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ABSTRACT

Communication efficiency has garnered significant attention as it is considered the
main bottleneck for large-scale decentralized Machine Learning applications in dis-
tributed and federated settings. In this regime, clients are restricted to transmitting
small amounts of compressed information to their neighbors over a communication
graph. Numerous endeavors have been made to address this challenging problem
by developing algorithms with compressed communication for decentralized non-
convex optimization problems. Despite considerable efforts, current theoretical
understandings of the problem are still very limited, and existing algorithms all
suffer from various limitations. In particular, these algorithms typically rely on
strong, and often infeasible assumptions such as bounded data heterogeneity or re-
quire large batch access while failing to achieve linear speedup with the number of
clients. In this paper, we introduce MoTEF, a novel approach that integrates com-
munication compression with Momentum Tracking and Error Feedback. MoTEF
is the first algorithm to achieve an asymptotic rate matching that of distributed
SGD under arbitrary data heterogeneity, hence resolving a long-standing theoreti-
cal obstacle in decentralized optimization with compressed communication. We
provide numerical experiments to validate our theoretical findings and confirm the
practical superiority of MoTEF.

1 INTRODUCTION

Decentralized machine learning approaches are increasingly popular in numerous applications such
as the internet-of-things (IoT) and networked autonomous systems (Marvasti et al., 2014; Savazzi
et al., 2020), primarily due to their scalability to larger datasets and systems, as well as their
respect for data locality and privacy concerns. In this work, we focus on decentralized optimization
techniques that operate without a central coordinator, relying solely on on-device computation and
local communication with neighboring devices. This encompasses traditional scenarios like training
Machine Learning models in large data centers, as well as emerging applications where computations
occur directly on devices. Such a setting is preferred over centralized topology which often poses a
significant bottleneck on the central node in terms of communication latency, bandwidth, and fault
tolerance.

Considering the enormous size of modern Machine Learning models, classic single-node training
is often impossible. Moreover, the training of large models requires a huge amount of data that
does not fit the memory of a single machine. Therefore, modern training techniques heavily rely on
distributed computations over a set of computation nodes/clients (Shoeybi et al., 2019; Wang et al.,
2020; Ramesh et al., 2021; 2022). One of the instances of distributed training is Federated Learning
(FL) (Konecnỳ et al., 2016; Kairouz et al., 2021) which has recently gathered a lot of attention. In
this setting, clients, such as hospitals or owners of edge devices, collaboratively train a model on their
devices while retaining their data locally.

A key issues in distributed optimization is the communication bottleneck (Seide et al., 2014; Ström,
2015) that limits the scaling properties of distributed deep learning training (Seide et al., 2014; Alistarh
et al., 2017). One of the remedies to decrease communication expenses involves communication
compression, where only quantized messages (with fewer bits) are exchanged between clients using
compression operators. When used appropriately, contractive compressors (see Definition 1), such as
Top-K, are often empirically preferable. However, the naive application of contractive compression
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operators might lead to divergence (Beznosikov et al., 2023). To make compression suitable for
distributed training, the Error Feedback (EF) mechanism (Seide et al., 2014; Stich et al., 2018) is
widely used in practice. It plays a crucial role in achieving high compression ratios.

However, most of the works analyzed EF mechanism in the centralized setting (Stich & Karimireddy,
2019; Gorbunov et al., 2020; Stich, 2020). Recent research achievements (Gao et al., 2024; Fatkhullin
et al., 2024) demonstrate that in this regime properly constructed EF mechanism can handle both client
drift (Mishchenko et al., 2019; Karimireddy et al., 2020b) and stochastic noise from the gradients, and
can achieve near-optimal convergence rates. In the more challenging decentralized setting, a series of
studies (Zhao et al., 2022; Yan et al., 2023) introduced algorithms capable of effectively managing
the drift but fail to achieve a linear acceleration in parallel training, i.e. increasing the number of
devices used for training does not lead to a decrease in the training time. Yau & Wai (2022) partially
solved this issue under stronger assumptions achieving linear speed-up using variance reduction, but
with worse dependency on the variance of the noise

Designing a method that addresses client drift while preserving linear acceleration in decentralized
training has been challenging due to the complex interplay between client drift, Error Feedback
mechanism and the communication topology. In our study, we introduce MoTEF, a novel method
that tackles these challenges concurrently. Our primary contributions can be outlined as follows.

• We propose a novel method MoTEF that incorporates momentum tracking with compression and
Error Feedback, and provably works under standard assumptions (i) without imposing any data
heterogeneity bounds, (ii) without any impractical assumptions such as large batches, (iii) with
arbitrary contractive compressor, and (iv) achieves linear speed-up with the number of clients n.
We provide convergence guarantees for the general class of non-convex functions, and for the
structured class of non-convex functions satisfying the Polyak-Łojasiewicz (PŁ) condition.

• We propose MoTEF-VR, a momentum-based STORM-type (Cutkosky & Orabona, 2019) variance-
reduced variant of our base method that improves further the asymptotic rate of convergence.

• Finally, we provide an extensive numerical study of MoTEF demonstrating the superiority of the
proposed method in practice and supporting theoretical claims.

1.1 RELATED WORKS

Decentralized optimization and gradient tracking. First works in the field studied gossip av-
eraging procedures that are typically used to reach consensus (Kempe et al., 2003; Xiao & Boyd,
2004). Nevertheless, direct use of gossip averaging might be sub-optimal as it often results in slow
convergence (Nedic & Ozdaglar, 2009). Gradient tracking (Qu & Li, 2017; Nedic et al., 2017;
Koloskova et al., 2021) is one the most popular remedies to this issue. It has been widely applied to
obtain faster decentralized algorithms (Sun et al., 2020; Xin et al., 2022; 2021; Li et al., 2022; Zhao
et al., 2022). In this work, we follow a similar approach but perform a tracking step on momentum
term instead of gradients. Takezawa et al. (2022) might be the first to analyze momentum tracking in
decentralized optimization, but they do not consider communication compression.

Momentum in distributed training. Lately, the utilization of momentum (Polyak, 1964) has
attracted attention in distributed optimization. Several works empirically showed that momentum
can improve performance in distributed setting (Wang et al., 2019a; Karimireddy et al., 2020a; Das
et al., 2022). Besides, it has recently been shown that the use of momentum improves convergence
guarantees (Yau & Wai, 2022; Fatkhullin et al., 2024; Cheng et al., 2024; Huang et al., 2024) fully
removing dependencies on data heterogeneity bounds. In this work, we follow this approach and
apply the momentum technique to the more challenging decentralized setting.

Short history of Error Feedback. Initially, the Error Feedback mechanism was introduced as a
heuristic (Seide et al., 2014) and was subsequently analyzed within a simple single-node framework
(Stich et al., 2018; Karimireddy et al., 2019). The first findings in the distributed context were
achieved under strong assumptions such as IID data distributions (Karimireddy et al., 2019) or
bounded gradients (Cordonnier, 2018; Alistarh et al., 2018; Koloskova et al., 2019; 2020a). EF21
(Richtárik et al., 2021) stands out as the first algorithm proven to operate with any contractive
compressors and under arbitrary heterogeneity, albeit failing to converge when clients are limited
to using only stochastic gradients (Fatkhullin et al., 2024). Subsequently, EF21 was extended to
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Table 1: Summary of convergence guarantees for decentralized methods supporting contractive compressors.
nCVX = supports non-convex functions; PŁ = supports functions satisfying PŁ condition. We present the
convergence in terms of E

[
∥∇f(xout)∥2

]
≤ ε2 and E [f(xout)− f⋆] ≤ ε in PŁ regimes for specifically

chosen xout. Here F 0 := E
[
f(x0)− f∗], L and ℓ are smoothness constants, ρ is a spectral gap, and σ2 is

stochastic variance bound.

Method Asymptotic Complexity Large Batches? Extra
Assumptions?nCVX PŁ

Choco-SGD
(Koloskova et al., 2019)

LF 0σ2

nε4 ✗ ✗
Bounded Gradients

E
[
∥∇fi(x, ξ)∥2

]
≤ G2

BEER
(Zhao et al., 2022)

LF 0σ2

α2ρ3ε4
LF 0

µ2α2ρ3ε

Batch size of
order σ2

αε2
✗

CEDAS
(Huang & Pu, 2023)

LF 0σ2

nε4 ✗ ✗
Additional Unbiased

Compressor

DeepSqueeze
(Tang et al., 2019)

LF 0σ2

nε4 ✗ ✗
Bounded Heterogeneity

n−1
∑

i ∥∇fi(x)−∇f(x)∥2 ≤ ζ2

DoCoM
(Yau & Wai, 2022)

ℓF 0σ3

nε3
ℓF 0σ3

µ2nε ✗ ✗

CDProxSGT
(Yan et al., 2023)

LF 0σ2

α2ρ2ε4 ✗ ✗ ✗

MoTEF
[This work]

LF 0σ2

nε4
LF 0σ2

µ2nε ✗ ✗

MoTEF-VR
[This work]

ℓF 0σ2

nε3 ✗ ✗ ✗

diverse practical scenarios (Fatkhullin et al., 2021) and decentralized training (Zhao et al., 2022)
improving the dependencies on some problem parameters. Recent advancements (Gao et al., 2024;
Fatkhullin et al., 2024) have demonstrated that a carefully designed EF mechanism (through the
control of feedback signal strength or the use of momentum) results in nearly optimal convergence
guarantees in a centralized setting.

Issues of Error Feedback in decentralized setting. Despite having been studied in the centralized
setting extensively, EF-based algorithms in the decentralized regime still fail to achieve desirable
properties.

• Strong assumptions. Many earlier theoretical results for EF require strong assumptions, such as
either the bounded gradient assumption (Koloskova et al., 2019; 2020a) or global heterogeneity
bound (Lian et al., 2017; Tang et al., 2019; Lu & De Sa, 2021; Singh et al., 2021).

• Mega batches. Convergence of BEER algorithm(Zhao et al., 2022) requires large batches that
can be costly or even infeasible in some applications. For example, in medical applications (Rieke
et al., 2020) or Reinforcement Learning (Khodadadian et al., 2022; Jin et al., 2022; Mitra et al.,
2023) sampling large batches is often intractable. Moreover, it has been shown that training with
small batch sizes improves generalization and convergence (Wilson & Martinez, 2003; Keskar
et al., 2016; Sekhari et al., 2021).

• Suboptimal rates. The stochastic term of several algorithms does not improve with n the number
of clients (Zhao et al., 2022; Yan et al., 2023), while the opposite is often desirable, and can
be achieved in the centralized training setting (Fatkhullin et al., 2024; Gao et al., 2024). Other
work achieves speed-up with n, but requires stronger smoothness assumptions and has a worse
dependency on the noise variance (Yau & Wai, 2022). Moreover, (Koloskova et al., 2019; 2020a)
do not achieve standard O(1/ε2) convergence rate in noiseless regime.

• Necessity of unbiased compression. Finally, early works analyzed decentralized algorithms only
for a more restricted class of unbiased compressors (Tang et al., 2018a; Kovalev et al., 2021).
Huang & Pu (2023) modify any contractive compressor using an additional unbiased compressor
following the results of (Horváth & Richtárik, 2020). This approach enables the creation of a
better sequence of gradient estimators, albeit with twice the per-iteration communication cost.

In Table 1, we provide a summary of known theoretical results in decentralized training with
compression that are most relevant to our work. We highlight the main issues of existing algorithms.
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2 PROBLEM SETUP

Formally, we consider the following optimization problem

min
x∈Rd

{
f(x) := 1

n

∑n
i=1 fi(x)

}
, (1)

where n is the number of clients participating in the training, x are the parameters of a model, f(x)
is the global objective, and fi(x) := Eξi∼Di

[fi(x, ξi)] is the local objective over local dataset Di.
Throughout this work, we assume that the global function f is bounded below by f⋆ > −∞.

In the setting of decentralized communication, the clients are restricted to communicating with
their neighbors only over a certain undirected communication graph G([n], E). Each vertex in [n]
represents a client, and each edge in E represents a communication link between clients. Besides, we
assign a positive weight to wij if there is an edge (i, j) ∈ E, and wij = 0 if (i, j) /∈ E. Weights wij

form a mixing matrix W ∈ Rn×n (sometimes also called gossip or interaction matrix). The mixing
matrix W should satisfy the following standard assumption.
Assumption 1. We assume that W ∈ Rn×n is symmetric (W = W⊤) and doubly stochastic
(W1 = 1,1⊤W = 1⊤) matrix with eigenvalues 1 = |λ1(W)| > |λ2(W)| ≥ · · · ≥ |λn(W)|. We
denote the spectral gap of W as

ρ := 1− |λ2(W)| ∈ (0, 1]. (2)

The spectral gap is typically used to measure the influence of network topology in the training (Aldous
& Fill, 2002; Nedić et al., 2018).

In our work, we consider algorithms combined with compressed communication. Formally, we
analyze methods utilizing practically useful contractive compression operators.
Definition 1. We say that a (possibly randomized) mapping C : Rd → Rd is a contractive compression
operator if for some constant 0 < α ≤ 1 it holds

E
[
∥C(x)− x∥2

]
≤ (1− α)∥x∥2. (3)

One of the classic examples of compressors satisfying (3) is Top-K (Stich et al., 2018). It acts
on the input by preserving K largest by magnitude entries while zeroing the rest. The class of
contractive compressors includes well-known sparsification Alistarh et al. (2018); Stich et al. (2018)
and quantization (Wen et al., 2017; Bernstein et al., 2018; Horváth et al., 2022) operators. We refer to
(Beznosikov et al., 2023; Safaryan et al., 2022; Islamov et al., 2023) for more examples of contractive
compressors.

In decentralized training, typically, each client receives the messages from its neighbors and transfers
back to them the aggregated information. We highlight that, contrary to many prior works, our
analysis supports an arbitrarily heterogeneous setting, i.e. it does not require any assumptions on the
heterogeneity level, which means that local data distributions might be distant from each other. Next,
we provide standard assumptions on the function class and noise model.
Assumption 2. We assume that each local function fi is L-smooth, i.e. for all x,y ∈ Rd, and i ∈ [n]
it holds

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥. (4)

Next, we assume that each client has access to an unbiased gradient estimator with bounded variance.
Assumption 3. We assume that we have access to a gradient oracle gi(x) : Rd → Rd for each local
function fi such that for all x ∈ Rd and i ∈ [n] it holds

E
[
gi(x)

]
= ∇fi(x), E

[
∥gi(x)−∇fi(x)∥2

]
≤ σ2. (5)

It is important to mention that mini-batches are allowed as well, effectively reducing the variance by
the local batch size. Nevertheless, there is no requirement for any specific (minimal) batch size, and
for simplicity, we consistently assume a batch size of one.

Finally, we consider the structural class of non-convex functions satisfying Polyak-Łojasiewicz
condition (Polyak, 1963). This assumption is one of the weakest conditions under which vanilla
Gradient Descent converges linearly (Karimi et al., 2016).
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Algorithm 1 MoTEF

1: Input: X0 = x01⊤,G0,H0,V0, γ, η, λ,
2: Cα
3: for t = 0, 1, 2, . . . do
4: Xt+1 = Xt + γHt(W − I)− ηVt

5: Qt+1
h = Cα(Xt+1 −Ht)

6: Ht+1 = Ht +Qt+1
h

7: Mt+1 = (1− λ)Mt + λ∇̃F (Xt+1)
8: Vt+1 = Vt+γGt(W−I)+Mt+1−Mt

9: Qt+1
g = Cα(Vt+1 −Gt)

10: Gt+1 = Gt +Qt+1
g

Algorithm 2 MoTEF-VR

1: Input: X0 = x01⊤,G0,H0,V0, γ, η, λ,
2: Cα
3: for t = 0, 1, 2, . . . do
4: Xt+1 = Xt + γHt(W − I)− ηVt

5: Qt+1
h = Cα(Xt+1 −Ht)

6: Ht+1 = Ht +Qt+1
h

7: Mt+1 = ∇̃F (Xt+1,Ξt+1)

8: +(1− λ)(Mt − ∇̃F (Xt,Ξt+1))
9: Vt+1 = Vt+γGt(W−I)+Mt+1−Mt

10: Qt+1
g = Cα(Vt+1 −Gt)

11: Gt+1 = Gt +Qt+1
g

Assumption 4. We assume that the global function f is µ-PŁ for some µ > 0, i.e. for all x ∈ Rd it
holds

∥∇f(x)∥2 ≥ 2µ(f(x)− f⋆). (6)

Note that the PŁ condition is a relaxation of strong convexity, i.e. if strong convexity with parameter µ
implies µ-PŁ condition.

3 THE ALGORITHMS AND THEORETICAL ANALYSIS

In this section, we introduce our main algorithm MoTEF, summarized in Algorithm 1. MoTEF
combines Momentum Tracking with Error Feedback to tackle the three major challenges of decen-
tralized optimization with compression at once: client drift, stochastic noise of the gradient, and
compression bias. In line 5–6 and line 9–10 we apply the EF-enhanced gossip step inspired by Zhao
et al. (2022) and Koloskova et al. (2019), and in line 7 we apply the Momentum Tracking mechanism,
which combines the classical Gradient Tracking method with Polyak’s momentum. We will show that
MoTEF is the fisrt algorithm that achieves an optimal asymptotic rate matching that of distributed
SGD without any additional, and possibly impractical, assumptions.

It is well-known in the literature that the asymptotic rate of SGD cannot be improved under the
standard assumptions. There is a long line of work, known as Variance Reduction, that attempts
to accelerate SGD under the additional mean-squared-smoothness assumption (for which such
acceleration is crucial) (Fang et al., 2018; Cutkosky & Orabona, 2019; Tran-Dinh et al., 2022; Wang
et al., 2019b; Xu & Xu, 2022). To demonstrate the flexibility and effectiveness of our approach
MoTEF, we also present a momentum-based variance-reduced variant MoTEF-VR summarized in
Algorithm 2.

Next we present the theoretical analysis of MoTEF and MoTEF-VR.

3.1 NOTATION

Before going into details, we introduce a notation that we use throughout the paper. We stack the local
parameters xt

i stored at each clients into a matrix Xt := [xt
1, . . . ,x

t
n] ∈ Rd×n, and denote the average

model x̄t := 1
nX

t1, where 1 is a vector of ones. Other quantities are defined similarly. To track local
gradients, we define ∇F (Xt) := [∇f1(x

t
1), . . . ,∇fn(x

t
n)] ∈ Rd×n. Similarly we write ∇̃F (Xt)

as the collection of local stochastic gradients. Finally, Cα(X) denotes the contractive compression
operator Cα applied column-wise on a matrix X, i.e. Cα(X) := [C(x1), . . . , C(xn)] ∈ Rd×n.

3.2 CONVERGENCE OF MoTEF

Now we are ready to present convergence guarantees for MoTEF. Below we summarize the conver-
gence guarantees for Algorithm 1 in general non-convex and PŁ settings. Our analysis relies on the
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Lyapunov function of the form

Φt := F t + c1
n2L Ĝ

t + c2τ
nL G̃t + c3L

ρ3nτΩ
t
1 +

c4τ
ρnLΩ

t
2 +

c5L
ρ3nτΩ

t
3 +

c6τ
ρnLΩ

t
4, (7)

where {ck}6k=1 are absolute constants defined in the appendix in (32)1, F t := E [f(x̄t)− f⋆]
represents the sub-optimality function gap, and the error terms are defined as follows

Ĝt := E
[
∥∇F (Xt)1−Mt1∥2F

]
, G̃t := E

[
∥∇F (Xt)−Mt∥2F

]
, Ωt

1 := E
[
∥Ht −Xt∥2F

]
Ωt

2 := E
[∥∥Gt −Vt

∥∥2
F

]
, Ωt

3 := E
[∥∥Xt − x̄t1T

∥∥2
F

]
(8)

Ωt
4 := E

[∥∥Vt − v̄t1T
∥∥2
F

]
, Ωt

5 := E
[∥∥v̄t

∥∥2] .
Our theory relies on the descent of the Lyapunov function Φt introduced above.
Lemma 1 (Descent of the Lyapunov function). Let Assumptions 2 and 3 hold. Then there exist
absolute constants cγ , cλ, cη, and τ ≤ 1 such that if we set stepsizes γ = cγαρ, λ = cλαρ

3τ, η =
cηL

−1αρ3τ such that the Lyapunov function Φt decreases as

Φt+1 ≤ Φt − cηαρ
3τ

2L E
[
∥∇f(x̄t)∥2

]
+

c2λc1α
2ρ6

nL τ2σ2 + τ3σ2
(
3c4ρ+ c2αρ

2 + 3c6
cγ

)
2c2λαρ

4

L . (9)

Using the above descent of the Lyapunov function, we demonstrate the convergence guarantees for
MoTEF.
Theorem 1 (Convergence of MoTEF). Let Assumptions 2 and 3 hold. Then there exist absolute
constants cγ , cλ, cη, and some τ ≤ 1 such that if we set stepsizes γ = cγαρ, λ = cλαρ

3τ, η =

cηL
−1αρ3τ , and choosing the initial batch size Binit ≥ ⌈LF 0

σ2 ⌉, then after at most

T = O
(

σ2

nε4 + σ
αρ5/2ε3

+ 1
αρ3ε2

)
LF 0 (10)

iterations of Algorithm 1 it holds E
[
∥∇f(xout)∥2

]
≤ ε2, where xout is chosen uniformly at random

from {x̄0, . . . , x̄T−1}, and O suppresses absolute constants.
Remark 2. Note that using a large initial batch size Bint is not required for convergence of MoTEF.
If we set Binit = 1, the above theorem still holds by replacing F 0 by Φ0.

We observe that the use of momentum in MoTEF allows us to improve convergence guarantees
over BEER. Indeed, Algorithm 1 achieves optimal asymptotic complexity2 with a desirable linear
speed-up with the number of clients n. Moreover, MoTEF provably converges for any batch size in
contrast to BEER.

Discussion of the convergence rate. In the stochastic regime (σ2 > 0), we note that the asymp-
totically dominating term is O(σ

2
/nε4), which is independent of the spectral gap and compression

rate and is optimal in all problem parameters (Arjevani et al., 2023). To the best of our knowledge,
MoTEF is the first decentralized algorithm incorporating contractive compressors that achieves it
under Assumptions 2 and 3 without data heterogeneity restrictions. In the deterministic regime
(σ2 = 0), the convergence rate becomes O(1/αρ3ε2). This is optimal in α and ε (Huang et al.,
2022) and sub-optimal in ρ. We would like to highlight that having a sub-optimal dependency on
the spectral gap ρ is a well-known challenge in the theoretical analysis of the gradient tracking
mechanism (Koloskova et al., 2021). Besides, the same sub-optimal 1/ρ3 dependency is also observed
in the analysis of BEER algorithm. It is an active research direction to either improve the convergence
analysis of gradient tracking to obtain better ρ dependence (Koloskova et al., 2021) or to design more
sophisticated tracking mechanisms that might achieve better rates (Di et al., 2022). Either way, it
involves significantly more complicated analyses and we defer these to future work. We also point out
that it is unclear whether the 1/ρ3 dependence is inherent to the tracking mechanism or is an artifact
of the analysis. In Section 4 we provide numerical evidence showing that MoTEF might be much

1To find a suitable choice of constants we use Symbolic Math Toolbox in MATLAB (Inc., 2023). Our code
can be found at https://anonymous.4open.science/r/dec-symb-verification.

2This means the regime when ε → 0.
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less sensitive to ρ than the theoretical analysis suggests. A more detailed discussion of the results of
previous works is deferred to Appendix A.

Now we derive convergence guarantees of MoTEF for the class of functions satisfying Assumption 4.
Theorem 2 (Convergence of MoTEF). Let Assumptions 2 to 4 hold. Then there exist absolute
constants cγ , cλ, cη, and some τ ≤ 1 such that if we set stepsizes γ = cγαρ, λ = cλαρ

3τ, η =

cηL
−1αρ3τ , and choosing the initial batch size Binit ≥ ⌈LF 0

σ2 ⌉, then after at most

T = Õ
(

Lσ2

µ2nε + Lσ
αρ5/2µ3/2ε1/2

+ L
µαρ3

)
(11)

iterations of Algorithm 1 it holds E
[
f(xT )− f∗] ≤ ε, and Õ suppresses absolute constants and

poly-logarithmic factors.
Remark 3. Note that using a large initial batch size Bint is not required for convergence of MoTEF.
If we set Binit = 1, the above theorem still holds by replacing F 0 by Φ0, which is hidden in the
logarithmic terms.

Contrary to BEER, we demonstrate that the asymptotic rate of MoTEF in the PŁ setting improves
with n and does not require large batches. To the best of our knowledge, MoTEF is the first
decentralized algorithm that supports contractive compressors and achieves linear speed-up with n
under Assumptions 2 to 4. Moreover, we highlight that in the noiseless regime MoTEF converges
linearly as expected. Another momentum-based algorithm DoCom was analyzed under more
restricted Assumption 5 only. Therefore, its applicability in this setting is not known. Besides,
DoCoM achieves linear speed-up with n, but with sub-optimal dependency on the noise variance σ2.

3.3 CONVERGENCE OF MoTEF-VR

We demonstrated that MoTEF achieves an asymptotic complexity of distributed SGD under As-
sumptions 2 and 3, and this result cannot be improved. However, if we consider strengthening
of Assumption 2, the mean-squared-smoothness Assumption 5, then further acceleration on the
stochastic term might be achieved via variance reduction. We emphasize that Assumption 5 is the
standard assumption made for variance reduction, and is the key one for circumventing existing lower
bounds on stochastic methods (Fang et al., 2018; Cutkosky & Orabona, 2019; Tran-Dinh et al., 2022;
Wang et al., 2019b; Xu & Xu, 2022).
Assumption 5. We assume that each local function fi is ℓ-mean-squared-smooth, i.e. for all
x,y ∈ Rd, i ∈ [n], it holds

Eξ

[
∥∇fi(x, ξ)−∇fi(y, ξ)∥2

]
≤ ℓ2∥x− y∥. (12)

In MoTEF-VR, instead of a simple momentum term, each client now maintains a momentum-
based variance reduction term, similar to the STORM estimator (Cutkosky & Orabona, 2019). The
algorithm also maintains a momentum parameter λ, and it turns out that the additional variance
reduction terms and Assumption 5 allow us to set the momentum parameter more aggressively,
leading to an improved convergence rate.
Theorem 3 (Convergence of MoTEF-VR). Let Assumptions 3 and 5 hold. Then there exists absolute
constants cγ , cλ, cη and some τ < 1 such that if we stepsizes γ = cγαρ, λ = cλn

−1α2ρ6τ2, η =

cηℓ
−1αρ3τ , and initial batch size Binit ≥ ⌈ σ2

LF 0αρ3 ⌉, then after at most

T = O
(

σ
nε3 + σ

2/3

n2/3α1/3ρ2/3ε8/3
+ 1

αρ3ε2

)
ℓF 0 (13)

iterations of Algorithm 2 it holds E
[
∥∇f(xout)∥2

]
≤ ε2, where xout is chosen uniformly at random

from {x̄0, · · · , x̄T−1}, and O suppresses absolute constants and poly-logarithmic factors.
Remark 4. Note that using a large initial batch size Binit is not required for convergence of
MoTEF-VR. If we set Binit = 1, the above theorem still holds replacing F 0 by Ψ0.

Compared to MoTEF, MoTEF-VR achieves an improved asymptotic rate. Moreover, all stochastic
terms (the ones with σ) have a speed-up with n in contrast to the convergence of DoCoM, where
only asymptotic term improves with n.
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Figure 1: (a) BEER with different number of clients n; (b) MoTEF with different number of clients n; (c)
MoTEF with different momentum parameter λ. MoTEF’s error decreases as the number of clients increases,
while the error of BEER does not. The error of MoTEF increases as the momentum parameter increases. In
all cases, we set d = 20, ζ = 10, σ = 10, and apply Top-K compressor with α = K/d = 0.1. We fix the
parameters γ = 0.1, η = 0.0005, λ = 0.005, and n = 16, if the opposite is not stated. (d) The number of
iterations for MoTEF to reach an error of 10−3, as compared to the theoretical prediction O(1/ρ3). We see that
the convergence of MoTEF is much less sensitive to ρ than the theoretical prediction.
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Figure 2: Performance of MoTEF, BEER and CHOCO-SGD with varying data heterogeneity ζ and fixed noise
level σ = 5. We see that MoTEF outperforms BEER and CHOCO-SGD in all cases, and is not affected by the
data heterogeneity, while CHOCO-SGD’s performance degrades as ζ increases. We set d = 20, n = 4 and
apply Top-K compressor with α = K/d = 0.1. We set the target error to be 0.01.

We point out that MoTEF-VR applies the STORM mechanism locally to achieve the variance
reduction effect. STORM is specifically designed for non-convex optimization problems, and its
convergence rate in the more structured class of functions satisfying Assumption 4 is still unclear in
the literature (Cutkosky & Orabona, 2019; Xu & Xu, 2022) even for the simplest centralized SGD
setting. In this work, we also do not consider the rate of MoTEF-VR under the PŁ condition.

4 NUMERICAL EXPERIMENTS

In this section, we complement the theoretical results on the convergence of Algorithm 1 with
numerical evaluations.

4.1 SYNTHETIC LEAST SQUARES PROBLEM

We first consider a simple synthetic least squares problem to demonstrate some of the important
theoretical properties of Algorithm 1. This problem is designed by Koloskova et al. (2020b) and
studied in (Gao et al., 2024). For each client i, fi(x) := 1

2 ∥Aix− bi∥2, where A2
i := i2/n · Id and

each bi is sampled from N (0, ζ
2
/i2Id) for some parameter ζ which controls the gradient dissimilarity

of the problem (Koloskova et al., 2020b). It’s easy to see that when ζ = 0,∇fi(x
⋆) = 0,∀i. We add

Gaussian noise to the gradients to control the stochastic level σ2 of the gradient. We use the ring
network topology for the synthetic experiment unless stated otherwise.3. We run our experiments on
AMD EPYC 9554 64-Core Processor.

Increasing the number of nodes. In Figure 1-(a-b) we study the effect of increasing the number of
nodes on the convergence of Algorithm 1. A crucial property of Algorithm 1 is that its convergence
rate provably improves linearly with the number of nodes, which BEER does not possess. Here we
fix a small stepsize and investigate the error that Algorithm 1 achieves with an increasing number of
nodes. We observe that the error decreases linearly with the number of nodes, which is consistent
with the theoretical results, while for the error of BEER it is not the case.

3The code to reproduce our synthetic experiment is available at https://
anonymous.4open.science/r/decentralized-exp-A3C6
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Figure 3: Comparison of MoTEF, BEER, Choco-SGD, DSGD, D2 in terms of communication complexity on
logistic regression with non-convex regularization on ring topology with batch size 5 and gsgdb compressor. We
observe that MoTEF outperforms other algorithms in terms of both test accuracy and gradient norm.

Effect of the momentum parameter. In Figure 1-(c) we investigate the effect of the momentum
parameter λ. In particular, how it affects the convergence in the noisy regime. Our theoretical analysis
suggests that the momentum parameter λ ∝ η is crucial for the convergence of MoTEF. We observe
that the error increases as the momentum parameter increases. Note that when λ = 1, we recover
BEER which is known to not converge with the presence of noise in the local gradients, which our
experiment confirms.

Effect of changing heterogeneity. In Figure 2 we investigate the effect of changing data heterogeneity
ζ on the performance of MoTEF, BEER, and Choco-SGD. The hyperparameters were tuned; the
detailed description is given in Appendix D.1. We observe that MoTEF outperforms other algorithms
and is not affected by the changing ζ. BEER is also not affected by the changing ζ, while CHOCO-
SGD’s performance degrades as ζ increases. This is consistent with the theoretical results.

Effect of communication topologies In Figure 1-(d) we investigate the effect of the spectral gap
ρ on the convergence of MoTEF. We set σ2 = 0 since the optimization term is most affected by
ρ in the analysis. We detail the setup of the communication network in Appendix D.2. While the
theory suggests that there might be a 1/ρ3 dependence, our experiment shows that the convergence of
MoTEF is much less sensitive to ρ. Future research is needed to understand the discrepancy between
the theory and the practice of the tracking mechanisms.

4.2 NON-CONVEX LOGISTIC REGRESSION

Following (Khirirat et al., 2023; Makarenko et al., 2023; Islamov et al., 2024) we compare algorithms
on logistic regression problem with non-convex regularization4

min
x∈Rd

1
n

∑n
i=1 fi(x) + λ

∑d
j=1

x2
j

1+x2
j
, fi(x) :=

1
m

∑m
j=1 log(1 + exp(−bija

⊤
ijx)), (14)

where {bij ,aij}mj=1 is a local dataset. We set λ = 0.05, n = 100 and use LibSVM datasets (Chang
& Lin, 2011). We do not shuffle datasets to have a more heterogeneous setting. Besides, each
dataset is equally distributed among all clients. In all experiments on logistic regression, we use
gsgdb compressor (Alistarh et al., 2017) with b = 5. More details of this experiments are given in
Appendix D.

Comparison against other methods. We compare BEER (Zhao et al., 2022), Choco-SGD
(Koloskova et al., 2019), DSGD (Alistarh et al., 2017), and D2 (Tang et al., 2018b) algorithms
with MoTEF on ring topology. Detailed description is given in Appendix D.4. For each algorithm,
we fine-tune all stepsizes to achieve better convergence. According to the results in Figure 3, we
observe that MoTEF outperforms other algorithms in terms of communication complexity in both
cases, when the convergence is measured by training gradient norm and test accuracy. In Figure 7,
we additionally compare MoTEF against CEDAS (Huang & Pu, 2023).

Robustness to communication topology. Next, we study the effect of the network topology on
the convergence of MoTEF. We run experiments for ring, star, grid, Erdös-Rènyi (p = 0.2 and
p = 0.5) topologies. Note the spectral gaps of these networks 0.012, 0.049, 0.063, 0.467, 0.755
correspondingly. The hyperparameters of algorithms are given in Appendix D.3. Despite the

4Our implementation is based on open-source code from (Zhao et al., 2022) https://github.com/
liboyue/beer and is available at https://anonymous.4open.science/r/MoTEF-0DCF.
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Figure 4: Performance of MoTEF changing of network topology tested on logistic regression with non-convex
regularization. We set n = 40, λ = 0.05, and batch size 100. We observe that MoTEF is very robust against
changing network topologies for practical problems.
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Figure 5: Comparison of MoTEF, BEER, Choco-SGD, DSGD, D2 in terms of communication complexity on
training MLP with 1 hidden layer. We observe that MoTEF outperforms the other methods.

theoretical analysis showing a strong dependence on ρ, in Figure 4 we demonstrate that convergence
MoTEF is not affected much by the change in spectral gap. These results demonstrate the robustness
of MoTEF to the change of network topology in practice.

Training of MLP. Finally, we consider training MLP on MNIST dataset (Deng, 2012) with 1 hidden
layer of size 32. We present the results in Figure 5. We observe that MLP trained with MoTEF and
BEER achieve similar gradient norm, but MoTEF is much faster in accuracy metric showing the
advantage from using momentum tracking. In addition, we provide the results of training a CNN
model in Appendix D.5.

5 CONCLUSION AND OUTLOOK

In this work, we address a critical challenge in decentralized stochastic non-convex optimization with
communication compression, that is, achieving the optimal asymptotic rate of O(σ

2
/nε4) matching

that of the distributed SGD under the standard assumptions and without any impractical assumptions,
such as bounded data heterogeneity or access to large batches. We propose a new algorithm, MoTEF,
incorporating momentum tracking and Error Feedback, and prove that it achieves this goal. We
also extend the framework to MoTEF-VR and show that it achieves the variance-reduced rates
under standard variance reduction assumption. We support our theoretical findings with an extensive
experimental study.

The tracking mechanism plays a critical role in our algorithmic design, and a well-known challenge
in these tracking mechanism is that it induces worse dependence on the spectral gap of the network.
However, our preliminary numerical experiment shows that MoTEF might be much less sensitive to
the spectral gap than what the theory predicts. We believe that future work can look into this aspect
and either improve our analysis or design even better tracking mechanisms. In our study, we focus
only on compressed communication while there are many approaches such as performing several local
steps (Mishchenko et al., 2022b; Gorbunov et al., 2021) or asynchronous communication (Islamov
et al., 2024; Mishchenko et al., 2022a) that might be useful. We also note that some recent works
attempt to improve the dependencies on the smoothness parameters for variants of Error Feedback
algorithms (Richtárik et al., 2024), where each local objective is assumed to be Li-smooth, and a more
careful analysis of the method gives a dependency on the average-smoothness L̄ = n−1

∑n
i=1 Li

instead of the maximum smoothness L = maxi∈[n] Li. Therefore, combining the aforementioned
research directions with our proof techniques might lead to more improved results. We defer the
exploration of these possible extensions to future research endeavors.
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A EXTENDED RELATED WORK

In this section, we provide an additional discussion on the related works on decentralized optimization
specifically focusing on the dependency of the deterministic optimization term on the spectral gap ρ.

In the non-compressed, strongly convex, and deterministic regime, Kovalev et al. (2020) and
Mishchenko et al. (2022b) achieve optimal Õ(

√
L/µρ), i.e. the dependency on the spectral O(1/√ρ).

Kovalev et al. (2020) proposed an algorithm APAPC based on the Chebyshev acceleration while
Mishchenko et al. (2022b) boosts the convergence through incorporating multiple local steps. We
highlight that both algorithms do not impose any bounds on the data heterogeneity. Later, the results
of Mishchenko et al. (2022b) were extended to the stochastic regime (Guo et al., 2023) beyond
strongly convex functions with a linear speed-up in n. However, the dependency on ρ in the stochastic
regime worsened to O(1/ρ2). Liu et al. (2021); Li et al. (2021) achieved Õ(L/µρ) convergence rate but
with the use of a stricter class of unbiased compression operators and in the full-batch regime. Zhang
et al. (2023) proposed an algorithm called COLD that attains Õ(L/µ + 1

α2ρ ) convergence rate in the
deterministic strongly convex regime with contractive compressors. BEER algorithm (Zhao et al.,
2022) achieves the rate that depends on 1

ρ3 similarly to the rate of MoTEF but under unrealistic large
batch requirement. DoCoM algorithm attains the linear speed-up with n in the stochastic regime
but has worse 1

ρ4 dependency on the spectral gap. Both DeepSqueeze (Tang et al., 2018a) and
Choco-SGD (Koloskova et al., 2019) achieve 1

ρ2 but under bounded data heterogeneity assumptions.

To summarize, to the best of our knowledge, there is no work in the most general setting considered
in this work, namely, stochastic non-convex decentralized optimization with contractive compression
under arbitrary data heterogeneity, that achieves better dependency on the spectral gap ρ. Most of the
works make additional assumptions with a possible improvement of the rate w.r.t. ρ, however, the
question remains if the results are transferable to the considered setting. Therefore, additional effort
is needed to either improve the convergence guarantees of MoTEF with a more involved analysis
using an enhanced tracking mechanism or show the lower bound that the optimal 1√

ρ dependency is
not achievable in the worst case.

A.1 INTUITION BEHIND MoTEF ALGORITHM DESIGN

Designing an algorithm with strong convergence guarantees without imposing assumptions on the
problem or data is complicated. In MoTEF we incorporate three main ingredients to make it converge
faster under arbitrary data heterogeneity. In particular, the combination of EF21-type Error Feedback
(Richtárik et al., 2021) and Gradient Tracking mechanisms is the key factor in getting rid of the
influence of data heterogeneity. We emphasize that not using one of them would lead to restrictions on
the data heterogeneity. Indeed, EF21 is known to remove such dependencies in centralized training
while the GT mechanism is essential in decentralized learning (Koloskova et al., 2021). Nonetheless,
EF21 does not handle the error coming from stochastic gradients and momentum is known to be one
of the remedies to it (Fatkhullin et al., 2024).

B MISSING PROOF FOR MoTEF

We recall the notation we use to prove convergence of MoTEF:
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Ĝt := E
[∥∥∇F (Xt)1−Mt1

∥∥2]
G̃t :=

n∑
i=1

E
[∥∥∇fi(x

t
i)−mt

i

∥∥2] = E
[∥∥∇F (Xt)−Mt

∥∥2
F

]
Ωt

1 := E
[∥∥Ht −Xt

∥∥2
F

]
Ωt

2 := E
[∥∥Gt −Vt

∥∥2
F

]
Ωt

3 := E
[∥∥Xt − x̄t1⊤∥∥2

F

]
Ωt

4 := E
[∥∥Vt − v̄t1⊤∥∥2

F

]
Ωt

5 := E
[∥∥v̄t

∥∥2] .
Moreover, F t := E [f(x̄t)] − f⋆. Let us define Ωt := [Ĝt, G̃t,Ωt

1,Ω
t
2,Ω

t
3,Ω

t
4]

⊤. In addition, we
denote ∇̃F (Xt) := [g1(xt

i), . . . ,g
n(xt

n)] ∈ Rd×n a matrix that contains local stochastic gradients.
We denote C := σ2

max(W − I) ≤ 4.

Lemma 5 (Lemma B.2 from (Zhao et al., 2022)). Let W be a mixing matrix with a spectral gap ρ.
Then for any matrix X ∈ Rd×n and x̄ = 1

nX1 we have

∥XW − x̄1⊤∥2F ≤ (1− ρ)∥X− x̄1⊤∥2F. (15)

Moreover, for any γ ∈ (0, 1] the matrix W̃ = I+ γ(W − I) has a spectral gap at least γρ.

Lemma 6. The iterates of Algorithm 1 satisfy

v̄t+1 =
1

n
Mt+11, (16)

and
x̄t+1 = x̄t − η

n
Mt1. (17)

Proof. By induction, we can show that v̄t = 1
nM

t1, if we initialize V0 = M0. Indeed, we have

v̄t+1 =
1

n
Vt+11

=
1

n
Vt1+

1

n
γGt(W − I)1+

1

n
(Mt+1 −Mt)1

=
1

n
Vt1+

1

n
(Mt+1 −Vt)1

=
1

n
Mt+11.

Therefore, we have

x̄t+1 = x̄t +
γ

n
Ht(W − I)1− η

n
Vt1

= x̄t − ηv̄t = x̄t − η

n
Mt1.

B.1 GENERAL NON-CONVEX SETTING.

Lemma 7. Assume that Assumption 2 holds. Then we have the following descent on F t

Ft+1 ≤ Ft − η
2E
[
∥∇f(x̄t)∥2

]
+ η

n2 Ĝ
t + ηL2

n Ωt
3 − (−η/2 − η2L/2)Ωt

5. (18)
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Proof. Using smoothness we get

Ft+1 ≤ Ft − ηE
[〈
∇f(x̄t), v̄t

〉]
+

η2L

2
E
[
∥vt∥2

]
= Ft −

η

2
E
[
∥∇f(x̄t)∥2

]
+

η

2
E
[
∥∇f(x̄t)− v̄t∥2

]
− (−η/2 − η2L/2)E

[
∥v̄t∥2

]
= Ft −

η

2
E
[
∥∇f(x̄t)∥2

]
+

η

2
E

[∥∥∥∥ 1n∇F (x̄t)1− 1

n
Mt1

∥∥∥∥2
]
− (−η/2 − η2L/2)E

[
∥v̄t∥2

]
≤ Ft −

η

2
E
[
∥∇f(x̄t)∥2

]
+ ηE

[∥∥∥∥ 1n∇F (Xt)1− 1

n
Mt1

∥∥∥∥2
]

+ ηE

[∥∥∥∥ 1n∇F (x̄t)1− 1

n
∇F (Xt)1

∥∥∥∥2
]
− (−η/2 − η2L/2)E

[
∥v̄t∥2

]
≤ Ft −

η

2
E
[
∥∇f(x̄t)∥2

]
+

η

n2
Ĝt +

ηL2

n
E
[∥∥Xt − x̄t1⊤∥∥2]− (−η/2 − η2L/2)Ωt

5

= Ft −
η

2
E
[
∥∇f(x̄t)∥2

]
+

η

n2
Ĝt +

ηL2

n
Ωt

3 − (−η/2 − η2L/2)Ωt
5.

Lemma 8. Assume that Assumptions 2 and 3 hold. Then we have the following descent on Ĝt

Ĝt+1 ≤ (1− λ)E
[∥∥∇F (Xt)1−Mt1

∥∥2]+ (1− λ)2nL2

λ
E
[∥∥Xt −Xt+1

∥∥2
F

]
+ λ2nσ2. (19)

Proof. Using the update rules of Algorithm 1 we get

Ĝt+1 = E
[∥∥∇F (Xt+1)1−Mt+11

∥∥2]
= E

[∥∥∥∇F (Xt+1)1− (1− λ)Mt1− λ∇̃F (Xt+1)1
∥∥∥2]

= E
[∥∥∥(1− λ)(∇F (Xt)−Mt)1+ λ(∇F (Xt+1)− ∇̃F (Xt+1))1

+ (1− λ)(∇F (Xt+1)−∇F (Xt))1
∥∥2]

≤ (1− λ)2E
[∥∥(∇F (Xt)−Mt)1+ (∇F (Xt+1)−∇F (Xt))1

∥∥2]+ λ2nσ2

≤ (1− λ)E
[∥∥∇F (Xt)1−Mt1

∥∥2]+ (1− λ)2nL2

λ
E
[∥∥Xt −Xt+1

∥∥2
F

]
+ λ2nσ2,

where in the first inequality we use the fact that E
[
∇̃F (Xt+1)

]
= ∇F (Xt+1) and Assumption 3,

and in the second inequality we use ∥a+ b∥2 ≤ (1 + β)∥a∥2 + (1+ β−1)∥b∥2 for any vectors a,b
and constant b.

Lemma 9. Assume that Assumptions 2 and 3 hold. Then we have the following descent on G̃t

G̃t+1 ≤ λ2σ2n+
(1− λ)2L2

λ
E
[∥∥Xt+1 −Xt

∥∥2
F

]
+ (1− λ)G̃t. (20)
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Proof.

G̃t+1 = E
[∥∥∇F (Xt+1)−Mt+1

∥∥2
F

]
= E

[∥∥∥∇F (Xt+1)− (1− λ)Mt − λ∇̃F (Xt+1)
∥∥∥2
F

]
≤ λ2σ2n+ (1− λ)2E

[∥∥∇F (Xt+1)−Mt
∥∥2
F

]
≤ λ2σ2n+ (1− λ)2(1 + β−1

1 )E
[∥∥∇F (Xt+1)−∇F (Xt)

∥∥2
F

]
+ (1− λ)2(1 + β1)E

[∥∥Mt −∇F (Xt)
∥∥2
F

]
≤ λ2σ2n+

(1− λ)2

λ
E
[∥∥∇F (Xt+1)−∇F (Xt)

∥∥2
F

]
+ (1− λ)E

[∥∥Mt −∇F (Xt)
∥∥2
F

]
≤ λ2σ2n+

(1− λ)2L2

λ
E
[∥∥Xt+1 −Xt

∥∥2
F

]
+ (1− λ)G̃t.

where we choose β1 = λ
(1−λ) .

Lemma 10. Let Cα be any contractive compressor with parameter α. Then we have the following
descent on Ωt

1

Ωt+1
1 ≤ (1− α/2)E

[∥∥Ht −Xt
∥∥2
F

]
+

2

α
E
[∥∥Xt −Xt+1

∥∥2
F

]
. (21)

Proof. We have

Ωt+1
1 = E

[∥∥Ht+1 −Xt+1
∥∥2
F

]
= E

[∥∥Ht + Cα(Xt+1 −Ht)−Xt+1
∥∥2
F

]
≤ (1− α)E

[∥∥Ht −Xt+1
∥∥2
F

]
≤ (1− α/2)E

[∥∥Ht −Xt
∥∥2
F

]
+

2

α
E
[∥∥Xt −Xt+1

∥∥2
F

]
.

Lemma 11. Let Cα be any contractive compressor with parameter α. Then we have the following
descent on Ωt

2

Proof. The proof is similar to the one of Lemma 10

Ωt+1
2 = E

[∥∥Gt+1 −Vt+1
∥∥2
F

]
≤ (1− α/2)E

[∥∥Gt −Vt
∥∥2
F

]
+

2

α
E
[∥∥Vt −Vt+1

∥∥2
F

]
.

Lemma 12. We have the following descent on Ωt
3

Ωt+1
3 ≤ (1− γρ/2)Ωt

3 + (1 + 2/γρ)2γ2CΩt
1 + (1 + 2/γρ)2η2Ωt

4. (22)
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Proof.

Ωt+1
3 = E

[∥∥Xt+1 − x̄t+11⊤∥∥2
F

]
= E

[∥∥Xt + γHt(W − I)− ηVt − x̄t1T + ηv̄t1T
∥∥2
F

]
= E

[∥∥∥XtW̃ − x̄t1T + γ(Ht −Xt)(W − I)− ηVt + ηv̄t1⊤
∥∥∥2
F

]
≤ (1 + β)(1− γρ)E

[∥∥Xt − x̄t1⊤∥∥2
F

]
+ (1 + β−1)(2γ2E

[∥∥(Ht −Xt)(W − I)
∥∥2
F

]
+ 2η2E

[∥∥Vt − v̄t1⊤∥∥2
F

]
)

≤ (1− γρ/2)E
[∥∥Xt − x̄t1⊤∥∥2

F

]
+ (1 + 2/γρ)(2γ2CE

[∥∥Ht −Xt
∥∥2
F

]
+ 2η2E

[∥∥Vt − v̄t1⊤∥∥2
F

]
)

= (1− γρ/2)Ωt
3 + (1 + 2/γρ)2γ2CΩt

1 + (1 + 2/γρ)2η2Ωt
4.

where β = γρ/2
1−γρ and we define W̃ := I + γ(W − I) which has a spectral gap at least γρ by

Lemma 5.

Lemma 13. We have the following descent on Ωt
4

Ωt+1
4 ≤ (1− γρ/2)E

[∥∥Vt − v̄t1T
∥∥2
F

]
+ (1 + 2/γρ)

(
2γ2CE

[∥∥Gt −Vt
∥∥2
F

]
+ 2E

[∥∥Mt+1 −Mt
∥∥2
F

])
. (23)

Proof.

Ωt+1
4 = E

[∥∥Vt+1 − v̄t1T + v̄t1T − v̄t+11T
∥∥2
F

]
= E

[∥∥Vt+1 − v̄t1T
∥∥2
F

]
− nE

[∥∥v̄t − v̄t+1
∥∥2]

≤ E
[∥∥Vt+1 − v̄t1T

∥∥2
F

]
= E

[∥∥Vt + γGt(W − I) +Mt+1 −Mt − v̄t1T
∥∥2
F

]
= E

[∥∥∥VtW̃ − v̄t1T + γ(Gt −Vt)(W − I) +Mt+1 −Mt
∥∥∥2
F

]
≤ (1− γρ/2)E

[∥∥Vt − v̄t1T
∥∥2
F

]
+ (1 + 2/γρ)(2γ2CE

[∥∥Gt −Vt
∥∥2
F

]
+ 2E

[∥∥Mt+1 −Mt
∥∥2
F

]
).

Lemma 14 (Lemma B.4, Eq. (18) from (Zhao et al., 2022)). We have the following control of the
iterates at iterations t and t+ 1

E
[∥∥Xt+1 −Xt

∥∥2
F

]
≤ 3γ2CΩt

1 + 3γ2CΩt
3 + 3η2Ωt

4 + 3η2nΩt
5. (24)

Lemma 15. Assume Assumptions 2 and 3 hold. Then we have the following control of the momentum
at iterations t and t+ 1

E
[∥∥Mt+1 −Mt

∥∥2
F

]
≤ λ2nσ2 + 2λ2E

[∥∥∇F (Xt)−Mt
∥∥2
F

]
+ 2λ2L2E

[∥∥Xt −Xt+1
∥∥2
F

]
. (25)
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Proof.

E
[∥∥Mt+1 −Mt

∥∥2
F

]
= λ2E

[∥∥∥∇̃F (Xt+1)−Mt
∥∥∥2
F

]
= λ2E

[∥∥∥∇̃F (Xt+1)−∇F (Xt+1) +∇F (Xt+1)−Mt
∥∥∥2
F

]
≤ λ2nσ2 + λ2E

[∥∥∇F (Xt+1)−Mt
∥∥2
F

]
≤ λ2nσ2 + 2λ2E

[∥∥∇F (Xt)−Mt
∥∥2
F

]
+ 2λ2L2E

[∥∥Xt −Xt+1
∥∥2
F

]
.

Lemma 16. We have the following control of the gradient estimator Vt at iterations t and t+ 1

E
[∥∥Vt+1 −Vt

∥∥2
F

]
≤ 3γ2CΩt

2 + 3γ2CΩt
4 + 3E

[∥∥Mt+1 −Mt
∥∥2
F

]
. (26)

Proof.

E
[∥∥Vt+1 −Vt

∥∥2
F

]
= E

[∥∥γGt(W − I) +Mt+1 −Mt
∥∥2
F

]
= E

[∥∥γ(Gt −Vt)(W − I) + γ(Vt − v̄t1T )(W − I) +Mt+1 −Mt
∥∥2
F

]
≤ 3γ2CE

[∥∥Gt −Vt
∥∥2
F

]
+ 3γ2CE

[∥∥Vt − v̄t1T
∥∥2
F

]
+ 3E

[∥∥Mt+1 −Mt
∥∥2
F

]
= 3γ2CΩt

2 + 3γ2CΩt
4 + 3E

[∥∥Mt+1 −Mt
∥∥2
F

]
.

Theorem 1 (Convergence of MoTEF). Let Assumptions 2 and 3 hold. Then there exist absolute
constants cγ , cλ, cη, and some τ ≤ 1 such that if we set stepsizes γ = cγαρ, λ = cλαρ

3τ, η =

cηL
−1αρ3τ , and choosing the initial batch size Binit ≥ ⌈LF 0

σ2 ⌉, then after at most

T = O
(

σ2

nε4 + σ
αρ5/2ε3

+ 1
αρ3ε2

)
LF 0 (10)

iterations of Algorithm 1 it holds E
[
∥∇f(xout)∥2

]
≤ ε2, where xout is chosen uniformly at random

from {x̄0, . . . , x̄T−1}, and O suppresses absolute constants.

Proof. From Lemma 15 and Lemma 14 we get

E
[∥∥Mt+1 −Mt

∥∥2
F

]
≤ λ2nσ2 + 2λ2G̃t + 6λ2γ2L2CΩt

1 + 6λ2γ2L2CΩt
3 + 6λ2η2L2Ωt

4

+ 6λ2η2L2nΩt
5. (27)

Using the above and Lemma 16 we get

E
[∥∥Vt+1 −Vt

∥∥2
F

]
≤ 3λ2nσ2 + 6λ2G̃t + 18λ2γ2L2CΩt

1 + 3γ2CΩt
2 + 18λ2γ2L2CΩt

3

+ (3γ2C + 18λ2η2L2)Ωt
4 + 18λ2η2L2nΩt

5. (28)

Using (27), (28), and Lemma 8 we get the following descent on Ĝt

Ĝt+1 ≤ (1− λ)Ĝt +
3L2nγ2C

λ
Ωt

1 +
3L2nγ2C

λ
Ωt

3 +
3L2nη2

λ
Ωt

4 +
3L2n2η2

λ
Ωt

5 + λ2nσ2.

Using (27), (28), and Lemma 9 we get the following descent on G̃t

G̃t+1 ≤ (1− λ)G̃t +
3L2γ2C

λ
Ω1 +

3L2γ2C

λ
Ωt

3 +
3L2η2

λ
Ωt

4 +
3L2nη2

λ
Ωt

5 + λ2nσ2.
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Using (27), (28), and Lemma 10 we get the following descent on Ωt
1

Ωt+1
1 ≤

(
1− α

2
+

6γ2C

α

)
Ωt

1 +
6γ2C

α
Ωt

3 +
6η2

α
Ωt

4 +
6η2n

α
Ωt

5.

Using (27), (28), and Lemma 11 we get the following descent on Ωt
2

Ωt+1
2 ≤

(
1− α

2
+

6γ2C

α

)
Ωt

2 +
6λ2

α
G̃t +

36λ2γ2L2C

α
Ωt

1 +
36λ2γ2L2C

α
Ωt

3

+

(
6γ2C

α
+

36η2λ2L2

α

)
Ωt

4 +
36η2λ2L2n

α
Ωt

5 +
6λ2n

α
σ2.

Using (27), (28), and Lemma 12 we get the following descent on Ωt
3

Ωt+1
3 ≤ (1− γρ

2
)Ωt

3 +
6γC

ρ
Ωt

1 +
6η2

γρ
Ωt

4. (29)

Finally, using (27), (28), and Lemma 13 we get the following descent on Ωt
4:

Ωt+1
4 ≤ (1− γρ

2
+

36η2λ2L2

γρ
)Ωt

4 +
12λ2

γρ
G̃t +

36γλ2L2C

ρ
Ωt

1 +
6γC

ρ
Ωt

2 +
36γλ2L2C

ρ
Ωt

3

+
36η2γL2n

ρ
Ωt

5 +
6λ2n

γρ
σ2.

Now we can gather all together

Ωt+1 ≤



1− λ 0 3L2nγ2C
λ 0 3L2nγ2C

λ
3L2nη2

λ

0 1− λ 3L2γ2C
λ 0 3L2γ2C

λ
3L2η2

λ

0 0 1− α
2 + 6γ2C

α 0 6γ2C
α

6η2

α

0 6λ2

α
36λ2γ2L2C

α 1− α
2 + 6γ2C

α
36λ2γ2L2C

α
6γ2C
α + 36λ2η2L2

α

0 0 6γC
ρ 0 1− γρ

2
6η2

γρ

0 12λ2

γρ
36γλ2L2C

ρ
6γC
ρ

36γλ2L2C
ρ 1− γρ

2 + 36η2λ2L2

γρ


︸ ︷︷ ︸

:=A

Ωt

+



3L2n2η2

λ
3L2nη2

λ
6η2n
α

36η2λ2L2n
α
0

36η2γL2n
ρ


︸ ︷︷ ︸

:=b1

Ωt
5 +


n
2n
0
6n
α
0
6n
γρ


︸ ︷︷ ︸
:=b2

λ2σ2. (30)

We remind that the Lyapunov function Φt has the following form

Φt := F t +
c1
n2L

Ĝt +
c2τ

nL
G̃t +

c3L

ρ3nτ
Ωt

1 +
c4τ

ρnL
Ωt

2 +
c5L

ρ3nτ
Ωt

3 +
c6τ

ρnL
Ωt

4 = F t + c⊤Ωt,

where {ck}6k=1 are absolute constants. Let

c :=

(
c1
n2L

,
c2τ

nL
,
c3L

ρ3nτ
,
c4τ

ρnL
,
c5L

ρ3nτ
,
c6τ

ρnL

)⊤

.
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Therefore, the descent on Φt for is the following

Φt+1 = F t+1 + c⊤Ωt

≤ Ft −
η

2
E
[∥∥∇f(x̄t)

∥∥2]+ η

n2
Ĝt +

ηL2

n
Ωt

3 − (η/2 − η2L/2)Ωt
5

+ c⊤(AΩt +Ωt
5b1 + λ2σ2b2)

= F t − η

2
E
[∥∥∇f(x̄t)

∥∥2]+ c⊤Ωt + (q⊤ + c⊤A− c⊤)Ωt − (η/2 − η2L/2 − c⊤b1)Ω
t
5

+ c⊤b2λ
2σ2

= Φt − η

2
E
[∥∥∇f(x̄t)

∥∥2]+ (q⊤ + c⊤A− c⊤)Ωt − (η/2 − η2L/2 − c⊤b1)Ω
t
5

+ c⊤b2λ
2σ2,

where q := (η/n2, 0, 0, 0, ηL
2
/n, 0)⊤. We need coefficients next to Ωt and Ωt

5 to be negative. This is
equivalent to finding c such that

[
I−A⊤

−b⊤
1

]
c ≥

[
q

η2L
2 − η

2

]
. (31)

We make the following choice of stepsizes

λ := cλαρ
3τ, γ := cγαρ, η :=

cηαρ
3τ

L
.

with the following choice of constants:

cλ =
1

200
, cγ =

1

200
, cη =

1

100000
, and,

c1 =
1

500
, c2 =

13

200000
, c3 =

1

20
, c4 =

1

400000
, c5 =

9

100
, c6 =

1

200000
. (32)

The system of inequalities (31) are satisfied when τ ≤ 1.

Given the complexity of the inequalities and the choices of the parameters, we do not attempt to
write down a proof for the correctness of the choices manually, instead, we verify these choices using
the Symbolic Math Toolbox in MATLAB. We also perform such verification for our parameters and
constants choices for MoTEF in PŁ case and MoTEF-VR. The code performing all the verification
can be found at this anonymous link. We also note that, when cλ, cγ and cη are fixed, we can search
for a feasible {ci}i∈[6] efficiently using the Linear Program solver with MATLAB as well. But
searching for a feasible set of choices for cλ, cγ and cη is very much a trial-and-error process.

Note that this choice gives us both λ and γ smaller than 1. This choice of constants gives the following
result

Φt+1 ≤ Φt − cηαρ
3τ

2L
E
[
∥∇f(x̄t)∥2

]
+

c1
n2L

· nc2λα2ρ6τ2σ2

+
c2τ

nL
· 2nc2λα2ρ6τ2σ2

+
c4τ

ρnL
· 6n
α
c2λα

2ρ6τ2σ2

+
c6τ

ρnL
· 6n

cγαρ
c2λα

2ρ6τ2σ2

= Φt − cηαρ
3τ

2L
E
[
∥∇f(x̄t)∥2

]
+

c2λc1α
2ρ6

nL
· τ2σ2

+

(
6c2λc4αρ

5

L
+

2c2λc2α
2ρ6

L
+

6c6c
2
λαρ

4

cγL

)
τ3σ2. (33)
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By this, we proved Lemma 1. Let us define constants

B :=
cηαρ

3

2L
,

C :=
c2λc1α

2ρ6

nL
,

D :=

(
6c2λc4αρ

5

L
+

2c2λc2α
2ρ6

L
+

6c6c
2
λαρ

4

cγL

)
,

E := 1.

Using τ ≤ E and unrolling (33) for T iterations we get

1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ Φ0

τBT
+

C

B
τσ2 +

D

B
τ2σ2.

So we need to choose τ = min

{
1
E ,
(

Φ0

CTσ2

)1/2
,
(

Φ0

DTσ2

)1/3}
and we get the following rate

1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ O

Φ0E

BT
+

(
CΦ0σ2

B2T

)1/2

+

(√
DΦ0σ

B3/2T

)2/3


= O

(
LΦ0

αρ3T
+

(
LΦ0σ2

nT

)1/2

+

(√
αρ5 + α2ρ6 + αρ4LΦ0σ

α3/2ρ9/2T

)2/3


= O

(
LΦ0

αρ3T
+

(
LΦ0σ2

nT

)1/2

+

(
(ρ1/2 + α1/2ρ+ 1)LΦ0σ

αρ5/2T

)2/3
)
,

that translates to the rate in terms of ε to

T = O
(

LΦ0

αρ3ε2
+

LΦ0σ2

nε4
+

LΦ0σ

αρ2ε3
+

LΦ0σ

α1/2ρ3/2ε3
+

LΦ0σ

αρ5/2ε3

)
⇒ 1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ ε2.

In the result above the fifth term always dominates the third and fourth. Therefore, we remove the
third and fourth terms from the rate and derive the following rate

T = O
(

LΦ0

αρ3ε2
+

LΦ0σ2

nε4
+

LΦ0σ

αρ5/2ε3

)
⇒ 1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ ε2.

Note that with the choice V0 = G0 = M0 = ∇̃F (X0),H0 = X0 = x01⊤, we get

Ĝ0 ≤ σ2n, G̃0 ≤ σ2n, Ω0
1 = Ω0

2 = Ω0
3 = Ω0

4 = 0.

Φ0 ≤ F 0 +
c1
n2L

σ2n+
c2τ

nL
σ2n. (34)

If we choose the initial batch size Binit ≥ ⌈ σ2

LF 0 ⌉, we get

Φ0 ≤ F 0 +
1

nL

σ2

Binit
+

1

L

σ2

Binit
≤ 3F 0. (35)
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B.1.1 CONVERGENCE OF CONSENSUS ERROR

Now we show that the workers achieve consensus automatically with MoTEF. We notice that (33)
can be tighten. In particular, if we substitute the choices of constants in c into (31), we have the
following:

(q⊤ + c⊤A− c⊤)Ωt ≤ −c7
Lα

ρτn
Ωt

3

where c7 is an absolute constant. We highlight that the choice of constants {ck}7k=1 can be tightened
but we are interested in the dependency on the problem-specific parameters only. In particular, this
implies that we have the following (instead of (33)):

Φt+1 = Φt − cηαρ
3τ

2L
E
[
∥∇f(x̄t)∥2

]
− c7

Lα

ρτn
Ωt

3 +
c2λc1α

2ρ6

nL
· τ2σ2

+

(
6c2λc4αρ

5

L
+

2c2λc2α
2ρ6

L
+

6c6c
2
λαρ

4

cγL

)
τ3σ2. (36)

Therefore, we have:

1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
+

2c7L
2

cηρ4τ2
1

T

T−1∑
t=0

1

n
Ωt

3 ≤ Φ0

τBT
+

C

B
τσ2 +

D

B
τ2σ2.

where B,C,D are defined in the proof of Theorem 1 as before. In particular, this means that
2c7L

2

cηρ4τ2
1
T

∑T−1
t=0

1
nΩ

t
3 converges to zero at the same speed as 1

T

∑T−1
t=0 E

[
∥∇f(x̄t)∥2

]
. By our

choice of τ ≤ 1, we have:

1

Tn

T−1∑
t=0

Ωt
3 ≤ cηρ

4

2c7L2

(
Φ0

τBT
+

C

B
τσ2 +

D

B
τ2σ2

)

≤ O

(
ρΦ0

αLT
+

(
ρ8Φ0σ2

nL3T

)1/2

+

(
(ρ4 + α1/2ρ7/2 + ρ7/2)Φ0σ

αL2T

)2/3
)
.

Therefore, we obtain that

T = O
(

ρΦ0

αLε2
+

ρ8Φ0σ2

nL3ε4
+

ρ7/2LΦ0σ

αL2ε3

)
⇒ 1

Tn

T−1∑
t=0

Ωt
3 ≤ ε2.

B.1.2 CONVERGENCE OF LOCAL MODELS

Since we have the convergence of the averaged gradient norm 1
T

∑T−1
t=0 E ∥∇f(x̄t)∥2 and the con-

sensus error 1
Tn

∑T−1
t=0 Ωt

3, we also obtain the convergence of local models. Indeed, we have

1

Tn

T−1∑
t=0

n∑
i=1

E
[∥∥∇f(xt

i)
∥∥2] ≤ 2

Tn

T−1∑
t=0

n∑
i=1

E
[∥∥∇f(x̄t)−∇f(xt

i)
∥∥2]

+
2

Tn

T−1∑
t=0

n∑
i=1

E
[∥∥∇f(x̄t)2

∥∥2]
≤ 2L2

Tn

T−1∑
t=0

E
[∥∥x̄t − xt

i

∥∥2]+ 2

Tn

T−1∑
t=0

n∑
i=1

E
[∥∥∇f(x̄t)2

∥∥2]
=

2L2

Tn

T−1∑
t=0

Ωt
3 +

2

Tn

T−1∑
t=0

n∑
i=1

E
[∥∥∇f(x̄t)2

∥∥2] .
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B.2 PŁ SETTING.

Theorem 2 (Convergence of MoTEF). Let Assumptions 2 to 4 hold. Then there exist absolute
constants cγ , cλ, cη, and some τ ≤ 1 such that if we set stepsizes γ = cγαρ, λ = cλαρ

3τ, η =

cηL
−1αρ3τ , and choosing the initial batch size Binit ≥ ⌈LF 0

σ2 ⌉, then after at most

T = Õ
(

Lσ2

µ2nε + Lσ
αρ5/2µ3/2ε1/2

+ L
µαρ3

)
(11)

iterations of Algorithm 1 it holds E
[
f(xT )− f∗] ≤ ε, and Õ suppresses absolute constants and

poly-logarithmic factors.

Proof. The only change in the proof is the descent of the Lyapunov function. In PŁ case, the descent
on Φt becomes

Φt+1 = F t+1 + b⊤Ωt

≤ Ft −
η

2
E
[∥∥∇f(x̄t)

∥∥2]+ η

n2
Ĝt +

ηL2

n
Ωt

3 − (η/2 − η2L/2)Ωt
5

+ b⊤(AΩt +Ωt
5b1 + λ2σ2b2)

≤ (1− ηµ)F t + (1− ηµ)b⊤Ωt + (q⊤ + b⊤A− (1− ηµ)b⊤)Ωt

− (η/2 − η2L/2 − b⊤b1)Ω
t
5 + b⊤b2λ

2σ2

= (1− ηµ)Φt + (q⊤ + b⊤A− (1− ηµ)b⊤)Ωt − (η/2 − η2L/2 − b⊤b1)Ω
t
5 + b⊤b2λ

2σ2,

where in the second inequality we use PŁ condition. Similar to the proof of Theorem 1, we need to
satisfy

[
(1− µη)I−A⊤

−b⊤
1

]
b ≥

[
q

η2L
2 − η

2

]
for some coefficients b. We set the stepsizes such that

λ := cλαρ
3τ, γ := cγαρ, η :=

cηαρ
3τ

L
,

and

b :=

(
b1
n2L

,
b2τ

nL
,
b3L

ρ3nτ
,
b4τ

ρnL
,
b5L

ρ3nτ
,
b6τ

ρnL

)⊤

with the choice
cλ =

1

200000
, cγ =

1

200000
, cη =

1

100000000
,

and
b1 =

1

250
, b2 =

13

200000
, b3 =

1

20
, b4 =

1

400000
, b5 = 2, b6 =

1

200000
,

gives the following descent on Φt (note that both γ and λ are smaller than 1 with this choice of
constants)

Φt+1 ≤
(
1− cηαρ

3τµ

L

)
Φt +

c2λb1α
2ρ6

nL
· τ2σ2

+

(
6c2λb4αρ

5

L
+

2c2λb2α
2ρ6

L
+

6b6c
2
λαρ

4

cγL

)
τ3σ2. (37)

Let us define constants

B :=
cηαρ

3µ

2L
,

C :=
c2λc1α

2ρ6

nL
,

D :=

(
6c2λc4αρ

5

L
+

2c2λc2α
2ρ6

L
+

6c6c
2
λαρ

4

cγL

)
,

E := 1.
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Unrolling (37) for T iterations we get

ΦT ≤ (1−Bτ)TΦ0 +
C

Bτ
τ2σ2 +

D

Bτ
τ3σ2 = (1−Bτ)TΦ0 +

C

B
σ2 +

D

Bτ
τ3σ2

where we use the fact that
m−1∑
l=0

(1−Bτ)l =
1− (1−Bτ)m

1− (1−Bτ)
≤ 1

Bτ
.

Choosing τ = min
{

1
E , 1

BT log
(

Φ0B2T
Cσ2

)
, 1
BT log

(
Φ0B3T 2

Dσ2

)}
leads to the following rate

ΦT ≤ Õ
(
exp

(
−B

E
T

)
Φ0 +

Cσ2

B2T
+

Dσ2

B3T 2

)
.

We refer to (Mishchenko et al., 2020) for a more detailed derivation (proof of Corollary 1, page 20).
To achieve FT ≤ ε, we need to perform

T = Õ

(
E

B
+

Cσ2

B2ε
+

√
Dσ

B3/2ε1/2

)

= Õ
(

L

µαρ3
+

Lσ2

µ2nε
+

Lσ

α1/2ρ2µ3/2ε1/2
+

Lσ

αρ5/2µ3/2ε1/2
+

Lσ

αρ2µ3/2ε1/2

)
.

iterations. Note that the fourth term always dominates the third and fifth terms. Therefore, we remove
them from the rate and derive the following rate

T = Õ
(

L

µαρ3
+

Lσ2

µ2nε
+

Lσ

αρ5/2µ3/2ε1/2

)
.

C MISSING PROOFS FOR MoTEF-VR

In this section, we provide the proof of convergence of Algorithm 2. Note that in this case Lemma 7
remains unchanged.

Lemma 17. Let Assumptions 3 and 5 hold. Then we have the following descent on Ĝt

Ĝt+1 ≤ (1− λ)Ĝt + 2λ2σ2n+ ℓ2E
[
∥Xt+1 −Xt∥2F

]
. (38)

Proof. We have

Ĝt+1 = E
[∥∥Mt+11−∇F (Xt+1)1

∥∥2]
= E

[∥∥∥[∇̃F (Xt+1,Ξt+1) + (1− λ)(Mt − ∇̃F (Xt,Ξt+1)−∇F (Xt+1)]1
∥∥∥2]

= E
[∥∥∥(λ(∇̃F (Xt+1,Ξt+1)−∇F (Xt+1))

+ (1− λ)(∇̃F (Xt+1,Ξt+1)−∇F (Xt+1) +∇F (Xt)− ∇̃F (Xt,Ξt+1))

+ (1− λ)(Mt −∇F (Xt))
)
1
∥∥2]

≤ (1− λ)2 E ∥(Mt −∇F (Xt))1∥2

+ 2λ2 E ∥(∇̃F (Xt+1,Ξt+1)−∇F (Xt+1))1∥2

+ 2(1− λ)2 E ∥(∇̃F (Xt+1,Ξt+1 −∇F (Xt+1) +∇F (Xt)− ∇̃F (Xt,Ξt+1))1∥2

≤ (1− λ)Ĝt + 2λ2σ2n

+ 2E ∥(∇̃F (Xt+1,Ξt+1)−∇F (Xt+1) +∇F (Xt)− ∇̃F (Xt,Ξt+1))1∥2. (39)
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For the last term above we continue as follows

E
[
∥(∇̃F (Xt+1,Ξt+1)−∇F (Xt+1) +∇F (Xt)− ∇̃F (Xt,Ξt+1))1∥2

]
= E

∥∥∥∥∥
n∑

i=1

∇fi(x
t+1
i , ξt+1

i )−∇fi(x
t+1
i ) +∇fi(x

t
i)−∇fi(x

t
i, ξ

t+1
i )

∥∥∥∥∥
2


=

n∑
i=1

E
[∥∥∇fi(x

t+1
i , ξt+1

i )−∇fi(x
t+1
i ) +∇fi(x

t
i)−∇fi(x

t
i, ξ

t+1
i )

∥∥2]
≤

n∑
i=1

E
[∥∥∇fi(x

t+1
i , ξt+1

i )−∇fi(x
t
i, ξ

t+1
i )

∥∥2]
≤ ℓ2E

[
∥Xt+1 −Xt∥2F

]
. (40)

Therefore, from (39) we get

Ĝt+1 ≤ (1− λ)Ĝt + 2λ2σ2n+ ℓ2E
[
∥Xt+1 −Xt∥2F

]
. (41)

Lemma 18. Assume Assumptions 3 and 5 hold. Then we have the following descent on Ĝt

G̃t+1 ≤ (1− λ)G̃t + 2λ2σ2n+ ℓ2E
[
∥Xt+1 −Xt∥2F

]
. (42)

Proof. The proof is similar to the one of Lemma 17.

Note that Lemmas 10 to 14 and 16 do not change in this setting, thus, we do not repeat them.

Lemma 19. Assume Assumptions 3 and 5 hold. Then we have the following control of momentum at
iterations t and t+ 1

E
[
∥Mt+1 −Mt∥2F

]
≤ λ2G̃t + 2λ2nσ2 + 2ℓ2E

[
∥Xt+1 −Xt∥2F

]
. (43)

Proof. Using the update of Mt we have

E
[
∥Mt+1 −Mt∥2F

]
= E

[
∥∇̃F (Xt+1,Ξt+1) + (1− λ)(Mt − ∇̃F (Xt,Ξt+1))−Mt∥2F

]
= E

[
∥∇̃F (Xt+1,Ξt+1)− λMt − (1− λ)∇̃F (Xt,Ξt+1)∥2F

]
= E

[∥∥∥λ(∇F (Xt)−Mt) + λ(∇̃F (Xt,Ξt+1)−∇F (Xt))

+ (∇̃F (Xt+1,Ξt+1)− ∇̃F (Xt,Ξt+1))
∥∥∥2
F

]
= λ2G̃t + E

[∥∥∥λ(∇̃F (Xt,Ξt+1)−∇F (Xt))

+ (∇̃F (Xt+1,Ξt+1)− ∇̃F (Xt,Ξt+1))
∥∥∥2
F

]
≤ λ2G̃t + 2λ2nσ2 + 2ℓ2E

[
∥Xt+1 −Xt∥2F

]
.

Now we introduce the following Lyapunov function of the form

Ψt := F t + d1

αρ3nτℓ Ĝ
t + d2

nℓ G̃
t + d3ℓ

ρ3nτΩ
t
1 +

d4

ρnℓΩ
t
2 +

d5ℓ
ρ3nτΩ

t
3 +

d6

ρnℓΩ
t
4, (44)

where {dk}6k=1 are absolute constants defined in (49). Again, we present the descent lemma on the
Lyapunov function Ψt.
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Lemma 20 (Descent of the Lyapunov function). Let Assumptions 3 and 5 hold. Then there exists ab-
solute constants cγ , cλ, cη and τ < 1 such that if we set stepsizes γ = cγαρ, λ = cλn

−1α2ρ6τ2, η =
cηℓ

−1αρ3τ then the Lyapunov function Ψt decreases as

Ψt+1 ≤ Ψt − cηαρ
3

2ℓ
τE
[
∥∇f(x̄t)∥2

]
+

2c1c
2
λ

n2ℓ
α3ρ9τ3σ2

+

(
2d2c

2
λα

4ρ12

n2ℓ
+

12d4c
2
λα

3ρ11

n3ℓ
+

6d6c
2
λα

3ρ10

n3ℓ

)
τ4σ2. (45)

Remark 21. Compared to Lemma 1, in Lemma 20, the leading stochastic term has a cubic dependence
on τ , whereas in Lemma 1 the dependence is quadratic. The improved dependence on τ is the key
ingredient to the speed-up for variance reduction type methods.

Proof. From Lemmas 14 and 19 we get

E
[
∥Mt+1 −Mt∥2F

]
≤ λ2G̃t + 2λ2nσ2 + 2ℓ2(3γ2CΩt

1 + 3γ2CΩt
3 + 3η2Ωt

4 + 3η2nΩt
5)

= 2λ2nσ2 + λ2G̃t + 6Cγ2ℓ2Ωt
1 + 6Cγ2ℓ2Ωt

3 + 6η2ℓ2Ωt
4 + 6nη2ℓ2Ωt

5.
(46)

From the above inequality (46) and Lemma 16 we get

E
[
∥Vt+1 −Vt∥2F

]
≤ 3γ2CΩt

2 + 3γ2CΩt
4

+ 3
(
2λ2nσ2 + λ2G̃t + 6Cγ2ℓ2Ωt

1 + 6Cγ2ℓ2Ωt
3 + 6η2ℓ2Ωt

4 + 6nη2Ωt
5

)
= 6λ2nσ2 + 3λ2G̃t + 18Cγ2ℓ2Ωt

1 + 3Cγ2Ωt
2 + 18Cγ2ℓ2Ωt

3

+ (3Cγ2 + 18η2ℓ2)Ωt
4 + 18nη2ℓ2Ωt

5. (47)

From Lemmas 14 and 17 we get the following descent on Ĝt

Ĝt+1 ≤ (1− λ)Ĝt + 2λ2σ2n+ ℓ2(3γ2CΩt
1 + 3γ2CΩt

3 + 3η2Ωt
4 + 3η2nΩt

5)

= 2λ2σ2n+ (1− λ)Ĝt + 3Cγ2ℓ2Ωt
1 + 3Cγ2ℓ2Ωt

3 + 3η2ℓ2Ωt
4 + 3nη2ℓ2Ωt

5.

Similarly, from Lemmas 14 and 18 we get the following descent on G̃t

G̃t+1 ≤ 2λ2σ2n+ (1− λ)G̃t + 3Cγ2ℓ2Ωt
1 + 3Cγ2ℓ2Ωt

3 + 3η2ℓ2Ωt
4 + 3nη2ℓ2Ωt

5.

From Lemmas 10 and 14 we get the following descent on Ωt
1

Ωt+1
1 ≤ (1− α/2)E

[
∥Ht −Xt∥2F

]
+

2

α
(3γ2CΩt

1 + 3γ2CΩt
3 + 3η2Ωt

4 + 3η2nΩt
5)

= (1− α/2 + 6Cγ2
/α)Ωt

1 +
6Cγ2

α
Ωt

3 +
6η2

α
Ωt

4 +
6nη2

α
Ωt

5.

From Lemma 11 and (47) we get the following descent on Ωt
2

Ωt+1
2 ≤ (1− α/2)Ωt

2 +
2

α

(
6λ2nσ2 + 3λ2G̃t + 18Cγ2ℓ2Ωt

1 + 3Cγ2Ωt
2 + 18Cγ2ℓ2Ωt

3

+ (3Cγ2 + 18Cη2ℓ2)Ωt
4 + 18nη2ℓ2Ωt

5.

)
=

12nλ2

α
σ2 +

6λ2

α
G̃t +

36Cγ2ℓ2

α
Ωt

1 + (1− α/2 + 6Cγ2
/α)Ωt

2 +
36Cγ2ℓ2

α
Ωt

3

+
2

α
(3Cγ2 + 18η2ℓ2)Ωt

4 +
36nη2ℓ2

α
Ωt

5.
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The descent on Ωt
3 (29) from the proof of MoTEF remains unchanged

Ωt+1
3 ≤ (1− γρ

2
)Ωt

3 +
6γC

ρ
Ωt

1 +
6η2

γρ
Ωt

4.

From Lemma 13 and (46) we get the following descent on Ωt
4

Ωt+1
4 ≤ (1− γρ/2)Ωt

4 + 2γ2C(1 + 2/γρ)Ωt
2

+ 2(1 + 2/γρ)(2λ2nσ2 + λ2G̃t + 6Cγ2ℓ2Ωt
1 + 6Cγ2ℓ2Ωt

3 + 6η2ℓ2Ωt
4 + 6nη2Ωt

5)

≤ 6nλ2

γρ
σ2 +

3λ2

γρ
G̃t +

18Cγℓ2

ρ
Ωt

1 +
6Cγ

ρ
Ωt

2 +
18Cγℓ2

ρ
Ωt

3 + (1− γρ/2 + 18η2ℓ2/γρ)Ωt
4

+
18nη2ℓ2

γρ
Ωt

5.

We remind that Ω = (Ĝt, G̃t,Ω,
1Ω

t
2,Ω

t
3,Ω

t
4)

⊤. Now we can gather all inequalities together

Ωt+1 ≤



1− λ 0 3Cγ2ℓ2 0 3Cγ2ℓ2 3η2ℓ2

0 1− λ 3Cγ2ℓ2 0 3Cγ2ℓ2 3η2ℓ2

0 0 1− α
2 + 6Cγ2

α 0 6Cγ2

α
6η2

α

0 6λ2

α
36Cγ2ℓ2

α 1− α
2 + 6Cγ2

α
36Cγ2ℓ2

α
6Cγ2

α + 36η2ℓ2

α

0 0 6γC
ρ 0 1− γρ

2
6η2

γρ

0 3λ2

γρ
18Cγℓ2

ρ
6Cγ
ρ

18Cγℓ2

ρ 1− γρ
2 + 18η2ℓ2

γρ


︸ ︷︷ ︸

:=A

Ωt

+



3nη2ℓ2

3nη2ℓ2

6nη2

α
36nη2ℓ2

α
0

18nη2ℓ2

γρ


︸ ︷︷ ︸

:=b1

Ωt
5 +


2n
2n
0

12n
α
0
6n
γρ


︸ ︷︷ ︸

:=b2

λ2σ2. (48)

Now we consider the following choice of stepsizes

λ :=
cλα

2ρ6τ2

n
, γ := cγαρ, η :=

cηαρ
3τ

ℓ
,

and constants

d :=

(
d1

αρ3nτℓ
,
d2
nℓ

,
d3ℓ

ρ3nτ
,
d4
ρnℓ

,
d5ℓ

ρ3nτ
,
d6
ρnℓ

)⊤

,

where

cλ =
1

200
, cγ =

1

200
, cη =

1

100000
,

d1 = 0.0020, d2 = 0.000065, d3 = 0.005, d4 = 0.0000025, d5 = 0.01, d6 = 0.000005 (49)

Note that choosing τ ≤ 1 makes the system of inequalities (48) hold. Using this choice, we get the
following descent on Ψt = F t + d⊤Ωt
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Ψt+1 ≤ Ψt − cηαρ
3τ

2ℓ
E
[
∥∇f(x̄t)∥2

]
+

d1
αρ3nτℓ

· 2nc2λα4ρ12n−2τ4σ2

+
d2
nℓ

· 2nc2λα4ρ12n−2τ4σ2

+
d4
ρnℓ

· 12n
α

c2λα
4ρ12n−2τ4σ2

+
d6
ρnℓ

· 6n

cγαρ
c2λα

4ρ12τ4n−2σ2

= Ψt − cηαρ
3

2ℓ
τE
[
∥∇f(x̄t)∥2

]
+

2d1c
2
λ

n2ℓ
α3ρ9τ3σ2

+

(
2d2c

2
λα

4ρ12

n2ℓ
+

12d4c
2
λα

3ρ11

n2ℓ
+

6d6c
2
λα

3ρ10

n2ℓ

)
τ4σ2. (50)

By this, we proved Lemma 20.

Theorem 3 (Convergence of MoTEF-VR). Let Assumptions 3 and 5 hold. Then there exists absolute
constants cγ , cλ, cη and some τ < 1 such that if we stepsizes γ = cγαρ, λ = cλn

−1α2ρ6τ2, η =

cηℓ
−1αρ3τ , and initial batch size Binit ≥ ⌈ σ2

LF 0αρ3 ⌉, then after at most

T = O
(

σ
nε3 + σ

2/3

n2/3α1/3ρ2/3ε8/3
+ 1

αρ3ε2

)
ℓF 0 (13)

iterations of Algorithm 2 it holds E
[
∥∇f(xout)∥2

]
≤ ε2, where xout is chosen uniformly at random

from {x̄0, · · · , x̄T−1}, and O suppresses absolute constants and poly-logarithmic factors.

Proof. We apply Lemma 20 and consider the following:

B :=
cηαρ

3

2ℓ
,

C :=
2d1c

2
λ

n2ℓ
α3ρ9,

D :=

(
2d2c

2
λα

4ρ12

n2ℓ
+

12d4c
2
λα

3ρ11

n2ℓ
+

6d6c
2
λα

3ρ10

n2ℓ

)
,

E := 1.

Unrolling (50) for T iterations we get

1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ Φ0

τBT
+

C

B
τ2σ2 +

D

B
τ3σ2.

Choosing τ = min

{
1
E ,
(

Ψ0

Cσ2T

)1/3
,
(

Ψ0

Dσ2T

)1/4}
gives the following rate

1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ EΨ0

BT
+

(√
CΨ0σ

B3/2T

)2/3

+

(
D1/3Ψ0σ2/3

B4/3T

)3/4

= O

(
ℓΨ0

αρ3T
+

(
ℓΨ0σ

nT

)2/3

+

(
(n−2/3 + α−1/3ρ−1/3n−2/3 + α−1/3ρ−2/3n−2/3)ℓΨ0σ2/3

T

)3/4
)
,

that translates into the rate in terms of ε to

1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ ε2 ⇒ O

(
ℓΨ0

αρ3ε2
+

ℓΨ0σ

nε3
+

ℓΨ0σ2/3

n2/3ε8/3
+

ℓΨ0σ2/3

α1/3ρ1/3n2/3ε8/3

+
ℓΨ0σ2/3

α1/3ρ2/3n2/3ε8/3

)
.
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Note that the last term always dominates the third and fourth terms in the rate. Therefore, the final
convergence rate has the following form

1

T

T−1∑
t=0

E
[
∥∇f(x̄t)∥2

]
≤ ε2 ⇒ O

(
ℓΨ0

αρ3ε2
+

ℓΨ0σ

nε3
+

ℓΨ0σ2/3

α1/3ρ2/3n2/3ε8/3

)
.

Note that with the choice V0 = G0 = M0 = ∇̃F (X0),H0 = X0 = x01⊤, we get

Ĝ0 ≤ σ2n, G̃0 ≤ σ2n, Ω0
1 = Ω0

2 = Ω0
3 = Ω0

4 = 0.

Ψ0 ≤ F 0 +
d1

αρ3nτℓ
σ2n+

d2
nℓ

σ2n. (51)

If we choose the initial batch size Binit ≥ ⌈ σ2

LF 0αρ3 ⌉, we get

Ψ0 ≤ F 0 +
1

αρ3ℓ

σ2

Binit
+

1

ℓ

σ2

Binit
≤ 3F 0. (52)

D EXPERIMENT DETAILS

D.1 EFFECT OF CHANGING HETEROGENEITY

We perform a grid search for the parameters γ from {0.1, 0.01, 0.001}, η from the log space from
10−4 to 10−1 and the log space from 5× 10−4 to 5× 10−1. For MoTEF we search the momentum
parameter λ from the same log space as η as well.

D.2 EFFECT OF COMMUNICATION TOPOLOGY (SYNTHETIC PROBLEM)

To study networks with different spectral gaps, we set n = 400 and construct random
regular graphs with different degrees r. We sample the random graphs with degree r ∈
{3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 10, 13, 16}, the resulting inverses of the spectral gaps are around
1/ρ ∈ {21.41, 18.40, 18.59, 8.24, 8.55, 8.65, 7.92, 5.57, 5.36, 4.03, 4.34, 3.76, 2.56, 2.17, 1.99}.

D.3 ROBUSTNESS TO COMMUNICATION TOPOLOGY.

Next, we study the effect of the network topology on the convergence of MoTEF. We set n =
40, λ = 0.05, choose batch size 100, and run experiments for ring, star, grid, Erdös-Rènyi (p =
0.2 and p = 0.5) topologies. For all topologies, we use η = 0.05, γ = 0.5, λ = 0.01 for a9a
dataset and η = 0.05, γ = 0.5, λ = 0.01 for w8a. Note that the spectral gaps of these networks
0.012, 0.049, 0.063, 0.467, 0.755 correspondingly.

D.4 HYPERPARAMETERS FOR SECTION 4.2

For MoTEF we tune stepsize as follows η ∈ {0.001, 0.01, 0.05}, γ ∈ {0.1, 0.2, 0.5, 0.9}, λ ∈
{0.005, 0.01, 0.05, 0.1}. For BEER we tune the stepsizes in the range η ∈ {0.001, 0.01, 0.05}, γ ∈
{0.1, 0.2, 0.5, 0.9}. For Choco-SGD we tune the stepsizes in the range η ∈ {0.01, 0.05}, γ ∈
{0.1, 0.5, 0.9}. Finally, for DSGD and D2 we choose the stepsize η = 0.01.

D.5 COMPARISON ON TRAINING CNN MODEL

We additionally provide an experiment where we compare MoTEF against BEER and Choco-SGD
on ring and ER p = 0.6 topologies using CNN model on MNIST dataset. We use CNN model with two
convolution layers each followed by batch normalization, ReLU, and max pooling. The classification
layer is fully connected. We tune the stepsize for each algorithm from η ∈ {0.0001, 0.001, 0.01, 0.1}
and gossip stepsize γ ∈ {0.1, 0.9}. We demonstrate the performance of algorithms in Figure 6. We
observe that in both cases MoTEF achieves faster convergence w.r.t. both test accuracy and train loss
than competitors supporting our theoretical findings.
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Figure 6: Performance of MoTEF, BEER, and Choco-SGD on ring and ER p = 0.6 topologies in training
CNN model on MNIST dataset.
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Figure 7: Performance of MoTEF and CEDAS in training logistic regression with non-convex regularization on
LibSVM datasets.

D.6 COMPARISON AGAINST CEDAS

In this section, we consider the comparison against CEDAS algorithm. We demonstrate the per-
formance of MoTEF and CEDAS in the training of logistic regression with non-convex reg-
ularization used in Section 4.2. Similarly, we use LibSVM datasets. We tune the parame-
ters γ ∈ {10−3, 3 · 10−3, 10−2, 3 · 10−2, 10−1}, η ∈ {10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2, 3 ·
10−2, 10−1, 3 · 10−1, 100}, α ∈ {10−2, 3 · 10−2, 10−1, 3 · 10−1, 100} for CEDAS algorithm, and
{10−3, 3 ·10−3, 10−2, 3 ·10−2, 10−1}, η ∈ {10−4, 3 ·10−4, 10−3, 3 ·10−3, 10−2, 3 ·10−2, 10−1, 3 ·
10−1, 100}, λ ∈ {0.9, 0.8, 0.1} for MoTEF. We use Rand-K compressor for CEDAS and Top-K for
MoTEF both with K = 10, and mini-batch stochastic gradients with a batch size 16. We compare
the performance of algorithms on the ring topology with n = 10 and regularization parameter 10−1

averaging over 3 different random seeds. In Figure 7, we demonstrate the communication perfor-
mance of CEDAS and MoTEF with the best set of parameters. We observe that the performance
of MoTEF and CEDAS is similar on ijcnn1 and mushrooms datasets while MoTEF outperforms
CEDAS on a7a and a9a datasets.
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