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Abstract

Irregularities in cellular representation play a crucial role in assessing drug-induced
tissue alterations in toxicological histopathology studies. However, the process of annotat-
ing rare abnormal cellular variations for training supervised deep learning models presents
significant challenges and lacks scalability. While anomaly detection is well-suited for this
purpose, it has not yet been explored for cellular-level analysis. In this study, we evaluate
cellular anomaly detection using datasets derived from the kidneys and livers of Wistar
rats. Our findings indicate that a KNN-distance-based anomaly detection method signifi-
cantly benefits from employing a feature extractor that has been pre-trained on extensive
unsupervised histopathology datasets. When utilizing the best-performing feature extrac-
tor, the KNN-distance method surpasses state-of-the-art anomaly detection models by over
4.84% (AUC), including the denoising diffusion probabilistic model, in detecting cellular
anomalies. Additionally, we assess the effectiveness of this method in identifying variations
in anomalous cell counts between control and treated animal tissues within a toxicological
study, revealing a statistically significant difference between the two dosage groups.

Keywords: Anomaly Detection, Out-of-distribution Detection, Toxicology, Histopathol-
ogy, Foundation Models, Cellular Analysis, Drug Safety Assessment.

1. Introduction

Toxicological histopathology is essential for non-clinical drug safety evaluations, as it as-
sesses the extent of toxicity induced by a test drug across tissues. This field involves analyz-
ing whole slide images (WSI) obtained from laboratory animals that have been exposed to
the test drug, with the goal of identifying microscopic tissue changes indicative of toxicity.
By comparing the tissue variations in drug-treated animals to those in a control group,
researchers can pinpoint abnormal characteristics caused by the drug (Greaves, 2011).

Detecting deviations from normal cell representation is a crucial aspect of a pathologist’s
routine. For instance, conditions such as single cell necrosis in liver tissue and the presence
of neutrophils in kidney tissue are key indicators. These abnormalities occur in a very
small fraction of the tissue and require analysis at high magnifications. Consequently, the

∗ Contributed equally
† Contributed equally

© 2024 CC-BY 4.0, S. Juturu, G. Raipuria, R. Amaravadi, A. Srivastava, M. Roy & N. Singhal.

https://creativecommons.org/licenses/by/4.0/


Juturu Raipuria Amaravadi Srivastava Roy Singhal

manual examination of tissue sections for cellular irregularities is labor-intensive and prone
to interobserver variability. Deep learning approaches for cell detection and classification
have been widely investigated (Graham et al., 2019; Baumann et al., 2024; Hörst et al.,
2024) to aid pathologists in identifying cellular abnormalities. However, generating a large-
scale labeled dataset by annotating various cellular anomalies among millions of normal
cells is a time-consuming task, even for experienced pathologists. Additionally, while only
a few cellular abnormalities are frequently observed, many others are rare.

Anomaly detection (AD) is a vital component of medical image analysis, aimed at iden-
tifying deviations from established normal patterns. While there is an abundance of data
exhibiting normal characteristics available for training AD models, abnormal data, which
encompasses a wide range of variations from the normal, is often scarce or even unknown.
AD alleviates the reliance on annotated data and enables the detection of previously un-
seen variations. This approach is particularly well-suited for preclinical toxicological studies,
where unfamiliar representations of cellular variation may arise, making it impractical to
train a generalized supervised model.

Numerous studies have explored anomaly detection (AD) in medical image analysis (Bao
et al., 2024; Cai et al., 2024). This process involves training a computational model on a
normal in-distribution (ID) dataset to identify unseen anomalies in a test dataset. AD meth-
ods can be broadly categorized into two types: reconstruction-based and projection-based.
Reconstruction-based methods utilize Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2020) or Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) that
learn to reconstruct normal images. The reconstruction error serves as a scoring function
for detecting anomalous samples. GANs employ a generative adversarial approach to learn
representations of normal images. For instance, F-AnoGAN (Schlegl et al., 2019) uses a
WGAN architecture combined with an additional encoder to map images into latent space
for anomaly detection. Another study (Zehnder et al., 2022) incorporates multi-scale input
images and perceptual loss to enhance contextual understanding. DDPMs apply partial
diffusion to corrupt normal tissue images, followed by a denoising process to reconstruct
the original image. AnoDDPM (Wyatt et al., 2022) suggests using Simplex noise for ef-
fective image corruption, while (Bercea et al., 2023) enhances the robustness of diffusion
models through the integration of automatic masking, stitching, and resampling techniques.
Additionally, (Cai et al., 2024; Bercea et al., 2023) found that AutoDDPM outperformed
all other reconstruction-based methods.

Projection-based methods utilize the feature embedding space to differentiate between
normal and anomalous data. The feature extractor for these methods is trained on a
supervised dataset comprising normal in-distribution classes (Wang et al., 2022a; Salehi
et al., 2021), often through a proxy task such as tissue type classification (Zingman et al.,
2024; Dippel et al., 2024), or it may be fine-tuned on the in-distribution dataset (Reiss et al.,
2021). After training, classifier probabilities (Zingman et al., 2024; Dippel et al., 2024), K-
Nearest Neighbor (KNN) distance (Reiss et al., 2021; Sun et al., 2022), or a combination
of information from logits and feature embeddings (Wang et al., 2022a) are used as the
scoring function. Studies (Cai et al., 2024; Linmans et al., 2024) have shown that DDPMs
outperform all projection-based models in anomaly detection for histopathology.

Existing approaches often validate their performance using anomalous samples that
exhibit significant semantic differences from normal in-distribution data. For instance,
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Figure 1: Examples of cells found in the liver and kidney tissues of Wistar rats. Anomalous
cells include single cell necrosis, mitosis, and microgranuloma in liver; neutrophils and
medullary nephrocalcinosis inf kidney

examples include tissue necrosis in liver tissue (Zingman et al., 2024) or tumors among
benign tissues (Cai et al., 2024; Bao et al., 2024; Linmans et al., 2024; Zingman et al., 2024).
Such far-out-of-distribution (Far-OOD) samples (Winkens et al., 2020; Linmans et al., 2023)
are generally easier to differentiate from normal data. In contrast, as illustrated in Figure
1, the anomalous cells we observe are classified as near-out-of-distribution (Near-OOD).
These cells share semantic similarities with normal cells and only exhibit subtle differences.
Our experiments indicate that this similarity results in limited performance for models
benchmarked for Far-OOD detection. Additionally, many state-of-the-art projection-based
methods rely on classifiers trained on labeled datasets (Wang et al., 2022a; Salehi et al.,
2021; Dippel et al., 2024), which poses a challenge when such datasets are unavailable for
pre-training. Finally, we aim to leverage advancements in foundation models that have been
trained on large-scale unsupervised data, which have demonstrated the ability to outperform
models trained with supervised data (Caron et al., 2021; Kang et al., 2023; Wölflein et al.,
2023). This potential has largely been overlooked in previous research on anomaly detection.

We introduce a cutting-edge AD method that significantly surpasses existing techniques
and establishes a robust baseline for future advancements. Our proposed method calculates
the anomaly score based on the distance of a test sample to its K-Nearest Neighbors within
the in-distribution feature embedding space, which consists of normal samples. In contrast
to previous studies that assessed KNN-distance-based anomaly detection (Reiss et al., 2021;
Sun et al., 2022; Linmans et al., 2024), our approach leverages foundation models trained on
extensive histopathology datasets to effectively differentiate between ID and OOD samples
in the feature embedding space, leading to a notable enhancement in model performance.
The key contributions of this work are summarized below:

1. To the best of our knowledge, we are the first to assess a deep learning model for cellu-
lar analysis in toxicological histopathology data using unsupervised anomaly detection
techniques.

2. We evaluate state-of-the-art foundation models trained on large-scale histopathology
datasets for KNN-distance-based unsupervised cellular anomaly detection.

3. We demonstrate that our KNN-distance-based anomaly detection method, when paired
with an effective feature extractor, outperforms state-of-the-art anomaly detection
models, including diffusion models, in the context of cellular anomaly detection.
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Figure 2: KNN-distance based anomaly detection approach for cellular anomaly detection.
A feature extractor trained on large-scale unsupervised histopathology data is employed to
obtain feature embeddings from in-distribution data derived from control whole slide images
(WSI). The anomaly score for a test patch is determined by calculating the distance to its
K-nearest neighbors within the in-distribution feature space.

4. Finally, in our evaluation of toxicological studies, we demonstrate that the unsuper-
vised method is capable of identifying a higher proportion of cellular abnormalities in
drug treated tissues compared to control tissues.

In the following sections, we outline the KNN-distance-based anomaly detection method,
followed by a description of the experimental setup and the corresponding results to identify
the optimal foundation model for our approach. We will also compare its performance with
that of state-of-the-art generative models. Please note that throughout this paper, the terms
”anomaly detection” and ”out-of-distribution (OOD) detection” are used interchangeably.

2. Method

We illustrate our approach via Figure 2 and Algorithm 1, which can be classified as a
projection-based method. This method utilizes feature embeddings (Zind) extracted from
healthy (training) tissue samples (Din) using the feature extractor ft, thereby creating
a feature space (DR). The anomaly score for a test sample (xtest) is determined by its
proximity to the in-distribution data within this feature space. A cell that closely resembles
a healthy cell and is located in a high-density region of the in-distribution feature space will
receive a low anomaly score, while a cell that differs from the in-distribution and is found
in a low-density region will be assigned a high score. The distance to K-Nearest Neighbors
serves as the scoring function. Specifically, we calculate the average distances to K-Nearest
Neighbors between the embedding of each test sample and the in-distribution dataset.

We use feature extractor pre-trained on large-scale histopathology dataset using self-
supervised learning. These foundation models have shown to surpass performance of feature
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Algorithm 1 Anomaly Detection Algorithm

Input: Normal (training) dataset Din, pre-trained feature extractor ft, test sam-
ples xtest. For all x ∈ Din, obtain feature vector representations Zind.

Testing: Given a test sample xtest, obtain the feature vector Ztest and the k-
Nearest Neighbors from Din.

Output: Anomaly Score based on KNN-distance

extarctors trained on supervised dataset, when evaluating for KNN-distance based patch
classification, nuclei instance segmentation and image retrieval (Caron et al., 2021; Kang
et al., 2023), thus making them effective for our approach. In section 3.2, we compare
various state-of-the-art foundation models for cellular anomaly detection.

Our proposed method offer two major benefits over existing methods.

1. No training required. The method does not require training on normal in-distribution
data. Feature extraction is performed with frozen weights followed by a nearest neigh-
bor search to assign anomaly scores. This significantly reduces the resource require-
ment for model development. Also, additional in-distribution data can be added at
no cost, without model re-training.

2. The model performance can be enhanced by improvement in foundation
models The method exploits feature embedding to identify test samples in low-density
regions of the indistribution dataset, thus, the method’s performance can be enhanced
with better features that can differentiate normal and anomolous samples. This al-
lows us to benefit from foundation models that are trained on large-scale and diverse
unsupervised datasets.

3. Experiments

We aim to establish the best method for detecting cellular anomalies by comparing KNN-
distance based anomaly detection with state-of-the-art projection and reconstruction meth-
ods. In this section, we first describe the dataset used for evaluation, followed by a compar-
ision of various state-of-the-art foundation models for extracting features in KNN-distance
based method, and finally compare the KNN methods with state-of-the-art anomaly detec-
tion methods for unsupervised cellular anomaly detection.

3.1. Dataset

The dataset used to evaluate cellular anomaly includes a toxicological histopathology study,
consisting of WSI from control and high dosaged Wistar Rat, for Liver and Kidney. Specif-
ically, study consists of 14 tissue samples from Control group and 10 samples from drug
treated group, for both kidney and liver tissue.

For model evaluation, we created a training and testing cellular patch dataset. Specifi-
cally, training data is created by annotating cells in multiple field-of-views with all normal
cells, from control WSI. This allows us to create a large pool of Indistribution data which
would have near zero abnormal cells. Test set is created by annotating cells on field-of-views
from WSI of dosed animal group. Anomolous cell annotations include; Liver: Single Cell
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# Liver WSI # Kidney WSI Liver Kidney # WSI
Control 14 14 Train InDistribution 1.8M 2.2M 4
Treated 10 10 Test Normal 11496 10358

10
Test Anomolous 11941 10140

Table 1: The dataset used for performance evaluation. Left: The number of WSI in the
toxicological study for each organ. Right: Number of patches and WSI used to create
training and testing dataset.

Necrosis, MItosis, Extramedullary Hematopoiesis & Microgranuloma; Kidney : Nuetrophilis
& Medullary Nephro- calcinosis). Table 1 gives an overview of the dataset. For each anno-
tated cell, a crop of size 64x64px is extracted at 40x magnification, aligning the cell in the
center. The test set is balanced by randomly subsampling normal cells from the test FOVs.

3.2. Evaluating the best feature extractor

Since performance of KNN-distance based anomaly detection method significantly depends
on the feature extractor’s ability to segregate normal and anomalous samples in the feature
space, we first evaluate with different foundation models (Chen et al., 2022; Kang et al.,
2023; Wang et al., 2022b; Filiot et al., 2023; Chen et al., 2024; Zimmermann et al., 2024;
Nechaev et al., 2024; Lu et al., 2024), that were were trained using varying self-supervised
learning techniques and diverse datasets 1. Table 2 provides results.

As expected, when comparing performance using ViT(Dosovitskiy, 2020) feature ex-
tractor trained on ImageNet and histopathology datasets, a significant gain in performance
is observed when using the domain-specific dataset for pre-training. Next, we compare
ResNet(He et al., 2016) and ViT(Dosovitskiy, 2020) architecture, using the weights opti-
mized on the same pre-training histopathology dataset (Kang et al., 2023). Vision Trans-
forms outperforms ResNet, demonstrating that transformers learn better features from
large-scale pre-training dataset when compared to the ResNet, as shown in previous works
(Caron et al., 2021; Kang et al., 2023).

We observe that the KNN-distance based anomaly detection model’s performance im-
proves when using foundation models trained on data that includes samples at 40x magni-
fication, which corresponds to the magnification at which cellular dataset is extracted for
cellular anomaly detection. The model performance shows correlation with an increase in
model size and the amount of the pre-training data used, large model size and larger pre-
training dataset improve the performance. Virchow2 (Zimmermann et al., 2024) is found
to be the best performing feature extractor for cellular anomaly detection, that uses the
largest amount of data, extracting tiles at multiple magnifications.

3.3. Comparing with state-of-the-art methods

Next, we compare the KNN-distance based method with the state-of-the-art projection
based and reconstruction based models. Based on previous work (Cai et al., 2024; Bao
et al., 2024), we identify three best performing models f-AnoGAN(Schlegl et al., 2019),

1. Note, none of the above foundation models have been trained on cellular data, rather on patches sized
224x224 extracted at different magnifications.
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Method Model #WSI Magnification Liver Kidney Mean
ImageNet(Caron et al., 2021) ViT-S NA NA 82.90 51.58 67.24

HIPT(Chen et al., 2022) ViT-S 11K 20x 91.95 67.66 79.80
Lunit(Kang et al., 2023) ResNet-50 21K 20x,40x 85.54 62.59 74.06
Lunit(Kang et al., 2023) ViT-S 21K 20x,40x 95.50 86.71 91.10

CPath(Wang et al., 2022b) ViT-S 32K 20x 89.18 84.54 86.86
Phikon(Filiot et al., 2023) ViT-B 6.1K 20x 92.90 82.17 87.53
CONCH(Lu et al., 2024) ViT-B 1.1M* 20x 94.25 91.71 92.98
UNI(Chen et al., 2024) ViT-L 100K 20x 93.79 88.22 91.00

Virchow2(Zimmermann et al., 2024) ViT-H 3.1M 5x,10x,20x,40x 96.97 91.83 94.40

Table 2: Performance comparison of different feature extractor pre-trained on large-scale
unsupervised histopathology dataset for cellular anomaly detection using KNN-distance
based method. The table reports, model architecture, #WSI used, magnification of patches
used for training and AUC on anomaly scores of liver and kidney cellular dataset. Top two
scores are highlighted in Bold and Underlined. *CONCH uses 1.1M image text pairs.

Liver Kidney Mean

f-AnoGAN(Schlegl et al., 2019) 93.23 85.90 89.56
AutoDDPM(Bercea et al., 2023) 82.03 75.03 78.53
PANDAS(Reiss et al., 2021) 91.74 72.30 82.02
KNN with Virchow2 (ours) 96.97 91.83 94.4

Table 3: Performance comparison of anomaly detection methods on liver and kidney cellular
dataset. The table report AUC on anomaly scores.

AutoDDPM(Bercea et al., 2023) and PANDAS(Reiss et al., 2021). Implementation details
are provided in the Appendix section C. Table 3 provides the AUC scores for anomaly
detection on liver and kidney tissue cells. Our approach, utilizing a self-supervised pre-
trained feature extractor and a KNN-distance based scoring function, outperforms other
methods for both tissue types. Interestingly, the KNN method using the top four best-
performing feature extractors achieves a higher AUC than all three comparison methods.
Pre-training on a large-scale dataset enabled our method to achieve superior performance

PANDAS adapts ResNet(He et al., 2016) weights, trained on supervised ImageNet data,
to the anomaly detection task using compactness and elastic weight consolidation loss. The
AUC score for this method is higher than some of the feature extractors used with the KNN-
distance based method, as seen in table 2. Specifically, scores obtained using ImageNet
pre-trained weights with SSL significantly underperform compared to PANDAS. However,
fine-tuning on an in-distribution dataset falls short when compared to feature extractors
trained on larger and diverse histopathology datasets.

Figure 5, in appendix, provides reconstruction of normal and anomalous patches for
f-AnoGAN AutoDDPM. We observe that AutoDDPM is able to reconstruct anomalous
images with low error, which reduces its ability to identify these images. We believe this
can be attributed to subtle variation between normal and anomalous samples, allowing the
models to have low reconstruction loss for both image categories. f-AnoGAN(Schlegl et al.,
2019) on other hand has lower quality reconstruction for anomalous samples, achieving
higher scores than AutoDDPM.
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Figure 3: Evaluation of the KNN-distance based unsupervised cellular anomaly detection
on a toxicology study, to detect changes in anomalous cell count, on administration of a
test drug. The figure shows box plots of percentage of anomalous cells in control and drug-
treated tissue. The variation in anomalous cell count was found to be statistically significant
(p-value < 0.05); Liver: p=1.5e-5; Kidney p=0.0147.

4. Evaluation on Toxicological Study

We evaluate the capability of our approach to detect pathologically relevant changes in the
tissue due to the administered drug. For this, we analyze cellular distribution for the tox-
icological study, comparing the number of abnormal cells in the control and drug-treated
tissue. A higher count of abnormal cells like single cell necrosis, mitosis, and microgran-
uloma could indicate drug toxicity (Greaves, 2011). We compare anomalous cell count as
a percentage of total cell count, to account for tissue area. 10 images from control and
drug-treated group each are used from kidney and liver, this excludes four WSI used for
creating training data to avoid data leakage. Implementation details including threshold on
the anomaly score for classification of a sample into normal or anomalous, are provided in
appendix section C.5.

Box plot in figure 3 shows the percentage of anomalous cells. A significant increase in
percentage of anomalous cells is observed in the drug-treated animal group, For both liver
and kidney tissue, obtaining a p-value of less than 0.05, (liver: p=1.5e-5; kidney p=0.0147).
The compound was confirmed by a pathologist to induce toxicity in liver and kidney tissue,
verifying the assessment made using cellular anomaly detection. Figure 4 in appendix
provides examples of predictions by the unsupervised anomaly detection algorithm.

5. Conclusion

We show that KNN-distance based unsupervised anomaly detection, using vision trans-
former as a feature extractor, pre-trained on large Histopathology data, achieves high AUC
scores for cellular anomaly detection. The method is found to outperform state-of-the-art
reconstruction based methods, by exploiting foundation models. The method is found to
differentiate between control and drug-treated tissue, based on proportion of anomalous
cells, indicating drug toxicity. In the future, we plan to pre-train a feature extractor using
large-scale cellular data from multiple organs, to further improve model performance.
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Appendix A. Example predictions of cellular anomaly detection

Figure 4: The figure shows example predictions of cellular anomaly detection method using
best performing feature extractor and KNN-distance based anomaly score, for liver and
kidney tissue. The cells predicted as anomalous are highlighted in green.

Appendix B. Example cell reconstruction

Figure 5: The figure shows example reconstruction using f-AnoGAN (Schlegl et al., 2019)
and AutoDDPM(Bercea et al., 2023) for normal and abnormal cells.
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Figure 6: AUC value for cellular anomaly detection using KNN-distance based method with
Virchow2(Zimmermann et al., 2024) feature extractor

Appendix C. Implementation Details

All model were trained and infered using NVIDIA RTX A4000 GPUs.

C.1. KNN(Ours)

The code was implemented in Pytorch, and uses Faiss library (Johnson et al., 2019) for the
nearest neighbour distance calculation. We compared using average of K-Nearest Neighbour
distance and distance to Kth-nearest neighbor, using the later reduced the performance by
0.31%. We also experimented with different k values [10, 25, 50, 100, 200, 500, 1000, 2500]
for obtaining KNN-distance and found k=200 to give best results, as seen in figure 6.

C.2. AutoDDPM

We use architecture and training procedures as provided (Bercea et al., 2023) using code
provided by https://github.com/ci-ber/autoDDPM/tree/main. We use a 3-layer U-Net
with [128, 256, 256] channels, one residual block per layer and a single-headed attention
block after each residual block with a corresponding spatial dimension of 2. The architecture
takes 3 channeled images of size (64*64). The noise level is set to t=200 and resampling
steps to 5. We trained two separate models for liver and kidney cell dataset as described
in table 1. Both the models were trained for 200,000 iterations using Adam optimizer and
Cosine learning rate scheduler with maximum learning rate of 1e-4 and a batch size of 128.
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C.3. F-AnoGAN

We train Wasserstein GAN (WGAN) followed by image-to-image (izi) mapping encoder,
as described in (Schlegl et al., 2019), using code available at https://github.com/A03ki/
f-AnoGAN. WGAN was trained for 20 epochs with learning rate 0.0002 using ADAM op-
timizer with the batch size of 32. izi encoder is trained for 20 epochs with learning rate
of 0.0002 using adam optimizer with batch size of 128. Combination of MSE loss between
original and reconstructed image, and MSE loss between encoder mapping of real and fake
image is used as anomaly score, as provided by the github repo.

C.4. PANDAS

We use best performing feature extractor, Resnet-152 pre-trained on ImageNet dataset, and
training setup as decried by (Reiss et al., 2021), using code from https://github.com/

talreiss/PANDA. The feature extractor is trained for 15 epochs on the training dataset as
described in section 1, using a batch size of 1024 with a learning rate of 1e-2. We found
K=200 as best performing. Sum of distances of k nearest neighbors of each test feature
from the train features is used as the anomaly score.

C.5. Evaluation on Toxicological Study

For the analysis, cells are detected using pretrained Cell-ViT (Hörst et al., 2024) model, and
a crop of size 64x64 px is taken for all the cells, at 40x magnification. To identify anomalous
samples in test data, a threshold is applied on the anomaly score. The threshold is based
on the anomaly scores of in-distribution data and is set to Q3 + I.5IQR, where Q3 is the
third quartile distance & IQR represents Inter-quartile range. Using Q3 + I.5IQR as the
threshold allows the rejection of outliers from the in-distribution data.
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