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Abstract

We translate the sequence labeling framework,
first introduced for top-down discourse pars-
ing by Koto et al. (2021), to bottom-up dis-
course parsing. We introduce a novel parser
that is not constrained by parsing direction
(left-to-right or otherwise), and is conditioned
on previous parsing decisions. We describe
the unique training requirements of a (direc-
tionally) unconstrained parser and explore two
different training procedures. Additionally,
we introduce a novel dynamic oracle for un-
constrained bottom-up parsing. Our proposed
parser achieves state-of-the-art performance
amongst bottom-up RST parsers.

1 Introduction

Discourse analysis aims to explain the relationship
of texts beyond sentence boundaries, and has been
modelled based on Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988). In the RST
framework, texts are modelled as a hierarchy of
discourse units (DU), with elementary discourse
units (EDU) being the smallest unit (see Figure 1
as an example).

Most previous works have attempted to model
the RST discourse tree based on the bottom-up
paradigm (Ji and Eisenstein, 2014; Joty et al., 2015;
Li et al., 2016; Yu et al., 2018). However, the
bottom-up approaches used in the previous study
have several drawbacks. First, tree construction of
transition-based parser (Yu et al., 2018) is arguably
less intuitive due to the requirement to transform
the problem into such SHIFT and REDUCE ac-
tions. Secondly, CYK parsing is a greedy approach
and requires computing all possible mergers effi-
ciently.

In this work, we propose a conceptually sim-
pler bottom-up discourse parsing framing it as a
sequence labelling problem. We adopt this tech-
nique from the recent top-down discourse parsing
(Koto et al., 2021). Our work is a novel bottom-up
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Figure 1: An example discourse tree (evid = evidence,
seq = sequence). For this tree, we show the parsing
states of the top-down (left) and bottom-up (right) ap-
proaches.

discourse parser that is not constrained to parsing
in a particular direction, and parses conditioned
on the context of past parsing decisions. Because
the model is conditioned on the parsing history,
we need to sample parsing trajectories to train
the model. We compare two simple sample meth-
ods: (1) left to right, and (2) random. In addition,
we introduce a dynamic oracle for unconstrained
bottom-up parsing. Compared to previous bottom-
up parsers, our method achieves the state of the
art over the English RST Discourse Treebank. We
make the source code available online !

2 Bottom-Up RST Parsing

We construct RST trees in a bottom-up fashion:
starting with a sequence of EDUs, the parser se-
quentially merges adjacent discourse units. At
each stage, there are multiple merge points in the
partially-parsed document that make up the gold
discourse tree, and we define all such points to be
gold merges. We impose no constraint on which
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gold merge needs to be executed first.

Following Koto et al. (2021), we frame the merg-
ing task as a sequence labeling problem. We train a
merging model to assign a binary label y € {0,1}
to each discourse unit, where 1 indicates the unit
and its right neighbour is part of a gold merge. For
each parse state, we train the model to label all gold
merge points. At test time, we select the highest-
probability merge point to construct the next parse
state. We assign the discourse label and relation
nuclearity separately with a second classifier after
a merge is decided.

2.1 Parsing Context

We condition our parser on all discourse units in the
text. Figure 1 demonstrates an example where the
context of nearby discourse units is important. At
a glance, it is difficult to decide whether EDU-2 is
evidence for EDU-1 or EDU-3. With the context in-
formation that EDU-3 and EDU-4 are connected, it
becomes more likely that EDU-2 is connected with
EDU-1. A left-to-right parser (Ji and Eisenstein,
2014; Yu et al., 2018) that uses context-insensitive
models must make a parsing decision without con-
text. With no constraint on merge order, the parser
can parse subtrees that it is most confident in first,
and use the context of past decisions to inform
difficult parsing decisions.

2.2 Model

Following Koto et al. (2021), our merging mod-
ule consists of two blocks, as depicted in Figure 2.
The first block is an EDU encoder. We use the
hierarchical LSTM architecture introduced in Yu
et al. (2018), generating encodings with implicit
syntax features. We obtain a suitable representa-
tion for each EDU text span {w1, wa, . .., wy,} by
using two Bi-LSTMs (Bi-LSTM; and Bi-LSTM,).
Bi-LSTM;, is given the neural embedding of w;
concatenated with the part of speech embedding as
input. Bi-LSTM)j is given the syntax embedding
s; of each work as input. The syntax embedding is
the MLP output from a bi-affine syntax dependency
parser (Dozat and Manning, 2017). We also use
an EDU type embedding ¢, to distinguish EDUs
at the end of a paragraph from other EDUs. The
final EDU encoding g, is the concatenation of the
average output states for both Bi-LSTMs over the
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Figure 2: Architecture of the LSTM Model
EDU and the EDU type embedding ¢g;:

Ti = W; D p;
{a?’,..;ay'} = Bi-LSTM ({21, .., 7 })
{ai,...,ay} = Bi-LSTMa({s1, .., 5, })
gE; = Avg-Pool({aY, .., a,' })®
Avg-Pool({aj, ..,a,}) © tg,

Given a sequence of independent EDU encod-
ings, we use a third Bi-LSTM (Bi-LSTM3) to cap-
ture relationships between EDUs and produce a
contextualized encoding hp,:

{hE17" 7gEq)

The second block (the top half of Figure 2) is
the merger, and deviates from Koto et al. (2021).
Our parse state consists of a sequence of discourse
units, each of which is represented by averaging
the encodings of the EDUs spanning the discourse
unit:

. ,th} = Bi—LSTMg(gEl, e

de = Avg(hEa, ey hEb)

where Dy, is a discourse unit with EDU span E,, .

We use a fourth Bi-LSTM (Bi-LSTM,) to en-
code relationships between discourse units and as-
sign a binary label to each merge.

{dp,,....dp, } = Bi-LSTM4(dp,, ..

.,dp,)



ip, = o(MLP(dp, ))

2.3 Nuclearity and Discourse Relation
Prediction

Following Koto et al. (2021), we predict the nucle-
arity indication and discourse label after a merge
is chosen. We feed the encodings d;,, d;, ;. | of
the selected discourse units into a MLP layer to
predict the nuclearity and discourse labels, where
ind is the index of the left discourse unit chosen to
be merged:

Znuc+dis = SOftmaX(MLP( ’/ind7 {ind+1))

where 2y,,0+4;s 1S the joint probability distribution
over the nuclearity and discourse classes.

The final training loss of our model is the com-
bination of the merging and nuclearity-discourse
prediction loss:

L= ‘Cmerge + »Cnuc—i-dis
2.4 Merge Order in Training

The same RST tree can be constructed by different
sequences of merges. Because each pair of merge
candidates is evaluated in the context of the whole
discourse unit sequence, different merge histories
can lead to different predictions for the same merge
candidate.

During training, it is intractable to train the
model to predict each merge correctly with all pos-
sible merge histories. We propose to construct each
training text using merges from the gold tree, and
use the parse state in the merge sequence to train
the parser.

We propose two methods for generating training
sequences: (1) merging gold pairs left to right; and
(2) merging gold pairs at random.

Training examples generated by executing gold
merges left to right are unique for each gold tree,
minimizing data variance. The parse states gener-
ated are equivalent to the states seen by a transition-
based parser. However, the model will only see
parse states created by a left to right parser. At
test time, the parser is not limited to parsing in a
left-to-right manner, and the model will see states
outside of the training distribution.

Executing gold merges at random can generate
different parse states even for the same gold tree.
All gold merge sequences that constructs the gold
tree are within the training data data distribution,
at the cost of higher data variance.

We train our parser with both methods and ana-
lyze induced model biases.

2.5 Dynamic Oracle

In the standard training regimen, the model is only
trained on parse states constructed by a sequence
of correct merges. However, at test time, the model
will often see error parse states, created by an in-
correct merge in its history. Because the model
is never trained on error states, it will struggle to
recover after it has made a mistake.

We address this problem by training our model
with a dynamic oracle, first introduced by Gold-
berg and Nivre (2012) for dependency parsing and
adopted for training other types of discourse parsers
(Yu et al., 2018; Koto et al., 2021). Given an er-
ror state, a dynamic oracle provides the next set of
merge actions that will minimize deviation between
the gold tree and the final tree. The dynamic oracle
is described in Algorithm 1 in the Appendix. At
each merging step in training, with probability o
we execute the predicted merge instead of the sam-
pled gold merge. In this manner, we introduce error
states to the training set and teach the model to pre-
dict the next set of oracle actions, so the parser
chooses the best actions even after a mistake.

The oracle assigns a merge order to each merge
position in the document, defined as the earliest
step the position is merged in all possible gold
merge sequences. A position is an oracle action if
the adjacent merge positions have a higher order.
In such cases, the merge at the position precedes
all merges containing the two discourse units in the
merge.

3 Experiments

3.1 Data

Following previous studies (Koto et al., 2021; Yu
et al., 2018), we focus on the English language
and use the RST Discourse Treebank for our ex-
periments, binarizing all discourse trees in a right-
heavy manner. It contains 347 annotated docu-
ments for training and 38 documents for testing.
Our development set consists of the same 35 doc-
uments as Koto et al. (2021) and Yu et al. (2018),
taken from the training set. We also use the same
18 coarse-grained discourse relationships.

3.2 Results

We use the Parserval metric for evaluating parser
performance, described in the Appendix Section A.
The hyperparameters used are also listed in the Ap-
pendix in Section B. We perform a feature selection
study to find the best training procedure. Results



Merge Order  Full Bias
Left Merge 473 12.6
Random Merge 51.8 0.8

Table 1: Feature addition study over the development
set to find the best configuration for our models. Pre-
sented results are the mean of the Full metric (micro-
averaged F-score on labeled attachment decisions) and
bias (depth difference between the left and right end of
the tree) over the development set.

are presented in Table 1. All metrics are averaged
over three random seeds on the development set,
with a static oracle. We compared training with left-
first state sequences and randomly-sampled state
sequences; randomly-sampled state sequences re-
sulted in a score of 51.8, a +4.5 improvement over
training with left-first state sequences. We use ran-
dom state sequences for the remainder of this sec-
tion.

We benchmark our parser against previous state-
of-the-art RST parsers over the test set. The results
are presented in Table 2 (original Parseval) and
Table 3 (RST-Parseval). The reported human per-
formance is the score of human agreement from
Joty et al. (2015) and Morey et al. (2017).

Training with a dynamic oracle improved results
over a static oracle, with a Full score increase of
+0.2. Even with a static oracle, our parser surpasses
previous bottom-up parsers with a simple greedy al-
gorithm, without the need for complex post-editing
or a chart-parsing algorithm. The sequence labeling
framework has the benefit of being conceptually
simpler than transition parsers. Training with a
dynamic oracle adds algorithmic complexity dur-
ing training, but our inference procedure remains
the same. Our parser is most comparable with
the transition-based parser proposed by Yu et al.
(2018), which shares the same LSTM-architecture
as our work and also utilises implicit syntax fea-
tures. Our result demonstrates that a parser with
context of document structure outperforms parsers
without structure context. Compared to the top-
down parser proposed by Koto et al. (2021) with
the dynamic oracle, our results for Span and Nu-
clearity are superior or equivalent, but the relation
classification results are slightly inferior, resulting
in slightly lower results overall.

3.3 Analysis

We perform bias analysis on discourse trees pro-
duced by models trained left-first states against

Method S N R F
Bottom Up:

Feng and Hirst (2014)f 68.6 559 458 446
Ji and Eisenstein (2014)f 64.1 542 46.8 463
Surdeanu et al. (2015)1 653 542 451 442
Joty et al. (2015) 65.1 55.5 45.1 443
Hayashi et al. (2016) 65.1 54.6 447 441
Li et al. (2016) 645 540 38.1 36.6
Braud et al. (2017) 62.7 545 455 451
Yu et al. (2018) (static)t 71.1 59.7 484 474
Yu et al. (2018) (dynamic): 714 60.3 49.2 48.1
Our Work:

Static I 733 62.0 50.1 49.1
Dynamic} 73.6 623 503 493
Top Down:

Zhang et al. (2020) 67.2 555 453 443

Koto et al. (2021) LSTM (static)} 7277 61.7 50.5 494
Koto et al. (2021) LSTM (dynamic) 73.1 623 51.5 50.3

Human 787 66.8 57.1 55.0

Table 2: Results over the test set calculated us-
ing micro-averaged F-1 on labeled attachment deci-
sions (original Parseval). All metrics (S: Span, N:
Nuclearity,R:Relation, F:Full) are averaged
over three runs. “t” and “i” denote that the model
uses sentence and paragraph boundary features, respec-
tively.

random states. We introduce a simple metric for
detecting heaviness bias, by calculating the depth
difference between the left-most and the right-most
leaf nodes and subtracting the expected difference
from the gold tree.

di = Depth,,,..,(EDU;) — Depth,;,(EDUj)
b=d,—d;

When the parser is trained with left-first examples,
b = 12.57 (Table 1), indicating a bias towards
right-heavy trees. This is expected due to right
merges being merged last in the training examples,
thus creating an imbalance in the number of correct
merges in the left side and the right side of the
tree in the training examples. On the other hand,
when trained with random sampling, there is no
significant bias, with b = 0.8.

4 Conclusion

In this work, we adapted the sequence labeling
framework to bottom-up RST parsing, introducing
a parser conditioned on past decisions. We inves-
tigated methods to sample training examples for a
context-sensitive parser, and proposed a dynamic
oracle for our bottom-up parsing. We demonstrated
that our parser achieves state-of-the-art results for
bottom-up RST parsing, and is competitive with
the state-of-the-art top-down parser.
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A Evaluation

We use the standard Parseval metrics for RST pars-
ing from (Marcu, 2000). Under recommendations
of a recent replication study (Morey et al., 2017),
we report micro-averaged F-1 scores on labeled
attachment decisions (original Parseval) instead of
macro-averaged F-1 scores (RST-Parseval). The
Parseval metrics consist of: Span, Nuclearity, Re-
lation and Full. Span evaluates the correctness of
the predicted tree structure. Nuclearity evaluates
the tree skeleton together with nuclearity indica-
tions. Relation evaluates the tree skeleton with the
discourse relations. Full evaluates the tree skele-
ton along with nuclearity indications and discourse
relations.

B Hyperparameters

We follow the hyperparameters used in (Koto et al.,
2021). The GloVe embedding (Pennington et al.,
2014) is used to word encodings in each EDU. We
use CoreNLP (Manning et al., 2014) to tag POS and
initialize each POS encoding as a random vector.
The embedding dimension of words, POS tags,
EDU type and syntax features are respectively 200,
200, 100 and 1200. The dimensionality of the Bi-
LSTMs in the encoder is 256 and Bi-LSTMy4 in the
merge classifier has a dimension of 128. We use
batch size = 4, gradient accumulation = 2, learning
rate = 0.001, dropout probability = 0.5, optimizer =
Adam (with epsilon of 1e-6). When training with
a dynamic oracle, we activate the dynamic oracle
after 50 epochs.

We tune the o value used in the dynamic oracle
on the development set. We performed grid search
on « values, each averaging the Full Parseval met-
ric over three random seeds. For training with a
dynamic oracle, we found that o = 0.8 resulted in
the best Full Parseval score.

C Compute

We use a single Tesla V100 SXM2 32 GB with
4 CPU cores to run our experiments. A run with
static oracle takes around 14 hours and 32 hours in
wall-clock time.

D Dynamic Oracle

Algorithm 1 Bottom-up Dynamic Oracle

1: function DYNORACLE(E, O, R)
2: # For training only

3 # E is list of EDUs

4: # O is gold order for segmentation

5: # R is list of gold discourse labels based on O
6.

7

8

q = length(E); state = {En, ..., Eq}
while ||state|| > 1 do
idgo1q = oracleMerge(state, O, R)

9: idprea = predictMerge(state)
10: rprea1 = predictLabel(state, idgora)
11: rpredz = predictLabel(state, idpred)
12: if random() > « then
13: state = merge(state, idpred
14: Toracle = OracleLabel(state, idpred)
15: L= Loss(idgold, Toracle, idpredh T'predl)
16: else
17: state = merge(state, idgola
18: rg01a = oracleLabel(state, idgo1q)
19: L= Loss(idgold, Tgold, idpred% Tpredl)
20: end if

21: end while
22: end function

E Additional Results

E.1 Evaluation with RST-Parseval Procedure

Method S N R F
Bottom-Up

Feng and Hirst (2014)*t 843 694 569 56.2
Ji and Eisenstein (2014)*f 82.0 682 57.8 57.6
Surdeanu et al. (2015)*f 82.6 67.1 554 549
Joty et al. (2015)* 82.6 683 558 544
Hayashi et al. (2016)* 82.6 66.6 546 543
Liet al. (2016)* 822 665 514 50.6
Braud et al. (2017)* 813 68.1 563 56.0
Yu et al. (2018) (1 run)* 855 73.1 602 59.9
Yu et al. (2018) (static): 85.8 72,6 59.5 59.0
Yu et al. (2018) (dynamic)} 856 729 59.8 593
Our Work:

Static § 86.7 732 60.5 60.0
Dynamic} 86.8 73.6 60.6 60.1
Top-Down

Kobayashi et al. (2020)*+1 87.0 74.6 60.0

Koto et al. (2021) LSTM (static)} 86.4 734 60.8 60.3
Koto et al. (2021) LSTM (dynamic)} 86.6 73.7 61.5 60.9

Human 88.3 773 654 64.7

Table 3: Results over the test set calculated using
micro-averaged F-1 on RST-Parseval. All metrics (S:
Span, N: Nuclearity, R: Relation, F: Full)
are averaged over three runs. “*” denotes reported per-
formance. “{” and “1” denote that the model uses sen-
tence and paragraph boundary features, respectively.

E.2 Evaluation over Development Set



Method S N R F

Static 71.8 622 526 51.8
Dynamic 71.6 62.0 53.0 522

Table 4: Results over the development set calculated
using micro-averaged F-1 on labeled attachment deci-

sions (original Parseval). All metrics are averaged over
three runs.



