optimization [25], and distillation [26], have been proposed
to fulfill these roles. Instead, GCLR uses the LLM as a refiner and enhancer, as the LLM is only
prompted to provide feedback for updating the underlying GNN-based graph clustering solution and
sentence transformers are used to provide input node embeddings.

2 GCLR: Graph Clustering with LLM Refinement
Let G = (A ∈ RN×N ,X ∈ RN×d, T , [Y]) represent an N node graph with corresponding adjacency
matrix, node attributes, node-level text information, and optional ground-truth cluster assignment,
where K is the desired number of clusters, and d the dimension of the hidden representation. Deep
attributed graph clustering seeks to learn a function, F : (A,X) → ZN×d, that outputs node
representations, and (an optionally parameterized) clustering algorithm, C : (Z,K) → [0,K]N ,
which provides assignments, KN×K . We assume that clustering assignments are imperfect, namely
that there are mis-assigned samples, and the LLM’s world-knowledge can improve K. We further
assume that the LLM is only accessible through a limited budget, B, of API calls. This problem
formulation is naturally amenable to an active learning (AL) set-up, which consists of three key
components: a query function, Q, which determines which samples from the unlabeled data pool
should be selected for obtaining feedback, an oracle, which provides feedback to create a labeled
dataset, Dfeedback, and a training protocol, which defines a loss, Lfeedback, and update procedure for
how the model will incorporate said feedback. Belwo, we introduce GCLR as an instantiation.
2.1 Eliciting Feedback from LLM for Graph Clustering
While feedback in AL typically corresponds to an oracle selecting a label from a predefined set of
classes, it is less clear what form feedback should take when performing clustering and how to prompt
the LLM to obtain it. To this end, we discuss the pros/cons of 3 different strategies.

Triplet-Based Prompting. ClusterLLM [27], a recently proposed SOTA LLM guided text clustering
method, prompts by first selecting uncertain samples (e.g., queries), Qi, and two random samples
from each query’s two nearest clusters, and then ask the LLM to predict which of the two samples
is “more similar" to Qi; the more similar sample is considered a “positive" sample and the other
is a “negative" sample. Here, Dfeedback corresponds to the set of triplets (query, positive, negative)
determined by the LLM and Lfeedback is InfoNCE. While such an approach can conceptually be
applied to graph clustering, there are some limitations. Namely, insofar as clustering requires learning
a similarity function that can be used to partition samples into meaningful groups, it is important that
the oracle is aware of this function so the resulting feedback is aligned to the existing partitioning. In
text clustering, since both the encoder and the oracle are text based models, they share a prior for this
similarity function. In contrast, when performing graph clustering, the GNN incorporates topological
information unavailable to the LLM and may utilize a different function.

In-Context Similarity Learning. Given their in-context learning capabilities [28, 29], we consider a
prompt that allows the LLM to directly infer the similarity function by providing several examples of
the node’s raw text and their corresponding cluster IDs, and the text of the unlabeled query. Here,
the LLM can be seen as performing a prediction task amongst pseudo-labels (cluster ids), where
Dfeedback = {([0, . . .K]|i ∈ Q}. Note the choice of Lfeedback is flexible and discuss it later. Notably,
by ensuring that the prompt contains samples from all clusters, the LLM can (i) better infer what
concepts underlie clusters and (ii) predict an assignment for a query that does not belong to the

2



Large Language Model Guided Graph Clustering

top-2 clusters. This allows us to circumvent the previous issue where the upper-bound on refined
performance was restricted by the number of samples where the preferred assignment was contained
in the top-2 clusters. Note, that directly inferring the similarity function from in-context examples
becomes more difficult, even potentially unfeasible, as the number of clusters grows.

Concept-based Prompting. Drawing inspiration from topic modeling [30, 31], we design an additional
"concept-based" prompting strategy where we first prompt the LLM to infer the concepts that were
used to group samples and then create a prediction task where the LLM is prompted to select amongst
the generated concepts. Specifically, we provide the LLM with samples from each cluster to generate
a title and short description explaining the grouping, which are then used as options for the LLM to
match a query to the most similar cluster. Notably, by providing the titles/descriptions of all clusters,
we can avoid the upper-bound encountered by triplets, as well as better scale to more clusters and use
on-average, shorter prompts than in-context prompting.

Table 1: Reliability of LLM as an Annotator.
The accuracy of the GNN-based clustering solu-
tion and three prompting strategies are reported
at the 10\50\100-th most difficult percentile of the
dataset. The best performance overall is bolded,
while any prompting-based method is colored if it
exceeds the accuracy of the GNN, and the 2nd best
prompting-based method is underlined.

Dataset Method GNN Concepts Incontext Triplets
Graph Only LLM Only

citeseer diffpool 32.1\36.2\49.7 36.2 \41.1 \49.1 34.6 \36.2 \46.7 29.2\34.1\44.0
dinknet 40.6\54.7\70.3 30.8\32.9\47 48.7\48.3\59.6 43.1\50.6\62.1
dmon 36.5\38.2\44.1 40.9\39.9\43.9 36.2\37.7\42.9 36.8\38\41.7
mincut 35.8\52.2\66.5 38.4\46.1\58.5 42.1\50.5\60.5 34.3\46.5\57.1

cora diffpool 32.6\40\54.7 35.6\36.0\37.7 34.4\36.6\50.2 33.7\36.9\48.8
dinknet 37.4\50.7\65.8 32.2\36.8\39 24.8\36.0\52.7 35.2\47\58.2
dmon 42.6\52.4\60.9 36.3\41.4\40.7 46.3\51.3\56.9 40\47.9\54
mincut 40\53.6\68.4 42.2\46.5\55.7 43.7\50.5\63.3 37.8\49.8\60.9

wikics diffpool 25.5\32.2\48.3 36.0\40.4\52.7 33.9\37.1\47.9 25.9\30.8\44.2
dinknet 37.7\51.2\66.5 51.2\56.5\64.8 35.8\36.9\51.1 35.0\44.5\54.8
dmon 28.1\31.2\36.9 55.2\55.2\57.2 39.9\41.3\41.3 28.7\31.2\35.8
mincut 36.5\24.4\26.9 31.9\29.6\29.8 37.5\27.9\31.0 32.4\24.1\25.2

Experimental Setup. We verify the effective-
ness of the proposed feedback elicitation strate-
gies on several public graph datasets, where the
provided node labels serve as ground-truth clus-
ter labels. mixtral-8x-7b is used as the or-
acle, and four different graph clustering back-
bones are used to obtain the initial clustering
solutions. We sort the samples according to the
entropy of the distance to the two nearest clus-
ters (a proxy for sample difficulty) and prompt
the LLM for each sample as per the discussed
strategies. See App. F for more details.

Results. We observe, in Table 1, that across
datasets and clustering methods, that the “con-
cepts" strategy is the best or second best per-
forming prompting strategy most often. While
In-Context prompting achieves comparable per-
formance on some datasets, we note that it is
significantly more expensive. Indeed, every In-
Context prompt contains multiple exemplars per
cluster, while “concepts" only processes these exemplars once to obtain the generated titles and
descriptions, which are then directly used in the prompt. “Triplets" is the cheapest strategy in terms of
token length, but lags behind on performance, failing to achieve the best performance on any dataset.
Lastly, we note that the GNN outperforms the LLM on full dataset (100th percentile) accuracy on
9/12 settings, indicating that, in addition to being prohibitively expensive, prompting the LLM for
every node would not be as effective as the initial GNN solution.

2.2 Refining GNN-Based Clustering with Feedback

Given the LLM’s feedback, we must incorporate it into the GNN to scalably improve the overall
clustering solution. We note that while reconstructive [32, 33] and adversarial frameworks [34] were
initially popular for graph clustering, we focus on more recent contrastive [35–38] and pooling-based
methods [39–41] as they are more scalable and performative. Further note that both “in-context" and
"concept" prompting induce a dataset that consists of queried nodes and predicted cluster ids. Thus,
we can consider refinement as a supervised task with LLM-provided pseudo-labels. When working
with pooling-based methods, F directly predicts the cluster assignment; with contrastive methods,
a classifier can be initialized using cluster centers. Then, Lfeedback(Dfeedback,F) can be defined
using the cross-entropy loss. While other losses, such as triplet [42], InfoNCE [43], SupCon [44], are
certainly possible, we empirically find that cross-entropy is effective.

Strategies for Handling Noisy Labels. Given that the prompting strategies induce a classification
task, we use the model’s predicted confidence in order to eliminate potentially noisy labels. Namely,
we compute the LLM’s confidence in its predictions by obtaining log-probability of the top-2 tokens
corresponding to cluster predictions. Alternative prompting strategies and specialized losses have
been proposed for better calibration [45–47] but we do not consider them due to their additional
expense. Empirically, we find that token-level log probability is sufficient.

3



Large Language Model Guided Graph Clustering

Table 2: LLM Labels Provide Complementary Information For Active Learning. Here, we
compare the performance of different feedback mechanisms and finetuning losses. We observe that
(i) while both LLM (9/12 Acc.) and GNN (10/12 Acc) feedback generally improves performance
over the starting solution, that LLM feedback with the cross entropy loss achieves the best accuracy
overall (8/12), though performance on intrinsic metrics is more mixed; (ii) on Cora, where GNN
feedback was more reliable than LLM feedback, we see that using the GNN pseudo labels is more
effective; (iii) on WikiCS, where LLM feedback is much more reliable, we see dominant performance
by LLM feedback with cross entropy loss; and (iv) we see that the cross entropy loss (9/12 Acc., 7/12
Modularity, 7/12 NMI) is more effective than the triplet for finetuning.

(starting performance) \ GNN Feedback + Cross Ent. Loss \ LLM Feedback + Triplet Loss \ LLM Feedback + Cross Ent. Loss
Dataset Method Acc. (↑) NMI (↑) F1 (↑) ARI (↑) COND (↓) MOD (↑)

citeseer

diffpool (47.09) \54.69 \48.05 \58.96 (25.59) \25.94 \21.50 \26.84 (23.08) \23.57 \14.65 \19.70 (43.09) \43.33 \33.22 \41.41 (0.23) \0.23 \0.25 \0.24 (0.56) \0.56 \0.45 \0.50
dinknet (66.46) \66.43 \67.36 \67.40 (43.08) \43.30 \19.16 \36.97 (42.43) \41.30 \16.37 \27.16 (60.39) \60.58 \42.49 \47.91 (0.07) \0.07 \0.29 \0.09 (0.70) \0.70 \0.51 \0.62
dmon (47.89) \49.85 \48.75 \49.87 (28.49) \28.77 \27.11 \27.12 (24.29) \24.61 \18.86 \14.46 (43.65) \43.71 \34.14 \29.87 (0.19) \0.19 \0.25 \0.15 (0.60) \0.60 \0.45 \0.47
mincut (64.18) \66.70 \69.82 \67.51 (44.41) \46.21 \40.48 \39.60 (41.95) \43.25 \38.54 \35.81 (61.72) \62.11 \59.54 \59.81 (0.08) \0.09 \0.13 \0.17 (0.73) \0.73 \0.67 \0.64

cora

diffpool (59.97) \63.6 \43.38 \51.35 (43.46) \42.70 \20.97 \22.21 (36.58) \35.65 \7.83 \6.49 (56.76) \55.64 \29.3 \29.05 (0.24) \0.25 \0.38 \0.32 (0.60) \0.60 \0.33 \0.34
dinknet (68.26) \66.84 \67.32 \65.16 (51.98) \50.87 \25.01 \23.42 (44.21) \40.50 \15.16 \9.25 (62.09) \59.20 \41.86 \27.40 (0.12) \0.11 \0.30 \0.08 (0.70) \0.67 \0.49 \0.29
dmon (57.56) \60.27 \59.06 \56.70 (41.60) \42.24 \30.18 \30.06 (33.76) \34.64 \20.66 \13.67 (50.94) \51.40 \39.44 \29.40 (0.27) \0.26 \0.38 \0.12 (0.56) \0.58 \0.42 \0.33
mincut (64.17) \66.63 \59.91 \61.62 (48.92) \48.92 \39.74 \41.61 (40.35) \40.35 \29.43 \30.54 (58.33) \58.33 \47.28 \54.01 (0.14) \0.14 \0.21 \0.28 (0.70) \0.70 \0.56 \0.54

wikics

diffpool (43.15) \49.69 \55.44 \58.03 (26.27) \26.36 \37.20 \35.03 (18.87) \19.50 \31.10 \26.28 (39.88) \39.70 \41.12 \46.48 (0.34) \0.35 \0.30 \0.34 (0.48) \0.47 \0.36 \0.44
dinknet (66.80) \73.65 \67.48 \74.00 (49.00) \51.84 \47.49 \51.25 (47.80) \53.04 \46.18 \51.57 (56.23) \63.06 \56.97 \63.06 (0.23) \0.21 \0.28 \0.23 (0.55) \0.55 \0.52 \0.54
dmon (38.60) \39.68 \43.28 \51.87 (27.47) \27.49 \29.33 \32.51 (20.55) \20.65 \27.48 \31.04 (34.02) \34.18 \34.48 \36.49 (0.48) \0.47 \0.42 \0.26 (0.33) \0.33 \0.33 \0.31
mincut (24.70) \32.84 \38.52 \46.36 (6.14) \8.32 \17.99 \16.52 (-0.37) \-0.32 \18.02 \4.8 (7.91) \8.45 \24.71 \24.36 (0.04) \0.04 \0.45 \0.47 (0.03) \0.05 \0.30 \0.27

To further stabilize and improve training, we augment Dfeedback with samples well-clustered by
the GNN, where probits of the predicted clusters are used to identify confident assignments. The
loss is computed separately for the LLM-labeled and GNN-labeled samples, and aggregated as
αLfinetune,LLM + βLfinetune,GNN , where α and β are constrained to be a convex combination.
By varying α and β, we can express different levels of certainty in the feedback. In practice, we find
setting α and β to 0.5 leads to strong performance. Since the optimal weighting is not known apriori,
creating a simple deep ensemble [48] by varying α, β to train multiple independent models can
further improve performance. Though this incurs additional training expenditure, it is not substantial
with respect to training the initial model.

3 Experiments
Our experimental set-up is as follows. Baselines. We consider the following graph clustering baselines:
MinCutPool [40], DMoN [39], DiffPool [41], and DinkNet [35]. Metrics. As we use public datasets
with available ground-truth clustering, we report accuracy, Normalized Mutual Information, F1,
and Adjusted Rand-Index between the predicted and labeled clusters. We intrinsically assess the
clustering quality using conductance and modularity (see App. G). We use embeddings obtained from
SBERT as node features for all experiments. Datasets. We provide the dataset statistics in Table H.
Training. Both the initial GNN and finetuned models are trained with early-stopping and the learning
rate is tuned amongst 1e-4 and 1e-3. GCLR. We use mixtral-8x-7b as the oracle LLM and seek
feedback on 10% of the nodes in the dataset. (See App. E for additional results with ChatGPT.) Q
is defined according to prediction entropy [49]. α and β are both set to 0.5, unless otherwise noted.
Results are averaged over 10 seeds.

Observation 1. We begin by confirming that the LLM provides valuable information through its
feedback by demonstrating, in Table 2, that subsequent finetuning not only improves performance
over the starting clustering solution but also over finetuning on GNN pseudo labels, when reliable.
Additionally, we find that using the cross entropy loss is more effective than the triplet loss when
finetuning using the LLM feedback. This is in contrast to ClusterLLM, which focused on triplets.

Observation 2. Next, we seek to understand how filtering samples according to confidence can
improve GCLR’s performance. We do note that both the GNN and LLM feedback are not guaranteed
to be calibrated, but nonetheless empirically find their confidences useful. In particular, in Table ??,
we set α = 0.5 and β = 0.5, and consider 2 different filterings: one where the GNN’s confidence
interval is high and the other where the LLM’s confidence interval is high. We find that updating
the model using only high confidence LLM feedback (80th percentile) and GNN feedback at lower
percentile improves the accuracy on Cora and Citeseer.

Observation 3. In settings where the LLM’s feedback is less reliable than the GNN’s, it is possible
to harm the initial clustering solution. For example, in Table 1, on Cora, the LLM’s feedback is
less reliable than the GNN’s, and in Table 2, we see finetuning on GNN feedback leads to better
performance. However, we note that even if the LLM’s feedback is unreliable it may still contain
valuable information. To this end, we create a simple deep ensemble that captures different levels of

4



Large Language Model Guided Graph Clustering

certainity in either source’s feedback by varying α and β when aggregating the loss. In particular,
we train 5 different models, where we sample α ∈ [0, 0.1, . . . 0.5] and β ∈ [0.5, 0.6 . . . 1] at evenly
spaced intervals. In Table 4, we show that using this ensemble can improve performance over a single
model where α = β = 0.5.

References
[1] Mark EJ Newman. Modularity and community structure in networks. Proceedings of the

national academy of sciences, 103(23):8577–8582, 2006. 1, 21

[2] M. E. J. Newman and Gesine Reinert. Estimating the number of communities in a network.
CoRR, abs/1605.02753, 2016.

[3] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. In 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels,
Belgium, December 10-13, 2012, pages 745–754. IEEE Computer Society, 2012. doi: 10.1109/
ICDM.2012.138. URL https://doi.org/10.1109/ICDM.2012.138. 1, 21

[4] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proc. Int. Conf. on Learning Representations (ICLR), 2019. 1

[5] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proc. Int. Conf. on Learning Representations (ICLR), 2017. 1

[6] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proc. Int. Conf. on Learning Representations (ICLR),
2018. 1

[7] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In Proc. Adv. in Neural Information Processing Systems (NeurIPS),
2021. 1

[8] Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin,
Peiyan Zhang, Weihao Han, Hao Sun, Weiwei Deng, Qi Zhang, Lichao Sun, Xing Xie, and Sen-
zhang Wang. A comprehensive study on text-attributed graphs: Benchmarking and rethinking.
In Proc. Adv. in Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks
Track, 2023. 1

[9] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic,
and Inderjit S. Dhillon. Node feature extraction by self-supervised multi-scale neighborhood
prediction. In Proc. Int. Conf. on Learning Representations (ICLR), 2022. 1

[10] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang.
Learning on large-scale text-attributed graphs via variational inference. In Proc. Int. Conf. on
Learning Representations (ICLR), 2023.

[11] Vassilis N. Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi Xu, Belinda Zeng,
Trishul Chilimbi, and George Karypis. Efficient and effective training of language and graph
neural network models. CoRR, abs/2206.10781, 2022.

[12] Costas Mavromatis, Vassilis N. Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han
Zhao, Christos Faloutsos, and George Karypis. Train your own GNN teacher: Graph-aware
distillation on textual graphs. In Proc. European. Conf. on Machine Learning and Knowledge
Discovery in Databases (ECML KDD), 2023.

[13] Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N Ioannidis, Xiang Song, Qing Ping,
Sheng Wang, Carl Yang, Yi Xu, et al. Graph-aware language model pre-training on a large
graph corpus can help multiple graph applications. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 5270–5281, 2023. 1

[14] Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as features:
Llm-based features for text-attributed graphs. CoRR, abs/2305.19523, 2023. 1, 10

[15] Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M. Bronstein, Zhaocheng
Zhu, and Jian Tang. Graphtext: Graph reasoning in text space. CoRR, abs/2310.01089, 2023.

5

https://doi.org/10.1109/ICDM.2012.138


Large Language Model Guided Graph Clustering

[16] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for
large language models. CoRR, abs/2310.04560, 2023. doi: 10.48550/ARXIV.2310.04560. URL
https://doi.org/10.48550/arXiv.2310.04560.

[17] Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models understand graph
structured data ? an empirical evaluation and benchmarking. CoRR, abs/2305.15066, 2023.

[18] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. CoRR, abs/2310.13023, 2023. 1

[19] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023. 1

[20] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine
Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli
Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Kamile Lukosiute, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noemí Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan.
Constitutional AI: harmlessness from AI feedback. CoRR, abs/2212.08073, 2022. 1

[21] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models
on graphs: A comprehensive survey. CoRR, abs/2312.02783, 2023. 2

[22] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen. StructGPT:
A general framework for large language model to reason over structured data. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 9237–9251, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.574. URL
https://aclanthology.org/2023.emnlp-main.574. 2

[23] Hao Liu, Jiarui Fend, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=4IT2pgc9v6. 2

[24] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang.
Learning on large-scale text-attributed graphs via variational inference. In The Eleventh Inter-
national Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=q0nmYciuuZN. 2

[25] Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A
survey of graph meets large language model: Progress and future directions. arXiv preprint
arXiv:2311.12399, 2023. 2

[26] Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le Bras,
Ximing Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general
language models to commonsense models. arXiv preprint arXiv:2110.07178, 2021. 2

[27] Yuwei Zhang, Zihan Wang, and Jingbo Shang. Clusterllm: Large language models as a guide
for text clustering. In Proc. Int. Conf. on Empirical Methods in Natural Language Processing,
(EMNLP), 2023. 2, 11

6

https://doi.org/10.48550/arXiv.2310.04560
https://aclanthology.org/2023.emnlp-main.574
https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=q0nmYciuuZN
https://openreview.net/forum?id=q0nmYciuuZN


Large Language Model Guided Graph Clustering

[28] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. 2, 12

[29] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proc.
Adv. in Neural Information Processing Systems (NeurIPS), 2020. 2, 12

[30] Vijay Viswanathan, Kiril Gashteovski, Carolin Lawrence, Tongshuang Wu, and Graham Neubig.
Large language models enable few-shot clustering. CoRR, abs/2307.00524, 2023. doi: 10.
48550/ARXIV.2307.00524. URL https://doi.org/10.48550/arXiv.2307.00524. 3, 12

[31] Chau Minh Pham, Alexander Miserlis Hoyle, Simeng Sun, and Mohit Iyyer. Topicgpt: A
prompt-based topic modeling framework. CoRR, abs/2311.01449, 2023. doi: 10.48550/ARXIV.
2311.01449. URL https://doi.org/10.48550/arXiv.2311.01449. 3, 12

[32] Hongyuan Zhang, Pei Li, Rui Zhang, and Xuelong Li. Embedding graph auto-encoder for graph
clustering. IEEE Trans. Neural Networks Learn. Syst., 2023. 3

[33] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep
clustering network. In Proc. Int. Web Conf. (WebConf), 2020. 3

[34] Lei Gong, Sihang Zhou, Wenxuan Tu, and Xinwang Liu. Attributed graph clustering with dual
redundancy reduction. In Proc. of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI, 2022. 3

[35] Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, and Stan Z. Li. Dink-net:
Neural clustering on large graphs. In Proc. Int. Conf. on Machine Learning (ICML), 2023. 3, 4

[36] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z. Li. Progcl: Rethinking hard negative
mining in graph contrastive learning. In Proc. Int. Conf. on Machine Learning (ICML), 2022.

[37] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer,
Rémi Munos, Petar Velickovic, and Michal Valko. Large-scale representation learning on graphs
via bootstrapping. In Proc. Int. Conf. on Learning Representations (ICLR), 2022.

[38] Fnu Devvrit, Aditya Sinha, Inderjit S. Dhillon, and Prateek Jain. S3GC: scalable self-supervised
graph clustering. In Proc. Adv. in Neural Information Processing Systems (NeurIPS), 2022. 3

[39] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with
graph neural networks. J. Mach. Learn. Res., 2023. 3, 4

[40] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In Proc. Int. Conf. on Machine Learning (ICML), 2020. 4

[41] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Proc. Adv.
in Neural Information Processing Systems (NeurIPS), 2018. 3, 4

[42] Geoffrey Hinton and Sam T Roweis. Dimensionality reduction by learning an invariant mapping.
Neural computation, 15(6):1373–1396, 2003. 3

[43] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and George Tucker. On
Variational Bounds of Mutual Information. In Proc. Int. Conf. on Machine Learning (ICML),
2019. 3

[44] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In Proc. Adv. in Neural
Information Processing Systems (NeurIPS), 2020. 3

[45] Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D. Manning. Just ask for calibration: Strategies for eliciting calibrated
confidence scores from language models fine-tuned with human feedback. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023. Association for Computational Linguistics, 2023. 3

7

https://doi.org/10.48550/arXiv.2307.00524
https://doi.org/10.48550/arXiv.2311.01449


Large Language Model Guided Graph Clustering

[46] Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Xuanjing Huang. Do
large language models know what they don’t know? In Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, 2023.

[47] Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine A. Heller, and
Subhrajit Roy. Batch calibration: Rethinking calibration for in-context learning and prompt
engineering. 2023. 3

[48] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, 2017. 4

[49] Dan Wang and Yi Shang. A new active labeling method for deep learning. In 2014 International
Joint Conference on Neural Networks, IJCNN 2014, Beijing, China, July 6-11, 2014, pages
112–119. IEEE, 2014. doi: 10.1109/IJCNN.2014.6889457. URL https://doi.org/10.
1109/IJCNN.2014.6889457. 4

[50] Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junx-
ian He. Simteg: A frustratingly simple approach improves textual graph learning. CoRR,
abs/2308.02565, 2023. 10

[51] Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and
Jiliang Tang. How powerful are graph neural networks? In Proc. Int. Conf. on Learning
Representations (ICLR), 2024. 10

[52] Jing Zhu, Xiang Song, Vassilis N. Ioannidis, Danai Koutra, and Christos Faloutsos. Touchup-g:
Improving feature representation through graph-centric finetuning. CoRR, abs/2309.13885,
2023. doi: 10.48550/ARXIV.2309.13885. 10

[53] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. In Proc. Int. Conf. on
Computer Vision and Pattern Recognition (CVPR), 1997. 21

[54] Michael D Plummer and László Lovász. Matching theory. Elsevier, 1986. 21
[55] Ka Yee Yeung and Walter L Ruzzo. Details of the adjusted rand index and clustering algorithms,

supplement to the paper an empirical study on principal component analysis for clustering gene
expression data. Bioinformatics, 17(9):763–774, 2001. 21

[56] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of attributed
graphs: Unsupervised inductive learning via ranking. CoRR, abs/1707.03815, 2017. 22

[57] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proc. Int. Conf. on Machine Learning (ICML), 2016. 22

[58] Péter Mernyei and Catalina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. CoRR, abs/2007.02901, 2020. 22

8

https://doi.org/10.1109/IJCNN.2014.6889457
https://doi.org/10.1109/IJCNN.2014.6889457


Large Language Model Guided Graph Clustering

A Appendix / supplemental material
• Expanded Related Work (Sec. B)
• Expanded Prompting Discussion (Sec. C)
• Additional + Ablation Results (Sec. D)
• Additional Results with ChatGPT (Sec. E)
• Prompt Examples (Sec. F)
• Details about Metrics (Sec. G)
• Reproducibility (Sec. H)

9



Large Language Model Guided Graph Clustering

B Expanded Related Work
Here we discuss some proposed LLM+GNN models, and their applicability to graph clustering. First,
we note that existing work has primarily focused on supervised tasks (mostly node classification
and to a lesser extent link prediction), and does not assume budget constraints, prompting over
the entire graph or finetuning PLMs/LLMs. For example, TAPE [14], a recent prompting focused
LLM-as-Encoder method, prompts the LLM at every node for a class prediction and explanation,
before fine tuning a pretrained language model to obtain embeddings. Prompting for every node can
be extremely expensive in the case of large graphs, and, in our setting, we do not have pre-determined
class labels to simplify how feedback is obtained from the LLM, making it challenging to finetune
the PLM. Similarly, SimTeG [50], a fine-tuning based LLM-as-Encoder method, uses LoRA to
train the LLM directly on the downstream node classification task, before extracting embeddings for
training a GNN. Such an approach requires both supervision (which is unavailable in graph clustering)
and fine-tuning of language models, which can incur expensive hardware and skills requirements.
LLM-GNN [51] is a concurrent LLM-as-Annotator method that selectively prompts the LLM for
feedback, but only considers a node classification task. Here, provided class labels ensure that the
GNN and LLM are using aligned similarity functions, making it easier to obtain useful feedback. In
contrast, on graph clustering, the LLM must infer as well as align with the GNN’s implicit similarity
function to provide meaningful feedback. On the other hand, LLM-as-Predictor methods seek to pass
structural and textual attribute information directly to the LLM to make predictions. However, in
our setting, where we assume a limited budget, it may be infeasible to prompt every node to obtain
a cluster assignment. Other LLM-as-Predictor methods seek to perform graph-aware finetuning of
PLMs and LLMs [52], which can also be expensive. Lastly, we note that to the best of our knowledge,
graph clustering has not been explored by LLM-as-Predictor methods, so it is unclear if LLMs are
able to infer sufficient topological information to effectively assign clusters.

10



Large Language Model Guided Graph Clustering

C Expanded Prompting Discussion
Here, we expand the introduction of GCLR, our framework for graph clustering with LLM refinement
(Fig. 1). In particular, we discuss, in more detail, how to obtain useful feedback for graph clustering
from LLMs and then present how to identify and refine the initial solution accordingly.

(a) Triplet Based Feedback (b) In-Context Based Prompt (c) Concept Based Prompt

Figure 2: Example of LLM Feedback. Using the graph in Fig. 3, we prompt
chat-gpt-3.5-turbo with different strategies to demonstrate the importance of aligning the LLM’s
and GNN’s implicit similarity functions. Indeed, we see that triplet-based prompting can be unreliable
as it does not allow the LLM to infer the underlying similarity. For example, with the query, “Baboon"
with triplets containing the land animals from from Cluster 1 (starts with B) and aquatic animals
from Cluster 2, the LLM assigns Baboon to cluster 1, which is consistent with the graph solution.
However, when we prompt chat-gpt-3.5 with a triplet containing aquatic animals from Cluster 1
and land animals from Cluster 2, the LLM assigns the query to Cluster 2 as it is also a land animal.
In contrast, we find that both concept-based and incontext-based prompting are able to correctly infer
the GNN’s similarity function.

While feedback in traditional AL typically corresponds to an oracle selecting a label from a predefined
set of classes, it is less clear what form the feedback should take when performing clustering.
Intuitively, feedback should help improve the similarity of the queried node with the cluster that it
belongs to. However, the precise form of the feedback may vary, and it’s unclear how to prompt the
LLM to accurately ascertain this information.

To this end, we discuss the advantages and disadvantages of three different strategies for prompting
the LLM to obtain clustering feedback. We begin by discussing a recently proposed strategy for LLM
guided text clustering.

Triplet-Based Prompting. ClusterLLM [27] is a recently proposed state-of-the-art LLM guided text
clustering method that first selects uncertain samples (e.g., queries), Qi, and two random samples
from each query’s two nearest clusters, and then prompts the LLM to predict which of the two
samples is “more similar" to Qi; the more similar sample is considered a “positive" sample and
the other is a “negative" sample. Here, Dfeedback corresponds to the set of triplets (query, positive,
negative) determined by the LLM and Lfeedback is InfoNCE. While such an approach can conceptually
be applied to graph clustering, there are some limitations.

Insofar as clustering requires learning a similarity function that can be used to partition samples into
meaningful groups, it is important that the oracle is aware of this function so the resulting feedback
is aligned to the existing partitioning. In text clustering, since both the encoder (BERT, E5, etc)
and the larger, oracle LLM (Chat-GPT, Llama) are text based models, they share a similar prior
for this similarity function. In contrast, when performing graph clustering, the GNN incorporates
topological information unavailable to the LLM and may utilize a different function than the LLM.
Indeed, in Fig. 3, we construct a simple synthetic example where the GNN and LLM utilize
different similarity functions to identify concepts by design. We observe, in Fig. 2a, that the oracle
(chat-gpt-3.5-turbo) provides unreliable feedback when the triplet prompt contains random
samples that do not overlap with the GNN’s similarity function, but is reliable when the random
samples are selected to align with the LLM’s implicit similarity function.

11



Large Language Model Guided Graph Clustering

Finally, we note that the performance of triplet-based feedback is closely tied to the quality of the
initial clustering solution, artificially handicapping the LLM’s performance. Given that the initial
clustering solution is imperfect, randomly selecting samples from the two closest clusters can create
triplets that do not actually represent the corresponding clusters, leading the LLM to perform a
meaningless selection. Moreover, there is a loose upper-bound of the triplet formulation as the
queries’ “correct" cluster must be within the top-2 closest clusters. If this is not the case, the LLM
will necessarily have to respond to an ill-formed triplet and will provide incorrect feedback. Due
to the rapidly increasing capabilities of LLMs, it is possible that future LLMs will achieve perfect
performance on valid triplets, however, the error incurred by ill-formed triplets is irreducible.

In-Context Similarity Learning. As discussed above, it is critical that the LLM can infer the
similarity function implemented by the GNN. Given the impressive in-context learning capabilities
of LLMs [28, 29], we consider a prompt that allows the LLM to directly infer it by providing several
examples of the node’s raw text and their corresponding cluster IDs, and the text of the unlabeled
query (See Fig. 2b for an example.) Here, the LLM can be seen as performing a prediction task
amongst pseudo-labels defined by the initial clustering, where Dfeedback = {([0, . . .K]|i ∈ Q}. We
note that the choice of Lfeedback is flexible and discuss it in detail later. Notably, by ensuring that the
prompt contains samples from all clusters, the LLM can (i) more holistically infer what concepts
underlie clusters and (ii) predict an assignment for a query that does not belong to the top-2 clusters.
This allows us to circumvent the previous issue where the upper-bound on refined performance was
restricted by the number of samples where the preferred assignment was contained in the top-2
clusters.

However, directly inferring the similarity function from in-context examples becomes more difficult
as the number of clusters grows as (i) the number of exemplars must correspondingly reduce to remain
within the context length and (ii) if the number of clusters is sufficiently large, it is not possible to
provide exemplars from all clusters. Furthermore, the selection and ordering of exemplars can have a
significant impact of the LLM’s ability to correctly predict a query’s assignment, leading to potential
loss of performance during fine-tuning.

Figure 3: Unaligned Notions of Similarity. The
following stochastic block model graph has clus-
ters that correspond to whether a particular ani-
mal’s name begins with “A" or “B." However,
an alternative clustering according to “land" vs.
“aquatic" animals is also valid and more semanti-
cally interesting. Indeed, when GPT-3.5 is asked
whether a “Baboon" is more similar to a “Bluegill"
or “Antelope," it replies with “Antelope" as it is
also a land mammal. This emphasizes that (i) sim-
ple pairwise comparisons may not be sufficient for
providing feedback and (ii) LLMs and GNN clus-
tering algorithms may utilize disparate notions of
similarity.

Concept-based Prompting. To avoid the afore-
mentioned issues with incontext-prompting,
we draw inspiration from topic modeling [30,
31] and design an additional "concept-based"
prompting strategy where we first prompt the
LLM to infer the concepts that were used to
group samples and then create a prediction task
where the LLM is prompted to select amongst
the generated concepts. (See Fig. 2c for an ex-
ample.) To generate concepts, we provide the
LLM samples from each cluster and ask it to
provide a "title" and "short description" that ex-
plains how these samples are grouped together.
These generated titles and descriptions are then
provided as options for the LLM to identify the
most similar cluster for a particular query. No-
tably, by providing the titles/descriptions of all
clusters, we can avoid the upper-bound encoun-
tered by triplets while simultaneously allowing
the LLM to at least partially infer the GNN’s
similarity function.

Moreover, by using cluster titles/descriptions in-
stead of multiple exemplars per cluster, concept-
based prompting uses much shorter prompts and
better scale as the number of clusters grows in
comparsion to in-context prompting. Indeed, as
the number of clusters grows, In-Context prompting would require decreasing the number of ex-
emplars per cluster to fit the context length. Moreover, this context must be passed every time
feedback is obtained. In contrast, the titles/descriptions are generated once in a preprocessing step,
and subsequently reused through a shorter, multiple choice-style prompt. Finally, we note that

12



Large Language Model Guided Graph Clustering

creating titles/descriptions may help denoise the exemplars as the LLM seeks to understand how they
were grouped together.

13



Large Language Model Guided Graph Clustering

D Ablation Results
Table 3: Effect of Confidence Filtering. While we do not know the reliability of either the LLM or
GNN’s feedback apriori, we can use their confidence to select samples where the feedback is more
likely to be reliable to avoid finetuning on misleading samples. Here, we filter samples based on the
ascending confidence percentile, so the 80th percentile corresponds to samples whose confidence is
greater than or equal to 80% of total samples. We observe that filtering improves performance without
filtering (11/24 Acc.) and over the starting (no finetuning) solution (17/24 Acc.). In particular, 80%
LLM and 20% GNN filtering improves performance over no filtering (8/12 NMI, 10/12 Mod.) On
WikiCS, no filtering performs the best, suggestive of the LLM’s better reliability. Best performance
is bolded and accuracy of the starting solution is in parentheses.

Dataset Method LLM GNN Acc. NMI F1 ARI COND MOD

citeseer

diffpool
(47.09)

20 80 53.04 22.67 15.06 34.93 0.31 0.45
80 20 56.71 26.94 23.18 41.90 0.21 0.56
0 0 58.96 26.84 19.70 41.41 0.24 0.50

dinknet
(66.35)

20 80 67.61 38.14 32.03 50.99 0.08 0.64
80 20 67.43 40.23 37.88 56.47 0.10 0.67
0 0 67.40 36.97 27.16 47.91 0.09 0.62

dmon
(47.89)

20 80 51.21 26.85 18.27 31.64 0.15 0.50
80 20 51.14 30.06 25.30 41.72 0.17 0.59
0 0 49.87 27.12 14.46 29.87 0.15 0.47

mincut
(64.17)

20 80 61.42 31.79 26.94 47.84 0.26 0.56
80 20 65.40 41.32 38.01 59.37 0.13 0.69
0 0 67.51 39.60 35.81 59.81 0.17 0.64

cora

diffpool
(59.97)

20 80 55.28 29.53 16.07 39.33 0.39 0.39
80 20 61.94 41.64 36.77 55.67 0.27 0.57
0 0 51.35 22.21 6.49 29.05 0.32 0.34

dinknet
(66.20)

20 80 67.15 36.21 24.09 42.83 0.13 0.50
80 20 67.87 48.03 36.82 52.04 0.12 0.66
0 0 65.16 23.42 9.25 27.40 0.08 0.29

dmon
(57.55)

20 80 58.07 36.72 24.99 40.19 0.23 0.47
80 20 62.06 41.79 35.56 50.52 0.25 0.57
0 0 56.70 30.06 13.67 29.40 0.12 0.33

mincut
(64.17)

20 80 61.04 38.40 28.22 48.95 0.34 0.50
80 20 64.55 47.15 38.89 57.82 0.19 0.65
0 0 61.62 41.61 30.54 54.01 0.28 0.54

wikics

diffpool
(43.34)

20 80 51.53 27.52 17.87 37.83 0.41 0.39
80 20 50.60 24.03 16.68 34.87 0.40 0.42
0 0 58.03 35.03 26.28 46.48 0.34 0.44

dinknet
(71.25)

20 80 66.51 45.90 41.76 54.10 0.26 0.53
80 20 66.79 48.39 41.85 55.66 0.23 0.54
0 0 74.00 51.25 51.57 63.06 0.23 0.54

dmon
(37.515)

20 80 42.81 27.14 19.03 30.33 0.37 0.29
80 20 40.92 28.11 20.24 32.39 0.46 0.33
0 0 51.87 32.51 31.04 36.49 0.26 0.31

mincut
(24.70)

20 80 42.79 19.16 7.50 17.07 0.27 0.23
80 20 43.58 14.74 3.77 19.57 0.30 0.14
0 0 46.36 16.52 4.80 24.36 0.47 0.27

14



Large Language Model Guided Graph Clustering

Table 4: Ensembling Improves Performance with Unreliable Feedback. Here, we create a deep
ensemble by sampling different α and β to simulate different levels of confidence in each ensemble
source. On Cora, where the LLM’s feedback is known to be unreliable, we find that ensembling
improves the performance of over a single model where α = 0.5 and β = 0.5, and surpasses the
performance of the starting solution as desired. Overall, this indicates that GCLR can help improve
the initial clustering solution (highlighted in gray) even with unreliable feedback.

Method Ens? Acc. NMI F1 ARI COND MOD

diffpool
starting 59.97 43.36 36.58 56.76 0.24 0.60

✗ 51.35 22.21 6.49 29.05 0.32 0.34
✓ 61.88 45.74 38.97 58.20 0.22 0.62

dinknet
starting 68.26 51.98 44.21 62.09 0.12 0.70

✗ 65.16 23.42 9.25 27.40 0.08 0.29
✓ 69.36 52.66 45.28 63.12 0.12 0.70

dmon
starting 57.56 41.60 33.76 50.94 0.27 0.56

✗ 56.70 30.06 13.67 29.40 0.12 0.33
✓ 60.60 43.25 37.60 52.41 0.24 0.58

mincut
starting 64.17 48.92 40.35 58.33 0.14 0.70

✗ 61.62 41.61 30.54 54.01 0.28 0.54
✓ 64.63 48.96 40.77 58.79 0.14 0.70

Table 5: Query Function Ablation.We report performance on the following query strategies: random
sampling \ entropy sampling \ least confidence \ margin sampling. We observe that while there is a
slight decrease in performance when using random sampling as the query function, overall margin
sampling perform similarly to entropy sampling. Least confidence sampling, in fact, improves
performance on a few cases.

Dataset Method Acc. NMI F1 ARI COND MOD
citeseer diffpool 49.45\59.56\60.19\59.38 26.47\27.75\28.38\23.21 8.47\13.16\12.88\8.74 33.87\31.93\31.16\29.23 0.16\0.11\0.09\0.1 0.39\0.34\0.33\0.29

dinknet 46.14\56.99\58.16\57.9 6.62\35.41\35.8\36.2 2.81\22.96\22.28\22.96 10.65\37.79\37.39\40.21 0.02\0.22\0.22\0.21 0.07\0.43\0.43\0.44
dmon 37.94\51.74\52.18\51.31 7.73\27.88\28.34\27.54 2.53\18.42\18.2\17.98 11.86\33.67\33.88\32.75 0.06\0.15\0.15\0.15 0.16\0.51\0.5\0.5
mincut 64.08\63.4\63.56\61.16 34.45\34.74\35.16\39.89 30.4\31.31\31.42\30.13 55.48\54.43\55.27\49.44 0.24\0.23\0.23\0.31 0.56\0.58\0.58\0.52

cora diffpool 68.7\66.53\66.55\66.52 43.99\45.88\45.32\45.52 36.35\42.32\42.02\41.83 55.24\54.14\53.08\53.96 0.32\0.26\0.26\0.26 0.5\0.53\0.53\0.53
dinknet 35.33\42.7\42.4\42.67 14.46\26.75\26.51\26.92 10.65\19.01\18.61\19 11.3\30.6\30.01\30.12 0.08\0.39\0.38\0.37 0.13\0.29\0.29\0.29
dmon 46.14\56.99\58.16\57.9 6.62\35.41\35.8\36.2 2.81\22.96\22.28\22.96 10.65\37.79\37.39\40.21 0.02\0.22\0.22\0.21 0.07\0.43\0.43\0.44
mincut 61.16\61.52\60.5\60.61 39.89\40.94\39.78\40.05 30.13\29.34\29\30.1 49.44\50.6\50.34\50.5 0.31\0.31\0.33\0.32 0.52\0.51\0.5\0.5

wikics diffpool 37.94\51.74\52.18\51.31 7.73\27.88\28.34\27.54 2.53\18.42\18.2\17.98 11.86\33.67\33.88\32.75 0.06\0.15\0.15\0.15 0.16\0.51\0.5\0.5
dinknet 64.08\63.4\63.56\61.78 34.45\34.74\35.16\33.38 30.4\31.31\31.42\29 55.48\54.43\55.27\54.02 0.24\0.23\0.23\0.25 0.56\0.58\0.58\0.57
dmon 35.33\42.7\42.4\42.67 14.46\26.75\26.51\26.92 10.65\19.01\18.61\19 11.3\30.6\30.01\30.12 0.08\0.39\0.38\0.37 0.13\0.29\0.29\0.29
mincut 46.4\46.92\44.46\45.76 22.06\18.61\20.11\18.19 11.57\5.6\6.79\9.08 28.09\22.16\22.67\22.37 0.27\0.24\0.28\0.21 0.22\0.16\0.2\0.16

Table 6: Ablation on the Labeling Budget. We report performance when the LLM labeling budget
is 20% \ 40% \ 60% \ 80% \ 100%. We find that increasing the budget does not substantially increase
performance, unlike traditional active learning. We hypothesize this is partially due to regularizing
training using GNN pseudo-labels and the imperfect LLM oracle. This suggests that maximizing the
API budget by labeling every possible node may have diminishing returns. By selecting the most
difficult samples early on, GCLR more effectively uses any sized budget.
Dataset Method Acc. NMI F1 ARI COND MOD

citeseer

diffpool 54.43\53.82\52.77\53.05\54.66 23.52\22.7\22.59\22.76\22.21 15.33\15.3\15.2\15.54\15.23 35.44\36.46\36.72\36.88\36.52 0.3\0.3\0.31\0.32\0.32 0.45\0.45\0.45\0.44\0.44
dinknet 69.81\69.84\69.81\69.81\69.81 34.15\36.98\36.61\36.38\36.19 26.36\29.83\29.23\28.97\28.82 45.51\48.06\47.35\47.13\46.93 0.07\0.07\0.07\0.07\0.07 0.6\0.62\0.61\0.61\0.61
dmon 51.81\51.63\51.62\51.3\51.25 28.17\29.15\28.99\29.19\29.1 18\18.82\18.37\18.65\18.56 31.84\32.72\32.66\32.53\32.45 0.13\0.14\0.15\0.15\0.15 0.5\0.5\0.5\0.5\0.5
mincut 63.57\61.68\63.12\63.98\64.14 34.44\32.88\33.4\32.94\32.7 29.95\27.77\28.04\27.41\27.23 55.75\54.3\54.29\53.44\52.27 0.26\0.31\0.3\0.31\0.3 0.55\0.51\0.51\0.51\0.51

cora

diffpool 55.55\55.44\55.61\56.67\56.53 24.17\24.81\24.9\24.97\25.18 9.91\10.06\10.35\10.9\11.02 31.91\32.92\33.57\34.3\34.25 0.41\0.43\0.44\0.44\0.44 0.34\0.33\0.32\0.33\0.34
dinknet 59.97\60.01\60.01\59.97\60.04 24.84\25.72\25.36\25.53\25.23 10.19\10.89\10.43\10.43\10 30.36\30.74\30.58\30.79\30.47 0.09\0.09\0.09\0.09\0.09 0.32\0.33\0.32\0.32\0.31
dmon 58.14\58.89\59\58.91\58.91 35.71\36.31\36.95\37.39\37.5 22.31\21.97\21.82\21.85\22.25 38.78\37.71\37.93\39.24\39.44 0.21\0.22\0.21\0.2\0.19 0.43\0.43\0.44\0.44\0.45
mincut 60.43\62.17\59.4\60.54\60.76 38.36\37.51\38.47\38.18\38.84 28.27\27.65\28.51\28.37\29.36 48.36\47.79\48.61\47.87\47.84 0.36\0.37\0.38\0.37\0.38 0.47\0.46\0.45\0.46\0.46

subtagwikics

diffpool 49.75\51.71\52.18\51.31\52.5 30.03\30.54\30.14\31.23\30.73 20.62\22.71\19.96\19.74\20.97 40.33\40.68\37.45\38.23\39.88 0.43\0.39\0.39\0.39\0.41 0.39\0.42\0.42\0.38\0.4
dinknet 66.56\66.54\66.54\66.51\66.52 46.13\45.77\45.73\45.68\45.62 42.49\42.43\42.31\42.14\42.05 54.59\54.27\54.16\54.14\54.21 0.26\0.25\0.26\0.26\0.26 0.53\0.53\0.53\0.53\0.53
dmon 42.99\42.83\42.9\43.05\43.13 27.31\27.7\27.83\28.09\28.32 19.24\19.35\19.57\19.73\19.97 30.42\30.68\30.76\31.06\31.12 0.37\0.37\0.37\0.36\0.36 0.29\0.29\0.3\0.3\0.3
mincut 44.91\44.01\44.53\43.05\44.98 18.36\17.12\20.1\19.83\18.77 5.11\5.97\9.44\9.48\6.2 21.5\18.35\25.49\18.43\19.59 0.28\0.22\0.3\0.3\0.26 0.16\0.14\0.15\0.17\0.19

15



Large Language Model Guided Graph Clustering

E Additional Results with ChatGPT
In this section, we evaluate GCLR using feedback obtained from ChatGPT-3.5-Turbo, instead of
Mixtral-8b, to demonstrate its robustness to choice of LLM. We note that obtaining feedback from
ChatGPT is fairly expensive for us, so we only obtain feedback on 200 nodes. We select the 200 most
difficult nodes for feedback, where difficult is defined according to the entropy of the distance to a
sample’s two nearest clusters. Here, a sample that is equidistant and relatively from the cluster centers
would is more difficult and is selected over a sample that is close to a single center (well-clustered).
Given the strong performance of GCLR with even this limited number of samples from a very
powerful LLM, suggests that performance would be further improved with a larger budget. We
note that due to the limited number of feedback samples, we perform a single round of fine-tuning
to prevent over-fitting to feedback samples, instead of dividing the feedback over multiple rounds.
Finally, please note that we had to retrain the base GNNs for these experiments, so the starting
accuracy of the original GNNs may be slightly different that those reported in the main paper. All
results are reported using the "concepts" feedback strategy unless otherwise noted. We strongly
emphasize, however, that we are interested in observing the improvement of GCLR relative to the
starting model, and we clearly observe its benefits in the following tables.

Table 7: Feedback Elicitation. We evaluate three different strategies for obtaining LLM guidance
by measuring their accuracy in predicting the correct cluster assignment (wrt to known ground-
truth label) on the 200 hardest samples as per the initial GNN clustering. The GNN’s accuracy on
ALL samples is reported in parenthesis. We observe that the Concepts strategy achieves the best
performance on 10/12 datasets.

Dataset Clustering Method Concepts InContext Triplets

citeseer

diffpool (0.496) 0.295 0.24 0.26
dinknet (0.703) 0.385 0.385 0.38
dmon (0.441) 0.415 0.34 0.35
mincut (0.665) 0.415 0.33 0.37

cora

diffpool (0.547) 0.14 0.29 0.29
dinknet (0.658) 0.355 0.235 0.295
dmon (0.609) 0.355 0.15 0.31
mincut (0.684) 0.54 0.25 0.235

WikiCS

diffpool (0.483) 0.365 0.290 0.235
dinknet (0.665) 0.24 0.240 0.330
dmon (0.370) 0.335 0.235 0.27
mincut (0.269) 0.08 0.01 0.015

Table 8: ChatGPT Provides Complementary Information When Finetuning In order to demon-
strate ChatGPT provided labels capture complementary, beneficial information to the GNN, here, we
compare performance of models that were only fine-tuned with GNN pseudo-labels and those that
were fine-tuned with GNN and LLM pseudo-labels. Notably, we do not filter the LLM’s nor the GNN
labels for high confidence; allowing the mistakes from either source. The better result is underlined
between (GNN Only / LLM+GNN). We observe that incorporating the raw LLM feedback improves
the clustering solution noticeably on the extrinsic metrics (7/12 Acc), (10/12 NMI), (9/12 F1) but has
mixed, but competitive performance on extrinsic metrics.

Method Dataset Acc NMI ARI F1 Cond Mod

DiffPool Citeseer 54.110 / 55.740 33.710 / 36.240 27.430 / 30.920 45.290 / 49.100 0.146 / 0.164 0.633 / 0.630
DinkNet Citeseer 69.520 / 69.718 45.200 / 45.733 44.370 / 45.343 65.330 / 65.570 0.068 / 0.065 0.701 / 0.706
Dmon Citeseer 46.400 / 49.030 29.585 / 30.550 24.295 / 26.670 43.395 / 44.230 0.210 / 0.199 0.582 / 0.573
MinCut Citeseer 67.360 / 67.950 46.520 / 46.960 44.820 / 46.000 65.160 / 65.420 0.081 / 0.078 0.726 / 0.720

DiffPool Cora 60.160 / 59.270 45.790 / 39.550 40.320 / 29.880 52.350 / 51.340 0.200 / 0.211 0.610 / 0.511
DinkNet Cora 60.860 / 64.700 47.930 / 50.420 33.520 / 36.440 50.530 / 55.940 0.124 / 0.110 0.620 / 0.642
Dmon Cora 62.080 / 61.410 42.345 / 42.615 35.055 / 33.995 54.220 / 53.885 0.241 / 0.253 0.581 / 0.574
MinCut Cora 68.650 / 71.530 52.270 / 53.830 47.050 / 49.950 63.740 / 64.960 0.146 / 0.152 0.705 / 0.691

DinkNet WikiCS 63.510 / 62.770 49.680 / 49.230 44.050 / 43.730 59.130 / 58.520 0.243 / 0.245 0.536 / 0.540
DiffPool WikiCS 52.390 / 52.070 37.500 / 39.500 27.520 / 28.820 48.230 / 46.820 0.304 / 0.294 0.504 / 0.513
Dmon WikiCS 38.420 / 38.390 30.420 / 30.910 23.140 / 23.400 33.380 / 33.390 0.444 / 0.438 0.358 / 0.367
MinCut WikiCS 30.430 / 34.370 17.040 / 21.750 0.900 / 4.490 12.810 / 16.160 0.054 / 0.073 0.118 / 0.134

16



Large Language Model Guided Graph Clustering

Table 9: GCLR with ChatGPT Improves the Performance of Graph Clustering Solutions. Here,
we consider GCLR’s performance across different confidence filtering levels (for both the GNN
and LLM), and compare its performance when using the triplet loss (instead of cross entropy). In
particular, we consider two different confidence percentiles, 20% and 80%, denoted low and high
below respectively. Aside from DinkNet, which uses a contrastive loss during training, we find that
GCLR with cross-entropy and confidence filtering improves the performance over the starting GNN
solution. The performance of starting GNN solution is denoted in parenthesis. Second Best, First.
(Cross Entropy /Triplets).

Dataset Method LLM Conf. GNN Conf. Acc NMI ARI F1 Cond Mod
Citeseer DiffPool (49.6) low low 53.360 / 49.560 34.460 / 28.730 30.040 / 26.320 46.430 / 44.770 0.175 / 0.199 0.619 / 0.606
Citeseer DiffPool low high 52.480 / 47.390 32.050 / 25.990 27.670 / 23.830 45.110 / 41.160 0.160 / 0.232 0.618 / 0.565
Citeseer DiffPool high low 51.570 / 49.690 36.200 / 28.920 29.870 / 26.460 43.270 / 44.830 0.153 / 0.200 0.639 / 0.606

Citeseer DinkNet (70.3) low low 69.400 / 71.030 45.440 / 46.370 44.600 / 49.500 65.130 / 66.640 0.072 / 0.066 0.696 / 0.721
Citeseer DinkNet low high 64.780 / 70.090 42.740 / 45.600 38.540 / 47.720 59.130 / 65.390 0.066 / 0.064 0.655 / 0.717
Citeseer DinkNet high low 69.240 / 71.030 44.650 / 46.320 44.130 / 49.430 64.680 / 66.610 0.072 / 0.067 0.696 / 0.720

Citeseer Dmon (44.1) low low 48.780 / 45.135 30.090 / 29.680 26.050 / 27.645 45.570 / 36.660 0.219 / 0.191 0.574 / 0.547
Citeseer Dmon low high 50.410 / 46.030 32.230 / 30.945 27.880 / 29.435 44.750 / 37.540 0.193 / 0.167 0.577 / 0.571
Citeseer Dmon high low 48.590 / 45.200 30.620 / 29.690 26.110 / 27.675 45.650 / 36.735 0.208 / 0.191 0.583 / 0.546

Citeseer MinCut (66.50) low low 68.490 / 70.030 47.370 / 47.650 46.950 / 48.360 65.620 / 66.170 0.075 / 0.061 0.719 / 0.740
Citeseer MinCut low high 68.680 / 71.940 47.570 / 48.860 47.260 / 50.600 65.570 / 67.350 0.072 / 0.065 0.717 / 0.729
Citeseer MinCut high low 68.080 / 70.030 46.950 / 47.690 46.260 / 48.400 65.540 / 66.180 0.072 / 0.061 0.729 / 0.740

Cora DiffPool (54.7) low low 59.710 / 53.210 41.250 / 39.010 33.440 / 32.120 51.400 / 49.130 0.213 / 0.268 0.542 / 0.571
Cora DiffPool low high 59.310 / 54.470 39.610 / 40.450 30.640 / 33.220 49.860 / 49.720 0.223 / 0.245 0.506 / 0.587
Cora DiffPool high low 61.630 / 53.360 42.590 / 39.110 40.430 / 32.340 53.510 / 49.220 0.206 / 0.270 0.571 / 0.568

Cora DinkNet (65.8) low low 63.770 / 65.030 47.270 / 49.510 36.480 / 42.510 53.760 / 54.900 0.127 / 0.118 0.639 / 0.680
Cora DinkNet low high 63.070 / 64.550 45.450 / 50.640 35.810 / 42.200 53.600 / 54.490 0.151 / 0.110 0.639 / 0.687
Cora DinkNet high low 61.630 / 65.140 43.900 / 49.620 34.460 / 42.620 48.200 / 55.050 0.144 / 0.119 0.629 / 0.680

Cora Dmon (60.9) low low 61.340 / 55.650 42.910 / 36.625 33.880 / 26.955 54.080 / 47.400 0.244 / 0.296 0.585 / 0.514
Cora Dmon low high 44.500 / 56.280 32.140 / 38.110 15.390 / 27.680 33.090 / 48.590 0.201 / 0.282 0.425 / 0.526
Cora Dmon high low 62.520 / 55.595 42.380 / 36.620 35.390 / 26.895 54.860 / 47.365 0.233 / 0.295 0.592 / 0.514

Cora MinCut (68.4) low low 71.680 / 71.230 53.920 / 54.960 50.750 / 48.640 65.570 / 62.940 0.150 / 0.128 0.695 / 0.704
Cora MinCut low high 72.050 / 71.900 54.070 / 54.510 51.270 / 49.910 66.740 / 63.380 0.154 / 0.128 0.692 / 0.702
Cora MinCut high low 71.530 / 71.310 53.750 / 55.100 50.890 / 48.790 65.140 / 63.020 0.153 / 0.127 0.691 / 0.704

WikiCS DiffPool (48.3) low low 54.330 / 52.100 40.280 / 31.260 31.920 / 27.480 48.220 / 45.690 0.291 / 0.294 0.515 / 0.503
WikiCS DiffPool low high 54.240 / 51.960 40.350 / 29.060 32.290 / 26.800 47.040 / 45.330 0.279 / 0.301 0.520 / 0.490
WikiCS DiffPool high low 52.680 / 51.920 37.510 / 31.090 29.500 / 27.230 47.030 / 45.590 0.294 / 0.293 0.506 / 0.503

WikiCS DinkNet (66.5) low low 62.470 / 65.800 48.900 / 48.780 43.380 / 44.380 58.020 / 59.610 0.243 / 0.233 0.546 / 0.548
WikiCS DinkNet low high 62.760 / 64.890 48.920 / 47.640 43.400 / 42.900 58.120 / 58.090 0.243 / 0.244 0.545 / 0.552
WikiCS DinkNet high low 61.870 / 65.800 48.750 / 48.780 43.170 / 44.380 57.220 / 59.610 0.245 / 0.233 0.544 / 0.548

WikiCS Dmon (37.0) low low 38.870 / 36.970 31.080 / 29.350 23.600 / 23.550 33.700 / 32.560 0.430 / 0.463 0.373 / 0.347
WikiCS Dmon low high 44.690 / 37.260 33.850 / 27.830 26.210 / 23.130 38.310 / 32.240 0.381 / 0.462 0.401 / 0.342
WikiCS Dmon high low 38.350 / 36.940 30.910 / 29.350 23.530 / 23.530 33.220 / 33.140 0.436 / 0.463 0.368 / 0.348

WikiCS MinCut (26.90) low low 37.230 / 26.860 23.030 / 12.770 8.150 / -0.770 17.410 / 10.480 0.072 / 0.055 0.143 / 0.064
WikiCS MinCut low high 40.750 / 28.660 22.270 / 10.920 13.870 / 3.400 19.520 / 11.750 0.083 / 0.337 0.182 / 0.139
WikiCS MinCut high low 36.430 / 26.620 21.990 / 13.200 6.820 / -0.770 16.090 / 10.320 0.058 / 0.058 0.139 / 0.069

17



Large Language Model Guided Graph Clustering

Figure 4: Ablation on Sensitivity to Confidence with ChatGPT Feedback. Here, we consider the
sensitivity of GCLR to the confidence filtering percentiles. Namely, we take only the top [0,10,—,
100]th percentile of the feedback data and report the change in accuracy to the starting solution using
the CORA dataset. The number of samples at a particular percentile are indicated in parentheses, α
and β are set to 0.5. We see that the best performance is obtained at a moderate confidence percentile
for both the GNN and LLM.

18



Large Language Model Guided Graph Clustering

F Prompt Examples

Table 10: Prompt Example: Triplets, CORA

PROMPT: Task: I’m clustering papers in a citation network according to research area
and need help determining where a particular query sample belongs given its abstract and
title. I will give you the abstracts/titles of two samples belonging to nearby clusters and
you should select the abstract/title that is more similar to the query in terms of research
topic. Please explain your reasoning and return your answer in a JSON format: {selection:
[1,2,-1(neither or unsure)], reasoning: [your reasoning]}.

[SAMPLE 1]
<Sample from 1st (2nd) Closest Cluster>]

[SAMPLE 2]
<Sample from 2nd (1st) Closest Cluster>]

[QUERY]
<Sample of Query Sample>]

[ANSWER]

Table 11: Prompt Example: Incontext, CORA

PROMPT:
[Example]
<Sample>
{Category: <GNN’s Predicted Cluster>}

...
[Example]
<Sample>
{Category: <GNN’s Predicted Cluster>}

[Task]
Given the above examples, please identify the correct category for the following query
sample. Please explain your reasoning and return your answer in a JSON format: category:
[your prediction], reasoning: [your reasoning]. If you’re unsure of an answer, select
category -1.

[QUERY]
<QUERY>

[ANSWER]

19



Large Language Model Guided Graph Clustering

Table 12: Prompt Example: Concepts, CORA

CONCEPTS GENERATION PROMPT: Task: I’m clustering papers in a citation
network according to research area and need help coming up with cluster names. The
following num-exemplars papers that have been clustered together and I’m going to give
you their abstract/titles. Can you propose a < 7 word research topic and 2-3 sentence
description for this cluster? Try not to make it too specific or too broad, and explain your
reasoning. Return your answer in a JSON format: {topic: [your topic], description: [your
description], reasoning: [your reasoning]}.

SAMPLES FROM CLUSTER:
Sample 1
Sample 2
...
Sample Num-Exemplars

Answer:

CONCEPT PREDICTION PROMPT:
[Task]
I’m currently working on clustering papers within a citation network based on their ab-
stracts/titles. I’m seeking assistance in determining the cluster association for a specific
uncertain sample. You’ll be provided with the abstract/title of this sample, along with
the titles and short descriptions of num-clusters potential clusters. Your task involves
carefully reading each cluster title and description, taking a thoughtful approach, and
selecting the cluster that best aligns with the confusing sample. Please provide your answer
in JSON format, including the predicted cluster number, title of the predicted cluster, and
your detailed reasoning. Your response should look like this: {cluster: [your predicted
cluster number], cluster title: [title of predicted cluster], reasoning: [your reasoning for
choosing this cluster]}. Take your time and ensure clarity in your explanation.

[CLUSTER TITLES]
1. <GENERATED TITLE>
Description: <GENERATED TITLE DESCRIPTION>

2. <GENERATED TITLE>
Description: <GENERATED TITLE DESCRIPTION>

...
NUM-CLUSTERS. <GENERATED TITLE>
Description: <GENERATED TITLE DESCRIPTION>

[UNCERTAIN SAMPLE]
QUERY

[ANSWER]

20



Large Language Model Guided Graph Clustering

G Metrics
We consider the following extrinsic and graph topology-based metrics in our evaluation. Let
G = (V, E , T ,X , [Y]) represent a graph with its respective node-set, edge-set, raw node based
text information, embedded node attribute information (e.g., some embedding of a node’s text), and
optional ground-truth cluster assignment. Further, let N be the number of the nodes, M be the
number of edges, C be the desired (or ground-truth) number of clusters, d the dimension of the
hidden representation, A ∈ Rn×n be the corresponding adjacency matrix, X ∈ RN×d be a matrix
representation of X , Y ∈ [0, 1]C , dv be the degree vector of a particular node v, and cv be the
predicted cluster of a given node v.

• Modularity [1]. Modularity measures the deviation with respect to nodes belonging to the same
cluster against the expectation of the nodes being connected given a null model where nodes
are connected randomly. Graphs with high modularity will have clusters where the majority
of the edges are contained with some cluster and few edges that cross the clusters. Modularity
falls within [− 1

2 , 1], where a positive score indicates that the clustering structure that is above
random, and is defined as follows:

Q =
1

2m

∑
ij

[
A[ij] −

didj
2m

]
1[ci = cj ].

• Conductance [3, 53]. Also known as the Cheeger coefficient, this metric measures how quickly
a random walk on a graph will reach its stationary distribution. Given a particular cluster,
ĉ, the number of edges belonging to that cluster (intra-cluster edges) can be computed as
rĉ =

∑
u,v∈A 1[cu = ĉ, cv = ĉ], and the number of edges are not fully contained in ĉ (inter-

cluster edges) can be computed as sĉ =
∑

u,v∈A 1[cu = ĉ, cv ̸= ĉ]. Then, conductance is
defined as the average ratio of intra- and inter- cluster edges, where tight clusters are expected to
have relatively fewer inter cluster edges.

ϕ =
1

C

C∑
ĉ

sĉ
rĉ + sĉ

• Accuracy.

ACC =

n∑
i=1

ϕ(yi,map(ŷi))

n
(1)

ŷi represents the predicted cluster ID, while yi indicates the ground truth cluster ID label.
map(.) denotes the Kuhn-Munkres algorithm [54] which aligns the predicted cluster-ID with
the class-ID, and indicator function ϕ(.) is formulated as:

ϕ(yi,map(ŷi)) =

{
1 if yi = map(ŷi)

0 else
(2)

• Normalized Mutural Information.

NMI = −
2
∑

ŷ

∑
y p(ŷ, y) log

p(ŷ,y)
p(ŷ)p(y)∑

i p(ŷi) log (p(ŷi)) +
∑

j p(yj) log (p(yj))
(3)

where p(y), p(ŷ), and p(ŷ, y) represent the distribution of predicted results, distribution of the
ground truth, and joint distribution of them, respectively.

• Adjusted Random Index.

ARI =
RI − expectedRI

max(RI)− expectedRI
(4)

where RI and expectedRI signifies the Rand Index and expected Rand Index [55], respectively.
An ARI of 0 suggests disagreement between real and modeled clustering in pairing, whereas an
ARI of 1 indicates concordance between real and modeled clustering, representing identical
clusters.

21



Large Language Model Guided Graph Clustering

• F1-Score.
F1 =

2.P recision.Recall

Precision+Recall
(5)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(6)

where TP , FP , and FN indicate the number of true positive, false positive, and false negative
samples, respectively.

H Reproducibility Statement
All code will be released upon acceptance. We dropped the computation linguistic and web-technology
categories from WikiCS to create a more even and separate labeling for evaluation. We use the
mixtral-8x-7b model, and a G.5 (8 gpu) instance on AWS. We repeat results over 3 seeds for
obtaining feedback. We used 10 seeds for finetuning. We provide an anonymous code repo at
https://anonymous.4open.science/r/GCLR_ARR-EDD8/.

Table 13: Dataset Statistics.
Dataset Num Nodes Num Edges Num Clusters
Cora [56] 2,708 5,429 7
Citeseer [57] 3,327 4,732 6
WikiCS1 [58] 10,601 204120 8

I Example of Generated Titles

Table 14: Generated Concepts. Below, are examples of concepts generated by
chatgpt-3.5-turbo on Cora with MinCut as the GNN clustering algorithm. While some concepts
are imperfect, e.g., rule learning or theory, other topics are well captured. Applying self-refinement
strategies could improve these generated concepts, at additional budget expenditure.

True Generated
Reinforcement Learning Reinforcement Learning and Dynamic Programming
Genetic Algorithms Evolutionary Algorithms in Problem Solving
Rule Learning Error Bounds in Learning Algorithms
Theory Feature Selection in Machine Learning’
Probabilistic Methods Bayesian Statistical Methods
Case Based Improving Case-Based Reasoning Adaptation
Neural Networks Neural Network Self-Organization

22

https://anonymous.4open.science/r/GCLR_ARR-EDD8/

	1 Introduction
	2 GCLR: Graph Clustering with LLM Refinement
	2.1 Eliciting Feedback from LLM for Graph Clustering
	2.2 Refining GNN-Based Clustering with Feedback

	3 Experiments
	A Appendix / supplemental material
	B Expanded Related Work
	C Expanded Prompting Discussion
	D Ablation Results
	E Additional Results with ChatGPT
	F Prompt Examples
	G Metrics
	H Reproducibility Statement
	I Example of Generated Titles

