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ABSTRACT

Vision-language models (VLMs) are increasingly being adopted for end-to-end
autonomous driving systems due to their exceptional performance in handling
long-tail scenarios. However, current VLM-based approaches suffer from two
major limitations: 1) Some VLMs directly output planning results without chain-
of-thought (CoT) reasoning, bypassing crucial perception and prediction stages
which creates a significant domain gap and compromises decision-making ca-
pability; 2) Other VLMs can generate outputs for perception, prediction, and
planning tasks but employ a fragmented decision-making approach where these
modules operate seperately, leading to a significant lack of synergy that un-
dermines true planning performance. To address these limitations, we pro-
pose AutoDrive-P3, a novel framework that seamlessly integrates Perception,
Prediction, and Planning through structured reasoning. We introduce the P3-C'oT
dataset to facilitate coherent reasoning and propose P3-G RPQO, a hierarchical re-
inforcement learning algorithm that provides progressive supervision across all
three tasks. Specifically, AutoDrive-P3 progressively generates CoT reason-
ing and answers for perception, prediction, and planning, where perception pro-
vides essential information for subsequent prediction and planning, while both
perception and prediction collectively contribute to the final planning decisions,
enabling safer and more interpretable autonomous driving. Additionally, to bal-
ance inference efficiency with performance, we introduce dual thinking modes:
detailed thinking and fast thinking. Extensive experiments on both open-loop
(nuScenes) and closed-loop (NAVSIMv1/v2) benchmarks demonstrate that our
approach achieves state-of-the-art performance in planning tasks.

1 INTRODUCTION

Autonomous driving aims to predict trajectories that are both comfortable and collision-free by
leveraging environmental and ego-vehicle information. Traditional approaches decouple the au-
tonomous driving pipeline into three independent stages: perception (Li et al., 2024c; |Liang et al.
2022)), prediction (Zhou et al., [2023} [Shi et al., 2024)), and planning (Huang et al.,2024b; |Liu et al.,
2025)). However, these module design often leads to error accumulation, which significantly de-
grades the final trajectory quality. Recent years have witnessed significant advancements in end-to-
end training for autonomous systems (Hu et al.,[2023}2022; Jiang et al., 2023), as shown in Fig.Eka).
Nevertheless, these small-scale end-to-end models are constrained by limited dataset size and model
capacity, resulting in a lack of world knowledge and poor performance in long-tail scenarios.

To address long-tail scenarios, recent works (Tian et all [2024; |Wang et al.| 2024} Zhou et al.,
2025alb; [Yuan et al., 2025)) introduce Vision-Language Models (VLMs) into autonomous driving.
Leveraging large-scale pre-training, VLMSs show strong adaptability to diverse scenarios. However,
current VLM-based end-to-end systems face three key limitations: 1) Lack of Chain-of-Thought
(CoT) supervision: VLM-based systems benefit from CoT, but some VLMs directly output trajec-
tories (Fig.[T(b)), limiting reasoning for decision-making. 2) Lack of multi-task synergy: Although
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Figure 1: The difference between AutoDrive-P> and other paradigms. Our method combines
an end-to-end training framework with a three-stage collaborative supervision form with VLM.

most VLMs (Zhou et al.,[2025a; Wang et al.| 2024)) can answer perception, prediction, and planning
queries (Fig.[Ifc)), they treat these tasks seperately, resulting in poor synergy and weak planning. 3)
Planning-only GRPO supervision: Existing Group Relative Policy Optimization (GRPO) applica-
tions optimize only planning metrics such as L2 distance or closed-loop performance (Zhou et al.,
2025b; |Yuan et al., [2025)), leaving perception and prediction without direct supervision. This yields
superficial gains, limited interpretability, and unreliable planning.

We argue that these limitations lies in the failure to capture the staged CoT process across percep-
tion, prediction, and planning. Autonomous driving fundamentally requires these three stages to
work in synergy, where accurate perception enables reliable prediction, and both are indispensable
foundations for robust planning. However, conventional approaches with planning-only optimiza-
tion neglect this interdependence, treating perception and prediction as byproducts rather than core
components. Accordingly, we reconsider the role of GRPO in autonomous driving. Rather than re-
stricting supervision to the planning stage alone, GRPO should be extended to explicitly encompass
perception, prediction, and planning within a unified chain. Such a formulation ensures synergistic
interactions across three modules and promotes coherent reasoning throughout the entire pipeline.

To address above fundamental limitations, we propose a novel three-module supervised GRPO algo-
rithm specifically designed for the AutoDrive-P3 framework, as illustrated in Fig. d), which uni-
fies Perception, Prediction, and Planning into a cohesive architecture. The AutoDrive-P? frame-
work is capable of not only answering perception and prediction queries but also enhancing plan-
ning performance through synergistic interactions among all three modules. During the Supervised
Fine-Tuning (SFT) stage, we train the model using our proposed P3-CoT dataset, resulting in the
AutoDrive-P? base model. This model can generate responses following a structured perception-
prediction-planning CoT format, thereby reducing the domain gap between VLMs and autonomous
driving systems. Subsequently, inspired by the GRPO algorithm (Shao et al.,[2024;|Guo et al.,[2025;
Zhang et al., 2025), we propose P3-G RPO algorithm, which is a novel hierarchical and progres-
sive optimization reinforcement fine-tuning (RFT) method that provides explicit supervision across
perception, prediction, and planning modules. The P3-G RPO algorithm not only improves the ac-
curacy of perception and prediction but also significantly enhances the model’s planning capability
by ensuring coherent and context-aware decision-making.

We extensively evaluate AutoDrive-P? using real-world datasets, including the closed-loop
NAVSIMv1/v2 (Dauner et al., 2024} (Cao et al., 2025) and the open-loop nuScenes (Caesar et al.,
2020). Experimental results demonstrate that AutoDrive-P? achieves superior performance across
various end-to-end autonomous driving benchmarks under both open-loop and closed-loop settings.
More importantly, experimental results validate that our proposed P3-GRPQO algorithm signifi-
cantly enhances planning performance through its hierarchical and progressive supervision mecha-
nism, which systematically improves perception and prediction capabilities and consequently leads
to more reliable and accurate planning decisions. Additionally, to balance inference efficiency with
performance, we introduce dual thinking modes: detailed thinking and fast thinking. The main
contributions of this paper are summarized as follows:

1. We present AutoDrive-P3, an end-to-end vision-language driving framework that re-
solves a key limitation of current VLMs by explicitly capturing the relationship between
perception, prediction, and planning in autonomous driving.

2. We introduce a three-module supervised P3-G'RPO algorithm that provides hierarchical
and progressive optimization across perception, prediction, and planning tasks, signifi-



Under review as a conference paper at ICLR 2026

cantly enhancing reasoning coherence and planning reliability by our proposed P3-CoT
dataset. Additionally, to balance efficiency with performance, we introduce dual thinking
modes: detailed thinking and fast thinking.

3. We demonstrate that AutoDrive-P? achieves state-of-the-art performance on multiple au-
tonomous driving benchmarks, including both open-loop and closed-loop tests, underscor-
ing the effectiveness and generality of our approach.

2 RELATED WORK

2.1 END-TO-END AUTONOMOUS DRIVING METHODS

Autonomous driving systems have transitioned from traditional modular designs—featuring decou-
pled perception, prediction, and planning modules—toward end-to-end learning frameworks. Rep-
resentative methods such as UniAD (Hu et al.,2023), ST-P3 (Hu et al., 2022) and VAD (Jiang et al.,
2023) integrate these tasks into a single model trained jointly, improving planning performance.
DiffusionDrive (Liao et al.||2025)) integrates diffusion into trajectory planning, and WoTE (Li et al.
2025) leverages a BEV-based world model to predict future agent states, enabling online trajectory
evaluation and selection. Though end-to-end autonomous driving methods make great progress,
they still suffer from a lack of world knowledge and poor performance in long-tail scenarios.

2.2  VLM-BASED AUTONOMOUS DRIVING METHODS

Due to the limited capacity of such compact models and their constrained semantic understanding
of complex environments, recent efforts increasingly incorporate Vision Language Models (VLMs)
into driving systems. Approaches including DriveVLM (Tian et al.| [2024), EMMA (Hwang et al.,
2024), VLM-AD (Xu et al.,[2024), OpenEMMA (Xing et al.,2025), OmniDrive (Wang et al., [2024]),
OpenDriveVLA (Zhou et al., 2025a), and AutoVLA (Zhou et al., 2025b)) benefit from VLMs’ rich
world knowledge and reasoning capabilities, demonstrating strong performance in driving scenar-
ios. Nonetheless, while these methods are capable of answering QA-style queries about perception,
prediction, and planning, they often address each task in a fragmented manner rather than through
unified modeling. This lack of integration prevents the planning module from fully leveraging per-
ceptual and predictive features, ultimately limiting overall planning performance.

2.3  GROUP RELATIVE PoLICY OPTIMIZATION

The Group Relative Policy Optimization (GRPO) algorithm (Shao et al.| |2024; |Guo et al.| [2025)),
introduced by DeepSeek, has demonstrated strong potential in enhancing the reasoning capabili-
ties of Large Language Models (LLMs). With Vision-R1 (Huang et al., 2025)) applying GRPO to
Vision-Language Models (VLMs) and R1-VL (Zhang et al., 2025) further adopting step-wise re-
ward mechanisms, GRPO has proven effective in improving VLM-based reasoning. In the context
of autonomous driving, several works, such as AutoVLA (Zhou et al|[2025b), Plan-R1 (Tang et al.,
20235), AlphaDrive (Jiang et al., 2025), and AutoDrive-R? (Yuan et al., 2025), have successfully
incorporated GRPO to enhance the performance of driving-oriented VLMs. While these methods
achieve notable results, they primarily rely on supervised learning only on the final planning out-
puts, without reinforcing perception and prediction modules through reward guidance. This narrow
focus limits the synergistic effects between reasoning and low-level control, thus constraining the
full potential of integrated planning capabilities.

3 PRELIMINARIES

VLM-based End-to-end Autonomous Driving Problem Formulation. We model end-to-end au-
tonomous driving as mapping inputs to a trajectory Traj = {(x¢,y:)}1_o, Where (z¢,y;) is the
ego vehicle’s position at time ¢. Given ego state E, sensor data S, and commands C, the trajectory
distribution is autoregressively factorized as:

T
P(Traj | EaSa C) = HP((xtayt) ‘ E?Sa Ca ($07y0)7- R} (xt—lvyt—l))- (1)
t=0
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Figure 2: Overview of AutoDrive-P3. It processes video and ego vehicle data through structured
Perception-Prediction-Planning Chain-of-Thought (P3-C'oT) reasoning, generating interpretable
step-by-step rationale and structured outputs for perception, prediction, and planning.

This formulation integrates all inputs to predict future positions sequentially, capturing temporal
dependencies in a unified end-to-end framework.

Group Relative Policy Optimization (GRPO). GRPO improves learning stability by removing the
dependence on a value function and optimizing a group-level, sample-wise objective (Shao et al.,
. For each question-answer pair (g, a), the behavior policy 7y, generates a group of G re-
sponses {oi}iG:l. The normalized advantage for the i-th response at step ¢ is computed as:

. R; — mean({Rj}jG:l)
Aip = G ) 2)
std({R; }j:1)
where R; is the reward of the i-th response. The GRPO objective integrates a clipped surrogate loss
with a KL penalty term:

G
1
JGRPO(Q) = Eq,{oi}r\/ﬂ'guld(om) 5 Z (LZR - ﬁDKL(ﬂ-QHﬂ-ref)) 5 (3)
=1
T = min (’T"("”q) Ay, clip (”9(0”‘1) -1+ e) Ai) . )
T4 (Oi |Q) T4 (Oi |(])

By leveraging diverse responses sampled from the model itself, GRPO enhances the model’s rea-
soning capability through exposure to varied reasoning paths and solutions.

4 METHODOLOGY

In this section, we propose the AutoDrive-P? framework, which integrates Perception, Prediction,
and Planning for autonomous driving. Existing VLM-based datasets offer only fragmented QA
pairs, unsuitable for GRPO training. To solve this, we create the P3-CoT dataset with unified CoT
sequences linking the three tasks. We then perform supervised fine-tuning for cold-start initialization
to align VLMs with the autonomous driving domain and generate accurate P3-CoT outputs. Finally,
the P3-GRPO algorithm is introduced for post-training, providing hierarchical supervision and
enabling collaborative optimization across modules to improve planning via iterative CoT reasoning.
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Figure 3: The pipeline for constructing P3-CoT dataset. We first sample data and annotations
from existing datasets, then construct the labels of samples, focusing on key objects and using rule-
based and manual filtering. Finally, with the help of advanced VLM, we construct the CoT, focusing
on the connection among perception, prediction and planning three stages.
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4.1 P3-CoT DATASET

To cover all the thinking steps of human drivers and meet the need of VLMs, a high quality reason-
ing dataset with key objects and detailed CoT annotations is strongly recommended. However, the
following key challenges remain to be addressed: 1) lack of completed and comprehensive key ob-
ject annotations, 2) requirements of unified chain of thought datasets for perception, prediction and
plannning, 3) a proper CoT format suitable for VLM training instead of question-and-answear pairs.
To address these issues, we propose P3-CoT dataset, a high-quality key objects’ labels with CoT
designed for VLM GRPO post-training, as shown in Fig. [3] We first identify and annotate critical ob-
jects in each key frame of the original dataset based on their potential impact on vehicle navigation,
marking their bounding boxes as perception labels. We then derive prediction labels by projecting
these critical objects’ future trajectories. Finally, planning labels are obtained from the ego vehicle’s
planned trajectory. With these three-stage labels, we employ Qwen2.5-VL-72B
to generate coherent CoT data that seamlessly connects all three stages, with manual verification
to ensure the correctness and logical integrity of the synthesized reasoning chains. Employing this
annotation pipeline, we organize a high-quality and comprehensive CoT dataset with key object an-
notation and a unified P> arthchitecture in CoT format. P3-CoT includes 25303 frames from 850
scenes based on nuScenes, and 115434 frames from 1382 scenes based on NAVSIM. Additional
description, statistics, and examples are attached in Appendix [B]

Furthermore, we highlight that the proposed P3-C'oT dataset benefits the model at both the holistic
and modular levels. From a holistic perspective, the sequential reasoning process—from perception
to prediction, and then to planning—guides the model in developing coherent and strategic driving
behaviors. At the modular level, the specialized CoTs for perception, prediction, and planning
respectively enhance the model’s accuracy and reliability in executing each subtask. Comprehensive
experiments in Section 3] validate these benefits across both levels.

4.2 SUPERVISED FINE-TUNING FOR COLD-START

To equip a VLM with autonomous-driving knowledge and structured reasoning capabilities, we con-
duct supervised fine-tuning (SFT) using the proposed P3-CoT dataset. As illustrated in Fig.[2] the
model processes multimodal inputs x = [xego; Tyideo; Lemd; xpmmpt] and learns to generate structured
outputs organized into perception, prediction, and planning modules. The target output follows a
unified format for each module:

Y= [yperception§ Yprediction ; yplanning]a where  Ymodule = [ythinking; yanswer}- )

This approach enables the model to produce coherent reasoning traces followed by concrete answers,
establishing a foundational capability for Chain-of-Thought reasoning across all three autonomous
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Figure 4: The pipeline of P3-G RPO. We first cold start the base model using P3-C'oT to make up
for the gap between VLM and autonomous driving and learn the CoT answer format. Next we use
GRPO to find the best optimization path and update our model.

driving stages. The training objective minimizes the negative log-likelihood of the target sequence:
T
Lspr = — Zlog Py | y<t, @), (6)
t=1
where T is the total length of the target sequence. After cold-start SFT, the VLM acquires essential
driving capabilities and produces interpretable P3-C'oT outputs that enhance both transparency and
performance, forming a solid basis for subsequent reinforcement learning.

4.3 P3-GRPO ALGORITHM

Following the cold-start SFT phase, we further enhance the VLM’s reasoning capability across all
three stages by applying the GRPO algorithm to the perception, prediction, and planning modules
collectively, yielding the P3-G RPO algorithm, as shown in Fig. 4, Our approach employs a multi-
component reward function to guide the policy model toward generating accurate, coherent, and
well-structured outputs through coordinated reinforcement learning across these cognitive layers.
The overall reward is computed as a weighted sum of the following components:

R(CL CL) = )\format ) Rformat + /\perc : Rperc + )\pred : Rpred + )\plan : Rplany (7)

where Aformats Apercs Apred> and Apjan are weighting coefficients for each reward term. This integrated
reward structure explicitly encodes the causal relationship between modules: perception enables
prediction, and together they provide the necessary foundation for effective planning. By simul-
taneously optimizing together, our approach ensures that improvements in planning accuracy are
grounded in corresponding enhancements in perceptual understanding and predictive capability.

Perception Reward (/2,erc) measures object detection quality based on average IoU, precision (P),
and recall (R), which encourages accurate and spatially precise perception, enabling reliable predic-
tion and planning reasoning:

1.0, if [By| = 0 and | Bprea| = 0,
Rpere = { 10Uy - (0.5P + 0.5R), if |By| > 0 and |Byea| > 0, ®)
0.0, otherwise.

Prediction Reward (Rreq) evaluates forecasting accuracy by combining behavior label correctness
weighted by IoU and detection quality, which links perceptual accuracy with semantic correctness
to foster robust prediction:

> jyem 10U - I(si = s5)
Riored = - X (IoUyy - (0.5P 4+ 0.5R)) . )
pre ( Z(i’j)eM IOUi]’ avg
Planning Reward (Rpian) quantifies trajectory quality via L2 distance:
2
Rplan = (10)

1 + ¢clip(L2,0,L2ma) °
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Algorithm 1 P3-G RPO: Perception-Prediction-Planning Group Relative Policy Optimization

Require: Policy model my with P3-CoT’; dataset D = {Q,}2_;; reward weights Aformats Apercs
Apreds Aplan; KL constraint 3; clip param e.
Ensure: Optimized policy model 7y
1: for iter = 1 to Ngj. do

Aggregate reward: R; = Agormat Ropmae + )\me;m + )\prede,red + Aplan R,

i
plan

2:  Sample query Q ~ D

3:  Generate group of responses {a; }, ~ 7 (-|Q)

4: fori=1to M do

5: Parse a; into perception, prediction, planning components
6: Compute rewards: R}mma[, Rgerc, Rfmd, ;lan

7:

8:

end for
9:  Compute mean R = & >, R;andstd or = /4 >, (R; — R)?
10: fori=1to M do

11: Normalize advantage: A; = R(’,;R

12:  end for '

13:  fori=1to M do

14: Compute ratio r; = ;‘Td(&’i‘%))

15: Surrogate objective: J; = min (r; 4;, clip(r;, 1 — €, 1+ e)Ai)
16:  end for

17 Compute policy loss: Lyolicy = —% >, Ji, KL penalty: Ly = SDki (|| mrer)
18:  Update 7y via gradient descent on Lpglicy + LxL

19: end for

20: return Ty

Table 1: Performance comparison on nuScenes Benchmark.

L2 (m) | Collision (%) |

Method Is 2s 35 Avg. s 2s 3s  Avg. ViM

Non-Autoregressive Methods

ST-P3 (Hu et al.|[2022) 1.33 211 290 211 023 062 127 0.71 -
VAD (Jiang et al.|[2023) 0.17 034 060 037 0.07 0.10 024 0.14 -
Ego-MLP (Li et al.[[2024d) 046 0.76 1.12 0.78 021 035 0.58 0.38 -
UniAD (Hu et al.[[2023) 044 0.67 096 0.69 0.04 0.08 023 0.12 -
InsightDrive (Song et al.|[2025) 0.23 041 0.68 044 0.09 0.10 0.27 0.15 -
Autoregressive Methods
GPT-Driver (Mao et al.|[2023) 0.20 040 070 044 0.04 0.12 036 0.17 GPT-3.5
DriveVLM (Tian et al.[[2024) 0.18 034 068 040 0.10 022 045 027 Qwen2-VL-7B
OpenEMMA (Xing et al.|[2025) 145 321 376 281 - - - - Qwen2-VL-7B
RDA-Driver (Huang et al.||2024a) 0.17 037 069 040 0.01 0.05 026 0.10 LLaVa-7B
OmniDrive (Wang et al.||[2024) 0.14 0.29 055 033 0.01 0.04 027 0.11 LLava-7B
OpenDriveVLA (Zhou et al.[[2025a) 0.14 0.30 0.55 033 0.02 0.07 022 0.10 Qwen2.5-VL-3B
AutoVLA (Zhou et al.[[2025b) 0.25 046 073 048 0.07 007 026 0.13 Qwen2.5-VL-3B
AutoDrive-R? (Yuan et al.[[2025) 035 049 0.62 049 - - - - Qwen2.5-VL-3B
AutoDrive-P? (Ours-Detailed) 0.15 030 0.54 033 0.00 0.02 015 0.06 Qwen2.5-VL-3B
AutoDrive-P? (Ours-Fast) 0.16 031 056 034 0.00 0.04 020 0.08 Qwen2.5-VL-3B

These rewards together form a coordinated learning signal that promotes synergy among perception,
prediction, and planning, ultimately driving accurate and interpretable autonomous driving behavior.
The complete algorithmic procedure is summarized in Algorithm [I] Detailed formulations and
comprehensive analyses of each reward component are provided in the Appendix

5 EXPERIMENTS

5.1 BENCHMARKS

nuScenes (Caesar et al.,2020). The nuScenes dataset comprises 1,000 real-world driving sequences.
Following established evaluation protocols in related works (Hu et al., 2023} [Jiang et al.| 2023
Wang et al., 2024} [Zhou et al.| 2025a), we adopt two key metrics for planning performance: L2
displacement error and collision rate, using the same ST-P3 (Hu et al., 2022) metric settings.

NAVSIM (Dauner et al.| |2024; Cao et al., |2025). To address the limited complexity of nuScenes,
we further validate our approach using the NAVSIM benchmark. NAVSIMv1 (Dauner et al., [2024))
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Table 2: Performance comparison on NAVSIMv1 benchmark.

Method Image Lidar NCt DACt EP{ TTC{ Comff PDMS}
100.0 1000 87.5 1000  99.9 94.8

69.9 58.8 493 493 100.0 21.6
93.0 773 628 836 100.0 65.6
97.9 91.7 776 929 100.0 83.0
97.8 919 788 929 100.0 83.4
97.4 928 79.0 924 100.0 83.8
91.7 928 792 928 100.0 84.0
97.9 924 793 930 99.8 84.0
96.4 954 817 887 99.9 84.6
98.0 93.1 80.1 948 100.0 85.5
98.3 96.0 787 94.6 100.0 86.5
98.2 962 822 947 100.0 88.1
98.5 96.8 819 949 99.9 88.3

99.1 974 848 96.5 100.0 90.6
98.9 97.7 837 96.6 99.9 90.2

R

Human X

Constant Velocity

Ego Status MLP

VADvV2 (Weng et al.||2024)
UniAD (Hu et al.|[2023)

LTF (Prakash et al.|[2021)
TransFuser (Prakash et al.||[2021)
PARA-Drive (Weng et al.|[2024)
LAW (Li et al.|[2024a)

DRAMA (Yuan et al.|[2024)
Hydra-MDP (L1 et al.|[2024b)
DiffusionDrive (Liao et al.|[2025)
WOoTE (Li et al.|[2025)

AutoDrive-P3? (Ours-Detailed)
AutoDrive-P? (Ours-Fast)

AN NI N N N N U N N N
X% [ VR KX QXX XXX

employs a simulation environment and uses the Predictive Driver Model Score (PDMS) for closed-
loop evaluation. The PDMS is a composite metric defined as:

5><EP+5><TTC+2><Comf>

Y

PDMS = NC x DAC x ( 12

where the components include No Collision (NC), Drivable Area Compliance (DAC), Ego Progress
(EP), Time-to-Collision (TTC), and Comfort (Comf). In addition, NAVSIMv2 (Cao et al., [2025)
offers a more comprehensive metric, named Extended Predictive Driver Model Score (EPDMS):
5XEP+5XxTTC+2x LK+ 2 x HC+2 x EC
12

EPDMS = NC x DAC x DDC x TLC x (

(12)
where the components include Driving Direction Compliance (DDC), Traffic Light Compliance
(TLC), Lane Keeping (LK), History Comfort (HC), Extended Comfort (EC) and other metrics are
the same as PDMS. To reduce false positive penalties, NAVSIMv2 sets “human_penalty_filter” to
true, disabling penalties when the human agent makes a violation; otherwise, it is set to false.

Table 3: Performance comparison on NAVSIMv2 benchmark.

Method NCt DACt DDCt TLCI EPT TICt LKt HCI ECt pop ?}Vﬁ_fm
Fuman 1000 1000 998  100.0 874 100.0 1000 98.1 90.1 90.3/945
Ego Status MLP 931 779 927 996 860 915 894 983 854  64.0/-

Transfuser (Prakash et al.|[2021) 96.9 89.9 97.8 99.7 87.1 954 9277 983 872 76.7/84.0
HydraMDP++ (Li et al.|[[2024b) 97.2 97.5 99.4 99.6  83.1 96.5 944 982 709 81.4/-
DiffusionDrive (Liao et al.[|2025)  98.2 96.2 99.5 998 874 973 969 984 87.7 84.7/882

WOoTE (Li et al.||2025) 98.5 96.8 98.8 998 86.1 979 955 983 829 84.2/877
AutoDrive-P? (Ours-Detailed) 99.1 97.4 99.2 998 83.0 987 963 983 855 86.2/89.9
AutoDrive-P? (Ours-Fast) 989  97.6 98.9 998 86.8 985 954 983 806 85.2/88.7

5.2 IMPLEMENTATION DETAILS

nuScenes Benchmark. Model inputs consist of 3-second video clips composed of 6 frames, drawn
solely from the front-view camera. Images are resized to a resolution of 448x252. The ego-state
information provided is only ego speed. The model is trained for 10 epochs with a batch size of 8.

NAVSIM Benchmark. Model input is constructed from 2-second video segments containing 4
frames, combining the front, front-left, and front-right camera views, which is then resized to
672x168. The ego-state information includes the longitudinal and lateral velocity and acceleration
components (i.e., Uz, Uy, Gz, Gy). The model is trained for 10 epochs with a batch size of 32.

Shared Settings. We use Qwen2.5-VL-3B (Bai et al.| 2025) as base model. All models are op-
timized using the AdamW optimizer across 8 A100 GPUs. During training with P3-GRPO, 8
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Table 4: Ablation study on AutoDrive-P? on nuScenes Benchmark.

Planning (Collision, %) |

Method Perception T Prediction T Is 2 35 Avg.
UniAD (Hu et al.|[2023) 0.32 0.31 0.04 0.08 023 0.12
OmniDrive (Wang et al.|[2024) 0.37 - 0.01 0.04 027 0.11
AutoDrive-P? (Only SFT) 0.33 0.23 0.01 0.08 040 0.17
AutoDrive-P? (SFT + Only Planning GRPO) - - 0.03 0.08 024 0.12
AutoDrive-P? (SFT + P3-GRPO) 0.64 0.54 0.00 0.02 0.15 0.06

Table 5: Ablation study on different training setting on nuScenes benchmark.

Group History Sensor L2 (m) | Collision (%) |
Method Size Traj. Type Is 2s 3s  Avg. s 2s 3s  Avg.
Ablation 1 4 v Video 0.17 0.32 0.65 038 0.01 0.06 030 0.13
Ablation 2 8 X Video 0.17 033 068 0.39 0.02 007 033 0.14
Ablation 3 8 v Image 0.16 0.32 061 036 001 005 026 0.12
P3.GRPO 8 v Video 0.15 030 0.54 033 0.00 0.02 0.15 0.06

P3-CoT samples are generated for each scenario. The reward function incorporates multiple com-
ponents balanced by the following weights: Aformats Aperes Apreds and Aplan in a ratio of 1:2:2:5. Fol-
lowing (Zhou et al.| 2025b), we add PDMS to planning reward for NAVSIM benchmark. For each
benchmark, we implement a dual-thinking setup consisting of a fast and a detailed version, as shown
in Fig. |5| The fast version is designed for efficiency; while it adheres to the P3-CoT structure, it
only yields the final answer from each module without reasoning. The detailed version, in contrast,
provides the complete reasoning with answer for all modules.

5.3 COMPARISON WITH STATE-OF-THE-ART METHODS

As show in Table we compare AutoDrive-P3 with mainstream methods on nuScenes dataset. We
achieve the same level as SOTA methods at L2 and overpass about 40% compared to SOTA methods
at collision rare. In Table 2| and Table 3| AutoDrive-P? achieves the SOTA results with vision-
only input on NAVSIMv1/v2 benchmark, achieving 90.6 PDMS and 89.9 EPDMS. Specifically, our
method achieves comparable L2 scores with a significantly smaller model (Qwen2.5-3B vs. LLava-
7B used in OmniDrive) and less training data (20k vs. 1000k samples used in OpenDriveVLA),
while also attaining the best collision rate, demonstrating the superior efficiency and effectiveness
of AutoDrive-P3.

5.4 ABLATION STUDY

Ablation Study on AutoDrive-P3. We conduct ablation studies on AutoDrive-P? with nuScenes
to assess the effectiveness of joint RFT across perception—prediction—planning. We compare three
settings—(1) Only SFT, (2) SFT + Only Planning GRPO, and (3) SFT + P3-G RPO—against two
end-to-end baselines: the small-scale UniAD and the VLM-based OmniDrive. As shown in Ta-
bled Only SFT already achieves a lower 2s collision rate than baselines. Adding Planning GRPO
further reduces the 3s collision rate, matching baseline performance. Crucially, P3-GRPO yields
large improvements in perception and prediction, surpassing all baselines and significantly boost-
ing planning. These results demonstrate that P3-G RPO effectively captures the staged CoT across
perception, prediction, and planning, leading to holistic gains in autonomous driving.

Ablation Study on Training Settings. We conduct additional ablation studies on three training
configurations: GRPO group size, historical trajectory usage, and sensor modality. As shown in Ta-
ble[3] results demonstrate that: (1) increasing group size from 4 to 8 enhances performance through
more diverse reasoning samples; (2) incorporating historical trajectories improves contextual under-
standing; and (3) video sensors outperform image-based inputs by capturing temporal dynamics.
Our full configuration achieves optimal results across all metrics.

Runtime and Dual thinking modes. We provide dual thinking modes’ inference time compared
to other methods, as shown in Fig. E} We employ FlashAttention-2 (Daol [2023)) and vLLM 0.8.0
(Kwon et al., [2023)) acceleration on an A100 GPU, achieving near real-time performance (1 Hz).
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Perception Prediction Pl 9
(Thinking+Answer) (Thinking+Answer) (Thinking+Answer)
Ours-Detailed Thinking

Perception Prediction Planning

(Only Answer)
Ours-Fast Thinking

(Only Answer) (Only Answer)

Method Avg. L2(m)|  Avg. Collision (%) |  FPS (Hz) 1
UniAD (23’ CVPR) 0.69 0.12 1.8
DriveVLM (24’ CoRL) 040 027 24
AutoVLA (Slow / Fast, 25’ NeurPS) ~ 0.48/0.43 0.13/0.19 0.1/09
Ours (Detailed / Fast) 0.33/0.34 0.06/0.08 05/1.0

Figure 5: Dual thinking modes and running time on nuScenes Benchmark.

OURS-FAST:
** json\n[\n\t{\"bbox_2d\
"': [359, 108, 448, 230], \"label\": \"ped:strinn\")\n]\n N

Json\n[\n\r(\"bbnx 2d\":

[359, 108, 448, 230], \"future_action\": \"stmlgh‘r\")\n]\n

* json\n[\n\t{\"point_2d\":
[0.0, 0.0], \"label\": \"0.5s\"}, \n\t{\"point_2d\": [0.0, 0.05], \"label\": \"1.0s\"},\
n\t{\"point_2d\": [0.0, 0.33], \"label\": \"1.5s\"},\n\t{\"point_2d\": [0.0, 1.07], \
"label\": \"2.0s\"}, \n\t{\"point_2d\": [0.01, 2.21], \"label\": \"2.5s5\"}, \n\t{\
"point_2d\": [0.02, 3.6], \"label\": \"3A0$\")\n]\n *

Ground Truth

VAD

OURS-DETAILED:

Let's examine the image for key objects such as cars, buses,
trucks, bicycles, pedestrians, and motorcycles. First, I notice a pedestrian on the
right side of the image. I need fo determine the bounding box coordinates for this
pedestrian. The pedestrian appears to be standing on the sidewalk, slightly to the
right of the center of the image.\n\nNext, I need to identify the bounding box for
the pedestrian. The bounding box is defined by the top-left and bottom-right
corners. I estimate the coordinates as follows:\n- The top-left corner of the
pedestrian's bounding box is approximately at (388, 110).\n- The bottom-right
corner of the pedestrian's bounding box is approximately at (448, 200).\n\nThese
coordinates represent the pedestrian's bounding box in the image.\n\nNow, let's
compile this information into the required format.

> json\n[\n\t{\"bbox_2d\": [400, 110, 448, 235], \"label\": \
“pedestrian\"}\n]\n" **

Let me think. The key object in the scene is a pedestrian located
at [400, 110, 448, 235]. The video context indicates that the pedestrian is
currently going straight and is not in the moving direction of the ego vehicle.
Additionally, the pedestrian's future state is predicted to continue going straight.
Since the pedestrian does not affect the ego vehicle, the future action for the
pedestrian is straightforward as \"straight.\"

* " json\n[\n\t{\"bbox_2d\": [400, 110, 448, 235], \
"future_action\": \"straight\"}\n]\n"**

Oh, I see. The ego vehicle's current speed is 0.0 m/s, and the
historical trajectory shows that it has been stationary for the last 3 seconds. The
ego future action is to go straight. Since the pedestrian does not affect the vehicle,
the ego vehicle can start moving.\n\nTo determine the planning trajectory, I need to
calculate the trajectory for the next 3 seconds, with each point representing a 0.5-
second interval. The vehicle is starting from rest, so it will accelerate over the next
3 seconds....The x-coordinates remain close to zero, as the vehicle is moving
straight.

Json\n[\n\ﬂ\"pmm 2d\": [0.0, 0.03], \"label\": \"0.5s\"},\n\
+{\"point_2d\": [0.0, 0.15], \"label\": \"1.0s\"}, \n\t{\"point_2d\": [0.0, 0.41], \
+ \"1.5s5\"}, \n\t{\"point_2d\": 0 0, 1.13], \"label\": \"2.0s\"}, \n\t{\
£ [0.0, 2.53], \"label\": \"2.55\"}, \n\t{\"point_2d\": [0.0, 4.23], \
"3 O0s\"A\nJ\n***
(a)

“label\":

OURS-FAST:
** json\n[\n\t{\"bbox_2d\
": [166, 132, 201, 158], \"Iubzl\" \"car\"}, \n\t{\"bbox_2d\": [294, 128, 448,
252] \"label\": \"cqr\")\n]\n
 json\n[\n\t{\"bbox_2d\":
[166, 132, 201, 158], \"future_action\": \"srrmghf\”} \n\t{\"bbox_2d\": [294, 128,
448, 252], \"fu?ure action\": \"straight\"}\n]\n"
** json\n[\n\t{\"point_2d\":
[0.0, 0.0], \"label\": \"0.5s\"}, \n\t{\"point_2d\": [0.0, 0.05], \"label\": \"1.0s\"},\
n\t{\"point_2d\": [0.0, 0.33], \"label\": \"1.5s\"},\n\t{\"point_2d\": [0.0, 1.04], \
"Iab:l\" "2.05\"}, \n\t{\"point_2d\": [0.0, 2.17], \"label\": \"2.55\"},\n\H{\
"point_2d\": [0.0, 3.5], \"label\": \"3.0s\"N\n]\n""*

Ground Truth

VAD

OURS-DETAILED:
Let's examine the image for key objects such as cars, buses,
trucks, bicycles, pedestrians, und mc?cr-cycles First, T rumc: a car on the left side

of the road. I need to mine its bounding box . The car appears to
be positioned towards the center-left of the .image. \n\nNext, ‘I see another car on
the right side of the road. I need to mine its bounding box di as well.

This car is positioned towards the center-right of the image. ...These bounding
boxes represent the deiected cars in the image.
jsom\n[\n\t{\"bbox_2d\": [168, 132, 202, 157], \"label\": \

[296, 124, 448, 252], \"label\": \"car\‘)\n]\n

“car\"}, \n\t{\"bbox_2d\":

Let's analyze the future actions for each key object:\n\nl.

**<car>[168, 132, 202, 157]**: The current status is \"go straight,\" and the
future state is also \"go straight.\" The car is not in the moving direction of the ego
vehicle and will not affect it. Therefore, the future action remains \"straight.\"\n\
n2. **<car>[296, 124, 448, 252]**: The current status is \"go straight,\" and the
future state is also \"go straight.\" This car is in the moving direction of the ego
vehicle but will not affect it. Therefore, the future action remains \"straight.\"

** json\n[\n\t{\"bbox_2d\": [168, 132, 202,
157], \"future_action\": \"straight\"},\n\t{\"bbox_2d\": [296, 124, 448, 252], \
"future_action\": \"straight\"}\n]\n""*

Let's determine the planning trajectory for the ego vehicle:\n\n1.
**Current Vehicle Speed**: 0.0 m/s, and the ego vehicle's future action is \
“straight.\"\n\n2. ... **Ego Future Action**: The ego vehicle will go straight, and
the key objects do not affect its trajectory.\n\n4. **Trajectory Calculation**:\n -
The ego vehicle will accelerate from 0.0 m/s to a positive y-direction over the next 3
seconds.\n - Assuming a linear acceleration, the y-values will increase over time.\
n\nLet's calculate the trajectory points:...The trajectory reflects a gradual
acceleration from rest. U json\n[\n\t{\"point_2d\
": [0.0, 0.03], \"label\": \"0.5s\"}, \n\t{\"point_2d\": [0.0, 0.16], \"label\": \"1.0s\
“},\n\t{\"point_2d\": [0.0, 0.43], \"label\": \"1.5s\"}, \n\t{\"point_2d\": [0.0,
1.03], \label\": \"2.0s\"}, \n\t{\"point_: Zd\" [0.0, 2.09], \"label\": \"2. 55\'}, \n\H{\
"point_2d\": [0.0, 3.33], \"label\": \"3.0s\"}\n]\n" "

(b)

Figure 6: Visualization. Our model, taking into account the scenarios comprehensively, makes

efficient plans that are both reasonable and safe.

5.5 VISUALIZATION

Fig. [6(a) demonstrates our method’s ability to accurately perceive pedestrian location and predict
safe passage opportunities, avoiding the overly conservative decisions of comparison methods. In
Fig. [6(b), our approach successfully handles complex vehicle interactions by identifying key objects
and their behaviors, producing trajectories that align with human driving habits.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed AutoDrive-P3, a novel VLM framework that establishes progressive
connections between Perception, Prediction, and Planning. Our approach includes the P3-CoT
dataset with unified reasoning chains and labels, supervised fine-tuning for domain adaptation, and
the P3-GRPO algorithm for hierarchical multi-task supervision. Experiments on NAVSIMv1/v2
and nuScenes show state-of-the-art performance, reducing collision rate by 40% on nuScenes. To
balance inference efficiency with performance, we introduce dual thinking modes: detailed thinking
and fast thinking. Although AutoDrive-P? achieves state-of-the-art performance, it faces limi-
tations in hallucinatory phenomena during reasoning. Additionally, our reinforcement learning is
conducted in offline simulators, lacking interaction with real-world environments. Future work will
focus on mitigating hallucinations, reducing inference time, and deploying the system in closed-loop

settings.
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7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and all authors have read and adhered to the Code
of Ethics. In this study, no human subjects is involved. The use of all datasets, including nuScenes
(Caesar et al., |2020) and NAVSIM (Dauner et al.} 2024} Cao et al.,[2025)), follows the relevant usage
guidelines and public licenses, ensuring no violation of privacy. We have been careful to avoid any
biased or discriminatory results during our research process. No personally identifiable information
is used, and no privacy or security concerns will be raised due to our experiments. We are committed
to maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
AutoDrive-P3 to assist others in reproducing our experiments.

Additionally, the datasets used in our experiments are publicly available, ensuring consistent and
reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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A A USE OF LARGE LANGUAGE MODELS

We acknowledge the use of Large Language Models to assist in the preparation of this manuscript.
We utilize Google’s Gemini 2.5 Pro and DeepSeek-R1 for writing assistance. The specific applica-
tions are as follows:

* Language and Readability: To improve the grammar, clarity, and overall readability of
the manuscript through language polishing.

* Format Checking: Gemini 2.5 Pro and DeepSeek-R1 are used to aid in improving gram-
matical fluency, and enhancing the overall readability of the text.

We emphasize that all scientific claims, hypotheses, experimental designs, results, analyses, and
final conclusions are meticulously formulated, reviewed, and verified by the human authors. The
authors take full and final responsibility for the entire content of this submission, in accordance with
the ICLR policy.

B P3-CoT DATASET

In this section, we will provide a detailed introduction to P3-CoT dataset, including motivation,
data collection, data composition and distribution and comparisons between datasets.

B.1 MOTIVATION

The ultimate goal of autonomous driving models is to drive like humans. This target places high
demands on models, requiring them to understand the driving environment and think like humans.
Human drivers habitually identify and locate key objects that have a significant impact on driving
decisions and actions during the driving, and subconsciously predict their future behaviors to help
make the final driving routes. With deeper insight into autonomous driving models, the transforma-
tion of model architecture has undergone a shift from phased perception, prediction and planning to a
unified end-to-end structure. Though end-to-end structures gradually become mainstream due to the
reduction of accumulative errors, segmented consideration of perception, prediction and planning
remains a core design concept when designing new modules. Meanwhile, in the process of hu-
man understanding the driving environment, paying too much attention to unimportant objects will
instead reduce the concentration of human drivers and lead to unsafe driving behaviors. In other
words, focusing only on key objects is necessary for efficient and safe driving behaviors, which is
the same for the models. Considering the high requirements of comprehensive scene understanding
ability and complex logical decision-making capability in autonomous driving, the vision language
model (VLM) and reinforcement post-training show great potential. To cover all the thinking steps
of human drivers and meet the need of VLMs, a high quality reasoning dataset with key objects
and detailed CoT annotations is strongly recommended. This dataset should only focus on key ob-
jects and ignore unnecessary objects identification and localization, and construct a unified chain of
thought (CoT) including perception, prediction and planning.

However, the existing datasets can not meet such requirements. Some object grounding datasets
(Caesar et al., |2020) have been proposed to meet the need for fine-tuning VLMS in autonomous
driving perception tasks, but too many objects requiring grounding will introduce additional noises
as mentioned before. Existing approaches (Ding et al. |2024) attempt to establish chain of thought
datasets to supervised fine-tuning VLMs, and some of them recognize the special meaning of key
objects. These efforts only provide general descriptions of driving conditions, while overlooking the
necessity of considering the driving process in stages and the connection between different stages.
DriveLM (Sima et al., 2024)) points out the importance of key objects and notices the significance
of the connection among different thinking steps. But DriveLM lacks a clear definition of key
objects and their impacts, and the annotations of DriveLM-nuScenes are incomplete both in key
frame selection and key object localization. Moreover, though DriveLM uses graph to model the
connection among the three stages of perception, prediction and planning, it formulates the data
as question-answer pairs which do not match the labels used in the CoT format and remains fixed
content templates lacking sufficient flexibility and diversity. Therefore, the following key challenges
remain to be addressed: 1) lack of completed and comprehensive key object annotations, 2) require-
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ments of unified chain of thought datasets for perception, prediction and plannning, 3) a proper CoT
format suitable for VLM training instead of question-and-answear pairs.

B.2 DATA COLLECTION

To address these issues, we propose P3-CoT dataset, a high-quality CoT dataset designed for VLM
training and GRPO post-training. We first clarify significant concepts in our datasets. The key object
of a specific scene is defined as those that human drivers will pay special attention in order to prevent
potential dangerous events. This definition aims to simulate the attention of human driving, thereby
aligning the model’s focus with that of human drivers. The concepts of stages in our dataset are
similar to end-to-end autonomous driving. The perception stage asks the model to localize targets
in RGB images, but only key objects; the prediction stage utilizes the results from the perception
stage to reason the future behaviors of key objects; the planning stage accepts the objects and cor-
responding actions from the first two stages and obtains the final waypoints after comprehensive
consideration. To construct P2 dataset, we first sample key frames of every scene in 2Hz following
nuScenes settings, with 3 seconds history information as input and 3 seconds future trajectory as
ground truth, and all the bounding boxes of objects will be projected into the image view. Consid-
ering that the distance between objects and ego car is an important factor in driving safety, we first
filter out objects that are too far away and manually check the left objects to ensure high-quality
key object annotations. It is worth noticing that we allow manual annotation of new objects that do
not exist in previous dataset. After getting the key object annotations, we use trajectories of corre-
sponding objects to determine future behaviors of objects in general directions like left or right and
manually add the same labels according to videos if the object does not match any trajectory. And
the way points in the future 3 seconds will be converted to the ego car coordinates as the ground
truth. Given labels of the three stages and 3 seconds history information, we use the advanced
Qwen2.5-VL-72B model to synthesize chain-of-thought data and make sure that only the results
appearing in the previous stage can be used in the next stage to model the connections between
different stages. The pipeline is shown in Fig. 3] Employing this annotation pipeline, we organize
a high-quality and comprehensive CoT dataset with key object annotation and a unified perception-
prediction-planning arthchitecture in CoT format. P3-C'oT includes 19284 frames from 700 scenes
in training set and 6019 frames from 150 scenes in test set based on nuScenes, and 103288 frames
from 1192 scenes in training set and 12146 frames from 136 scenes in test set based on NAVSIM.
With enough amount of CoT data, P3-C'oT dataset can support VLM training for both supervised
fine-tuning and reinforcement post-training, and benefit from the connections among stages, VLM
trained by the dateset can gain advantages both from staged thought process and lower accumulated
error of end-to-end autonomous driving, which also brings additional explainability to the black box
in autonomous driving.
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Table 6: The number of key objects in each frame of P3-CoT. The numbers on the table head
are the number of key objects in each frame. Average is calculated as total number of key objects
divided by total number of frames.

Dataset 0 1 2 3 4 >4  Average

P3-CoT (nuScenes) 8187 9926 5121 1081 76 12 0.97
P3-CoT (NAVSIM) 24675 22915 20172 20794 20793 6085 2.08

Table 7: The distribution of prediction actions of P3-CoT (NAVSIM). The number of position
of key objects in longitudinal and horizontal direction.

P3-CoT (NAVSIM)  Left Front Right

Far 7915 46909 4530

Middle 10601 33908 6558

Near 41435 31219 47815
Behind 9137

B.3 DATA COMPOSITION

P3-CoT is composed of a training set of 19284 frames and a validation set of 5119 frames, attached
with detailed annotations for perception, prediction and planning three stages with connection.

For perception stage, we have tallied up the number of key objects that occur in each frame in Table
[6] and the distribution of future actions of objects in Fig. [§] and the distribution of categories in
Fig. |7} Considering the relatively simple road conditions of the nuScenes dataset, the key objects
gathered from each frame should be sparse. The results listed in Table [6] show that our pipeline for
selecting key objects is reasonable and successfully reduces the additional and unnecessary objects
in the scene. The distribution of categories presents the diversity of P3-C'oT and that of actions is
in line with the situation in reality.

For prediction stage and planning stage, we annotate the future action of every object, including
the ego vehicle and other vehicles, and give the detailed results in Table [8] Table [7] and Fig.
For nuScenes, future actions of prediction stage and planning stage have a similar distribution, but
the action straight of planning stage is more than that of prediction stage due to requirements of
data collection. For NAVSIM, we keep the same command types as nuScenes and adapt prediction
action types to NAVSIM. The actions of objects in NAVSIM focus on near range and front direction,
showing the complexity of NAVSIM in our settings.

B.4 COMPARISONS BETWEEN DATASETS

To highlight the advantages of P3-C'oT dataset, we give comprehensive comparisons of our dataset
and others in Table [0l We can tell from the table that P3-CoT dataset annotates a substantial
number of frames and includes perception, prediction and planning all three stages. Unlike other
datasets, P3-CoT formulates the data in CoT format and maintains the close connection among
stages, owning the special advantages to combine both staged interpretation and unified training
process.

B.5 DATA QUALITY ASSESSMENT

To ensure the high quality of the P3-CoT dataset, we adopt a manual assessment protocol through
sampling inspection, following DriveLM (Sima et al., 2024). The evaluation is conducted at both
holistic and modular levels. At the holistic level, each CoT label is manually inspected to ensure it
strictly follows the prescribed reasoning structure—progressing completely and sequentially from
perception to prediction and then to planning, with all final module outputs present and correctly
formatted. At the modular level, we perform a fine-grained manual check for factual consistency
and reasoning quality. The dataset is divided into 10 splits, each assigned to three independent anno-
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Table 8: The distribution of planning commands in P3-CoT'. The number of planning commands
of ego vehicle.

Planning Commands Left Right Stop Straight

P3-CoT (nuScenes) 1299 1627 4919 16558
P3.CoT (NAVSIM) 27293 13524 1832 72785

Table 9: The comparisons of existing datasets of scale and structure. Source Dataset: Source of
data sampled. Frames: the number of frames labeled by methods. Perception, Prediction, Planning:
whether the dataset includes the information about perception, prediction and planning. Type: data
organization format.

Source

Dataset Dataset Frames Perception Prediction Planning Type
nuScenes-QA (Qian et al.|[2024) nuScenes 34149 (4 X X QA
nulnstruct (Ding et al.[[2024) nuScenes 11850 v v v QA
nuPrompt (Wu et al.[[2025) nuScenes 34149 (4 X X QA
DriveLM-nuScenes (Sima et al.||2024)  nuScenes 4871 v 4 v QA
LingoQA (Marcu et al.|[2024) LingoQA 28000 — — — QA
DRAMA (Malla et al.[[2023) DRAMA 17785 v X v QA
P3-CoT(Ours) nuScenes 24403 v v v CoT+Label

tators. They randomly sample 10% of their assigned split and meticulously examine the alignment
between the generated CoT and the ground-truth labels for every module. This includes assessing
the factual consistency of the reasoning steps, the fluency of the language, and the overall logical
plausibility. In both levels of inspection, each reviewed CoT is labeled as “good” or “poor”. The
accuracy for a split is calculated based on the proportion of “good” samples. We set a passing accu-
racy threshold of 90% for a split to be considered qualified. Any split failing to meet this standard is
deemed imperfect, and the CoT data for that portion is regenerated and re-submitted for assessment.
This iterative process continues until all splits pass the manual quality check by all annotators.

C REWARD SETTING

Perception Reward (Rpere): This reward measures the quality of key object detection. Let Bpred
and Bgt denote the sets of predicted and ground-truth bounding boxes, respectively. The reward is
based on the average IoU of matched boxes, precision (P), and recall (R):

1.0, if |Bgt| = 0 and | Bprea| = 0,
Rperc = IOUavg . (05P + 05R), if ‘Bg[| > 0and |Bpred| > 07 13)
0.0, otherwise.

The perception reward serves three crucial purposes: First, it ensures comprehensive scene under-
standing by penalizing both false positives (detecting non-existent objects) and false negatives (miss-
ing actual objects). Second, it maintains spatial accuracy through the IoU metric, guaranteeing that
detected objects are precisely localized. Third, it provides immediate and interpretable feedback to
the model about its perceptual capabilities, enabling focused improvement in visual understanding.

This structured reward mechanism forces the model to develop sophisticated visual reasoning skills,
including object recognition, spatial relationships understanding, and scene context interpretation.
By explicitly rewarding accurate perception, we create a solid foundation upon which prediction and
planning modules can build reliable and safe driving strategies. The perception reward thus acts as
a crucial enabler for the entire cognitive pipeline, ensuring that subsequent decisions are based on a
veridical representation of the driving environment.

Prediction Reward (R,req): This component evaluates the model’s ability to accurately forecast the
future behavior of detected objects, serving as the critical bridge between perceptual understanding
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and planning decisions. The reward function is carefully designed to integrate both spatial localiza-
tion accuracy and behavioral semantics:

<E(i,j)€/\/l IoU;; - I(s; = s5)
Rpred =

- (IoUyyg - (0.5P 4+ 0.5R)) , (14)
2 i yem 10U >

where M represents the set of successfully matched prediction-ground truth pairs, and I is the
indicator function that returns 1 when the predicted action label s; matches the ground truth s;, and
0 otherwise.

The formula consists of two multiplicative components. The first term calculates a weighted be-
havior accuracy score, where each matched pair’s label correctness is weighted by its IoU value.
This design ensures that predictions with better spatial alignment contribute more significantly to
the reward. The second term represents the fundamental detection quality, computed as the product
of average IoU and the F1-score (harmonic mean of precision and recall), which maintains the basic
requirement of accurate object detection and tracking.

This reward design serves two crucial purposes. First, it explicitly encodes the dependency between
accurate perception and reliable prediction - the model cannot achieve high prediction rewards with-
out first establishing solid perceptual foundations. Second, it emphasizes that behavioral prediction
quality is intrinsically tied to spatial accuracy; even correct action labels receive reduced rewards if
the associated bounding boxes are poorly localized.

By designing the prediction reward in this manner, we force the model to develop a comprehensive
understanding of scene dynamics, where it must not only identify objects correctly but also antic-
ipate their future behaviors accurately. This approach ensures that the prediction module provides
meaningful and reliable inputs to the planning system, enabling the generation of safe and efficient
driving strategies that account for the predicted evolution of the traffic environment.

Planning Reward ([?,1an): This component serves as the ultimate performance metric that evaluates
the quality of the ego vehicle’s planned trajectory, representing the final output of the entire reason-
ing pipeline. The reward is calculated through an exponential transformation of the L2 distance
between the predicted trajectory points and their ground-truth counterparts:

2
1+ cclip(L2,0,L2mm) °

Rplan = (15)

where L2 represents the mean Euclidean distance between corresponding points in the predicted and
ground-truth trajectories across all future time horizons. Following AutoVLA (Zhou et al., 2025b),
we add PDMS to planning reward for NAVSIM benchmark.

The planning reward serves as the ultimate validator of the entire P> reasoning chain. While high
rewards in perception and prediction are necessary prerequisites, they are insufficient without corre-
sponding excellence in planning. This design explicitly teaches the model that accurate perception
and reliable prediction are valuable precisely because they enable superior planning decisions. The
planning reward thus creates a powerful end-to-end learning signal that backpropagates through all
modules, encouraging the development of coordinated representations where each component works
synergistically toward the final goal of generating safe, comfortable, and efficient driving trajecto-
ries.

By placing the planning reward at the apex of our reward hierarchy, we ensure that the model opti-
mizes not for intermediate metrics but for the ultimate objective of successful autonomous naviga-
tion, while maintaining the interpretability and safety guarantees provided by the structured P3-C'oT'
reasoning process.

These rewards with P3-G RPO algorithm ensure that improvements in planning performance are
grounded in corresponding enhancements in perceptual understanding and predictive capability,
creating a synergistic effect where each module’s optimization contributes to the overall driving
performance. The algorithm maintains the interpretability and safety guarantees provided by the
structured P3-CoT reasoning process while achieving superior autonomous driving performance
through multi-module reinforcement learning.
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Figure 9: Training and testing rewards for perception, prediction, planning, and all reward.
The results shows the consistent improvement in all rewards, which proves the tight inter-connection
among three stages and the effectiveness of P3-CoT.

Reward Visualization. We visualize the training and testing rewards for perception, prediction,
planning, and the all reward, as shown in Fig. 0] The results demonstrate that through training with
our P3-CoT dataset and P3>-GRPO algorithm, the three modules exhibit mutual reinforcement,
leading to consistent improvement in their respective rewards. This synergistic effect is particularly
beneficial for planning performance, as the enhanced perception and prediction capabilities provide
more reliable inputs for trajectory generation. The progressive optimization across modules ensures
coherent reasoning and decision-making, ultimately contributing to more robust autonomous driving
performance.

Ablation Study on Reward Weight. As shown in Table[I0] we conduct additional ablation studies
on three reward weight configurations. Results indicate that an unbalanced setting (e.g., 1:1:1:7),
which overemphasizes the planning reward, can hinder the optimization of perception and prediction
modules. This imbalance ultimately leads to inferior overall planning performance, as accurate
planning is contingent upon reliable inputs from the preceding stages.

Table 10: Weight Setting on nuScenes Benchmark.

Reward weight Perception 1 Prediction { Planning (Avg. L2) |

1:2:2:5 0.64 0.54 0.33
1:1:1:7 0.63 0.53 0.34

D EXPERIMENTAL SETUP

We conduct experiments on two autonomous driving benchmarks: nuScenes and NAVSIM. The
detailed experimental configurations are summarized in Table[T1] For both datasets, we compare the
Cold-Start baseline with our proposed P3-G RPO approach under consistent data settings. We also
perform an ablation experiment by removing the KL divergence term from the training objective. As
demonstrated in Fig. [I0] the model without KL regularization suffers from significant performance
degradation as training progresses, eventually leading to model collapse. This occurs because the
absence of KL constraint allows the model to deviate excessively from the base policy, resulting in
unstable optimization. Therefore, we recommend retaining the KL divergence term during training
to ensure the model maintains reasonable proximity to the base policy while improving performance.

E QUALITATIVE COMPARISON OF TRAJECTORY PLANNING

To further explain the advantages of our method, we provide an intuitive comparison of the results
in this section. For nuScenes samples, the red points denote ground truth trajectory, the orange
denotes our trajectory with detail CoT, the pink denotes our trajectory with only CoT framework,
the green denotes OmniDrive trajectory and the blue denotes VAD trajectory. For NAVSIM samples,
the red points denote ground truth trajectory, the orange denotes our trajectory with detail CoT, the
pink denotes our trajectory with only CoT framework, the green denotes WoTE trajectory and the
blue denotes DiffusionDrive trajectory. Due to camera projection limitations, too short and too
deviated trajectories will not appear in the images, such as stop situations. The CoT and answers
corresponding to the specific sample are shown on the right of the figure.
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Table 11: Experimental setup.

nuScenes NAVSIM
Cold-Start P3-GRPO Cold-Start P3-GRPO

Data Setting
Video Shape [6, 3,252,448] [6,3,252,448] [4,3, 168, 672] [4, 3,168, 672]
6 6 4 4

History Traj
Future Traj 6 6 8 8
Ego Infos Only V/ Only V' Qg s Ay, Vg, Uy Az, Qy, Vg, Uy
Optimization
Epoch 1 5 1 5
Batch size 8 256 8 256
Optimizer AdamW AdamW AdamW AdamW
Learing Rate 2e-5 le-6 2e-5 le-6
GRPO Setting
Group Size - 8 - 8
KL Weight - 0.01 - 0.01

KL Divergence vs Training Step

Training Step

Figure 10: Ablation Study on KL Divergence.

In Fig. [[1)(a), the front view shows a scene at night with waiting cars. Due to image distortion, the
street lamps have shifted towards the green light to a certain extent. The ground truth trajectory is to
stop and wait, while the trajectories of comparison methods ignore the front car and move forward
mistakenly. Our method first correctly observes the key objects, the closest two cars, and does not
misunderstand the meaning of the lights, and then precisely gives the right future actions of the two.
This result supports our planning decisions and our method finally takes the same actions as ground
truth. This shows our method the powerful ability of scene understanding.

In Fig. [TI[b), two trucks are parked by the roadside, and one of them blocks moving direction of the
ego car. The ground truth trajectory still moves forward and tends to return to the initial road, but it
seems too close to the truck on the right. The comparison methods do not work well in this sample.
Our method can still identify key objects as before and provide good prediction answers. Though
the trajectory is at a certain distance from the ground truth, we believe that our method takes into
account the truck on the right to correct its initial decision and avoid potential security issues.

Except for the specific explanation of the samples, we also provide special cases with completed
questions and answers in Fig. [I2]to Fig. [I7} The first two are nuScenes samples and the last four
are NAVSIM samples.
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OURS-FAST:
** json\n[\n\t{\"bbox_2d\
": [182, 129, , 249], \"Iabel\" \"car\"}, \n\t{\"bbox_2d\": [307, 116, 448,
252] \"label\" car\")\n]\n

> json\n[\n\H{\"bbox_2d\":
[182, 129, 316, 249), \"future_action\": \"straight\'}, \n\t{\"bbox_2d\": [307, 116,
448, 252), \"future_action\": \"straight\"N\n]\n"

]son\n[\n\t(\"pmm 2d\“
0] \“Iabcl\" \“O 55\") \n\f(\"pomt 2d\": [0.0, 0.0], \' .0s\"},\
[ \f

Ground Truth

VAD

'OURS-DETAILED:

Let's examine the image for key objects such as cars, buses,
trucks, bicycles, pedestrians, and motorcycles. The image is dark, indicating it might
be nighttime, and the road is visible with some greenery on the side.\n\nFirst, I
need to identify the objects in the image. I see two cars clearly. The first car is in
the center of the image, and the second car is on the right side.\n\nNext, I need to
determine the coordinates of these objects. So I will estimate the bounding boxes
for each car.\n\n1. For the first car, it is centrally located. I estimate the bounding
box coordinates as [182, 124, 310, 248].\n\n2. For the second car, it is on the
right side. I estimate the bounding box coordinates as [308, 114, 448, 248].\n\
nThese bounding boxes represent the detected cars in the image.

* T json\n[\n\t{\"bbox_2d\": [182, 126, 315, 252], \"Iub:l\" \
"car\"}, \n\t{\"bbox_: Zd\" [310, 117, 448, 249], \"label\": \"car\"}\n]\n"

Let me think. We have two key objects, both labeled as cars. The
first car, <car>[182, 126, 315, 252], is currently stationary and not in the moving
direction of the ego vehicle. The second car, <car>[310, 117, 448, 249], is also
stationary and not in the moving direction of the ego vehicle. Since both cars are
stationary and there are no traffic lights, the future action for both cars is to
remain stationary. Therefore, the prediction for the future action of both cars is \

 json\n[\n\t{\"bbox_2d\": [182, 126, 315, 252], \
"future_action\": \"stop\"}, \n\t(\“bbox 2d\": [310, 117, 448, 249], \
“future_action\": \"stop\"}\n]\n""

Oh, I see. The ego vehicle is currently at 0.0 m/s, and the historical trajectory
shows that it has been stationary for the last 3 seconds. The ego future action is to
stop, and the key objects do not affect the ego vehicle. Since the ego vehicle is
already stationary and the future action is to stop, the planned trajectory will remain
at 0.0 m/s for the next 3 seconds. \n\nTo determine the planning trajectory, I will
calculate the position at each 0.5-second interval for the next 3 seconds. Since the
vehicle is stationary, the x and y values will remain at 0.0. \n\nLet's calculate the
trajectory:\n- At 0.5s: [0.0, 0.0]\n- At 1.0s: [0.0, 0.0]\n- At 1.5s: [0.0, 0.0]\n-
At 2.0s: [0.0, 0.0]\n- At 2.5s: [0.0, 0.0]\n- At 3.0s: [0.0, 0.0]</think_planning>\
n

** json\n[\n\t{\"point_2d\": [0.0, 0.0], \"label\": \"O. 55\") \n\t(\
0.0], \"label\": \"1.0s\"}, \n\t{\"point_2d\": [0.0, 0.0]
‘point_2d\": [0.0, 0.0], \"label\": \"2.0s\"}, \n\?(\"

\"2.5s\"}, \n\?(\"polnt 2d\": [0.0, 0.0], \"label\": \"3. Os\")\

(a)

“point_2d\": [0.0,
" \"1Bs\"}, \n\H\'Y

OURS-FAST:

*** json\n[\n\H{\"bbox_2d\": [0, 76,
178, 252], \"label\": \"truck\"}, \n\t{\"bbox_2d\": [310, 89, 425, 180], \"label\": \"truck\"}\n]\
b

* 7 json\n[\n\t{\"bbox_2d\": [0, 76,
178, 252], \"ftnun action\": \"stop\"},\n\t{\"bbox_2d\": [310, 89, 425, 180], \"future_action\
" \"stop\"P\n]\n"*

Json\n[\n\f{\"pﬂmt 2d\": [0.0, O. 33] \
\n\+{\"point_z : [0.02,
"2.0s\" \H

Ground Truth

VAD

OURS-DETATIED:

Let's examine the lmage for key objects such as cars, buses, trucks, bicycles,
pedestrians, and motorcycles. The image size is 448x252 pixels. \n\n First, I notice two frucks in
the image. I need to determine the coordinates of each truck.\n\nl. The first truck is on the
left side of the image. I estimate its bounding box coordinates to be around (0, 60) to (150,
200).\n\n2. The second truck is on the right side of the image. I estimate its bounding box
coordinates to be around (300, 100) to (448, 180).\n\nNow, let's compile this information into
the required format.

> json\n[\n\t{\"bbo:

"bbox_2d\": [311, 89, 425, 182], \"label

d\"

": [0, 64, 175, 252] \"label\": \"truck\"}, \n\t{\
Yruck\")\n]\n

Let me think. We have two trucks in the scene. The first truck, <truck>[0, 64,
175, 252], is stationary and not in the moving direction of the ego vehicle. The second truck,
<truck>[311, 89, 425, 182], is stationary and in the moving direction of the ego vehicle. Since
both trucks are stationary and there are no traffic lights, the future action for both trucks is to
remain stationary. Therefore, the prediction for the future action of both trucks is \"stop.\"

*" " json\n[\n\t{\"bbox_2d\": [0, 64, 175, 252], \"future_action\": \"stop\
“}\n\t{\"bbox_2d\": [311, 89, 425, 182], \"future_action\": \"stop\"I\n]\n""

Let me think. The ego vehicle's current speed is 0.66 m/s, and its future action
is to go straight. The h aj shows a straight path with slight lateral
deviations. Since the key objects are stationary and there are no traffic lights, the ego vehicle
can maintain its speed and direction.\n\nTo determine the planning trajectory, I will calculate the
ego vehicle's posi at 0.5-second intervals for the next 3 seconds. The ego vehicle is moving
straight, so the x-coordinate will remain close to zero, while the y-coordinate will increase based
on the speed.\n\n1. At 0.5s: The vehicle moves 0.66 m/s * 0.5s = 0.33 meters forward.
Adjusting for slight lateral deviation, the x-coordinate is approximately 0.01.\n2. At 1.0s: The
vehicle moves an additional 0.66 m/s * 1.0s = 0.66 meters forward. Adjusting for lateral
deviation, the x-coordinate is approximately 0.02.\n3. At 1.5s: The vehicle moves an additional
0.66 m/s * 1.5s = 0.99 meters forward. Adjusting for lateral deviation, the x-coordinate is
approximately 0.03.\n4. At 2.0s: The vehicle moves an additional 0.66 m/s * 2.0s = 1.32 meters
forward. Adjusting for lateral deviation, the x-coordinate is approximately 0.04.\n5. At 2.5s:
The vehicle moves an additional 0.66 m/s * 2.5s = 1.65 meters forward. Adjusting for lateral
deviation, the x-coordinate is approximately 0.05.\n6. At 3.0s: The vehicle moves an additional
0.66 m/s * 3.0s = 1.98 meters forward. AdJushng for lateral deviation, the x-coordinate is
approximately 0.06.\n\nThe planned trajectory is as follows:

* json\n[\n\t{\"point_2d\": [0.01, 0.31], \"label\": \"0.5s\"}, \n\t{\"point_2d\

" [O 01, 0.76], \"label\": \"1.0s\ \1(\"pomt 2d\' [0 02, 1.73], \"label\": \"1.5s\"},\n\t{\
int_2d\": [0.02, 2.99], \"label\": \"2.0s\"},\ ": [0.02, 4.39], \"label\": \
"2 55\"), \n\t{\"point_2d\": [0.03, 6.08], "Inbel\" \"

(b)

.0s\"I\n]\n

Figure 11: Visualization examples of specific samples. Every example is equipped with visualiza-
tion of results on the top and CoT answer on the bottom.
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OURS-FAST:

Y json\n[\n\t{\"bbox_2d\": [260,
112, 320, 220], \"label\": \"pedestrian\"}, \n\t{\
"bbox_2d\": [286, 130, 352, 184], \"label\": \"car\"}\
n]\n' "

* json\n[\n\+{\"bbox_2d\": [260,
112, 320, 220], \"future_action\": \"straight\"},\n\t{\
"bbox_2d\": [286, 130, 352, 184], \"future_action\
" \"straight\"\n]\n"**

* Y json\n[\n\t{\"point_2d\": [0.0,

0.0], \"label\": \"0.5s\"}, \n\t{\"point_2d\": [0.0,
0.06], \"label\": \"1.0s\"}, \n\t{\"point_2d\": [0.01,
0.33], \"label\": \"1.5s\"}, \n\t{\"point_2d\": [0.01,
0.93], \"label\": \"2.0s\"}, \n\+{\"point_2d\": [0.02,
- 1.81], \"label\": \"2.5s\"}, \n\t{\"point_2d\": [0.03,
-« 6T «VAD  2.89], \"label\": \"3.0s\"}\n]\n"""

OURS-DETAILED:

Let's examine the image for key objects such as cars, buses, trucks, bicycles, pedestrians, and motorcycles.

First, I notice a pedestrian on the left side of the image. I need to determine the bounding box coordinates for this pedestrian.
The pedestrian appears fo be standing on the sidewalk, so the bounding box should cover the area from the top of the head to the
bottom of the feet.Next, I see a car on the right side of the image. It is smaller and further away, so the bounding box for this
car will be smaller and positioned towards the center-right of the imageNow, let's determine the coordinates for each object:
1.Pedestrian: The pedestrian is on the left side of the image.The bounding box coordinates are approximately from (100, 120) to
(200, 180).

2.Car:The car is on the right side of the image.The bounding box coordinates are approximately from (300, 150) to (400,
200).These coordinates are based on visual estimation from the image.

Let's compile this information into the required format.

{"bbox_2d": [258, 112, 318, 225], "label": "pedestrian"}, {"bbox_2d": [280, 132, 356, 183], "label": "car'} %

Let's analyze the future actions for each key object:

1. Pedestrian: The pedestrian is currently going straight and is not in the moving direction of the ego vehicle. The future state is
also to go straight. Since the pedestrian is not affecting the ego vehicle, the future action remains "straight."

2. Car: The car is currently going straight and is in the moving direction of the ego vehicle. The future state is also to go straight.
Since the car is not affecting the ego vehicle, the future action remains "straight."

Both objects are predicted to continue going straight as there are no indications of a change in their trajectory or behavior.

©
{"bbox_2d": [258, 112, 318, 225], "future_action": "straight"}
{"bbox_2d": [280, 132, 356, 183], "future_action": "straight"}

Let's determine the planning trajectory for the ego vehicle:
1. Current Vehicle Speed: The ego vehicle is 0.0 m/s, and the historical trajectory shows a slight forward movement. [@171;
2. Ego Future Action: The ego vehicle is to go straight. Q3
3. Trajectory Calculation:

The ego vehicle will accelerate from 0.0 m/s to a positive y-direction over the next 3 seconds.

The trajectory points are calculated based on the acceleration and the time intervals.
4. Trajectory Points:

At 0.5s: The vehicle moves slightly forward, [0.0, 0.02]. At 1.0s: The vehicle moves further forward, [0.0, 0.17]. At 1.5s:
The vehicle continues forward, [0.0, 0.44]. At 2.0s: The vehicle moves slightly to the right, [0.0, 1.13]. At 2.5s: The vehicle
moves further forward, [0.01, 2.59]. At 3.0s: The vehicle moves slightly to the right, [0.01, 4.23].

The trajectory reflects a gradual acceleration and forward movement.

{"point_2d": [0.0, 0.02], "label": "0.5s"}, {"point_2d": [0.0, 0.1], "label": "1.0s"}, {"point_2d": [0.0, 0.44], "label": "1.5s"},
{"point_2d": [0.0, 1.13], "label": "2.0s"}, {"point_2d": [0.01, 2.59], "label": "2.5s"}, {"point_2d": [0.01, 4.23], "label": \"3.0s\"}

Figure 12: Visualization nuScenes cases with completed questions and answers. AutoDrive-P3
successfully identifies and localizes the key objects, giving the correct actions. Based on these
judgments, our method makes the efficiency planning decision in this sample.

23



Under review as a conference paper at ICLR 2026

OURS-FAST:

*t json\n[\n\t{\"bbox_2d\": [192, 129, 273, 197], \
"label\": \"car\"}\n]\n' "

 json\n[\n\t{\"bbox_2d\": [192, 129, 273, 197], \
"future_action\": \"straight\"}\n]\n"**

* Y json\n[\n\1t{\"point_2d\": [0.01,
1.1], \"label\": \"0.5s\"}, \n\t{\"point_2d\": [0.02,
2.09], \"label\": \"1.0s\"},\n\t{\"point_2d\": [0.04,
2.97], \"label\": \"1.5s\"},\n\t{\"point_2d\": [0.06,
3.89], \"label\": \"2.0s\"},\n\t{\"point_2d\": [0.08,
4.76], \"label\": \"2.5s\"}, \n\t{\"point_2d\": [0.1,
. 6T «.VAD  5.6], \"label\": \"3.0s\"}\n]\n"*"

OURS-DETAILED:

Let's examine the image for key objects such as cars, buses, trucks, bicycles, pedestrians, and motorcycles. The image is 448
pixels wide and 252 pixels tall.

First, I notice a car in the center of the image. I need to determine its bounding box coordinates. The car appears to be
positioned slightly to the right of the center of the image.

Next, I estimate the bounding box for the car. The top-left corner of the car's bounding box seems to be around (200, 120)
pixels. The bottom-right corner appears to be around (250, 150) pixels.

Now, I have the bounding box coordinates for the car. I will label this object as "car."

I don't see any other key objects like buses, trucks, bicycles, pedestrians, or motorcycles in this frame.

Therefore, the only detected object is a car with the specified bounding box coordinates. p

{"bbox_2d": [194, 129, 272, 198], "label": "car'"}

Let me think. The key object in the scene is a car located at [194, 129, 272, 198].

The video context indicates that this car is currently going straight and is not in the moving direction of the ego vehicle.
Additionally, the car's future state is predicted to continue going straight.

Since there are no traffic lights and the car is not affecting the ego vehicle, the prediction for the car's future action is

straightforward.
©

{"bbox_2d": [194, 129, 272, 198], "future_action": "straight"}

Now, let's consider the planning for the ego vehicle.
The current vehicle speed is 2.18 m/s, and the ego future action is to go straight.
The historical trajectory shows a consistent straight path with slight lateral deviations, indicating minor adjustments to maintain
the lane.
1. Ego Vehicle Speed and Action: The ego vehicle is moving at 2.18 m/s and plans to continue straight. The historical trajectory
shows a consistent forward motion with minor lateral adjustments.
2. Trajectory Calculation:

At 0.5s: The vehicle moves forward by (2.18 m/s * 0.5 s = 1.09 m). Adjusting for slight lateral movement, the x-coordinate is
slightly negative.

At 1.0s: The vehicle moves an additional (2.18 m/s * 1.0s = 2.18 m). ® I
At 1.5s: The vehicle moves an additional (2.18 m/s * 1.5s = 3.27 m). Qb
At 2.0s: The vehicle moves an additional (2.18 m/s * 2.0s = 4.36 m).

At 2.5s: The vehicle moves an additional (2.18 m/s * 2.5s = 5.45 m).

At 3.0s: The vehicle moves an additional (2.18 m/s * 3.0s = 6.54 m).

3. Final Trajectory: The trajectory points are calculated based on the above, with slight lateral adjustments for lane-keeping.

{"point_2d": [0.01, 1.09], “label": "0.5s"} {"point_2d": [0.02, 2.16], "label": "1.0s"} {"point_2d": [0.04, 3.03], "label":
"'1.5s"},{"point_2d": [0.06, 3.7], "label": "2.0s"},{"point_2d": [0.08, 4.08], "“label": \"2.5s\"},{"point_2d": [0.09, 4.43], "label":
"3.0s"}

Figure 13: Visualization nuScenes cases with completed questions and answers. AutoDrive-P>
successfully recognizes the driving command and provides the best trajectory instead of conservative
one compared with other method.
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OURS-FAST:

** json\n[\n\t{\"bbox_2d\": [17, 78, 153, 139], \"label\": \"vehicle\"}, \n\t{\"bbox_2d\": [316, 65, 367, 120], \"label\": \

“vehicle\"\n]\n"**

Y json\n[\n\t{\"bbox_2d\": [17, 78, 153, 139], \"future_position\": \"far, front\"}, \n\t{\"bbox_2d\": [316, 65, 367, 120], \

"future_position\": \"far, front\"}\n]\n"

Y json\n[\n\t{\"x_y_radian\": [5.28, 0.05, 0.02], \"label\": \"0.5s\"}, \n\t{\"x_y_radian\": [10.55, 0.15, 0.03], \"label\": \
"1.0s\"}, \m\t{\"x_y_radian\": [15.75, 0.32, 0.04], \"label\": \"1.5s\"},\n\t{\"x_y_radian\": [20.85, 0.55, 0.05], \"label\": \"2.0s\"},\n\t{\
"x_y_radian\": [25.75, 0.78, 0.05], \"label\": \"2.5s\"},\n\t{\"x_y_radian\": [30.35, 1.01, 0.05], \"label\": \"3.0s\"},\n\t{\"x_y_radian\": [34.55,

1.22, 0.05], \"label\": \"3.55\"},\n\t{\"x_y_radian\": [38.25, 1.39, 0.04], \"label\": \"4.0s\"}\n]\n"**

DiffusionDrive

OURS-DETAILED:

Let's analyze the image step by step to identify key objects and their coordinates:\n\n1. **Image Dimensions**: The
image size is 672x168 pixels.\n2. **Vehicle Detection**:\n - On the left side of the image, there is a vehicle visible
on the road. Based on its position and size, it appears to be a car.\n - Coordinates: [13, 78, 152, 139]\n - In
the center-right portion of the image, another vehicle is present, likely a truck or SUV.\n - Coordinates: [316, 53,
369, 120]\n\n3. **Other Objects**:\n - No pedestrians or bicycles are clearly visible in the image.\n - The
background includes buildings, palm trees, and a Louis Vuitton store sign, but these are not categorized as key objects
for the given question.\n\nFinal Output:\n'"" json\n[\n\t{\"bbox_2d\": [13, 78, 152, 139], \"label\": \"vehicle\"},\n\
t{\"bbox_2d\": [316, 53, 369, 120], \"label\": \"vehicle\"}\n]\n"* * \n\nReasoning: The analysis confirms the presence
of two vehicles in the image, with their respective coordinates accurately identified. No other key objects (pedestrians,
bicycles) are detected.

1. **Initial Observation**: The key objects in the image are two vehicles: one on the left side of the road and another
further ahead in the center-right lane.\n2. **Vehicle Movement Analysis**:\n - The vehicle on the left is moving
forward but appears to be slightly to the left of the ego vehicle's path.\n - The vehicle ahead in the center-right
lane is also moving forward and is positioned farther away from the ego vehicle.\n3. **Future Position Prediction**:\n

- For the vehicle on the left, the prediction indicates it will continue moving forward and slightly to the left,
maintaining its relative position to the ego vehicle.\n - For the vehicle ahead, the prediction suggests it will continue
moving forward along its current path, remaining in the center-right lane.\n4. **Conclusion**: Based on the current
positions and movement patterns, the future positions of the key objects are consistent with their current trajectories.
No significant changes in direction or speed are anticipated for either vehicle. </think_prediction>\
n<answer_prediction> " " json\n[\n\t{\"bbox_2d\": [13, 78, 152, 139], \"future_position\": \"far, front\"}, \n\t{\
“bbox_2d\": [316, 53, 369, 120], \"future_position\": \"far, front\"}\n]\n""*

1. **Ego Vehicle State**: \n - Current velocity (vx): 10.85 m/s, vy: -0.21 m/s, ax: 0.20 m/s\u00b2, ay: 0.27 m/s\
u00b2.\n - Driving Command: 60 STRAIGHT.\n - Historical Trajectory: The ego vehicle has been moving forward
with a slight leftward yaw angle, indicating a minor leftward trajectory over the past 1.5 seconds.\n2. **Key Object
Considerations**:\n - **Vehicle on the Left**: This vehicle is predicted to move forward and slightly to the left. The
ego vehicle must maintain a safe distance to avoid collision.\n - **Vehicle Ahead**: This vehicle is also predicted to
move forward along its current path. The ego vehicle should continue straight to avoid any potential collision.\n3.
**Planning Points (Every 0.5s)**:\n - **0.5s**: The ego vehicle moves forward with a slight leftward yaw angle. The
vehicle on the left is still to the left of the ego vehicle's path, so no adjustment is needed.\n - **1.0s**: The ego
vehicle continues straight with a slight leftward yaw angle. The vehicle ahead remains in the center-right lane, so no
adjustment is needed.\n - **1.5s**: The ego vehicle maintains its trajectory with a slight leftward yaw angle. The
vehicle on the left is still to the left of the ego vehicle's path, so no adjustment is needed.\n - **2.0s**: The ego
vehicle continues straight with a slight leftward yaw angle. The vehicle ahead remains in the center-right lane, so no
adjustment is needed.\n - **2.5s**: The ego vehicle maintains its trajectory with a slight leftward yaw angle. The
vehicle on the left is still to the left of the ego vehicle's path, so no adjustment is needed.\n - **3.0s**: The ego
vehicle continues straight with a slight leftward yaw angle. The vehicle ahead remains in the center-right lane, so no
adjustment is needed.\n - **3.5s**: The ego vehicle maintains its trajectory with a slight leftward yaw angle. The
vehicle on the left is still to the left of the ego vehicle's path, so no adjustment is needed.\n - **4.0s**: The ego
vehicle continues straight with a slight leftward yaw angle. The vehicle ahead remains in the center-right lane, so no
adjustment is needed.\n4. **Conclusion**: The ego vehicle can continue moving straight with a slight leftward yaw angle,
as there are no immediate collision risks with the key objects. The trajectory is adjusted minimally to maintain a safe
distance from the vehicle on the left while continuing to follow the driving command of going straight.

** json\n[\n\t{\"bbox_2d\":
[13, 78, 152, 139], \"label\
": \"vehicle\"}, \n\t{\
“bbox_2d\": [316, 53, 369,
120], \"label\": \"vehicle\
“AnJ\n* "

Y json\n[\n\t{\"bbox_2d\":
[13, 78, 152, 139], \
“future_position\": \"far,
front\"}, \n\t{\"bbox_2d\":
[316, 53, 369, 120], \
"“future_position\": \"far,
front\"}\n]\n"**

1 json\n[\n\t{\
"x_y_radian\": [5.28, 0.05,
0.02], \"label\": \"0.5s\"},\
n\t{\"x_y_radian\": [10.49,
0.18, 0.03], \"label\": \
"1.0s\"}, \n\t{\"x_y_radian\
": [15.58, 0.36, 0.04], \
“label\": \"1.5s\"}, \n\t{\
"x_y_radian\": [20.48,
0.56, 0.04], \"label\": \
2.0s\"}, \n\t{\"x_y_radian\
": [25.18, 0.76, 0.04], \
“label\": \"2.5s\"}, \n\t{\
"x_y_radian\": [29.68,
0.94, 0.04], \"label\": \
"3.0s\"}, \n\t{\"x_y_radian\
": [33.98, 1.1, 0.04], \
“label\": \"3.5s\"}, \n\t{\
"x_y_radian\": [38.08,
1.26, 0.04], \"label\": \
"4 0s\"}\n]\n"**

Figure 14: Visualization NAVSIM cases with completed questions and answers. AutoDrive-P3
successfully predicts the future action of the truck and follows the forward vehicle in a safe distance.
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OURS-FAST:

Y json\n[\n\t{\"bbox_2d\": [42, 84, 215, 167], \"label\": \"vehicle\"},\n\t{\"bbox_2d\": [413, 85,

"pedestrian\"N\n]\n

436, 121], \"label\": \

** json\n[\n\t{\"bbox_2d\": [42, 84, 215, 167], \"future_position\": \"near, left\"},\n\t{\"bbox_2d\": [413, 85, 436, 121], \

"future_position\": \"near, right\"}\n]\n*"*

1 json\n[\n\t{\"x_y_radian\": [2.51, 0.15, 0.12], \"label\": \"0.5s\"},\n\t{\"x_y_radian\": [5.43, 0.59, 0.23], \"label\": \"1.0s\
"} \n\t{\"x_y_radian\": [8.65, 1.39, 0.31], \"label\": \"1.5s\"}, \n\t{\"x_y_radian\": [12.15, 2.45, 0.35], \"label\": \"2.0s\"},\n\t{\"x_y_radian\":

[15.85, 3.75, 0.38], \"label\"
“label\": \"3.5s\"},\n\H{\"x_y_radian\": [26.4, 7.88, 0.39], \"label\": \"4.0s\"}\n]\n"**

DiffusionDrive

OURS-DETAILED:

Let's analyze the image step by step to identify and report the coordinates of key objects:\n\nl. **Vehicle
Detection**:\n - A white SUV is visible on the left side of the image, occupying a significant portion of the frame.\n
- The bounding box coordinates for this vehicle are approximately [39, 85, 215, 167].\n\n2. **Pedestrian
Detection**:\n - There is a pedestrian walking on the sidewalk near the center-right of the image.\n - The
bounding box coordinates for this pedestrian are approximately [413, 84, 438, 119].\n\n3. **Other Objects**:\n
No bicycles or motorcycles are visible in the image.\n - The background includes buildings, trees, and street signs,
but these are not categorized as key objects.\n\nFinal Output:\n®*" json\n[\n\t{\"bbox_2d\": [39, 85, 215, 167], \
“label\": \"vehicle\"}, \n\t{\"bbox_2d\": [413, 84, 438, 119], \"label\": \"pedestrian\"}\n]\n" "

. **Initial Observation**: The key objects in the image are a vehicle and a pedestrian. The vehicle is located near the
left side of the ego vehicle, while the pedestrian is on the right side, closer to the intersection.\n2. **Future Position
of Vehicle**: The prediction indicates that the vehicle will remain near the left side of the ego vehicle, suggesting it
will continue moving forward but may slightly adjust its position to the right to avoid collision with the ego vehicle.\n3.
**Future Position of Pedestrian**: The pedestrian is predicted to move near the right side of the ego vehicle, likely
crossing the street or walking along the sidewalk.\n4. **No Key Objects Detected for Other Positions**: Since no other
key objects are identified in the image, the focus remains on the vehicle and pedestrian.

@1

1. **Ego Vehicle State**: The ego vehicle is currently moving forward with a velocity of 4.58 m/s and an acceleration
of 1.66 m/s\uO0Ob2. The driving command is to turn left, and the historical trajectory shows a consistent forward
motion with a slight leftward adjustment.\n2. **Planning Points (Every 0.5s)**:\n - **0.5s**: The ego vehicle moves
forward and slightly left, maintaining a safe distance from the predicted future position of the vehicle on the left. The
pedestrian on the right is still far enough to avoid collision.\n - **1.0s**: The ego vehicle continues its forward and
leftward trajectory, further adjusting its path to maintain a safe distance from the vehicle on the left. The pedestrian
remains on the right, and no collision risk is present.\n - **1.5s**: The ego vehicle's path is adjusted to ensure a
safe clearance from the vehicle on the left, which is also moving forward. The pedestrian continues to walk along the
sidewalk, maintaining a safe distance.\n - **2.0s**: The ego vehicle's trajectory is fine-tuned to avoid any potential
collision with the vehicle on the left, which is now closer. The pedestrian on the right is still at a safe distance.\n
**2.5s**: The ego vehicle's path is further refined to ensure a safe passage around the vehicle on the left, which is
now directly ahead. The pedestrian remains on the right, and no collision risk is present.\n - **3.0s**: The ego
vehicle continues its forward and leftward trajectory, maintaining a safe distance from the vehicle on the left. The
pedestrian on the right is still at a safe distance.\n - **3.5s**: The ego vehicle's path is adjusted to ensure a safe
clearance from the vehicle on the left, which is now further ahead. The pedestrian remains on the right, and no collision
risk is present.\n - **4.0s**: The ego vehicle completes its forward and leftward trajectory, ensuring a safe distance
from the vehicle on the left. The pedestrian on the right is still at a safe distance, and no collision risk is present.\n\
nThroughout the planning process, the ego vehicle's trajectory is continuously adjusted to maintain a safe distance from
the vehicle on the left, while the pedestrian on the right is consistently monitored to ensure no collision occurs. The
adjustments are minimal, primarily involving slight leftward adjustments to maintain a safe clearance from the vehicle on
the left.

\"2.5s\"}, \n\t{\"x_y_radian\": [19.55, 5.15, 0.39], \"label\": \"3.0s\"},\n\t{\"x_y_radian\": [23.1, 6.55, 0.39], \

Vi e
2-
L\

Ground Truth

4

** json\n[\n\t{\"bbox_2d\":
[39, 85, 215, 167], \

"label\": \"vehicle\"},\n\t{\
"bbox_2d\": [413, 84, 438,
119], \"label\": \
“pedestrian\"}\n]\n

Y json\n[\n\t{\"bbox_2d\":
[39, 85, 215, 167], \
“future_position\": \"near,
left\"}, \n\t{\"bbox_2d\":
[413, 84, 438, 119], \
"future_position\": \"near,
right\"\n]\n***

Y json\n[\n\t{\
"x_y_radian\": [2.48, 0.1,
0.08], \"label\": \"0.5s\"},\
n\t{\"x_y_radian\": [5.25,
0.45, 0.18], \"label\": \
"1.0s\"}, \n\t{\"x_y_radian\
": [8.18, 1.09, 0.27], \
“"label\": \"1.5s\"}, \n\t{\
“x_y_radian\": [11.1, 1.96,
0.32], \"label\": \"2.0s\"},\
n\t{\"x_y_radian\": [13.98,
2.98, 0.35], \"label\": \
"2.5s\"}, \n\t{\"x_y_radian\
“: [16.8, 4.08, 0.37], \
“label\": \"3.0s\"}, \n\t{\
"x_y_radian\": [19.6, 5.2,
0.37], \"label\": \"3.5s\"},\
n\t{\"x_y_radian\": [22.4,
6.33, 0.37], \"label\": \
"4.0s\"}\n]\n"**

Figure 15: Visualization NAVSIM cases with completed questions and answers. AutoDrive-P3
successfully locates the key object on the left and take a appropriate lane change action to move

forward, while other methods provide a wrong trajectories to turn right.
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OURS-FAST:

*** json\n[\n\t{\"bbox_2d\": [0, 74, 175, 167], \"label\": \"vehlcle\") \n\t{\"bbox_2d\": [162, 88, 246, 162], \"label\": \
"vehicle\"}, \n\t{\"bbox_2d\": [455, 76, 493, 122], \"label\": \"pedestrian\"}\n]\n""*

*** json\n[\n\t{\"bbox_2d\": [0, 74, 175, 167], \"future_position\": \"near, left\"},\n\t{\"bbox_2d\": [162, 88, 246, 162], \
"future_position\": \"far, left\"}, \n\t{\"bbox_2d\": [455, 76, 493, 122], \"future_position\": \"near, right\"I\n]\n"*"

1Y json\n[\n\t{\"x_y_radian\": [2.51, 0.11, 0.1], \"label\": \"0.5s\"}, \n\t{\"x_y_radian\": [5.35, 0.51, 0.19], \"label\": \"1.0s\
"}, \M\H{\"x_y_radian\": [8.51, 1.15, 0.23], \"label\": \"1.5s\"},\n\H{\"x_y_radian\": [11.98, 1.95, 0.25], \"label\": \"2.0s\"}, \n\#{\"x_y_radian\":
[15.75, 2.89, 0.27], \"label\": \"2.5s\"}, \n\t{\"x_y_radian\": [19.79, 3.95, 0.28], \"label\": \"3.0s\"},\n\t{\"x_y_radian\": [23.95, 5.09, 0.29], \
"label\": \"3.5s\"}, \n\t{\"x_y_radian\": [28.1, 6.25, 029] \"label\": \"4.0s\")\n]\n' "

] W i ! i A ] R
[ours Detaiied | Diffusiondrive

OURS-DETAILED:

Let's analyze the image step by step to identify and report the coordinates of key objects:\n\nl. **Vehicle *** json\n[\n\t{\"bbox_2d\":
Detection®*:\n - The image shows a black vehicle on the left side of the frame. It appears to be a van or SUV.\n [0, 70, 175, 167], \"label\
- Coordinates: [0, 70, 175, 167]\n - Another vehicle is visible further down the road, closer to the center.\n - "t \"vehicle\"}, \n\t{\
Coordinates: [160, 87, 246, 162]\n\n2. **Pedestrian Detection**:\n - A pedestrian is walking on the sidewalk on the ‘“bbox_2d\": [160, 87, 246,
right side of the frame.\n - Coordinates: [456, 77, 493, 121]\n\n3. **Other Objects**:\n - There are no 162], \"label\": \"vehicle\

bicycles or motorcycles visible in the image.\n - The background includes buildings and traffic lights, but these are "},\n\f(\“bbox_Zc‘i\": [45-’6.
not categorized as key objects.\n\nFinal Output:\n'*" json\n[\n\t{\"bbox_2d\": [0, 70, 175, 167], \"label\": \"vehicle\ Z7, 493, 12.1‘], \"label\": \
"}, \n\t{\"bbox_2d\": [160, 87, 246, 162], \"label\": \"vehicle\"},\n\t{\"bbox_2d\": [456, 77, 493, 121], \"label\": \ ‘“Pedestrian\"}\n]\n
“pedestrian\"}\n]\n" **

Y json\n[\n\t{\"bbox_2d\":
- . . . . . . 5 [0, 70, 175, 167], \
1. **Initial Observation**: The key objects in the image include a black vehicle on the left, another vehicle further “future_position\": \"near
ahead and to the left, and a pedestrian on the right side of the street.\n2. **Future Position of Key Objects™:\n - |ogr\in \n\t{\"bbox_2d\": ‘

The black vehicle is predicted to move near and to the left of its current position.\n - The vehicle ahead and to the 140 '87, 246, 162], \
left is also predicted to move near and fo the left.\n - The pedestrian is predicted to move near and fo the right.\ g4 0 _[.;osiﬁo‘n\": \"far

n3. **Reasoning**: Given the current positions and the predicted movement paths, the black vehicle and the vehicle leFF\"}, \n\t{\"bbox 2d\":
ahead are likely to continue moving forward with a slight leftward trajectory. The pedestrian is expected to move along 456 77 493 121_] \
the sidewalk to the right. "future_position\": \"middle,

@ right\"\nJ\n" **

Q)

1. **Ego Vehicle State**: The ego vehicle is currently moving forward with a velocity of 4.72 m/s and an acceleration  *** json\n[\n\t{\

of 1.27 m/s\u00b2. The driving command is to turn left.\n2. **Historical Trajectory**: The historical trajectory shows "x_y_radian\": [2.45, 0.08,

a consistent forward motion with a slight leftward adjustment over time.\n3. **Future Planning Points**:\n - 0.08], \"label\": \"0.5s\"},\
**0.5s™*: The ego vehicle will continue moving forward while initiating a left turn. The pedestrian is fo the right, so no n\t{\"x_y_radian\": [5.15,
immediate collision risk exists. The black vehicle ahead is also moving forward, maintaining a safe distance.\n - 0.4, 0.17], \"label\": \
**1.0s**: The ego vehicle continues its left turn, increasing the yaw angle. The pedestrian remains to the right, and "1.0s\"}, \n\t{\"x_y_radian\
the black vehicle ahead is still at a safe distance. The trajectory adjustment ensures no collision with the pedestrian.\n . (8 08, 0.98, 0.23], \

- **1.5s**: The ego vehicle further executes the left turn, with the yaw angle increasing. The pedestrian is now "label\": \"1.5s\"}, \n\t{\
further to the right, and the black vehicle ahead maintains a safe distance. The trajectory is adjusted to ensure a "x_y_radian\": [11.23,

smooth turn without collision.\n - **2.0s**: The ego vehicle continues the left turn, with the yaw angle approaching  1.78, 0.25], \"label\": \
0.3 radians. The pedestrian is now significantly to the right, and the black vehicle ahead is still at a safe distance. The "2 0s\"},\n\t{\"x_y_radian\
trajectory is fine-tuned to avoid any potential collision.\n - **2.5s**: The ego vehicle maintains the left turn, with ": [14.58, 2.68, 0.26], \
the yaw angle at 0.33 radians. The pedestrian is now even further to the right, and the black vehicle ahead is still at a “|gbel\": \"2.5s\"}, \n\t{\
safe distance. The trajectory is adjusted to ensure a smooth and safe turn.\n - **3.0s**: The ego vehicle continues 'x_y radian\": [18.1, 3.66,
the left turn, with the yaw angle at 0.34 radians. The pedestrian is now at a considerable distance to the right, and 0.26], \"label\": \"3.0s\"},\
the black vehicle ahead is still at a safe distance. The trajectory is fine-tuned to ensure a smooth turn.\n - n\t{\"x_y_radian\": [21.78,
**3.55**: The ego vehicle maintains the left turn, with the yaw angle at 0.34 radians. The pedestrian is now at a 4.7, 0.26], \"label\": \
significant distance to the right, and the black vehicle ahead is still at a safe distance. The trajectory is adjusted fo "3 Bs\"} \n\t{\"x_y_radian\
ensure a smooth turn.\n - **4.0s**: The ego vehicle completes the left turn, with the yaw angle at 0.34 radians. The ": [25 6, 5.78, 0.26], \
pedestrian is now at a considerable distance to the right, and the black vehicle ahead is still at a safe distance. The “"label\": \"4.0s\"}\n]\n"""
trajectory is finalized to ensure a smooth and safe turn.\n\n4. **Collision Avoidance**: Throughout the planning
process, the ego vehicle's trajectory is adjusted to maintain a safe distance from the pedestrian and the black vehicle
ahead. The left turn is executed smoothly, with continuous monitoring of the pedestrian's position to ensure no collision
occurs.\n\n5. **Final Adjustment**: The final trajectory ensures a safe and smoofh left turn, avoiding any potential
collisions with the pedzsfr‘lan and the black vehicle ahead. The trajectory is opti d to maintain a safe dist and

the driving d effectively.

Figure 16: Visualization NAVSIM cases with completed questions and answers. AutoDrive-P>
successfully locates key objects on the left and take a appropriate lane change action to move for-
ward, while other methods drive into an illegal driving area.
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OURS-FAST:
1 json\n[\n\t{\"bbox_2d\": [], \"label\": [J}\n]\n""*
**t json\n[\n\t{\"bbox_2d\": [1, \"future_position\": [J}\n]\n"""*

1 json\n[\n\t{\"x_y_radian\": [1.35, 0.0, 0.0], \"label\": \"0.5s\"},\n\t{\"x_y_radian\": [3.15, -0.02, -0.02], \"label\": \"1.0s\

"} An\H{\"x_y_radian\": [5.25, -0.11, -0.08], \"label\": \"1.5s\"},\n\t{\"x_y_radian\": [7.55, -0.41, -0.19], \"label\":

\"2.0s\"}, \n\t{\

"x_y_radian\": [9.89, -1.02, -0.35], \"label\": \"2.5s\"},\n\t{\"x_y_radian\": [12.1, -2.05, -0.55], \"label\": \"3.0s\"}, \n\t{\"x_y_radian\":
[13.98, -3.51,

-0.78], \"label\": \"3.5s5\"},\m\t{\"x_y_radian\": [15.42, -5.35, -1.02], \"label\": \"4.0s\"I\n]\n"**

DiffusionDrive

OURS-DETAILED:

Let's analyze the image step by step to identify key objects:\n\nl. **Image Overview**: The image is a wide-angle
shot of a street showing an outdoor scene with modern buildings, trees, and a road. The scene appears calm with no
immediate signs of activity.\n\n2. **Vehicle Detection**:\n - Scan the road for any vehicles: There are no cars,
trucks, or other types of vehicles visible on the road.\n - Check lanes and shoulders for parked vehicles: No vehicles
are present.\n\n3. - Pedestrian Check:\n - Examine sidewalks and pedestrian areas: People are not visible walking or
standing in these areas.\n\n4. - Bicycle/Motorcycle Check:\n - Look along the road and sidewalks for bicycles or
motorcycles: None are present in the frame.\n\n5. **Final Assessment**:\n - After thorough examination of the entire
image, there are no vehicles, pedestrians, or bicycles/motorcycles detected.\n\n6. **Conclusion**: Since no key objects
from the specified categories are visible in the image, it concludes that such objects do not exist in this particular
frame.\n\nOutput:\n" " json\n[\n\t{\"bbox_2d\": [], \"label\": [J}\n]\n" " \n\nNo key objects detected in the image.

1. **Initial Observation**: The image is a wide, panoramic view of an urban street intersection with modern buildings, a
road intersection, and some greenery. There are no visible key objects (e.g., vehicles, pedestrians, or other significant
moving entities) in the current frame.\n\n2. **Key Objects Analysis**: \n - The provided prediction answer indicates
that there are no key objects detected in the image. This means that there are no other vehicles, pedestrians, or
significant objects whose future positions need to be predicted.\n\n3. **Future Position Determination**: Since no key
objects are detected in the current frame, it is reasonable to conclude that there are no dynamic elements in the scene
that could influence the ego vehicle's movement. Therefore, the future position for other key objects is not applicable.\
n\n4. **Conclusion**: Given the absence of detectable key objects in the image, it is accurate to state that no future
positions need to be obtained for other key objects.

orn

i

1. **Ego Vehicle State**: The ego vehicle is currently moving forward with a velocity of 2.14 m/s in the x-direction
and a negligible y-velocity of 0.04 m/s. The acceleration is 1.82 m/s\u00b2 in the x-direction and 0.14 m/s\u00b2 in
the y-direction. The driving command is to turn right, and the historical trajectory shows a consistent forward motion
with a slight rightward adjustment.\n\n2. **Planning Points**: The planning trajectory is provided as a sequence of
points every 0.5 seconds for the next 4 seconds. Each point includes the ego vehicle's position and orientation in meters
and radians.\n\n3. **Trajectory Analysis**:\n - **0.5s**: The ego vehicle moves forward slightly while initiating a
rightward turn, as indicated by the increasing negative yaw angle.\n - **1.0s**: The vehicle continues its forward
motion with a more pronounced rightward turn, aligning with the driving command.\n - **1.5s**: The turn becomes more
significant, and the vehicle is now clearly executing a right turn, with a noticeable change in direction.\n - **2.0s**:
The vehicle continues along the planned trajectory, maintaining the rightward turn, with the yaw angle further
decreasing to reflect the ongoing turn.\n - **2.5s**: The turn is nearing completion, and the vehicle is aligning more
closely with the intended path, indicated by the decreasing yaw angle.\n - **3.0s**: The vehicle is almost fully turned,
with the yaw angle approaching the final value, showing a smooth transition to the new direction.\n - **3.5s**: The
vehicle completes the turn, and the yaw angle stabilizes, indicating the end of the turning maneuver.\n - **4.0s**: The
vehicle continues along the new direction, with the yaw angle maintaining the final orientation.\n\n4. **Collision
Avoidance Consideration**: Since no key objects are detected in the image, there is no immediate risk of collision with
other vehicles or pedestrians. The trajectory is straightforward and does not require adjustments based on other
dynamic objects.\n\n5. **Adjustments and Validation**: The trajectory provided aligns with the driving command to turn
right smoothly over the 4-second period. The increasing negative yaw angle confirms the gradual execution of the turn,
ensuring a safe and controlled maneuver. The trajectory points are consistent with the given driving command and the
vehicle's current state.\n\n6. **Final Check**: All points in the trajectory are within the expected range of the
vehicle's motion, considering the current speed and acceleration. The trajectory ensures a smooth transition to the
intended direction without abrupt changes.\n\n7. **Conclusion**: The provided trajectory effectively guides the ego
vehicle to execute a smooth right turn over the next 4 seconds, with each point reflecting a gradual and controlled
change in direction. The trajectory aligns with the driving command and the vehicle's current dynamics, ensuring a safe
and efficient maneuver.

* json\n[\n\t{\"bbox_2d\":
0. \"label\": [J\n]\n"*"

*t json\n[\n\t{\"bbox_2d\":
[1. \"future_position\": [J\
A

T json\n[\n\t{\
"x_y_radian\": [1.36, 0.0,
-0.01], \"label\": \"0.5s\
"} An\H{\"x_y_radian\":
[3.08, -0.03, -0.04], \
"label\": \"1.0s\"}, \n\t{\
"x_y_radian\": [5.06, -
0.16, -0.12], \"label\": \
"1.5s\"}, \n\t{\"x_y_radian\
": [7.15, -0.5, -0.25], \
"label\": \"2.0s\"}, \n\t{\
"x_y_radian\": [9.2, -1.2,
-0.43], \"label\": \"2.5s\
"} An\H{\"x_y_radian\":
[11.1, -2.3, -0.63], \
"label\": .0s\"}, \n\t{\
"x_y_radian\": [12.78, -
3.78, -0.83], \"label\": \
"3.55\"}, \n\t{\"x_y_radian\
": [14.15, -5.65, -1.03], \
“label\": \"4.0s\"}\nJ\n"*"

P

Figure 17: Visualization NAVSIM cases with completed questions and answers. AutoDrive-P3
successfully recognizes the “Turn Right” command and provide the right planning trajectory, while

other methods drive towards the building leading to collisions.

28



Under review as a conference paper at ICLR 2026

F PROMPTS

In this section, we provide the completed and specific prompts used in the training/inference and
prompts used to generate P3-CoT dataset. The prompt used in the training/inference is as follows.

You are an expert driving assistant. As an expert driving assistant,
analyze the 3-second driving video context and answer the perception,

prediction and planning gquestion in the final frame.

Output format is ’<think_perception> </think_perception>\n<
answer_perception> </answer_perception>\n<think_prediction> </
think_prediction>\n<answer_prediction> </answer_prediction>\n<
think_planning> </think_planning>\n<answer_planning> </
answer_planning>’.

Output the step-by-step Chain-of-Thought (CoT) reasoning process in <
think> </think> tags and final answer in <answer> </answer> tags,
respectively.

Ego Future Action is [Ego_Future_Action]. You current vehicle speed is [
VEHICLE_SPEED] m/s, and the historical trajectory of the ego vehicle
is [HISTORICAL_TRAJECTORY] .

To sufficiently extract knowledge from Qwen2.5-VL-72B, we ask Qwen2.5-VL-72B to output the
Chain-of-Thought (CoT) step by step. Qwen2.5-VL-72B is also required to use the CoT of percep-
tion tasks when it generates the CoT of prediction, and use the CoT of perception and prediction
tasks when it generates the CoT of planning.

# Perception CoT
PROMPT_FORMAT = """I will provide you with a final frame image of video,
an original question, and its answer related to the image. Your task
is to answer it requires step-by-step Chain-of-Thought (CoT)
reasoning with numerical or mathematical expressions where applicable
The reasoning process can include expressions like "let me think,"
"oh, I see," or other natural language thought expressions.
Input Format:
Original Question: {original_guestion}
Original Answer: {original_answer}
Output Format:
<think>step-by-step reasoning process</think>
<answer>easy to verify answer</answer>
mmnw
QUESTION = "Examine the final frame image of video for key objects and
report the coordinates of each detected object. Key object categories
include: car, bus, truck, bicycle, pedestrian, motorcycle. The image
size is 896x504."
ANSWER_FORMAT = "[\n\t{{\"bbox_2d\": {bbox}, \"label\": \"{label}\"}}\n]"

# Prediction and Planning

PROMPT_FORMAT = """I will provide you with a final frame image of video,
the key objects in this frame, an question, a video Context, vehicle
speed, historical trajectory (last 3 seconds) and its prediction and
planning answer. Your task is to answer it requires step-by-step
Chain-of-Thought (CoT) reasoning with numerical or mathematical
expressions where applicable. The reasoning process can include
expressions like "let me think," "oh, I see," or other natural
language thought expressions.

Note that prediction and planning answers are the next 3-second future
action for each object and ego vehicle planning trajectory. Video
context is the 3-second context.

Input Format:

Key Objects: {key_obijs}

Question: {original_qgquestion}

Video Context: {original_thinking}

Current Vehicle Speed: {vehicle_speed} m/s

Historical Trajectory (last 3 seconds, meters): {Historical_ Trajectory}

Prediction Answer: \n{original_answer_predition}
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Planning Answer: \n{original_answer_planning}

Output Format:

<think_prediction>step-by-step prediction reasoning process</
think_prediction>

<answer_prediction>easy to verify prediction answer</answer_prediction>

<think_planning>step-by-step planning reasoning process</think_planning>

<answer_planning>easy to verify planning answer</answer_planning>

QUESTION = """Predict the future action for each object and give the the
ego vehicle planning trajectory. Future action can be: stop, straight
, right, left. Planning trajectory is 6 points in the next 3 seconds
(each point means 0.5s).

Please use the format as [x, y] in meters, where x-axis is perpendicular,
and y-axis 1is parallel to the direction you are facing.

If y > 0, it means that the ego is to GO STRAIGHT, and vice yersa.

If x > 0, it means that the ego is to TURN RIGHT, and vice versa.

Note that current Vehicle Speed does affect the ego vehicle planning
trajectory but you also should consider Historical Trajectory, Key
Objects’ Predicion Answers, Ego Action and the Video Context.

Uing numerical or mathematical expressions where applicable.
mmww
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