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ABSTRACT

Visual Language Models (VLMs) have shown impressive abilities in understanding and gen-
erating multimodal content by integrating visual and textual information. Recently, language-
guided aerial navigation benchmarks have emerged, presenting a novel challenge for VLMs. In
this work, we focus on the utilization of navigation maps, a critical component of the broader
aerial navigation problem. We analyze the CityNav benchmark, a recently introduced dataset for
language-goal aerial navigation that incorporates navigation maps and 3D point clouds of real
cities to simulate environments for drones. We demonstrate that existing open-source VLMs
perform poorly in understanding navigation maps in a zero-shot setting. To address this, we
fine-tune one of the top-performing VLMs, Qwen2-VL, on map data, achieving near-perfect
performance on a landmark-based navigation task. Notably, our fine-tuned Qwen2-VL model,
using only the landmark map, achieves performance on par with the best baseline model in the
CityNav benchmark. This highlights the potential of leveraging navigation maps for enhancing
VLM capabilities in aerial navigation tasks.

1 INTRODUCTION

In context of huge advances in large language modeling research, more examples of successful knowledge transfer
between various modalities (Kar et al., 2024; Shi et al., 2024) and knowledge sources, specifically using VLMs,
appear in recent literature (Wang et al., 2023; Lin et al., 2024; Ma et al., 2024) providing promising grounds for
advances in AI (particularly foundtaion models) usage for unmanned aerial vehicle (UAV) control tasks. Also,
extensive research is being conducted trying to exploit VLM capabilities as an autonomus agent in various envi-
ronments, e.g. self-driving vehicles (Tian et al., 2024), GUI understanding (You et al., 2024; Hong et al., 2024).
However, applications of VLMs in aeral navigation tasks, particularly utilizing navigation maps, remain underex-
plored.

We also see growing number of various multimodal benchmarks covering various aspects of interest, e.g. multi-
modal reasoning (Yue et al., 2024), multilinguality (Liu et al., 2024c), safety (Liu et al., 2024b). In this work we
concentrate on language-guided navigation, specifically aerial navigation benchmarks. We chose CityNav (Lee
et al., 2024) for our experiments, we will discuss this decision in detail in Sec. 2. Before arriving at CityNav, we
considered several other available aerial navigation benchmarks.

{self.prompt}
[ActionSpace] {self.action space description} [/ActionSpace]
[History]
{history}
[/History]
Current navigation map: {self.predictor.IMAGE TOKEN}
Pick one of the following options.
[Options]
0) STOP
1) MOVE FORWARD
2) TURN RIGHT
3) TURN LEFT
[/Options]

Table 1: Context template used in zero-shot evaluations.
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AerialVLN (Liu et al., 2023) is a language-goal based aerial navigation benchmark, using unreal engine for it’s
flight simulation, which is not ideal in our case as it will eventualy fall into the sim-to-real gap. AerialVLN also
does not provide map information. We ultimately rejected AerialVLN because of the aforementioned reasons.

You are piloting a flying drone in a 3D space using verbal
instructions and a top-down navigation map.
The drone’s current position and orientation, which is represented by
a green arrow.
The arrow points in the direction the drone is currently facing.
Landmarks, which are highlighted in red on the map.
Your task is to analyze both the verbal instructions and the map
carefully to determine the drone’s next action.
Use the green arrow to understand the drone’s position and
orientation, and use the red landmarks as reference points for
navigation.
Provide only the number of your choice.

Table 2: Initial prompt.

AVDN (Fan et al., 2022) is another aerial navigation benchmark, which employs satelite imagery as a base for
simulations, but it is sub-par compared to CityNav as CityNav uses 3D scans of real cities in contrast to 2D
satelite images of AVDN. AVDN also contains significantly less number of trajectories (3k vs 32k in CityNav).
Other recently introduced benchmark is EmbodiedCity (Gao et al., 2024). Similar to AerialVLN it is based on a
graphical simulated environment, just in this case environment is based on real world (i. e. some parts of Beijing
were graphically modeled by human designers). Notable aspect of EmbodiedCity is that the overall benchmark
is diveded into subproblems, mainly first-view scene understanding, embodied question answering, dialogue, task
planning and embodied navigation. We think that this is a viable approach and will experiment on EmbodiedCity
in our future work.

We see our main contributions in this work to be the following:

• We closely analyse the CityNav dataset, particularly highlighting the exploitablity of the way landmark
maps are incorporated in the data. We also show that baseline models of Lee et al. (2024) are massively
underperforming and are unable to adequately utilize avaliable information.

• We show that without additional post-training current visual language models struggle to comprehend
navigation maps which can be a substantial hurdle in general navigation and planning tasks for VLMs.

• We successfully fine-tune Qwen2-VL on navigation map data, achieving almost perfect results in the
task of reaching landmarks on a given map. Notably our fine-tuned Qwen2-VL performs on par with best
baseline models from CityNav on benchmark evaluations using only the landmark map, disregarding
all the remaining information.

There are the following 4 actions: ’STOP’, ’MOVE FORWARD’, ’Turn
Right’, and ’Turn Left’.
The ’STOP’ action ends the agent’s navigation when it arrived at its
destination.
The ’MOVE FORWARD’ action advances the agent by 5 meters in the
direction it is facing.
’TURN LEFT’ and ’TURN RIGHT’ cause the agent to rotate 30 degrees
counterclockwise and clockwise, respectively.

Table 3: Action space description.

2 CITYNAV DATASET

In this work, we chose to focus on the CityNav (Lee et al., 2024) dataset for several reasons. First, it offers
trajectories operated by human pilots in an environment based on real aerial imagery, in contrast to simulation-
based datasets (Liu et al., 2023; Gao et al., 2024). Second aspect in favor of CityNav is the environment in which
the drone is operated. In contrast to data sets such as AVDN (Fan et al., 2022), which uses already projected 2D
satellite imagery, CityNav uses 3D point clouds (Hu et al., 2022) (which can be loaded into AirSim (Shah et al.,
2018) ) to render more realistic drone flight simulations. We believe one of the main disadvantages of the CityNav
dataset is the way Landmarks are used in direction instructions and generated maps. We will discuss this further in
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Section 2.1. Another argument in favor of CityNav is the raw number of trajectories, more than 32K here, which
we believe is the only publicly available human-curated instruction-based aerial navigation dataset of this scale
that has aformentioned qualities.

Figure 1: These landmark maps show intermediate steps of a successfull trajectory from validation set generated
by following the actions chosen by Qwen-SP. The images are ordered from left to right and top to bottom. The
arrow size has been artificially increased for better visualization.

2.1 GREEDY SOLUTION

A specific aspect of the CityNav dataset we think is worth looking into is the Landmarks. In Lee et al. (2024) we
see that the baseline model has a Navigation Map as an input, which mainly consists of information from off the
shelf models (e.g. GroundingDino (Gao et al., 2024), MobileSam (Zhang et al., 2023), LLaVa (Liu et al., 2024a))
and a landmark map, which essentially shows where the landmarks described in text instruction (e. g. street or
building names) are located on the map in relation to the agent. We think this can be easily exploited which will
undermine all other parts of their model (off the shelf models, RGB and Deapth image processors, etc.). To support
this claim we introduce a Dummy Landmark based Goal Predictor, which will ignore all the other inputs and
take into account only the landmark map. For every task as it’s prediction DLGP will calculate the center of mass
of the landmark map, i. e. the average contour points of all the landmarks mentioned in text instruction. In Table
4 you can see the results achieved by DLGP compared to the best model from Lee et al. (2024). Numbers from
Lee et al. (2024) are cited, not reproduced. In Table 4 we can see that DLGP significantly outperforms the best
baseline model from Lee et al. (2024) across all data splits, indicating the significant underperformance of the
baseline models. In the following sections we will talk about our work on CityNav.

Table 4: Results of Zero-Shot experiments (except for MGP, which is the best result from Lee et al. (2024)).
Success is measured with respect to actual CityNav target.

Model Validation Seen Validation Unseen Test Unseen
SR OSR NE SR OSR NE SR OSR NE

MGP Lee et al. (2024) 8.69 35.51 59.7 5.84 22.19 75.1 6.38 26.04 93.8

DLGP 25.17 25.17 48.00 21.70 21.70 51.13 33.46 33.46 53.23
Qwen2-VL 0.82 5.26 195.86 0.86 4.16 205.93 1.32 6.63 185.98

LLaVA-NeXT-Interleave 0.0 12.29 466.50 0.0 10.94 455.30 0.0 14.31 466.55

Table 5: Results of Zero-Shot experiments. Success is measured with respect to landmarks mentioned in directions
(not actual interest point).

Model Validation Seen Validation Unseen Test Unseen
SR OSR NE SR OSR NE SR OSR NE

DLGP 92.87 92.87 9.42 90.99 90.99 9.98 87.82 87.82 13.14
Qwen2-VL 10.93 23.63 146.93 7.83 18.48 156.15 9.93 21.36 148.72

LLaVA-NeXT-Interleave 0.0 48.85 412.03 0.0 42.02 405.11 0.0 46.11 422.06

3 ZERO-SHOT EXPERIMENTS

We specifically selected Qwen2-VL and LLaVA-NeXT-Interleave from the available open-source models for our
experiments due to their training on multiple image-text inputs. This choice aligns with the nature of our task,
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where the model must process a new input image at each step, reflecting its current navigation state. All experi-
ments were conducted using the 7B versions of these models. Tables 1, 2 and 3 present the template and initial
prompt used for zero-shot next-action prediction. We followed the standard evaluation protocols from Lee et al.
(2024), assessing navigation performance using Navigation Error (NE), Success Rate (SR), and Oracle Success
Rate (OSR). NE quantifies the final Euclidean distance in meters between the agent’s stopping position and the
goal. SR measures the proportion of episodes where the agent successfully halts within 20 meters of the destina-
tion. OSR is the proportion of episodes in which the agent’s trajectory, at any point, comes within 20 meters of the
target location. We conducted our experiments with a context length of 10, providing the model with the last 10
landmark maps, including the current view. The maximum number of steps was set to 120, which was sufficient
to reach any point in all episodes.
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Figure 2: Distance to closest landmark during the flight trajectories accross difficulty splits of CityNav unseen test
set. Each line on a plot is a simulated drone path controlled by Qwen-SP. Episodes are sampled randomly.

Table 4 summerizes main results of Zero-Shot experiments. You can see both Qwen2-VL and LLaVA-NeXT-
Interleave perform poorly across all difficulty levels. We also evaluated both models using Landmark metrics, i.
e. we interpret the landmark as our point of interest. For landmark metrics we use 30 meters to measure success
as the arrow we use (see Fig. 1) overlaps with the landmark from 30 meters (agent is considered to be at the center
of the arrow, not at the point). Results are shown in Table 5

We observe that modern visual language models struggle with understanding absolute and relative directions. Even
simple tasks, such as determining the direction in which an arrow is pointing, were challenging for the models
to comprehend and answer correctly. As a result, our focus shifted toward teaching models to follow instructions
and analyze interleaved map and text input to determine the next move using the landmark map.

Table 6: Results of Finetuning experiments. Success is measured with respect to actual interest point. In this case
models were prompted only to reach the landmark. ’SP’ stands for ’shortest path’, ’HD’ - ’human driven’

Model Validation Seen Validation Unseen Test Unseen
SR OSR NE SR OSR NE SR OSR NE

MGP (Lee et al., 2024) 8.69 35.51 59.7 5.84 22.19 75.1 6.38 26.04 93.8

Qwen-SP 6.62 9.33 78.52 7.14 9.33 80.68 6.26 9.64 96.40
Qwen-HD 4.65 7.61 109.53 5.77 8.39 110.96 5.48 9.43 140.42

Qwen-SP w/ Frozen ViT 5.06 8.22 103.36 5.60 8.54 114.32 5.46 9.23 142.36
Qwen-HD w/ Frozen ViT 4.48 7.36 144.69 4.45 7.03 159.61 4.53 8.26 185.18

Table 7: Results of Finetuning experiments. Success is measured with respect to landmarks mentioned in direc-
tions (not actual interest point). ’SP’ stands for ’shortest path’, ’HD’ - ’human driven’

Model Validation Seen Validation Unseen Test Unseen
SR OSR NE SR OSR NE SR OSR NE

DLGP 92.87 92.87 9.42 90.99 90.99 9.98 87.82 87.82 13.14

Qwen-SP 95.64 96.40 20.45 95.68 96.71 21.82 93.83 95.82 25.43
Qwen-HD 84.83 86.01 46.65 86.42 87.66 48.66 81.34 83.94 57.00

Qwen-SP w/ Frozen ViT 78.05 81.36 42.19 76.21 80.67 52.14 74.55 79.15 56.38
Qwen-HD w/ Frozen ViT 71.51 75.49 84.85 66.29 71.01 101.46 64.20 69.84 111.44
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4 FINETUNING EXPERIMENTS

We finetuned Qwen2-VL 7B for this task using the HuggingFace TRL library. We assumed that the drone has
reached a landmark if it is within 30 meters of it. To generate the dataset for reaching landmarks, we applied the
following steps. First, we filtered the training trajectories, retaining only those that contained a position within
20 meters of a landmark, which resulted in keeping 80% of the trajectories. Next, all positions following this
identified position were removed, and the corresponding action was modified to ’STOP’.

For imitation learning, we utilized both shortest path and human demonstration trajectories and refer to the result-
ing models as Qwen-SP and Qwen-HD, correspondingly. We conducted both full fine-tuning and fine-tuning with
a frozen ViT.

Training was carried out with a peak learning rate of 5 × 10−5, employing a cosine learning rate scheduler with
warmup. The model was trained with a batch size of 2 per GPU across 8 NVIDIA H100 GPUs. We trained with
a context length of 32 and a map size of 112×112 to ensure the model captures sufficient spatial information for
navigation.

Result are shown on Tables 6 and 7. We see two important points here. First in Table 7 we see that Qwen-
SP outperforms DLGP, which indicates nearly perfect performance. Second, in Table 6 we see that Qwen-SP
performes on par with MGP from Lee et al. (2024), indicating strong underperformance of current baseline models
on CityNav. In Table 6 we can also see two minor trends. First, shortest path guidance always outperformes
human guidance. It is worth noting that in Lee et al. (2024) they observed an opposite trend. Secondly, in all our
experiments freezing visiual encoding, ViT to be specific, seems to harm overall final performance.

Figure 2 illustrates the distance to the closest landmark during flight trajectories, providing insight into how Qwen-
SP navigates across different difficulty splits of the CityNav unseen test set.

5 CONCLUSION AND FUTURE WORK

We demonstrated that modern vision language models struggle with seemingly trivial understanding of the sim-
plest navigation map. To tackle this problem we fine-tuned Qwen2-VL 7B (Wang et al., 2024) on navigation map
data and were able to successfully demonstrate that using simple supervised fintuning procedure Qwen2-VL is
able to not only comprehend the navigation maps, but also make accurately informed action predictions based on
provided maps. We also performed rigorous analysis of CityNav dataset, showing some of its exploitabilities. In
future we plan to continue training VLMs as aerial navigation agents and explore other post-training recepies to
enhance not only map-based action prediction, but other neccessary skills for general aerial text instruction-based
navigation task.

ACKNOWLEDGEMENTS

This work was supported by the Higher Education and Science Committee of RA (Research project No 24RL-
1B049). Hakob Tamazyan’s work was supported by Yandex Armenia fellowship.

REFERENCES

Yue Fan, Winson Chen, Tongzhou Jiang, Chun Zhou, Yi Zhang, and Xin Eric Wang. Aerial vision-and-dialog
navigation. arXiv preprint arXiv:2205.12219, 2022.

Chen Gao, Baining Zhao, Weichen Zhang, Jinzhu Mao, Jun Zhang, Zhiheng Zheng, Fanhang Man, Jianjie Fang,
Zile Zhou, Jinqiang Cui, et al. Embodiedcity: A benchmark platform for embodied agent in real-world city
environment. arXiv preprint arXiv:2410.09604, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao
Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14281–14290, 2024.

Qingyong Hu, Bo Yang, Sheikh Khalid, Wen Xiao, Niki Trigoni, and Andrew Markham. Sensaturban: Learning
semantics from urban-scale photogrammetric point clouds. International Journal of Computer Vision, 130(2):
316–343, 2022.
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