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Abstract

When factorized approximations are used for vari-
ational inference (VI), they tend to underestimate
the uncertainty—as measured in various ways—of
the distributions they are meant to approximate.
We consider two popular ways to measure the un-
certainty deficit of VI: (i) the degree to which it un-
derestimates the componentwise variance, and (ii)
the degree to which it underestimates the entropy.
To better understand these effects, and the relation-
ship between them, we examine an informative
setting where they can be explicitly (and elegantly)
analyzed: the approximation of a Gaussian, p, with
a dense covariance matrix, by a Gaussian, q, with a
diagonal covariance matrix. We prove that q always
underestimates both the componentwise variance
and the entropy of p, though not necessarily to the
same degree. Moreover we demonstrate that the
entropy of q is determined by the trade-off of two
competing forces: it is decreased by the shrinkage
of its componentwise variances (our first measure
of uncertainty) but it is increased by the factor-
ized approximation which delinks the nodes in the
graphical model of p. We study various manifesta-
tions of this trade-off, notably one where, as the di-
mension of the problem grows, the per-component
entropy gap between p and q becomes vanishingly
small even though q underestimates every compo-
nentwise variance by a constant multiplicative fac-
tor. We also use the shrinkage-delinkage trade-off
to bound the entropy gap in terms of the problem
dimension and the condition number of the cor-
relation matrix of p. Finally we present empirical
results on both Gaussian and non-Gaussian targets,
the former to validate our analysis and the latter to
explore its limitations.

1 INTRODUCTION

Variational inference (VI) is a popular methodology for
approximate Bayesian inference [Jordan et al., 1999, Wain-
wright and Jordan, 2008, Blei et al., 2017]. Given a target dis-
tribution, p, VI searches for a tractable distribution, q ∈ Q,
that minimizes the Kullback-Leibler (KL) divergence to p.
A common choice for Q is to use a family of factorized
distributions. The KL-divergence can then be optimized in
a scalable manner for high-dimensional distributions [Wain-
wright and Jordan, 2008], which is crucial, for instance, to
train models such as variational auto-encoders over large
data sets [Kingma and Welling, 2013].

Factorized VI has its roots in the mean-field approximations
to certain Gibbs distributions from statistical physics [Parisi,
1988, MacKay, 2003]. In this approach, the approximating
distribution is modeled as

q(z) =

n∏
i=1

q(zi). (1)

In most applications, the target distribution p(z) does not
factorize. By its very nature, factorized VI cannot estimate
the correlations between different elements of z. A more
subtle shortcoming of factorized VI is that it also fails to
correctly estimate the marginal distributions, p(zi). This
failure typically manifests as an approximation q with an un-
certainty deficit relative to p, a phenomenon which has been
studied both empirically and theoretically [e.g MacKay,
2003, Wang and Titterington, 2005, Bishop, 2006, Turner
and Sahani, 2011, Blei et al., 2017, Giordano et al., 2018].
There exists several measures of uncertainty, and we fo-
cus on two: (i) the componentwise variance and (ii) the
entropy. The componentwise variance plays a crucial role
in Bayesian modeling, especially when estimating the pos-
terior distribution over interpretable variables. Meanwhile
the entropy provides a multivariate notion of uncertainty
and, in statistical physics, can be linked to the free energy, a
quantity of interest for many problems.

Intuitively, we expect factorized VI to shrink the variance
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of q to minimize its overlap with the tails of p. It is less clear
how it should affect the entropy of q: on the one hand, this
entropy is decreased by any shrinkage in the variance, but it
is increased by the factorized approximation, which delinks
the nodes in the full-covariance graphical model of p. Hence
entropy is driven by a trade-off between two competing
forces. We call this the shrinkage-delinkage trade-off. This
trade-off hints that the adequacy of factorized VI may de-
pend on the way we elect to measure its uncertainty deficit.

The goal of this paper is to understand the uncertainty deficit
of factorized VI in the most informative setting where it can
be rigorously analyzed. To this end, we study the special
case where p is a Gaussian distribution over Rn with a full
covariance matrix and q is a Gaussian distribution over Rn

with a diagonal covariance matrix. This choice of q is nat-
ural when p is a multivariate distribution over z ∈ Rn,
and leads to factorized Gaussian variational inference (FG-
VI)—a popular method among practionners due notably
to “black box” implementations such as automatic differ-
entiation variational inference (ADVI) [Kucukelbir et al.,
2017]. Our paper expands on previous analyses of FG-VI
[Bishop, 2006, Turner and Sahani, 2011] in many ways, but
perhaps most significantly by identifying—and elucidating—
the shrinkage-delinkage trade-off of factorized VI, which in
the considered setting can be written explicitly.

Our analysis is grounded in two fundamental inequalities.
First we show that if p is multivariate Gaussian, and if q is
the distribution (optimally) estimated by FG-VI, then

Varq(zi) ≤ Varp(zi). (2)

Second, under the same assumptions, we show that

H(q) ≤ H(p), (3)

where H(·) denotes the entropy. This second inequality,
relating the entropies of p and q, formalizes an observa-
tion [MacKay, 2003, Bishop, 2006] that q tends to be more
“compact” than p. Our proofs of these inequalities hold gen-
erally for Gaussian distributions over Rn; to the best of
our knowledge, they are more direct and more general than
previous demonstrations. While both inequalities reveal an
uncertainty deficit, we will see that the two notions of uncer-
tainty are not equivalent. Indeed, we provide one example
where q underestimates each componentwise variance by
a constant multiplicative factor, but the per-component en-
tropy gap between p and q can be arbitrarily small. This
discrepancy arises because the entropy gap in FG-VI is in
fact equal to the KL divergence minimized by FG-VI when
it targets a multivariate Gaussian. But, as we will see, this
choice of objective function can harm the estimation of
marginal variances.

The inequalities in eq. (2–3) anchor our subsequent analysis.
As shown in Figure 1, the amount of shrinkage in FG-VI
depends in general on the number of components of z ∈ Rn

as well as the degree of correlation between these compo-
nents. With this motivation, we derive an upper bound on
the entropy gap in eq. (3) in terms of the problem dimen-
sionality, n, and the condition number of the true correlation
matrix.

Finally we examine the relevance for some of our findings
when FG-VI is applied to non-Gaussian target distributions.
For these experiments, we draw on several examples from
the Bayesian literature. We find that, while the variance
shrinkage (2) does not hold systematically, it holds on aver-
age in the considered examples. We do not have a reliable
method to empirically estimate the entropy, but make an
argument that eq. (3) may hold in the studied examples.

Our results build on those of many previous studies. MacKay
[2003], Bishop [2006], Turner and Sahani [2011], and Blei
et al. [2017] all use a two-dimensional Gaussian to illustrate
that the approximations from VI are more “compact” than
the distributions they target. We formalize this observation
in the general n-dimensional setting, while highlighting the
difference between componentwise variance and entropy as
measures of uncertainty—a difference that becomes more
critical in high-dimensional settings. Experiments on non-
Gaussian models also suggest a more nuanced picture, show-
ing for instance that FG-VI does not always underestimate
every componentwise variance, though in the studied exam-
ples variance shrinkage holds on average. Previous studies
have also examined other measure of uncertainty, such as the
frequentist intervals obtained by variational Bayes estima-
tors [e.g. Wang and Titterington, 2005]. Finally, many have
been motivated by the uncertainty deficit of factorized VI to
develop new methods for inference. These include post-hoc
corrections of variational approximations [Giordano et al.,
2018] or, for certain models, careful decompositions of p
using conditional distributions to justify the assumption of
factorization [Agrawal and Domke, 2021].

The code for all results and figures is available on GitHub.

2 PRELIMINARIES

We analyze FG-VI in the setting where p(z) is multivariate
Gaussian with mean µ ∈ Rn and covariance Σ ∈ Rn×n. In
this setting FG-VI has a particularly simple solution. (An
earlier statement of this solution can be found in Turner and
Sahani [2011].)

Proposition 2.1. Let q(z) be multivariate Gaussian with
mean ν and diagonal covariance Ψ. Then the variational
parameters minimizing KL(q||p) are given by ν = µ and

Ψii =
1

Σ−1
ii

, (4)

where the denominator Σ−1
ii denotes a diagonal element of

the matrix inverse Σ−1.
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Figure 1: FG-VI’s approximation of a multivariate Gaussian whose correlation matrix has constant off-diagonal terms.
FG-VI’s variance shrinkage grows with both increasing dimensionality (n) and correlation (ε). For n = 64, the distributions
are projected onto their first two coordinates. Despite what the picture suggests, the entropy gap between the approximation
and the target is actually quite small (Section 3.2). In this sense, the lower-dimensional projection is misleading.

Proof. The variational parameters ν and Ψ are estimated
by minimizing the KL-divergence

KL(q||p) = Eq[log q(z)]− Eq[log p(z)], (5)

where each expectation is taken with respect to the mea-
sure q. Note that only the second term in eq. (5) depends on
the variational mean ν, and it is given by

−Eq[log p(z)] =
1
2 (ν−µ)⊤Σ−1(ν− µ) + . . . (6)

where the ellipses indicate terms that do not depend on ν. By
minimizing this expression, it follows at once that ν = µ.
With this substitution, eq. (5) simplifies to

KL(q||p) = 1
2

[
trace

(
ΨΣ−1

)
− log

∣∣ΨΣ−1
∣∣− n

]
, (7)

and the result in eq. (4) follows by minimizing the above
expression with respect to the diagonal elements of Ψ.

In sections 2, 3, and 4 of the paper, we assume that q is
the factorized Gaussian distribution whose variances are
given by eq. (4). We emphasize in general that Ψii ̸= Σii.
However, it is true that Ψ = Σ when Σ is diagonal.

Many of our results will not be expressed directly in terms
of Σ and Ψ, but in terms of two related (but dimensionless)
matrices. The first is the correlation matrix C with elements

Cij =
Σij√
ΣiiΣjj

. (8)

Note that Cii = 1, a simple fact that we will often exploit,
and also that C reduces to the identity matrix when Σ is
diagonal. At the other extreme, we may consider the case
where all the off-diagonal elements of C are equal to some
constant ε> 0. This is explored visually in Figure. (1). In
appendix A we show that Ψii → 0 as ε → 1 for fixed n,
and that Ψii → (1−ε)Σii as n → ∞ for fixed ε. Note that
FG-VI underestimates the variance in both limits.

In addition to the correlation matrix, we also define the
diagonal shrinkage matrix S with dimensionless entries

Sii =
Σii

Ψii
= Σii Σ

−1
ii . (9)

We will use the matrices C and S to analyze how FG-VI
underestimates the uncertainty of p. The uncertainty in axis-
aligned directions is measured by the variances Σii, but
a multivariate measure of uncertainty is provided by the
entropy

H(p) = −Ep log p(z). (10)

To what extent does FG-VI underestimate this entropy? As
shown next, the answer is very naturally expressed in terms
of the correlation matrix C and the shrinkage matrix S.

Proposition 2.2. Let p and q be defined as above. Then
their difference in entropy is given by

H(p)−H(q) = 1
2 log |S| −

1
2 log |C|−1. (11)

Proof. A standard calculation for multivariate Gaus-
sian distributions [Cover and Thomas, 2006] gives
H(p) = 1

2 log |Σ|(2πe)
n, and an analogous result holds

for H(q). Let ∆H = H(p)−H(q). Then we see that

∆H = 1
2 log |Σ| − 1

2 | logΨ| = 1
2 log

∣∣∣Ψ− 1
2ΣΨ− 1

2

∣∣∣ .
(12)

Now from the definitions in eqs. (8–9), it can be verified by
direct substitution that Ψ− 1

2ΣΨ− 1
2 = S

1
2CS

1
2 . It follows

from the basic properties of determinants that

∆H = 1
2 log

∣∣S 1
2CS

1
2

∣∣ = 1
2 log |S| −

1
2 log |C|−1.

3 SHRINKAGE-DELINKAGE TRADE-OFF

In this section we prove that FG-VI systematically underes-
timates the variance and entropy of a multivariate Gaussian
distribution. We will see, however, that a large shrinkage in
all componentwise variances does not imply a correspond-
ingly large shrinkage in the entropy.



3.1 FUNDAMENTAL INEQUALITIES

Theorem 3.1 (Variance shrinkage). The solution for FG-VI
in eq. (4) underestimates the variance; that is,

Ψii ≤ Σii, (13)

and the inequality is strict for some component of the vari-
ance (i.e., Ψii < Σii) if Σ is not purely diagonal.

Proof. Let C denote the correlation matrix in eq. (8). It can
be verified by direct calculation that

C−1
ij = Σ−1

ij

√
ΣiiΣjj . (14)

As further notation, let λ1, . . . , λn denote the eigenvalues
of C, and let ei denote the unit vector along the ith axis.
Then from the solution in eq. (4), it follows that

Σii

Ψii
= C−1

ii , (15)

= C−1
ii + Cii − 1 (16)

= e⊤i (C
−1+C ) ei − 1, (17)

≥ min
∥e∥=1

[e⊤(C−1+C ) e− 1], (18)

= min
i

(λ−1
i + λi − 1), (19)

≥ min
λ>0

(λ−1 + λ− 1) = 1, (20)

where in the last step we have used the fact that the correla-
tion matrix C has strictly positive eigenvalues. This proves
eq. (13). Now suppose that Σ is not purely diagonal. Then C
is also not diagonal; hence there must be some unit vector ei
that is not an eigenvector of C. In this case the inequality in
eq. (18) is strict, showing that Σii > Ψii.

Next we examine the difference in entropy given by eq. (11).
First we show that this difference is determined by the trade-
off of competing entropic forces.

Theorem 3.2 (The Shrinkage-Delinkage Tradeoff). Con-
sider the entropy difference in eq. (11) from FG-VI:

H(p)−H(q) = 1
2 log |S| −

1
2 log |C|−1.

Both terms in this difference are nonnegative: that is,

log |S| ≥ 0, (21)

log
1

|C|
≥ 0. (22)

Before proving the theorem we consider the meaning of
these inequalities. Conceptually, the first inequality shows
that any shrinkage of variances (from Theorem 3.1) reduces
the entropy of q and thus contributes to a larger difference in

eq. (11). The second inequality shows that the factorization
of q acts as a counterbalance to this effect: the entropy
of p is necessarily reduced by the presence of correlations,
but such correlations cannot be modeled by q. Thus the
factorization of q must (to some extent) oppose the entropy
difference in eq. (11), and the net difference is determined
by the trade-off of these forces. Visually the factorization
of q is represented by the delinkage of nodes in the full-
covariance graphical model for p. This is the essence of the
shrinkage-delinkage tradeoff for FG-VI.

Proof. The bound on log |S| in eq. (21) follows at once
from Theorem 3.1:

log |S| =
n∑

i=1

log
Σii

Ψii
≥ 0. (23)

As before, let λ1, . . . , λn denote the eigenvalues of C so that
log |C| =

∑
i log λi. From Jensen’s inequality, we have:

n∑
i=1

log λi ≤ n log

[
1
n

n∑
i=1

λi

]
= n log 1

n trace(C) = 0,

(24)
which proves eq. (22).

To prove that q underestimates the entropy of p, we need the
following result which is important in its own right.

Proposition 3.3. The entropy gap between p and q is equal
to the KL divergence minimized by FG-VI:

H(p)−H(q) = KL(q||p). (25)

Proof. The identity follows by substituting the solution
from eq. (4) into the KL divergence in eq. (5). This yields
the entropy gap, namely KL(q, p) = 1

2 log |Σ| − 1
2 log |Ψ|,

computed in eq. (12).

It follows that FG-VI is minimizing the entropy gap be-
tween p and q when it targets a multivariate Gaussian. As
suggested by the trade-off in Theorem 3.2, however, the
entropy gap can be minimized despite a large shrinkage in
componentwise variances.

The nonnegativity of the KL divergence in eq. (25) also
leads to the other fundamental inequality of this section.

Theorem 3.4 (Entropy gap). The solution for FG-VI in
eq. (4) underestimates the entropy; that is,

H(q) ≤ H(p), (26)

and this inequality is strict if Σ is not purely diagonal.

An immediate implication of this theorem is that the shrink-
age term in eq. (21) dominates the shrinkage-delinkage
trade-off in Theorem 3.2.

Remark 3.5. We see also from Theorem 3.4 that |Ψ| ≤ |Σ|.
This inequality can be viewed as a multivariate analog of
the result, in Theorem 3.1, that Ψii ≤ Σii.



3.2 DEMONSTRATION OF THE TRADE-OFF

Figure 2 illustrates the shrinkage-delinkage trade-off in
FG-VI, and how it is resolved, for multivariate Gaussian
distributions with two types of covariance matrices:

• Squared exponential kernel: This type of covari-
ance matrix arises in models involving Gaussian pro-
cesses [e.g. Rasmussen and Williams, 2006, Chap-
ter 2]. For this example we sampled a random input
x ∼ uniform(0, 200)n and set the covariance matrix
via the kernel function Σij = exp(−(xi−xj)

2/ρ2).
We use the hyperparameter ρ>0 to vary the degree of
correlation.

• Constant off-diagonal: The posterior distributions of
models with exchangeable data [Gelman et al., 2013,
chapter 5] can generate such covariance matrices, or
at least covariance matrices whose subblocks have the
described structure. For this example we set Σii = 1
along the diagonal and Σij = ε for all i ̸= j, and we
used the hyperparameter ε > 0 to vary the degree of
correlation.

H(p) − H(q)

Squared exponential kernel

0.00 0.25 0.50 0.75
0

5

10

ρ

Shrinkage: log|S| 2
Delinkage: log|C|−1 2

Constant off−diagonal

0.00 0.25 0.50 0.75
0

5

10

15

ε

Figure 2: Shrinkage-delinkage trade-off in FG-VI when the
Gaussian target over Rn has a squared-exponential-kernel
covariance matrix (top) or a covariance matrix with con-
stant off-diagonal terms (bottom). Here n=10.

Figure 2 plots the opposing contributions from the shrinkage
and delinkage terms in eq. (11) using solid and dashed lines.
In each panel, the difference between these curves reveals
the degree to which FG-VI underestimates the entropy of
the multivariate Gaussian distribution it is being used to
approximate. It can also be seen that FG-VI manages the

shrinkage-delinkage trade-off differently for different types
of covariance matrices. While in the squared exponential
kernel case the entropy gap is large, it is smaller when the
covariance matrix has constant off-diagonal terms: there,
the shrinkage and delinkage terms in eq. (11) are almost
perfectly balanced.

This last finding may come as a surprise in light of earlier
results, shown in Figure 1, where the variational approxi-
mation is clearly too “compact.” But the two-dimensional
projections in Figure 1 are misleading. In higher dimensions,
the approximating sphere of FG-VI gains more in volume
than its target ellipse; this discrepancy arises because each
added component is independent for q but strongly corre-
lated for p. The overall effect is that the opposing terms in
eq. (11) are nearly balanced. Hence even when FG-VI hardly
underestimates the (per-component) entropy, it may still
grossly underestimate the componentwise variance. This
contrast becomes more acute in the asymptotic limit of n.

Theorem 3.6. Suppose Σ has constant off-diagonal terms,
ε > 0. Then the per-component entropy gap vanishes in
the limit n → ∞, whereas every componentwise variance
shrinks by a constant factor:

lim
n→∞

1
n (H(p)−H(q)) = 0. (27)

lim
n→∞

(Ψii/Σii) = 1− ε. (28)

The proof is given in Appendix A. The theorem also shows
that the average of the diagonal elements in the shrinkage
matrix also converges to a constant factor:

lim
n→∞

1
n trace(S) = (1− ε)−1. (29)

This example highlights the roots of FG-VI in mean-field
approximations from statistical physics [Parisi, 1988]. As
is well known, the mean-field approximation for the free
energy becomes exact in the limit n→∞ for certain spin
systems with infinite-range interactions. The infinite-range
interactions in these systems are analogous, for the Gaus-
sian models we study here, to the assumption of constant
off-diagonal terms in the covariance matrix [e.g Mukherjee
et al., 2018, Margossian and Mukherjee, 2021]. An impor-
tant takeaway is that factorized approximations can work
well to estimate the entropy—to wit, minimizing the KL-
divergence with FG-VI on a Gaussian target is equivalent
to minimizing the entropy gap—but still fail to accurately
compute the componentwise variances. This can become
an important limitation as we apply VI beyond problems in
statistical physics and more broadly to Bayesian modeling,
where estimation of the variances is critical.

FG-VI’s limited ability to estimate the marginal variance is
a product of both the choice of the approximating family
(factorized Gaussians) and the choice the objective function,
KL(q||p). In Appendix A we show that when minimizing



the reverse KL-divergence, KL(p||q), for a target p, we
obtain, in the above example, the opposite result: exact
estimations of the marginal variances but an arbitrarily large
entropy gap.

4 BOUNDS ON log|S| AND log|C|

In the last section, we saw that the shrinkage-delinkage
trade-off played out differently for different types of co-
variance matrices; we also proved certain asymptotic results
that depended on the detailed structure of the covariance ma-
trix (e.g., constant off-diagonal). In this section, we derive
more general bounds on the terms in this trade-off that de-
pend only the problem dimensionality, n, and the condition
number, R, of the correlation matrix, C.

4.1 OPTIMIZATIONS FOR UPPER BOUNDS

Consider the space of all correlation matrices with condition
number R. We denote this space by the set

CR = {C ∈ Sn
+ |Cii=1 ∀i, λmax(C)=Rλmin(C)}.

(30)
The set contains the intersection of those n×n matrices that
are positive semidefinite (i.e., lying in the cone Sn

+), whose
diagonal elements are equal to unity, and whose largest
eigenvalue is R times larger than its smallest one.

If the condition number of the correlation matrix C is known
to be R, then we can (in principle) compute the following
upper bounds on the terms in eq. (11):

log |S| ≤ max
C∈CR

[
n∑

i=1

logC−1
ii

]
, (31)

log |C| ≤ max
C∈CR

[
n∑

i=1

log λi(C)

]
. (32)

In eq. (31), we have used the fact from eq. (15) that
Sii=C−1

ii , while in eq. (32), we have written the deter-
minant of a matrix as the product of its eigenvalues.

In practice, however, it is difficult to perform the optimiza-
tions over the set CR in eq. (31-32). Instead we consider a
more tractable relaxation; the essential idea is to optimize
over a larger set of matrices, one that is characterized only
in terms of constraints on its eigenvalues. We denote this
constrained set of eigenvalues by

ΛR =

{
λ∈Rn

+

∣∣∣∣λ1≥ . . . ≥λn = Rλ1,

n∑
i=1

λi=n

}
. (33)

Note that the set CR of correlation matrices is contained
strictly within the set of matrices with eigenvalues in ΛR.
In particular, a matrix in CR is constrained to have ones
along its diagonal, while a matrix with eigenvalues in ΛR is

only constrained to have a trace equal to n. With the above
relaxation, we obtain the following upper bounds on the
terms log |S| and log |C| in eq. (11).

Proposition 4.1. Suppose that the correlation matrix C has
condition number R. Then

log |S| ≤ n log
1

n

[
max
λ∈ΛR

n∑
i=1

λ−1
i

]
(34)

log |C| ≤ max
λ∈ΛR

[
n∑

i=1

log λi

]
. (35)

Proof. The second bound is immediate from eq. (32) and
the relaxation in eq. (33). For the first bound, recall that
Sii = C−1

ii , and note from Jensen’s equality that

1
n

∑
i logC

−1
ii ≤ log 1

n

∑
i C

−1
ii = log

[
1
n

∑
i λ

−1
i (C)

]
.

The bound in eq. (34) follows from the above in concert
with the relaxion in eq. (33).

4.2 SOLUTIONS FROM SYMMETRY

The optimizations over ΛR in eqs. (34–35) have a great deal
of structure that we can exploit to compute their solutions.
We analyze each of these optimizations in turn.

Lemma 4.2. Let λ ∈ ΛR be the solution that maximizes
the right side of eq. (34). Then at most one λi is not equal
to either λ1 or λn.

Proof. We prove the lemma by contradiction. Suppose there
exists a solution with intermediate elements λi and λj that
satisfy λ1 > λi > λj > λn. Consider the effect on this
solution of a perturbation that adds some small amount
δ > 0 to λi and subtracts the same amount from λj . Note
that for sufficiently small δ, this perturbation will not leave
the set ΛR; however, it will expand the separation of λi

from λj . As a result the objective
∑

i λ
−1
i has a gain

f(δ) =
1

λi + δ
− 1

λi
+

1

λj − δ
− 1

λj
. (36)

Next we evaluate the derivative f ′(δ) at δ = 0; doing so we
find f ′(0) = λ−2

j −λ−2
i > 0. But this yields a contradiction,

because any solution must be maximal, and hence stationary
(i.e., f ′(0)=0), with respect to small perturbations.

The above lemma greatly restricts the form of the solutions
that we must consider for the optimization in eq. (34). The
next lemma does the same for the optimization in eq. (35).

Lemma 4.3. Let λ ∈ ΛR be the solution that maximizes the
right side of eq. (35). Then λi=λj whenever 1<i<j<n.
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Figure 3: Bound on the entropy gap. The blue and red curves are replotted from Figure 2. The dotted gray line is an upper
bound on the shrinkage term, log |S|/2, and the solid gray line is a lower bound on the delinkage term, log |C|−1/2. Hence
the difference between the gray lines provides an upper bound on the entropy gap, H(p)−H(q) = log|S|/2− log |C|−1/2
(Theorem 3.2).

Proof. We prove this lemma in similar fashion. Suppose
there exists a solution with intermediate elements λi and λj

that satisfy λ1≥λi>λj ≥λn. Consider the effect on this
solution of a perturbation that adds some small amount δ>0
to λj and subtracts the same amount from λi. Again, for suf-
ficiently small δ, this perturbation will not leave the set ΛR;
however, it will diminish the separation of λi from λj . As a
result the objective

∑
i log λi has a gain

g(δ) = log(λi−δ)+log(λj+δ)−log(λi)−log(λj). (37)

Evaluating the derivative, we find g′(0) = λ−1
j −λ−

i > 0.
As before this yields a contradiction, because any solution
must be maximal, and hence stationary (i.e., g′(0)=0), with
respect to small perturbations.

Now let us consider, at a high level, how these lemmas
simplify the optimizations in eqs. (34–35). The lemmas
show that for each optimization, there exist three elements—
the maximum element λ1, the minimum element λn, and
some intermediate element λk for 1<k<n—from which
the remaining n−3 elements of the solution can be deduced
by symmetry. Note also that any solution in ΛR must satisfy
the two additional constraints that

∑
i λi=n and λ1=Rλn.

In Appendix B, we show that by exploiting these symmetries
and constraints in concert, we can reduce the optimizations
in eqs. (34–35) to a sequence of one-dimensional problems
for which we have closed-form solutions.

Figure 3 plots the bounds on the shrinkage and delinkage
terms as a function of the condition number, R, for prob-
lems with dimensionalities n=10 (left) and n=100 (right).
These bounds provide envelopes between which the actual
values of the competing terms in eq. (11) must lie. To illus-
trate this, the figure also shows the corresponding values of
these terms for the squared-exponential-kernel and constant-
off-diagonal covariance matrices introduced in the previous
section. (Notice that in this figure, unlike Figure 2, these

values are plotted against the condition number of the corre-
lation matrix rather than the hyperparameters ρ or ε.)

Using similar methods, it also possible to upper-bound the
entropy gap and the trace of the shrinkage matrix (which
reflects the average shrinkage in componentwise variance).
The derivations of these additional bounds are relegated to
Appendices C and D.

5 NON-GAUSSIAN MODELS

Do our results extend in any way when FG-VI is applied to
non-Gaussian models? In this section we suppose that p is a
non-Gaussian target with covariance Σ. Our previous anal-
ysis of FG-VI targets was based on the variance estimator,

(ΨG)ii := 1/(Σ−1)ii,

and the corresponding shrinkage matrix with diagonal ele-
ments (SG)ii = Σii/(ΨG)ii. But neither ΨG nor SG will
be returned by FG-VI when it is applied to a non-Gaussian
target with covariance Σ.

To explore these issues, we applied ADVI [Kucukelbir et al.,
2017] with a factorized Gaussian approximation to study
the posterior distributions in several Bayesian models as
well as one “adversarial” target (Table 1). These test tar-
gets represent a diversity of applications. The GLM and
8-schools models are taken from the model data base Pos-
teriorDB [Magnusson et al., 2022], while the disease map
Gaussian process model and sparse kernel interaction model
[Agrawal et al., 2019] are studied by [Margossian et al.,
2020]. We also included a mixture of well-separated spheri-
cal Gaussians; for this target, the approximation by FG-VI
collapses to one of the modes, so that FG-VI can underes-
timate the componentwise variances by an arbitrarily large
amount (e.g., if the modes are widely separated). Note that
in all cases, before applying ADVI, we transformed any



constrained (e.g., nonnegative) variables of the target distri-
bution to be unconstrained variables over R.

We estimated the posterior covariance using long runs of
Markov chain Monte Carlo, specifically 16,000 draws using
the software Stan [Carpenter et al., 2017], except in the mix-
ture example, where the covariance was calculated analyti-
cally. We then estimated (i) the shrinkage matrix, S, when
targeting the posterior and (ii) the shrinkage matrix, SG,
when targeting a Gaussian with the same covariance as
the posterior. For non-Gaussian posteriors, we observe that
FG-VI does not always underestimate the componentwise
variance; see Figure 4. On the other hand, for all models
in Table 1, we see that 1

n trace(S) > 1, meaning that the
componentwise variances are underestimated on average
(Figure 5). In addition, for the Bayesian models, we observe
that trace(S)≈ trace(SG). The mixture target, however, pro-
vides a counter-example where trace(S) ≫ trace(SG).
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Figure 4: Shrinkage matrix for FG-VI when targeting the
posterior distribution of 8schools_nc versus targeting
a Gaussian with the same covariance matrix. For the non-
Gaussian target, we may have Sii<1.
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Figure 5: Trace of shrinkage matrix for various models when
targeting the true posterior versus targeting a Gaussian with
the same covariance matrix.

In addition to the shrinkage in componentwise variances, we
would have also liked to evaluate the entropy gap in these
models. It is easy to obtain an upper bound on this gap by ob-
serving that the Gaussian maximizes the entropy among all
continuous distributions with a given covariance Σ [Cover
and Thomas, 2006]. Thus we have

H(p)−H(q) ≤ 1
2 (log |Σ| − log |Ψ|). (38)

We observed this upper bound to be positive for all the
models in Table 1. But we also know that FG-VI can overes-

timate the entropy in non-Gaussian models: Turner and Sa-
hani [2011] demonstrated this for a mixture of largely over-
lapping 1-dimensional Gaussians. It is an open question to
understand the general conditions under which FG-VI under-
estimates the entropy. We next note that our upper-bound on
the entropy gap does not immediately apply to (38), because
it is unclear how log |Ψ| and log |ΨG| compare. To evaluate
the entropy gap empirically in a non-Gaussian model—as
would be required to investigate this question further—it is
necessary to estimate the normalizing constant of the pos-
terior. Candidate methods for this, such as bridge sampling
[e.g Gronau et al., 2020, Meng and Schilling, 2002], rely on
a proposal distribution which (roughly) approximates the
target. Typically, a Gaussian-like approximation is used for
these proposals, but this is precisely the assumption we want
to relax. In other words, we do not wish to compare a theory
for Gaussian targets to an empirical benchmark which relies
on a Gaussian approximation. We leave this issue to future
work.

6 DISCUSSION

In this paper we have shown that FG-VI underestimates the
componentwise variance and joint entropy of a multivari-
ate Gaussian distribution. Furthermore we expressed the
entropy gap as a trade-off between two competing terms and
observed that it was equal to the KL divergence minimized
by FG-VI. Our analysis helps to understand why FG-VI can
greatly underestimate the componentwise variances even
when it effectively minimizes the entropy gap and KL di-
vergence. Our results also suggest that better estimates of
variance may be obtained by changing the objective function
or using a different family of approximations.

This research has practical implications on when to use FG-
VI. When the target distribution exhibits strong correlations,
FG-VI can return poor estimates of the marginal variance;
this is a limitation in Bayesian modeling where we often
care about the posterior variance of interpretable variables.
On the other hand, FG-VI can still produce good estimates
of the entropy, notably in the limit where n is large. This is
one reason that factorized approximations have been widely
used for many problems in statistical physics.

An open question is whether a shrinkage-delinkage tradeoff
operates when FG-VI is applied to non-Gaussian targets. For
such targets, we have produced a counter-example showing
that FG-VI can overestimate a particular componentwise
variance. On the other hand, we have observed that these
variances are underestimated on average, and moreover that
the shrinkage term, log |S|, remains positive. It requires fur-
ther investigation to make more general statements about the
entropy gap. Finally, it would also be interesting to extend
our analysis beyond FG-VI—for instance to approximations
based on a diagonal plus low-rank covariance matrix, rather
than a strictly diagonal one [e.g Zhang et al., 2022].



Call n Description 1
n log |Σ/Ψ|

glm_binomial 3 General linear model with a binomial likelihood. 0.291
8schools_nc 10 Hierarchical model with a non-centered parameterization. 0.011
8schools_pool 9 Same model but with a small, fixed population variance value to enforce 0.339

strong partial pooling and create a high posterior correlation.
disease_map 102 Gaussian process model with Poisson likelihood. Applied to disease 0.066

map of Finland using 100 randomly sampled counties (out of 911).
SKIM 305 Sparse kernel interaction model, applied to a Prostate cancer microarray 0.033

data set on a subset of 200 SNPS.
Mixture 2 Mixture of well-separated Gaussians with spherical covariance matrices. 3.051

Table 1: Non-Gaussian targets for numerical experiments.
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