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Abstract

We translate the sequence labeling framework,001
first introduced for top-down discourse pars-002
ing by Koto et al. (2021), to bottom-up dis-003
course parsing. We introduce a novel parser004
that is not constrained by parsing direction005
(left-to-right or otherwise), and is conditioned006
on previous parsing decisions. We describe007
the unique training requirements of a (direc-008
tionally) unconstrained parser and explore two009
different training procedures. Additionally,010
we introduce a novel dynamic oracle for un-011
constrained bottom-up parsing. Our proposed012
parser achieves state-of-the-art performance013
amongst bottom-up RST parsers.014

1 Introduction015

Discourse analysis aims to explain the relationship016

of texts beyond sentence boundaries, and has been017

modelled based on Rhetorical Structure Theory018

(RST) (Mann and Thompson, 1988). In the RST019

framework, texts are modelled as a hierarchy of020

discourse units (DU), with elementary discourse021

units (EDU) being the smallest unit (see Figure 1022

as an example).023

Most previous works have attempted to model024

the RST discourse tree based on the bottom-up025

paradigm (Ji and Eisenstein, 2014; Joty et al., 2015;026

Li et al., 2016; Yu et al., 2018). However, the027

bottom-up approaches used in the previous study028

have several drawbacks. First, tree construction of029

transition-based parser (Yu et al., 2018) is arguably030

less intuitive due to the requirement to transform031

the problem into such SHIFT and REDUCE ac-032

tions. Secondly, CYK parsing is a greedy approach033

and requires computing all possible mergers effi-034

ciently.035

In this work, we propose a conceptually sim-036

pler bottom-up discourse parsing framing it as a037

sequence labelling problem. We adopt this tech-038

nique from the recent top-down discourse parsing039

(Koto et al., 2021). Our work is a novel bottom-up040

Figure 1: An example discourse tree (evid = evidence,
seq = sequence). For this tree, we show the parsing
states of the top-down (left) and bottom-up (right) ap-
proaches.

discourse parser that is not constrained to parsing 041

in a particular direction, and parses conditioned 042

on the context of past parsing decisions. Because 043

the model is conditioned on the parsing history, 044

we need to sample parsing trajectories to train 045

the model. We compare two simple sample meth- 046

ods: (1) left to right, and (2) random. In addition, 047

we introduce a dynamic oracle for unconstrained 048

bottom-up parsing. Compared to previous bottom- 049

up parsers, our method achieves the state of the 050

art over the English RST Discourse Treebank. We 051

make the source code available online 1. 052

2 Bottom-Up RST Parsing 053

We construct RST trees in a bottom-up fashion: 054

starting with a sequence of EDUs, the parser se- 055

quentially merges adjacent discourse units. At 056

each stage, there are multiple merge points in the 057

partially-parsed document that make up the gold 058

discourse tree, and we define all such points to be 059

gold merges. We impose no constraint on which 060

1https://anonymous.4open.science/r/
NeuralRST-BottomUp-C5DB
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gold merge needs to be executed first.061

Following Koto et al. (2021), we frame the merg-062

ing task as a sequence labeling problem. We train a063

merging model to assign a binary label y ∈ {0, 1}064

to each discourse unit, where 1 indicates the unit065

and its right neighbour is part of a gold merge. For066

each parse state, we train the model to label all gold067

merge points. At test time, we select the highest-068

probability merge point to construct the next parse069

state. We assign the discourse label and relation070

nuclearity separately with a second classifier after071

a merge is decided.072

2.1 Parsing Context073

We condition our parser on all discourse units in the074

text. Figure 1 demonstrates an example where the075

context of nearby discourse units is important. At076

a glance, it is difficult to decide whether EDU-2 is077

evidence for EDU-1 or EDU-3. With the context in-078

formation that EDU-3 and EDU-4 are connected, it079

becomes more likely that EDU-2 is connected with080

EDU-1. A left-to-right parser (Ji and Eisenstein,081

2014; Yu et al., 2018) that uses context-insensitive082

models must make a parsing decision without con-083

text. With no constraint on merge order, the parser084

can parse subtrees that it is most confident in first,085

and use the context of past decisions to inform086

difficult parsing decisions.087

2.2 Model088

Following Koto et al. (2021), our merging mod-089

ule consists of two blocks, as depicted in Figure 2.090

The first block is an EDU encoder. We use the091

hierarchical LSTM architecture introduced in Yu092

et al. (2018), generating encodings with implicit093

syntax features. We obtain a suitable representa-094

tion for each EDU text span {w1, w2, . . . , wm} by095

using two Bi-LSTMs (Bi-LSTM1 and Bi-LSTM2).096

Bi-LSTM1 is given the neural embedding of wi097

concatenated with the part of speech embedding as098

input. Bi-LSTM2 is given the syntax embedding099

si of each work as input. The syntax embedding is100

the MLP output from a bi-affine syntax dependency101

parser (Dozat and Manning, 2017). We also use102

an EDU type embedding tEj to distinguish EDUs103

at the end of a paragraph from other EDUs. The104

final EDU encoding gEj is the concatenation of the105

average output states for both Bi-LSTMs over the106

Figure 2: Architecture of the LSTM Model

EDU and the EDU type embedding tEj : 107

xi = wi ⊕ pi 108

{aw1 , .., awp } = Bi-LSTM1({x1, .., xp}) 109

{as1, ..., asp} = Bi-LSTM2({s1, .., sp}) 110

gEj = Avg-Pool({aw1 , .., awp })⊕ 111

Avg-Pool({as1, .., asp})⊕ tEj 112

Given a sequence of independent EDU encod-
ings, we use a third Bi-LSTM (Bi-LSTM3) to cap-
ture relationships between EDUs and produce a
contextualized encoding hEj :

{hE1 , . . . , hEq} = Bi-LSTM3(gE1 , . . . , gEq)

The second block (the top half of Figure 2) is
the merger, and deviates from Koto et al. (2021).
Our parse state consists of a sequence of discourse
units, each of which is represented by averaging
the encodings of the EDUs spanning the discourse
unit:

dDk
= Avg(hEa , . . . , hEb

)

where Dk is a discourse unit with EDU span Ea:b. 113

We use a fourth Bi-LSTM (Bi-LSTM4) to en-
code relationships between discourse units and as-
sign a binary label to each merge.

{d′D1
, . . . , d′Dn

} = Bi-LSTM4(dD1 , . . . , dDn)
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ŷDk
= σ(MLP(d′Dk

))

2.3 Nuclearity and Discourse Relation114

Prediction115

Following Koto et al. (2021), we predict the nucle-
arity indication and discourse label after a merge
is chosen. We feed the encodings d′ind, d

′
ind+1 of

the selected discourse units into a MLP layer to
predict the nuclearity and discourse labels, where
ind is the index of the left discourse unit chosen to
be merged:

znuc+dis = softmax(MLP(d′ind, d
′
ind+1))

where znuc+dis is the joint probability distribution116

over the nuclearity and discourse classes.117

The final training loss of our model is the com-
bination of the merging and nuclearity-discourse
prediction loss:

L = Lmerge + Lnuc+dis

2.4 Merge Order in Training118

The same RST tree can be constructed by different119

sequences of merges. Because each pair of merge120

candidates is evaluated in the context of the whole121

discourse unit sequence, different merge histories122

can lead to different predictions for the same merge123

candidate.124

During training, it is intractable to train the125

model to predict each merge correctly with all pos-126

sible merge histories. We propose to construct each127

training text using merges from the gold tree, and128

use the parse state in the merge sequence to train129

the parser.130

We propose two methods for generating training131

sequences: (1) merging gold pairs left to right; and132

(2) merging gold pairs at random.133

Training examples generated by executing gold134

merges left to right are unique for each gold tree,135

minimizing data variance. The parse states gener-136

ated are equivalent to the states seen by a transition-137

based parser. However, the model will only see138

parse states created by a left to right parser. At139

test time, the parser is not limited to parsing in a140

left-to-right manner, and the model will see states141

outside of the training distribution.142

Executing gold merges at random can generate143

different parse states even for the same gold tree.144

All gold merge sequences that constructs the gold145

tree are within the training data data distribution,146

at the cost of higher data variance.147

We train our parser with both methods and ana-148

lyze induced model biases.149

2.5 Dynamic Oracle 150

In the standard training regimen, the model is only 151

trained on parse states constructed by a sequence 152

of correct merges. However, at test time, the model 153

will often see error parse states, created by an in- 154

correct merge in its history. Because the model 155

is never trained on error states, it will struggle to 156

recover after it has made a mistake. 157

We address this problem by training our model 158

with a dynamic oracle, first introduced by Gold- 159

berg and Nivre (2012) for dependency parsing and 160

adopted for training other types of discourse parsers 161

(Yu et al., 2018; Koto et al., 2021). Given an er- 162

ror state, a dynamic oracle provides the next set of 163

merge actions that will minimize deviation between 164

the gold tree and the final tree. The dynamic oracle 165

is described in Algorithm 1 in the Appendix. At 166

each merging step in training, with probability α 167

we execute the predicted merge instead of the sam- 168

pled gold merge. In this manner, we introduce error 169

states to the training set and teach the model to pre- 170

dict the next set of oracle actions, so the parser 171

chooses the best actions even after a mistake. 172

The oracle assigns a merge order to each merge 173

position in the document, defined as the earliest 174

step the position is merged in all possible gold 175

merge sequences. A position is an oracle action if 176

the adjacent merge positions have a higher order. 177

In such cases, the merge at the position precedes 178

all merges containing the two discourse units in the 179

merge. 180

3 Experiments 181

3.1 Data 182

Following previous studies (Koto et al., 2021; Yu 183

et al., 2018), we focus on the English language 184

and use the RST Discourse Treebank for our ex- 185

periments, binarizing all discourse trees in a right- 186

heavy manner. It contains 347 annotated docu- 187

ments for training and 38 documents for testing. 188

Our development set consists of the same 35 doc- 189

uments as Koto et al. (2021) and Yu et al. (2018), 190

taken from the training set. We also use the same 191

18 coarse-grained discourse relationships. 192

3.2 Results 193

We use the Parserval metric for evaluating parser 194

performance, described in the Appendix Section A. 195

The hyperparameters used are also listed in the Ap- 196

pendix in Section B. We perform a feature selection 197

study to find the best training procedure. Results 198
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Merge Order Full Bias

Left Merge 47.3 12.6
Random Merge 51.8 0.8

Table 1: Feature addition study over the development
set to find the best configuration for our models. Pre-
sented results are the mean of the Full metric (micro-
averaged F-score on labeled attachment decisions) and
bias (depth difference between the left and right end of
the tree) over the development set.

are presented in Table 1. All metrics are averaged199

over three random seeds on the development set,200

with a static oracle. We compared training with left-201

first state sequences and randomly-sampled state202

sequences; randomly-sampled state sequences re-203

sulted in a score of 51.8, a +4.5 improvement over204

training with left-first state sequences. We use ran-205

dom state sequences for the remainder of this sec-206

tion.207

We benchmark our parser against previous state-208

of-the-art RST parsers over the test set. The results209

are presented in Table 2 (original Parseval) and210

Table 3 (RST-Parseval). The reported human per-211

formance is the score of human agreement from212

Joty et al. (2015) and Morey et al. (2017).213

Training with a dynamic oracle improved results214

over a static oracle, with a Full score increase of215

+0.2. Even with a static oracle, our parser surpasses216

previous bottom-up parsers with a simple greedy al-217

gorithm, without the need for complex post-editing218

or a chart-parsing algorithm. The sequence labeling219

framework has the benefit of being conceptually220

simpler than transition parsers. Training with a221

dynamic oracle adds algorithmic complexity dur-222

ing training, but our inference procedure remains223

the same. Our parser is most comparable with224

the transition-based parser proposed by Yu et al.225

(2018), which shares the same LSTM-architecture226

as our work and also utilises implicit syntax fea-227

tures. Our result demonstrates that a parser with228

context of document structure outperforms parsers229

without structure context. Compared to the top-230

down parser proposed by Koto et al. (2021) with231

the dynamic oracle, our results for Span and Nu-232

clearity are superior or equivalent, but the relation233

classification results are slightly inferior, resulting234

in slightly lower results overall.235

3.3 Analysis236

We perform bias analysis on discourse trees pro-
duced by models trained left-first states against

Method S N R F

Bottom Up:
Feng and Hirst (2014)† 68.6 55.9 45.8 44.6
Ji and Eisenstein (2014)† 64.1 54.2 46.8 46.3
Surdeanu et al. (2015)† 65.3 54.2 45.1 44.2
Joty et al. (2015) 65.1 55.5 45.1 44.3
Hayashi et al. (2016) 65.1 54.6 44.7 44.1
Li et al. (2016) 64.5 54.0 38.1 36.6
Braud et al. (2017) 62.7 54.5 45.5 45.1
Yu et al. (2018) (static)‡ 71.1 59.7 48.4 47.4
Yu et al. (2018) (dynamic)‡ 71.4 60.3 49.2 48.1

Our Work:
Static ‡ 73.3 62.0 50.1 49.1
Dynamic‡ 73.6 62.3 50.3 49.3

Top Down:
Zhang et al. (2020) 67.2 55.5 45.3 44.3
Koto et al. (2021) LSTM (static)‡ 72.7 61.7 50.5 49.4
Koto et al. (2021) LSTM (dynamic)‡ 73.1 62.3 51.5 50.3

Human 78.7 66.8 57.1 55.0

Table 2: Results over the test set calculated us-
ing micro-averaged F-1 on labeled attachment deci-
sions (original Parseval). All metrics (S: Span, N:
Nuclearity, R: Relation, F: Full) are averaged
over three runs. “†” and “‡” denote that the model
uses sentence and paragraph boundary features, respec-
tively.

random states. We introduce a simple metric for
detecting heaviness bias, by calculating the depth
difference between the left-most and the right-most
leaf nodes and subtracting the expected difference
from the gold tree.

di = Depthpred(EDUi)− Depthgold(EDUi)

b = dn − d1
When the parser is trained with left-first examples, 237

b = 12.57 (Table 1), indicating a bias towards 238

right-heavy trees. This is expected due to right 239

merges being merged last in the training examples, 240

thus creating an imbalance in the number of correct 241

merges in the left side and the right side of the 242

tree in the training examples. On the other hand, 243

when trained with random sampling, there is no 244

significant bias, with b = 0.8. 245

4 Conclusion 246

In this work, we adapted the sequence labeling 247

framework to bottom-up RST parsing, introducing 248

a parser conditioned on past decisions. We inves- 249

tigated methods to sample training examples for a 250

context-sensitive parser, and proposed a dynamic 251

oracle for our bottom-up parsing. We demonstrated 252

that our parser achieves state-of-the-art results for 253

bottom-up RST parsing, and is competitive with 254

the state-of-the-art top-down parser. 255
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A Evaluation361

We use the standard Parseval metrics for RST pars-362

ing from (Marcu, 2000). Under recommendations363

of a recent replication study (Morey et al., 2017),364

we report micro-averaged F-1 scores on labeled365

attachment decisions (original Parseval) instead of366

macro-averaged F-1 scores (RST-Parseval). The367

Parseval metrics consist of: Span, Nuclearity, Re-368

lation and Full. Span evaluates the correctness of369

the predicted tree structure. Nuclearity evaluates370

the tree skeleton together with nuclearity indica-371

tions. Relation evaluates the tree skeleton with the372

discourse relations. Full evaluates the tree skele-373

ton along with nuclearity indications and discourse374

relations.375

B Hyperparameters376

We follow the hyperparameters used in (Koto et al.,377

2021). The GloVe embedding (Pennington et al.,378

2014) is used to word encodings in each EDU. We379

use CoreNLP (Manning et al., 2014) to tag POS and380

initialize each POS encoding as a random vector.381

The embedding dimension of words, POS tags,382

EDU type and syntax features are respectively 200,383

200, 100 and 1200. The dimensionality of the Bi-384

LSTMs in the encoder is 256 and Bi-LSTM4 in the385

merge classifier has a dimension of 128. We use386

batch size = 4, gradient accumulation = 2, learning387

rate = 0.001, dropout probability = 0.5, optimizer =388

Adam (with epsilon of 1e-6). When training with389

a dynamic oracle, we activate the dynamic oracle390

after 50 epochs.391

We tune the α value used in the dynamic oracle392

on the development set. We performed grid search393

on α values, each averaging the Full Parseval met-394

ric over three random seeds. For training with a395

dynamic oracle, we found that α = 0.8 resulted in396

the best Full Parseval score.397

C Compute398

We use a single Tesla V100 SXM2 32 GB with399

4 CPU cores to run our experiments. A run with400

static oracle takes around 14 hours and 32 hours in401

wall-clock time.402

D Dynamic Oracle 403

Algorithm 1 Bottom-up Dynamic Oracle
1: function DYNORACLE(E,O,R)
2: # For training only
3: # E is list of EDUs
4: # O is gold order for segmentation
5: # R is list of gold discourse labels based on O
6: q = length(E); state = {E1, . . . , Eq}
7: while ‖state‖ > 1 do
8: idgold = oracleMerge(state,O,R)
9: idpred = predictMerge(state)

10: rpred1 = predictLabel(state, idgold)
11: rpred2 = predictLabel(state, idpred)
12: if random() > α then
13: state = merge(state, idpred
14: roracle = oracleLabel(state, idpred)
15: L = Loss(idgold, roracle, idpred1, rpred1)
16: else
17: state = merge(state, idgold
18: rgold = oracleLabel(state, idgold)
19: L = Loss(idgold, rgold, idpred2, rpred1)
20: end if
21: end while
22: end function

E Additional Results 404

E.1 Evaluation with RST-Parseval Procedure 405

Method S N R F

Bottom-Up
Feng and Hirst (2014)*† 84.3 69.4 56.9 56.2
Ji and Eisenstein (2014)*† 82.0 68.2 57.8 57.6
Surdeanu et al. (2015)*† 82.6 67.1 55.4 54.9
Joty et al. (2015)* 82.6 68.3 55.8 54.4
Hayashi et al. (2016)* 82.6 66.6 54.6 54.3
Li et al. (2016)* 82.2 66.5 51.4 50.6
Braud et al. (2017)* 81.3 68.1 56.3 56.0
Yu et al. (2018) (1 run)*‡ 85.5 73.1 60.2 59.9
Yu et al. (2018) (static)‡ 85.8 72.6 59.5 59.0
Yu et al. (2018) (dynamic)‡ 85.6 72.9 59.8 59.3

Our Work:
Static ‡ 86.7 73.2 60.5 60.0
Dynamic‡ 86.8 73.6 60.6 60.1

Top-Down
Kobayashi et al. (2020)*†‡ 87.0 74.6 60.0 -
Koto et al. (2021) LSTM (static)‡ 86.4 73.4 60.8 60.3
Koto et al. (2021) LSTM (dynamic)‡ 86.6 73.7 61.5 60.9

Human 88.3 77.3 65.4 64.7

Table 3: Results over the test set calculated using
micro-averaged F-1 on RST-Parseval. All metrics (S:
Span, N: Nuclearity, R: Relation, F: Full)
are averaged over three runs. “*” denotes reported per-
formance. “†” and “‡” denote that the model uses sen-
tence and paragraph boundary features, respectively.
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Method S N R F

Static 71.8 62.2 52.6 51.8
Dynamic 71.6 62.0 53.0 52.2

Table 4: Results over the development set calculated
using micro-averaged F-1 on labeled attachment deci-
sions (original Parseval). All metrics are averaged over
three runs.
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