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Abstract

The “sight range dilemma” in cooperative Multi-Agent Re-
inforcement Learning (MARL) presents a significant chal-
lenge: limited observability hinders team coordination, while
extensive sight ranges lead to distracted attention and re-
duced performance. While communication can potentially
address this issue, existing methods often struggle to gen-
eralize across different sight ranges, limiting their effective-
ness. We propose TACTIC, Task-Agnostic Contrastive pre-
Training strategy Inter-Agent Communication. TACTIC is
an adaptive communication mechanism that enhances agent
coordination even when the sight range during execution is
vastly different from that during training. The communication
mechanism encodes messages and integrates them with lo-
cal observations, generating representations grounded in the
global state using contrastive learning. By learning to gener-
ate and interpret messages that capture important information
about the whole environment, TACTIC enables agents to ef-
fectively “see” more through communication, regardless of
their sight ranges. We comprehensively evaluate TACTIC on
the SMACv2 benchmark across various scenarios with broad
sight ranges. The results demonstrate that TACTIC consis-
tently outperforms traditional state-of-the-art MARL tech-
niques with and without communication, in terms of gener-
alizing to sight ranges different from those seen in training,
particularly in cases of extremely limited or extensive observ-
ability.

Introduction
Multi-agent Reinforcement Learning (MARL) provides a
framework for addressing complex coordination tasks across
various domains such as robotics (Zhang, Yang, and Başar
2021; Yang and Gu 2004; Busoniu, Babuska, and De Schut-
ter 2008), autonomous vehicles (Qu et al. 2024; Shalev-
Shwartz, Shammah, and Shashua 2016), and network op-
timization (Zhang, Yang, and Zha 2019; Li et al. 2022).
In MARL, agents often operate under partial observabil-
ity, where each agent’s perception is limited to a certain
“sight range” around itself, which results in a fundamen-
tal challenge known as the sight range dilemma (Shao et al.
2023). The dilemma lies in balancing tension between an
agent’s need for local information to make decisions and
the broader context required for effective team coordination.
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Our method utilizes contrastive learning to align integrated local observations 
and messages with the full egocentric state, enabling agents to effectively 
"see" beyond their limited sight ranges.
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Figure 1: TACTIC utilizes contrastive learning to align the
integration of local observations oi and messages {mji}
with the full egocentric state ŝi for each agent i, enabling
agents to ”see” beyond their limited sight ranges through
communication.

Agents with narrow sight ranges often struggle to coordinate
effectively due to limited environmental information, while
those with extensive sight ranges can become overwhelmed
by excessive data, leading to inefficient learning and reduced
performance.

Researchers have proposed various approaches to ad-
dressing this challenge, primarily focusing on communi-
cation mechanisms that allow agents to share informa-
tion. Those methods include targeted communication strate-
gies (Das et al. 2019; Sukhbaatar, Szlam, and Fergus 2016a;
Liu et al. 2020), attention mechanisms (Niu, Paleja, and
Gombolay 2021; Seraj et al. 2021; She, Gupta, and Kochen-
derfer 2022), or graph-based methods (Shen et al. 2021; Sun,
Shen, and How 2020; Hu et al. 2024). For example, QMIX-
Att (Hu et al. 2021) integrates attention into the QMIX
framework for selective message aggregation, and TarMAC
(Das et al. 2019) uses signature-message pairs for context-
aware communication. While effective, these methods as-
sume the same sight ranges during training and during exe-
cution, limiting their capacity to adapt to varying visibility
conditions, as illustrated in Figure 2.

Generalizing across varying sight ranges provides consid-
erable benefits for MARL systems. It facilitates more effi-
cient and cost-effective deployments by enabling a single,
adaptable model to handle diverse observability conditions,
eliminating the need for separate models for each scenario.
This flexibility is crucial in real-world applications, where
systems must adjust to different visibility conditions. For ex-
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Figure 2: QMIX-ATT and TACTIC’s performances on Pro-
toss 10v10 from SMACv2 (Ellis et al. 2024) with varying
sight ranges (SRs). Different SRs are achieved by applying
different sight-range ratios (SRRs) to the agents’ original
SRs in the implementation. Policies trained at SRR=0.2, 1,
and 5 are tested across a broader set of SRRs. QMIX-ATT
Struggles to generalize to unseen SRs, while TACTIC gen-
eralizes much better.

ample, autonomous vehicles need to adapt to visibility fluc-
tuations due to weather or time of day, while search and res-
cue robots may encounter visual obstructions from debris
or smoke. In this work, we are particularly interested in the
cases where the sight range during execution is fixed but dif-
ferent from that seen during training.

We hypothesize that agents can better generalize across
different sight ranges if they can communicate in a way
that leads to a more comprehensive understanding of the
global environment. Based on this hypothesis, we propose
a novel approach that aligns the integrated local observa-
tions and messages with each agent’s egocentric (global)
state, as illustrated in Figure 1. The egocentric state serves
as an ideal alignment target, providing a comprehensive yet
agent-specific view of the environment during training. We
use contrastive learning to achieve this alignment, encourag-
ing agents to develop a communication protocol that bridges
the gap between limited local observations and the broader
environmental context. This process enables agents to ef-
fectively “see” more through communication, regardless of
their actual sight ranges.

In addition to the contrastive learning objective, we in-
troduce two auxiliary losses: a reconstruction loss and a
dynamics loss. The reconstruction loss helps ensure that
the learned representations retain essential information from
the original observations, while the dynamics loss encour-
ages the model to capture the temporal relationships in the
environment. Crucially, our method is task-agnostic in na-
ture, as it does not rely on task-specific reward information
when learning to communicate, solely focusing on capturing
the underlying environment information, which further en-
hances the flexibility and adaptability of our method across
diverse scenarios.

To this end, we introduce TACTIC (Task-Agnostic
Contrastive pre-Training for Inter-Agent Communication),
a novel strategy designed to enhance generalization across
varying sight ranges in cooperative MARL. TACTIC oper-
ates through two key stages: (1) Offline contrastive pre-
training, where we use contrastive learning on an of-
fline dataset to pretrain two key communication modules:

a message generator and a message-observation integra-
tor. (2) Online policy integration, where the pre-trained
communication modules are frozen and incorporated into
agents’ online policy learning, enabling dynamic commu-
nication adaptation during task execution while preserving
the learned task-agnostic properties.

We summarize the main contributions of this work as fol-
lows:

• A task-agnostic communication mechanism that enables
adaptive message generation and interpretation;

• A cooperative MARL framework with communication
called TACTIC that alleviates the sight range dilemma;

• A comprehensive evaluation of TACTIC in the SMACv2
environment showing TACTIC’s superior performance
regarding generalizability across sight ranges and train-
ing efficiency.

Our experimental results on the SMACv2 (StarCraft Multi-
Agent Challenge) benchmark show that TACTIC outper-
forms existing state-of-the-art MARL with communication
techniques. Our method demonstrates robust generalization
capabilities, enabling effective coordination across various
sight ranges (Figure 2).

Preliminaries
Dec-POMDP with Communication. We consider the
fully cooperative MARL problem with communica-
tion, which can be modeled as Decentralized Par-
tially Observable Markov Decision Process (Dec-POMDP)
(Oliehoek, Amato et al. 2016) and formulated as a tuple
⟨N ,S,A, P,Ω, O,R, γ, C⟩. The sets N = {1, ..., n} de-
notes the indexing of the agents, S is the state space, A is the
action space, Ω is observation space, and C denotes all possi-
ble communication messages. Each agent i ∈ N acquires an
observation oi = O(s, i) ∈ Ω, where O is the observation
function and s ∈ S. A joint action a = ⟨a1, ..., an⟩ leads
to the next state s′ ∼ P (s′|s,a) and a shared global reward
r = R(s,a) where R is the reward function.

Each agent selects actions based on the observation-action
history τi ∈ T ≡ (Ω × A)∗ 1 using a policy π(ai|τi,mi)
where mi = [mji ∈ C, j ∈ N ] denotes the incoming mes-
sages for agent i and mji is the message sent from agent j to
agent i. The policy is shared across agents during training.

The overall objective is to find a joint policy π(τ ,a) to
maximize the global value function

Qπ(τ ,a) = Es,a

[ ∞∑
t=0

γtR(s,a) | s0 = s,a0 = a,π

]
,

(1)
where τ is the joint observation-action history of all agents
and γ ∈ [0, 1) is the discount factor. We follow the
Centralized Training and Decentralized Execution (CTDE)
paradigm and adopt the architecture of QMIX (Rashid et al.
2018) to form our algorithm 2.

1∗ denotes the product over time
2For clarity, we drop the time superscripts for states and actions
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Figure 3: The offline training pipeline of the adaptive communication mechanism. It includes three key components: an egocen-
tric state encoder, an adaptive message generator, and a message-observation integrator. The training pipeline consists of two
contrastive learning processes: Global Information Alignment (GIA) for aligning the features generated from the egocentric
state encoder across all agents and timesteps, and Feature Integration Alignment (FIA) for aligning features from the message-
observation integrator and the egocentric state encoder on an individual agent. Two auxiliary loss functions are introduced in
the total loss function to enhance training: a deconstruction loss for learning to recover the egocentric states and a dynamic loss
for learning temporally coherent representations.

Contrastive Learning. Contrastive learning is a powerful
paradigm in representation learning, particularly in the con-
text of deep learning, where it aims to learn embeddings by
contrasting positive and negative samples. The fundamental
idea is to pull together representations of similar instances
(positives) while pushing apart those of dissimilar instances
(negatives). In the supervised setting, the SupCon (Super-
vised Contrastive) loss (Khosla et al. 2020) extends this
framework by allowing for multiple positive samples per an-
chor, thereby leveraging label information more effectively.
The loss objective can be mathematically expressed as:

Lsupcon =
∑
i

−1

|P (i)|
∑

p∈P (i)

log

(
exp(zi · zp/υ)∑

a∈A(i) exp(zi · za/υ)

)
(2)

where zi denotes the normalized embedding of the anchor
sample, P (i) is the set of positive samples corresponding to
the anchor, A(i) is the set of all samples in the batch exclud-
ing the anchor, and υ is a temperature parameter that con-
trols the sharpness of the distribution. This formulation en-
hances the clustering of similar instances in the embedding
space and improves robustness against natural corruptions.

TACTIC: Towards task-agnostic adaptive
communication in MARL

In this section, we introduce our algorithm TACTIC. TAC-
TIC consists of two stages: (1) an offline training of a com-
munication mechanism that works well with varied sight
ranges, and (2) an online training of the agent coordination
policy. The task-agnostic offline training stage solely utilizes
the environment states and local observations of agents and
doesn’t rely on environmental reward signals or any policy.
The online policy training stage learns a task-specific policy
with the communication module from the first stage frozen.

We explain the offline stage in Section and the online stage
in Section in detail.

Offline Training of Communication Mechanism
One main challenge in Multi-Agent Reinforcement Learn-
ing (MARL) is to develop effective joint policies when each
agent has only a partial observation of the environment. By
learning to communicate more effectively, agents are ex-
pected to overcome their limited observability and achieve
better coordination. Furthermore, the mechanism used to
generate and use messages between agents should be flex-
ible enough to handle different sight ranges.

To this end, we present an approach where, in an offline
training stage, we use contrastive learning on a pre-collected
dataset to develop a communication mechanism that can
adapt to different observation ranges. The rationale is that,
by learning to create and integrate messages that capture
important information about the whole environment, agents
can effectively “see” more through communication, re-
gardless of their current sight range.

The offline dataset D consists of a set of trajectories,
where each trajectory τ = {(st, ot1:n, at1:n)}Tt=1 represents a
sequence of T timesteps for n agents. The dataset can be col-
lected through random exploration of the environment (de-
tails in Section ). The overall offline training pipeline for
the adaptive communication mechanism is illustrated in Fig-
ure 3, where three key components are present: an ego-
centric state encoder, an adaptive message generator, and a
message-observation integrator:

1. The egocentric state encoder takes an egocentric state
ŝi and generates its corresponding feature embedding ẑi,
where the ŝi are obtained from the global state s, which
preserves all information from s but represents from the
perspective of agent i.



2. The adaptive message generator takes the partial ob-
servation ori of an agent with varying sight ranges and
outputs the message {mij}nj=1 it communicates to other
agents. We obtain ori by randomly sampling a sight range
r and applying a masking operation over the egocentric
state ŝi, denoted as P (ŝi, r).

3. The message-observation integrator takes an agent’s par-
tial observation ori and all the messages {mji}ni=1 it re-
ceives from other agents, integrating them into a feature
embedding zi.

With the three components at hand, the offline training
consists of two contrastive learning processes:

1. Global Information Alignment (GIA): a supervised con-
trastive (SupCon) loss for aligning the feature embed-
dings ẑi generated from the egocentric state encoder
across all agents, ensuring that the egocentric state en-
coder captures consistent and relevant information from
agents about the whole environment;

2. Feature Integration Alignment (FIA): a supervised con-
trastive (SupCon) loss for aligning the integrated feature
zi calculated by the message-observation integrator with
the generated feature ẑi from the egocentric state en-
coder for each specific agent, pushing the adaptive mes-
sage generator to learn to synthesize the most informa-
tive messages to communicate and allowing the message-
observation integrator to reflect a more complete pic-
ture of the environment (i.e., the agent’s egocentric state)
given the agent’s limited observation and the messages
they receive.

In FIA, the function P (ŝi, r) applies augmentation by ran-
domly varying the sight range r (resulting in ori ). This pro-
cess exposes the adaptive message generator to diverse sce-
narios with changing sight ranges, rather than fixed ones,
thereby enhancing its generalizability. For contrastive learn-
ing in both GIA and FIA, we define positive and negative
pairs based on the offline dataset D. Features from agents
within the same episode (i.e., from the same trajectory) and
within a timestep window of length Wpos form positive
pairs. Conversely, features from agents in different episodes
or separated by more than Wneg timesteps constitute nega-
tive pairs. Note that both GIA and FIA are task-agnostic as
they don’t interact with any environmental reward signals.

To further improve the learned representations, we in-
corporate two additional auxiliary learning objectives: (1)
a reconstruction loss (Lrecon): a decoder network learns
to recover the egocentric state ŝi from the feature em-
beddings produced by either the egocentric state encoder
or the message-observation integrator; and (2) a dynamic
loss (Ldyn): this includes both forward and inverse dynam-
ics predictions using MLP networks. The forward model
predicts ẑt+1

i (or zt+1
i ) given ẑti (or zti ) and at, while the

inverse model predicts ati given consecutive feature em-
beddings (ẑti , ẑt+1

i ) or (zti , zt+1
i ). These auxiliary objec-

tives promote comprehensive, temporally coherent represen-
tations that better support adaptive communication in multi-
agent scenarios.

The final loss for the overall offline training is a weighted
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Figure 4: Online policy training pipeline of TACTIC, il-
lustrating the integration of QMIX architecture with pre-
trained communication components. The pre-trained mes-
sage generator (Mess Gen) and message-observation inte-
grator (Mess-obs Integrator) remain fixed during the policy
training.

sum of the contrastive losses and the auxiliary losses:

Ltotal = LGIA
supcon + LFIA

supcon + αLrecon + βLdyn (3)

where α and β are weighting factors.

Online Training of Agent Policy
After offline pretraining, we integrate the adaptive mes-
sage generator and message-observation integrator into the
QMIX (Rashid et al. 2018) framework for online policy
training (illustrated in Figure 4). In this stage, each agent
i processes its observation and receives messages (syn-
thesized with the adaptive message generator from other
agents) to generate an integrated representation zi using the
message-observation integrator. This representation zi, to-
gether with the agent’s last action, informs the agent’s action
selection via a GRU-based Q-network. The QMIX architec-
ture then combines individual agents’ Q-values through a
mixing network conditioned on the global state to produce
a centralized Q-value, which is used to compute the loss for
training agent policies and the mixing network. Importantly,
the parameters of the pre-trained adaptive message genera-
tor and message-observation integrator remain fixed during
this online training phase and are not updated.

In the remaining sections, we present the experimen-
tal setup and results that evaluate the effectiveness of our
methodology.

Experiments
In this section, we report our evaluation of TACTIC. Our
experiments aim to address the following key questions:

Q1. Can the policy trained with the adaptive communication
mechanism generalize across different sight ranges?

Q2. Does the offline-trained communication mechanism en-
hance the efficiency of online policy training?
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Figure 5: Performance of TACTIC and baseline models on policy generalizability across various sight ranges in the Protoss
map.

Q3. How do data quality and varying loss terms impact the
performance of training effectiveness and generaliza-
tion?

Experimental Setup
Our experiments are conducted in the SMACv2 environ-
ment (Ellis et al. 2024). Compared to the original SMAC
environment (Samvelyan et al. 2019), SMACv2 incorpo-
rates increased stochasticity and meaningful partial observ-
ability, necessitating the development of complex closed-
loop policies for effective agent coordination. We use three
maps from SMACv2 for our experiments: Terran, Protoss,
and Zerg. Each map features distinct unit types, with Ter-
ran units including Marines, Marauders, and Medivacs; Pro-
toss units comprising Stalkers, Zealots, and Colossi; and
Zerg units consisting of Zerglings, Hydralisks, and Banel-
ings. Agents are generated procedurally, with varying num-
bers ranging from 5 to 20, and are assigned specific sight and
attack ranges that enhance the complexity of the scenarios.

For each map, we consider three agent number configura-
tions (5, 10, and 20 agents) and three sight-range ratios (0.2,
1, and 5). The sight-range ratios are applied by multiplying
the agents’ original sight ranges, which vary among differ-
ent agents, to adjust their visibility accordingly. This allows
us to assess the adaptability of the proposed communication
mechanism under varying observability conditions.

For each environment setup specified by a combination of
the map and the agent number configuration, we pre-train
an offline communication mechanism. This communication
mechanism is then used for online policy training with a
team of agents with fixed sight ranges. The learned policy
is further evaluated on a variety of sight ranges (the sight
range ratios are between 0.2 and 5) on the same environment

setup.
To valid the effectiveness of TACTIC, the performance

regarding the generalization across various sight ranges and
the online training efficiency is compared to five baselines:
QMIX (Rashid et al. 2018), QMIX-Att (Hu et al. 2021),
NDQ (Wang et al. 2019), TarMAC (Das et al. 2019), and
MASIA (Guan et al. 2022). QMIX is one of the more com-
monly used CTDE MARL algorithms that does not use com-
munication during execution. The others are four variants
of QMIX with different communication mechanisms. We
adopted the hyperparameters from the original implemen-
tations of the baselines and reused the hyperparameters of
QMIX for TACTIC. All results in the following sections
are from five independent runs with different random seeds.

Policy Generalization Across Sight Ranges
To answer Q1, in this section, we report the generaliza-
tion capability of our trained policies across various sight
ranges. As introduced in Experimental Setup, our policies
are learned based on a pre-trained communication mech-
anism under the same environment setup with fixed sight
ranges; they are then tested on a broader set of sight-range
ratios valued from 0.2 to 5. Their performances (i.e., mean
battle won rate) in all scenarios are recorded and visualized
with heatmaps as shown in Figure 5, 6 and 9.

It can be clearly seen that our method TACTIC pro-
duces policies that demonstrate more robust performances in
all the environment settings and across various sight-range
ratios that were not seen during policy training. The five
baselines can have reasonable performances only when the
test and train sight ranges are close (referring to the diago-
nal cells of the heatmaps for the baselines), while policies
learned by TACTIC are capable of maintaining satisfying
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Figure 6: Performance of TACTIC and baseline models on policy generalizability across various sight ranges in the Terran
map.

performances even when the train and test sight ranges are
different by large. For example, on the map Terran with 5
agents, policy trained with sight-range ratio 0.2 by TACTIC
has a 0.41 mean battle won rate when tested with sight-
range ratio 5, while the corresponding results for the five
baselines are all under 0.11; it is also true if exchanging the
train and test sight-range ratios or in other maps. With more
agents introduced into the environment, baseline models be-
come more strict on the difference between train and test
sight ranges (i.e., their heatmaps become more sparse with
more zero values), while our method TACTIC still general-
izes well.

The observed phenomenon suggests that our adaptive
communication mechanism that is learned offline helps
agents better generate and interpret messages and develop
flexible strategies to take actions to adapt to changing ob-
servability conditions, leading to reusable policies in en-
vironments with unseen sight ranges. However, for the five
baseline approaches, one needs to re-train the model to get
a usable policy if the observation conditions change.

Online Policy Training Efficiency
To answer Q2, we compare the online policy training effi-
ciency of our method TACTIC against the five baselines.
Figure 7 and 10 presents the learning curves (mean battle
won rate versus timesteps) of all six algorithms on every
combination of map type, number of agents, and the sight-
range ratio.

It can be observed that in every environment setup, the
convergence speed of TACTIC is superior to or at the same
level as that of QMIX or QMIX-Att, and is always better
than that of NDQ and TarMAC. Notably, when the sight-
range ratio used during online policy training is small (i.e.,

0.2), TACTIC demonstrates significantly better conver-
gence speed compared to the baselines.

The results indicate that the offline-trained communica-
tion mechanism contributes positively to the training ef-
ficiency of online policy learning, especially in scenarios
where the number of agents is large or the sight ranges of
agents are small.

Ablation Study
In this section, we investigate Q3 by conducting ablation
studies on the quality of the offline dataset D for training
the communication mechanism and the impact of different
loss terms in our objective function (Eq. 3). For this section,
we focus on the Terran map and 5-agent setting.
Data quality. To examine the influence of data quality of
D on the learned online policy, we train the communication
mechanism twice on two types of offline datasets.

• Exploratory: Trajectories generated in the ex-
ploratory stage of QMIX training, with 6000 episodes per
task.

• Random: Trajectories generated from random environ-
ment interactions (where actions are chosen uniformly at
random for each agent), with 6000 episodes per task.

We then perform online policy learning twice using the
two pre-trained communication mechanisms, obtaining two
policies. They are evaluated in the same way as before. The
performance is shown in Figure 8(a-b). It can be seen that
there is a very slight performance decay when you use the
RANDOM dataset compared to the EXPLORATORY dataset,
indicating that the offline training stage for the communica-
tion mechanism can still learn meaningful and informative
representations given low-quality data.
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Figure 7: Training curves of the online policy learning stage in TACTIC and baseline models under different environment
setups.
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Figure 8: Performance of TACTIC on policy generalizability across various sight ranges under 5 different offline training
schemas. The environment setup is the Terran map with a 5v5 agent configuration. (a) Offline training with a Exploratory
dataset; (b) Offline training with a Random dataset; (c) Offline training without Lrecon; (d) Offline training without Ldyn; (e)
Offline training without Lrecon and Ldyn.

Loss terms. We further examine the influence of the two
auxiliary loss objectives, the reconstruction loss Lrecon and
the dynamic loss Ldyn, by training three communication
mechanisms with the weighing factors set to α = 0, β = 1,
α = 1, β = 0, and α = 0, β = 0 in Eq. 3, respectively.
The online policy learning and evaluation remain the same
as the data-quality ablation study. The results are shown in
Figure 8(c-e).

In the first two cases where either the Lrecon or Ldyn

is dropped, there are no significant performance decays.
Specifically, both terms can help the offline stage learn in-
formative representations individually, while Lrecon con-
tributes slightly more to the overall performance than Ldyn.
However, when both terms are dropped, a significant per-
formance decay is observed as shown in Figure 8(e). This
demonstrates the necessity of adopting at least one of the
auxiliary loss objectives, and the combination of the two
leads to the most effective representation learning in the of-
fline stage.

Conclusion
In this paper, we introduce TACTIC, a communication
mechanism for improving the generalizability of MARL
systems. Specifically, we focus on generalizing the policy
to scenarios where the sight range of the agents during exe-
cution may not be the same as that during training. The com-
munication mechanism in TACTIC is trained offline and is
task-agnostic. Utilizing contrastive loss allows agents to ef-
fectively align the integration of local observation and in-
coming messages with the egocentric state, leading to better
situational awareness and improved coordination.

We show that standard benchmark MARL techniques
with and without inter-agent communication generalize
poorly when the sight range changes. In contrast, we show
TACTIC generalizes better across sight ranges. Notably, we
find that even random exploration trajectories can be lever-
aged to learn an effective communication strategy. Our find-
ings suggest that TACTIC provides a robust framework to
enhance inter-agent communication, leading towards more
adaptive MARL systems.
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Zhang, K.; Yang, Z.; and Başar, T. 2021. Multi-agent re-
inforcement learning: A selective overview of theories and
algorithms. Handbook of Reinforcement Learning and Con-
trol, 321–384.
Zhang, S. Q.; Zhang, Q.; and Lin, J. 2019. Efficient Commu-
nication in Multi-Agent Reinforcement Learning via Vari-
ance Based Control. In Proceedings of the NeurIPS 32nd
Conference on Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc.
Zhang, Z.; Yang, J.; and Zha, H. 2019. Integrating in-
dependent and centralized multi-agent reinforcement learn-
ing for traffic signal network optimization. arXiv preprint
arXiv:1909.10651.
Zheng, R.; Wang, X.; Sun, Y.; Ma, S.; Zhao, J.; Xu, H.;
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Related Work
Communication in MARL. In cooperative MARL, com-
munication is a critical component for addressing partial ob-
servability and improving agent coordination (Sukhbaatar,
Szlam, and Fergus 2016b; Lo et al. 2024). Learning effec-
tive communication in this context involves several chal-
lenges, including determining who communicates, how mes-
sages are conveyed, and what information is transmitted un-
der bandwidth or sight-range constraints.

Several approaches have been proposed to address these
challenges. Targeted communication methods focus on iden-
tifying specific agents for message exchange, while graph-
based and attention-based models structure communication
based on relational dynamics between agents. Graph-based
methods, such as the graph-attention network proposed by
Niu et al. (Niu, Paleja, and Gombolay 2021), enable agents
to dynamically adjust communication based on relevance,
improving scalability in complex environments. Techniques

that manage bandwidth limitations address the need to opti-
mize when and what information should be shared. For ex-
ample, attention-based methods such as TarMAC (Das et al.
2019) leverage signature-message pairs and attention mech-
anisms to enable dynamic, context-aware communication
between agents. Information-theoretic approaches, such as
NDQ (Wang et al. 2019), introduce regularization to mini-
mize communication overhead while maximizing the infor-
mativeness of messages.

Recent advancements also aim to make multi-agent com-
munication more interpretable and flexible. Lin et al. (Lin
et al. 2021) proposed grounding communication by autoen-
coding raw observations into messages, allowing agents to
develop a shared understanding of communication symbols.
Similarly, MASIA (Guan et al. 2022) aggregates raw obser-
vations into latent representations that can be used to recon-
struct the global state, providing agents with a more holistic
view of the environment. Du et al. (Du et al. 2021) intro-
duced methods to learn correlated communication topolo-
gies, which reduce redundancy and optimize coordination
among agents by refining communication pathways. In par-
allel, Zhang et al.(Zhang et al. 2021) introduced Temporal
Message Control (TMC), a technique that applies temporal
smoothing to reduce the number of inter-agent messages,
achieving robust and efficient communication in resource-
constrained environments without sacrificing performance.

Our work builds on these advancements by address-
ing adaptive communication under sight-range limitations,
proposing a novel approach that optimizes communication
frequency and content based on changing agent observa-
tions. This differs from previous works by integrating band-
width and perceptual constraints into a unified framework,
enabling efficient communication without reliance on pre-
defined structures.

Contrastive Learning in MARL. Contrastive learning is
a representation learning technique that aims to bring sim-
ilar (positive) samples closer together in the learned fea-
ture space while pushing dissimilar (negative) samples far-
ther apart. This is typically achieved using a contrastive loss
function.. Methods such as Contrastive Predictive Coding
(CPC) by Oord et al. (van den Oord, Li, and Vinyals 2018)
laid the groundwork for learning predictive representations
by contrasting positive and negative samples. Building on
this, TACO (Zheng et al. 2024) adapts contrastive learning
to RL by learning useful representations through temporal
abstraction. More recently, the use of supervised contrastive
loss (Khosla et al. 2020), which incorporates multiple pos-
itive and negative samples per anchor point, has been ex-
plored. This extension enables richer representation learning
by capturing a broader set of relevant relationships, which
is particularly valuable in RL tasks with multiple favorable
outcomes.

In the multi-agent domain, contrastive learning has seen
adaptation for both non-communicative and communicative
settings. For MARL without communication, methods like
COLA (Xu et al. 2023) have demonstrated the ability to im-
prove coordination among agents by using contrastive ob-
jectives to refine agent policies based on shared goals. This
approach emphasizes the utility of contrastive learning in
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Figure 9: Performance of TACTIC and baseline models on policy generalizability across various sight ranges in the Zerg map.

situations where direct agent-to-agent communication is ab-
sent or limited. In contrast, for settings where agent com-
munication is possible, contrastive learning has been uti-
lized to optimize communication strategies between agents.
Lo et al. (Lo et al. 2024) apply contrastive learning to im-
prove multi-agent communication, enabling agents to de-
velop more efficient communication protocols that reduce
unnecessary message exchanges while maintaining perfor-
mance. Additionally, methods such as the one proposed by
Singh et al. (Singh, Jain, and Sukhbaatar 2019) focus on
learning when to communicate, which is crucial in reducing
communication overhead in resource-constrained environ-
ments. Zhang et al. (Zhang, Zhang, and Lin 2019) further
refine this by incorporating variance-based control mecha-
nisms, allowing agents to communicate only when neces-
sary, improving overall system efficiency.

Our work extends these ideas by integrating contrastive
learning into multi-agent communication under sight range
limitations. This approach differs from previous work in that
we train the communication module offline specifically with
the goal of generalizing across sight ranges.

Additional Experiment Results
Figure 9 shows the performance of TACTIC and baseline
models on policy generalizability across various sight ranges
in the Zerg map. Figure 10 shows the training curves of the
online policy learning stage in TACTIC and baseline mod-
els under different environment setups with 5 agents and 5
enemies.
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Figure 10: Training curves of the online policy learning
stage in TACTIC and baseline models under different en-
vironment setups with 5 agents and 5 enemies.


