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Abstract: Learning agile skills is one of the main challenges in robotics. To1

this end, reinforcement learning approaches have achieved impressive results.2

These methods require explicit task information in terms of a reward function3

or an expert that can be queried in simulation to provide a target control output,4

which limits their applicability. In this work, we propose a generative adversarial5

method for inferring reward functions from partial and potentially physically6

incompatible demonstrations for successful skill acquirement where reference or7

expert demonstrations are not easily accessible. Moreover, we show that by using8

a Wasserstein GAN formulation and transitions from demonstrations with rough9

and partial information as input, we are able to extract policies that are robust and10

capable of imitating demonstrated behaviors. Finally, the obtained skills such as a11

backflip are tested on an agile quadruped robot called Solo 8 and present faithful12

replication of hand-held human demonstrations.13
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Figure 1: Our method (WASABI) achieves agile physical behaviors from rough (hand-held) and
partial (robot base) motions. The illustrated performance measure is the Dynamic Time Warping
distance of the base trajectories (left). A learned backflip policy is deployed on Solo 8 (right).

1 Introduction15

Obtaining dynamic skills for autonomous machines has been a cardinal challenge in robotics. A16

primary shortage of motivating desired behaviors by reward engineering is the arduous reward-17

shaping process involved. Given the availability of some expert references, one possible solution18

is Imitation Learning (IL), which aims to mimic expert behaviors in a given task. In particular,19

Generative Adversarial Imitation Learning (GAIL) [1] draws a connection between IL and generative20

adversarial networks (GANs) [2], which train a policy to deceive a discriminator that constantly21

tries to distinguish state transitions generated between the policy and the reference data distribution.22

The output of the discriminator can then be used as a reward that encourages the learning agent to23

generate similar behaviors to the demonstration.24

In this work, we present a novel adversarial imitation learning method named Wasserstein Adversarial25

Behavior Imitation (WASABI). We show that we are able to extract sensible task rewards from rough26

and partial demonstrations by utilizing adversarial training for obtaining agile skills in a sim-to-real27
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Figure 2: System overview. Given a reference dataset defining the desired base motion, the system
trains a discriminator that learns an imitation reward for the policy training.

Figure 3: Solo 8 (left). Backflip motion in Isaac Gym (right).

setting. In contrast to Peng et al. [3], our approach does not require any prior information about the28

task at hand in form of a specific reward function, but only reasonable task-agnostic regularization29

terms in addition to the adversarial reward that make the robot motion more stable. Most importantly,30

we achieve this without having access to samples from an expert policy, but rather hand-held human31

demonstrations that are physically incompatible with the robot itself. To the best of our knowledge,32

this is the first time that highly dynamic skills are obtained from limited reference information. In33

summary, our contributions include: (i) An adversarial approach for learning from partial, physically34

incompatible demonstrations. (ii) Analysis of the Least-Squares vs. Wasserstein GAN loss for35

reward inference. (iii) Experimental validation in simulation and on a quadruped robot. Figure 236

provides a schematic overview of our method. Supplementary videos for this work are available at37

https://sites.google.com/view/corl2022-wasabi/home.38

2 Experiments39

We evaluate WASABI on the Solo 8 robot, an open-source research quadruped robot that performs a40

wide range of physical actions [4], in simulation and on the real system (Fig. 3). For evaluation, we41

introduce 4 different robotics tasks. We provide rough demonstrations of these motions by manually42

carrying the robot through the motion and recording only the base information. The demonstrations43

are then used to infer an adversarial imitation reward for training a control policy that outputs target44

joint positions. In all of our experiments, we use Proximal Policy Optimization (PPO) [5] in Isaac45

Gym [6] and make use of domain randomization [7] for sim-to-real transfer.46

2.1 Induced Imitation Reward Distributions47

The LSGAN loss is proposed to alleviate the saturation problem that is encountered for the CEGAN48

loss. Yet, it does not directly yield a practical reward function. Peng et al. [3] remedy this by using49

rI = max
[
0, 1− 0.25(D (Φ(s),Φ(s′))− 1)2

]
to map the discriminator output to the imitation50

reward and bound it between 0 and 1. However, with the effective clipping at 0, information about51

the distance from the policy to the demonstration transitions is lost with discriminator prediction52

smaller than −1 (Fig. 4c). In addition, we show in Fig. 4a that the imitation reward learned using53

LSGAN yields a less informative signal for policy training, which is rather uniformly distributed54

across pitch rate θ̇ and base height z dimensions. In comparison, WASABI can use the discriminator55

output directly, learning a more characteristic reward function across the state space where reference56

trajectories are clearly outlined to yield high rewards in contrast to the off-trajectory states (Fig. 4b).57
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Figure 4: Adversarial imitation rewards for SOLOBACKFLIP. Imitation reward heatmap for LSGAN
(a) and WASABI (b) around reference trajectories (blue) generated in varying pitch rate θ̇ and base
height z. (c) Distribution of imitation rewards for LSGAN and WASABI during training. WASABI
provides a more fine-grained reward function.

Method SOLOLEAP SOLOWAVE SOLOSTANDUP SOLOBACKFLIP

WASABI 131.70 ± 16.44 247.29 ± 11.59 351.13 ± 88.60 477.43 ± 56.77
LSGAN 155.31 ± 18.10 230.91 ± 5.95 678.21± 6.71 813.76± 19.75

Stand Still 216.41 460.15 494.40 877.74

Table 1: Comparison of performances for LSGAN and WASABI trained with hand-held demon-
strations in terms of DTW distance dDTW (lower is better), successful runs are in bold font. As a
reference, we provide also dDTW of a constantly standing trajectory.

2.2 Learning to Mimic Rough Demonstrations58

Since we record the base motion of the robot carried by a human demonstrator, we do not have59

access to a reward function evaluating learned behaviors or measuring the closeness between the60

demonstrated and the policy trajectories. In addition, these trajectories are largely misaligned. For this61

reason, we make use of Dynamic Time Warping (DTW) [8] with the L2 norm metric for comparing62

policy trajectories and reference demonstrations. In Table 1 we compare performances in simulation63

for the different reference motions.64

In order to confirm that WASABI is indeed able to extract a sensible reward function that motivates65

the desired motion, we compare the performance of LSGAN and WASABI in SOLOSTANDUP and66

SOLOBACKFLIP using an expert baseline that is trained on a handcrafted task reward for generating67

demonstrations in simulation. The learned policies are evaluated with the same task rewards that68

are used to obtain the expert policies. A comparison of training performance curves in terms of the69

corresponding handcrafted task rewards is detailed in Fig. 5. In Table 2 we show the performance70

evaluation of the best runs.71

2.3 Evaluation on Real Robot72

To evaluate our method on real system, we trained policies for sim-to-real transfer with WASABI73

for the SOLOLEAP, SOLOWAVE and SOLOBACKFLIP. During deployment, we recorded the robot74
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Figure 5: Performance of WASABI and LSGAN in terms of the handcrafted task reward for SOLO-
STANDUP (left) and SOLOBACKFLIP (right). Dashed lines indicate partial information (†).
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Method SOLOSTANDUP† SOLOSTANDUP∗ SOLOBACKFLIP† SOLOBACKFLIP∗

WASABI 1.54 ± 0.51 1.68 ± 0.51 0.36 ± 0.05 0.28 ± 0.02
LSGAN 1.07± 0.5 0.44± 0.14 0.12± 0.01 0.06± 0.01

Handcrafted 2.24 ± 0.05 0.77 ± 0.04

Table 2: Performance comparison in terms of handcrafted task reward (higher is better). We
denote with ∗ where the full robot configuration is given to the discriminator and † where only base
information is given. Successful runs are in bold font. Std-dev. is over 5 independent random seeds.

Figure 6: ANYmal C (left). Wave motion in Isaac Gym (right).

base information for evaluation by dDTW. The resulting performance on the real system, as shown in75

Table 3, resembles the performance obtained in simulation.76

SOLOLEAP SOLOWAVE SOLOBACKFLIP

WASABI (Real) 153.64± 7.08 215.38± 21.82 504.26± 18.90
WASABI (Sim) 131.70± 16.44 247.29± 11.59 477.43± 56.77

Table 3: Sim-to-real performance on the Solo 8 in terms of DTW distance (lower is better). Values
are computed from the recorded data of the learned policies with respect to the reference trajectories.

2.4 Cross-platform Imitation77

As the reference motion in WASABI contains only base information, it does not restrict itself to be78

obtained only from any specific robotic platform. This provides the possibility of cross-platform79

imitation. Using the reference trajectories recorded from Solo 8, we apply WASABI to ANYmal [9], a80

four-legged dog-like robot for research and industrial maintenance (Fig. 6). To confirm that WASABI81

applies to cross-platform imitation, we define ANYMALWAVE and ANYMALBACKFLIP tasks for the82

corresponding wave and backflip motions learned by ANYmal, yet from the reference data recorded83

from Solo 8. The performance in terms of the DTW distance is detailed in Table 4.84

Method SOLOWAVE ANYMALWAVE SOLOBACKFLIP ANYMALBACKFLIP

WASABI 247.29 ± 11.59 193.08 ± 14.52 477.43 ± 56.77 572.60 ± 12.18

Stand Still 460.15 877.74

Table 4: Performance of cross-platform imitation of ANYmal using WASABI trained with hand-held
demonstrations from Solo 8 in terms of DTW distance dDTW, successful runs are in bold font.

3 Conclusion85

In this work, we propose an adversarial imitation method named WASABI for inferring reward86

functions that is capable of learning agile skills from partial and physically incompatible demonstra-87

tions without any a priori known reward terms. Our results indicate that WASABI allows extracting88

robust policies that are able to transfer to the real system and enables cross-platform imitation. For89

highly agile or incompatible motions which initially seem beyond the robot’s capability, WASABI90

outperforms LSGAN by successful and faithful replication of roughly demonstrated behaviors.91
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