Observing How Students Program with an LLM-powered Assistant:
Quantifying Visual Expertise Through Eye-Tracking

Anonymous ACL submission

Abstract

The proliferation of language models is rev-
olutionizing Human-Al Interaction, offering
users a conversational interface to accomplish
various tasks and access information. Under-
standing how these models affect the way stu-
dents learn the skill of computer programming
remains an unstudied area of research. This
paper presents an experiment designed to inves-
tigate the interaction dynamics of university stu-
dents with varying computer programming abil-
ities when utilizing ChatGPT, as an Al-assistive
tool to accomplish coding tasks. Eye-tracking
technology was employed to capture gaze pat-
terns and visual attention during their interac-
tions with the language model. For this study,
data was collected from 26 university students
with a range of programming experience (from
Sophomore to Ph.D.-level). More experienced
programmers spent 3x more time focusing on
the programming IDE over the ChatGPT UI,
compared to their less experienced peers (as
measured by fixations p < 0.05), while novice
programmers fixated equally on both interfaces,
but were 5.5x faster at completing the tasks
with reduced levels of complex visual attention
(as measured by saccades p < 0.05) indicating
an over-reliance on LLM outputs. This work
provides an avenue for the development of sys-
tems that can assess programmer’s focus and
attention as they problem solve.

1 Introduction

The advent and public availability of mainstream
Large Language Models (LLMs), at either very
low-cost or no-cost has trivialized their use. Pop-
ular LLMs such as ChatGPT are being prompted
daily by active users; with an estimated uptake
of 100 million monthly active users in January of
2023, just two months after its launch, making it
the fastest-growing consumer application in his-
tory (Hu, 2023). The proliferation of LL.Ms has
resulted in uses for both professional and personal
miscellaneous tasks. Whether the LLM prompt is

mundane or complex, the average person seems
to be prioritizing its use as an alternative to web
search (Ibrahim et al., 2023). With the rapid rise
in LLM usage, an understudied area of research is
the impact of LLMs in higher education and its use
by students in the learning process (Zumwalt et al.,
2014; Maldonado et al., 2023).

LLMs in higher education: The latest studies
suggest that ChatGPT and similar models perform
equally and sometimes better than university stu-
dents in a diverse set of academic courses (Ibrahim
et al., 2023). However, in the case where the stu-
dent uses an LLM model for learning, it is unclear
to what extent the output provided by such models
are assimilated and understood by the user (Jeon
and Lee, 2023). Moreover, LLMs are now capa-
ble of generating code (Acher et al., 2023), and
this ability is expected to change the ways and
techniques programming students learn and inter-
act with programming tasks (Yilmaz and Yilmaz,
2023). Thus, the aim of this study is to understand
how a student navigates the task of completing
a programming exercise given the availability of
LLM-powered tools like ChatGPT. We perform
this assessment using eye-tracking technology to
measure visual attention (Mansoor et al., 2023).

Visual expertise acquisition: Eye-tracking has
been widely used to uncover the process of learning
visually (Gegenfurtner and van Merriénboer, 2017;
Davies, 2018), across different domains, includ-
ing medicine (Zammarchi and Conversano, 2021),
strategic and algorithmic thinking (Reingold and
Sheridan, 2011), natural language processing (Sal-
icchi et al., 2021; Barrett et al., 2016; Bolotova
et al., 2020), and programming (Mansoor et al.,
2023). This study lays the foundation for examin-
ing visual expertise acquisition in students utilizing
Al aids to complete technical coding tasks, a grow-
ing domain of research within Human-AI Interac-
tion. (Langner et al., 2023; MacKenzie, 2012).

2 Research Question

Our aim is to quantify the visual attention behavior
of university students as they use an LLM-powered
assistant (ChatGPT) to accomplish programming
tasks. To this end, we explore how eye-tracking
trends differ (if at all), conditioned on students’
proficiency in programming.

2.1 Hypothesis

Our hypothesis is that increased programming pro-
ficiency (as measured by academic seniority) would
lead to reduced time spent in solving programming
tasks (as measured by decreased eye-tracking met-
ric values).

2.2 Contributions

To the best of our knowledge, this is the first paper
to quantify visual expertise acquisition of individu-
als as they complete programming tasks with the
aid of an LLM-powered assistant.

3 Methods

The experiment was reviewed and approved by the
institution’s IRB committee. To support extensions
and reproducibility of this work, the collected data
is made publicly available'.

3.1 Experimental Tasks

Students were required to solve a set of four pro-
gramming tasks for the experiment. Tasks covered
key syntactic and semantic constructs of program-
ming, with each task specifically focused on: loop-
ing constructs, data structures, creative problem
solving, as well as testing algorithms using sample
input/output (see Appendix 1); these tasks were se-
lected based on the Computational Thinking (CT)
model defined in (Moon et al., 2020; Shute et al.,
2017). The CT model is defined as the conceptual
foundation needed to solve problems effectively
and efficiently (Shute et al., 2017). The experi-
ment followed a within-subjects design (i.e. each
subject completes all four programming tasks), fur-
thermore, subjects were required to complete all
tasks in the same order and sequentially, without
any time limit. This setup provided an equitable
opportunity to all participants irrespective of pro-
gramming experience, providing richer insights
into learning behavior by eliminating temporal pres-
sures (Moon et al., 2020).

"ink to data to be made available on publication

3.2 Participant Recruitment

University students were recruited to participate
in the study, with a focus on programming-related
majors including Computer Science and Engineer-
ing. Participants were rewarded with a 15 USD
Amazon gift card at the end of their engagement in
the study.

Figure 1: Pre-defined Areas of Interest (AOIs) for the
ChatGPT experiment. AOI 1: Google Colab Integrated
Development Environment (IDE). AOI 2: ChatGPT
interface

3.3 Experimental Setup

The participants were asked to record their answers
on Google Colab, an online Python Notebook IDE.
The experiment screen was split into two halves
containing the Google Colab IDE (on the left half
of the screen) versus the ChatGPT interface (on
the right half of the screen). These halves were
designated as two areas of interests (AOIs) based
on which the calculations of the eye-tracking vari-
ables were made (Figure 1). The experiment was
designed to allow for capturing information that
distinguishes between LLM-outputs and coding
implementations (as opposed to an experimental
setup with Github Copilot which is a more com-
plex LLM-user interaction to study). Screen record-
ings as well as eye-tracking, mouse tracking, tex-
tual input, the language model’s responses were
recorded. A post-experiment semi-structured inter-
view and questionnaire were conducted to capture
demographic information (major, academic year)
as well as participants’ observations and reflections
of the experiment.

The experiment employed a screen-based eye
tracker, SmartEye Al-X, with a frequency of 60 Hz,
with iMotions software version 9.3 to record and
capture participants’ gaze patterns. Prior to the start
of each experiment, the eye tracking system was
calibrated with the participants’ eye. The threshold
for the calibration accuracy was 4 5Hz.

3.4 Eye-tracking Features

We measure three key eye-tracking features: fixa-
tion counts, dwell-time, and saccade counts (Hut-
ton, 2019). Fixation counts refer to the number of
times a person’s eyes stops or fixates on the AOI,
which indicates what is being focused on. Dwell-
time measures the amount of time a person spends
gazing and/or fixating on the AOI, this is reported
as the percentage of time a user spends on a given
AOI during a programming task, and aids in as-
sessing attention-levels. Saccade counts refers to
the number of times a person displays a rapid and
involuntary eye movement that occurs between fix-
ations, which measures how often individuals shift
their attention from one area to another (within an
AQI).

3.5 Statistical Tests

To evaluate whether the participant groups and
AOIs have a statistically significant difference with
the three recorded eye-tracking features, we per-
form a two-way Analysis of Variance (ANOVA)
(Lowry, 2014). To further evaluate any observed
statistical significance, we perform the Tukey’s
Honestly Significant Difference (HSD) post-hoc
test to identify which specific groups had statisti-
cally significant differences in group means while
accounting for multiple comparison tests (Type I
error) (Heckert et al., 2002).

4 Results

We collected data from 26 university students: 5
were sophomore, 5 were junior, 10 were senior, and
6 were in post-graduate programs (including Ph.D).
To perform comparative analysis, participants were
split into two categories: ‘novice’ category (sopho-
more and junior students), and ‘experienced’ cate-
gory (seniors and post-graduate students). A total
of 104 programming tasks were recorded (26 par-
ticipants x 4 tasks), with 91 tasks solved correctly

Table 1: Time to complete programming tasks.

Overall
Mean (SD)

Task Novice

Mean (SD)

Experienced
Mean (SD))

1 04:22 (01:02)
2 02:46 (05:55)
3 02:26 (04:18)
4 03:28 (01:09)

07:14 (01:49)
13:54 (11:08)
09:22 (10:12)
09:38 (03:33)

05:48 (02:56)
08:20 (15:45)
07:07 (13:43)
06:03 (05:02)

Errors 12 1 13
Hallu-
cination 5 3 8

Table 2: Descriptive statistics for fixation count, dwell
time (%), and saccades count across skill groups (novice
vs. experienced) and AOIs (ChatGPTUI vs. Colab IDE).

Group Fixation Dwell Time Saccade
(Count) (%) (Count)

Mean (SD) Mean (SD) Mean (SD)

Novice

ChatGPT UI 156 (176) 41% (25%) 349 (527)

Colab IDE 144 (134) 54% (27%) 229 (233)

Experienced

ChatGPT UL 249 (216) 23% (12%) 279 (274)

Colab IDE 686 (510) 72% (13%) 860 (609)

ANOVA p-val <0.05 9.3e-2 <0.05

Tukey p-adjusted

AOI 6.5e-3 - 1.8e-2

Skill 8.2e-4 - 2.1e-2

Skill x AOI 1.8e-2 - 9.0e-3

out of the 104, with the majority of errors submit-
ted by novice students (12 out of the 13 errors). On
average, participants completed a task between 5
minutes and 48 seconds to 7 minutes and 7 seconds,
with experienced programmers spending on aver-
age 5.5x more time on a given task compared to
novice programmers (Table 1). We observed that
hallucinations where generated 8 times by Chat-
GPT: 3 for experienced programmers and 8 for
novice programmers; only experienced program-
mers noticed the hallucinations.

To compare the difference in eye-tracking trends
between the two proficiency groups (novice vs. ex-
perienced) and their AOIs (ChatGPT UI vs. Google
Colab IDE), we performed a two-way ANOVA for
the three eye-tracking features, where the AOI and
participant proficiency group were the independent
variables and a given eye-tracking feature was the
dependent variable (Table 2). The independent vari-
ables were found to have a statistically significant
effect for two eye-tracking features: the fixation
counts (p < .05) and the saccade counts (p < .05).

Next, we performed the Tukey’s (HSD) post-
hoc test to identify which specific groups had sta-
tistically significant differences in group means
while accounting for multiple comparison tests.
We found that the p-adjusted values of multiple
comparisons were statistically significant (p-adj <
0.05) for both the fixation counts (p-adj = 6.5e-3
and 8.1e-3) and the saccade counts (p-adj = 9.0e-3
and 2.1e-3) across AOIs and participant proficiency
(skill) groups, respectively. There was also a sta-
tistically significant difference in the eye-tracking
aforementioned measures across sub-groups (inter-
section of AOIs and skills).

5 Discussion

Experienced programmers focus on IDE over
LLM-assistance: Our results indicate that eye-
tracking behavior differs according to program-
ming proficiency, based on the observed statisti-
cally significant differences in fixation counts and
saccade counts, and is in line with previous findings
(Jessup et al., 2021). Our results also indicate that
more experienced participants, on average, fixated
relatively more on the Colab IDE over the ChatGPT
UI (686 vs 249 counts) whereas their less experi-
enced peers fixated an almost equivalent amount
across the two AOIs, Colab IDE and ChatGPT UlI,
respectively (144 vs. 156 counts).

Experienced programmers were more dili-
gent: A similar pattern emerges when considering
dwell time; overall, the more experienced program-
mers spent approximately three times more attend-
ing to the Colab IDE (72%) over the ChatGPT
UI (23%). This indicates that more experienced
programmers allocate relatively more effort to pro-
grammatically solving the task within the IDE. We
hypothesized that experienced programmers would
have reduced eye-tracking measures and would
spend less time solving tasks, but observed the
opposite behavior; on average, experienced pro-
grammers had higher fixations and saccades, and
spent 5.5x more time solving the task than novices,
opposite to what we had hypothesized or has been
suggested in the literature (Peitek et al., 2022). This
implies that experienced programmers were more
diligent in their approach to solving the task, by
fixating more, spending more time overall on the
task, and focusing their effort on the IDE rather
than the outputs of the LLM-assistant. An under-
lying motivation for this behavior was captured in
relayed by an experienced programmer: "ChatGPT
is useless in programming tasks. I feel like you will
have to care for it, and walk it through the correct
answer! I used it only when I had to look for the
syntax.". This sentiment translated behaviorally
(i.e. dwell time) whereby visually expert program-
mers preferred to rely more on their programming
skills rather than the LLM output.

Novices seemed to be over-reliant on LLM
outputs: Additionally, novice programmers, on
average, accorded a significantly lower number of
saccade counts within the Colab IDE (279 counts)
compared to more experienced programmers (860
counts), that is, they shifted their attention less
often from one area to another (within the AOI) -

see figure 5. This reduced saccade count implies
that novice programmers were not as thoroughly
investigating the diversity of information that was
presented to them while they programmed their
solution, furthermore, they may have been more
reliant on copying the outputs of the LLM to solve
the task since they completed tasks on average 2
to 11 minutes faster (5.5x) than more experienced
programmers, and with the majority of solutions
correct.

3000 £0ls
[0 ChatGPT
2500 [1 Colab

2000

Saccade Count
= =
w o wv
o o o
o o o

o

-500

Novice Experienced

Category

Figure 2: Violin plot of saccade counts for novice and
experienced participants across the two AOIs. On av-
erage, experienced programmers had higher saccades
while using their IDE implying a richer interaction.

Hallucinations yielded cognitive burdens:
There were 3 cases where LLM generated answers
contained hallucinations that were identified by
participants, all from the experienced group. The
identification of hallucinations resulted in an in-
creased amount of time spent solving the task; ap-
proximately 1 standard deviation above the mean
completion time of the respective task (24 mins 5
secs [task 2], 20 mins 50 secs [task 3], and 14 mins
34 secs [task 3]). The increased time spent solving
the problem resulted in increased saccade counts
(527 on average) indicating an increased cognitive
load. In the interview with a participant who iden-
tified a hallucination, they shared: "I identified a
mis-representation in the sample input/output that I
asked ChatGPT to generate for exercise 3. I noticed
that something was odd in the calculation provided.
This is when I had to re-check everything that it
gave as an output. I had to look for the step that
went wrong. I realized that although the logic and
the code were correct, ChatGPT did not calculate
the output correctly”. The observed increase in
time and saccade counts is supported by prior work
observing changes in eye-tracking behavior while
debugging code (Melo et al., 2017).

References

Mathieu Acher, Jose Galindo Duarte, and Jean-Marc
Jezequel. 2023. On programming variability with
large language model-based assistant. In Proceed-
ings of the 27th ACM International Systems and Soft-
ware Product Line Conference-Volume A, pages 8—
14.

Maria Barrett, Joachim Bingel, Frank Keller, and An-
ders Sggaard. 2016. Weakly supervised part-of-
speech tagging using eye-tracking data. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 579-584.

Valeria Bolotova, Vladislav Blinov, Yukun Zheng,
W Bruce Croft, Falk Scholer, and Mark Sander-
son. 2020. Do people and neural nets pay attention
to the same words: studying eye-tracking data for
non-factoid ga evaluation. In Proceedings of the
29th ACM international conference on information
& knowledge management, pages 85-94.

Alan Davies. 2018. Examining Expertise Through Eye
Movements: A Study of Clinicians Interpreting Elec-
trocardiograms. Ph.D. thesis, The University of
Manchester.

Andreas Gegenfurtner and Jeroen J. G. van Merrié€nboer.
2017. Methodologies for studying visual expertise.
Frontline Learning Research, 5(3):1-13.

N Alan Heckert, James J Filliben, C M Croarkin,
B Hembree, William F Guthrie, P Tobias, and J Prinz.
2002. Handbook 151: Nist/sematech e-handbook of
statistical methods.

Krystal Hu. 2023. ChatGPT sets record for fastest-
growing user base - analyst note — reuters.com. [Ac-
cessed 10-09-2023].

SB Hutton. 2019. Eye tracking methodology. Eye
movement research: An introduction to its scientific
foundations and applications, pages 277-308.

Hazem Ibrahim, Fengyuan Liu, Rohail Asim, Balaraju
Battu, Sidahmed Benabderrahmane, Bashar Al-
hafni, Wifag Adnan, Tuka Alhanai, Bedoor AlShe-
bli, Riyadh Baghdadi, Jocelyn J. Bélanger, Elena
Beretta, Kemal Celik, Moumena Chaqfeh, Mo-
hammed F. Dagaq, Zaynab El Bernoussi, Daryl Foug-
nie, Borja Garcia de Soto, Alberto Gandolfi, An-
dras Gyorgy, Nizar Habash, J. Andrew Harris, Aaron
Kaufman, Lefteris Kirousis, Korhan Kocak, Kangsan
Lee, Seungah S. Lee, Samreen Malik, Michail Mani-
atakos, David Melcher, Azzam Mourad, Minsu Park,
Mahmoud Rasras, Alicja Reuben, Dania Zantout,
Nancy W. Gleason, Kinga Makovi, Talal Rahwan,
and Yasir Zaki. 2023. Perception, performance, and
detectability of conversational artificial intelligence
across 32 university courses. Scientific Reports,
13(1).

Jaeho Jeon and Seongyong Lee. 2023. Large language
models in education: A focus on the complementary

relationship between human teachers and chatgpt.
Education and Information Technologies, pages 1—
20.

Sarah Jessup, Sasha M Willis, Gene Alarcon, and
Michael Lee. 2021. Using eye-tracking data to com-
pare differences in code comprehension and code
perceptions between expert and novice programmers.

Moritz Langner, Peyman Toreini, and Alexander Maed-
che. 2023. Leveraging eye tracking technology for a
situation-aware writing assistant. In Proceedings of
the 2023 Symposium on Eye Tracking Research and
Applications, pages 1-2.

Richard Lowry. 2014. Concepts and applications of
inferential statistics.

I MacKenzie. 2012. Human-computer interaction: An
empirical research perspective.

Liam Richards Maldonado, Azza Abouzied, and
Nancy W. Gleason. 2023. ReaderQuizzer: Augment-
ing research papers with just-in-time learning ques-
tions to facilitate deeper understanding. In Computer
Supported Cooperative Work and Social Computing.
ACM.

Niloofar Mansoor, Cole S Peterson, Michael D Dodd,
and Bonita Sharif. 2023. Assessing the effect of pro-
gramming language and task type on eye movements
of computer science students. ACM Transactions on
Computing Education.

Jean Melo, Fabricio Batista Narcizo, Dan Witzner
Hansen, Claus Brabrand, and Andrzej Wasowski.
2017. Variability through the eyes of the programmer.
In 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC), pages 34-44.
IEEE.

Jewoong Moon, Jaewoo Do, Daeyeoul Lee, and
Gi Woong Choi. 2020. A conceptual framework
for teaching computational thinking in personalized
oers. Smart Learning Environments, 7(1).

Norman Peitek, Annabelle Bergum, Maurice Rekrut,
Jonas Mucke, Matthias Nadig, Chris Parnin, Janet
Siegmund, and Sven Apel. 2022. Correlates of pro-
grammer efficacy and their link to experience: A com-
bined eeg and eye-tracking study. In Proceedings of
the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 120-131.

Eyal M. Reingold and Heather Sheridan. 2011. Eye
movements and visual expertise in chess and
medicine. Oxford University Press.

Lavinia Salicchi, Alessandro Lenci, and Emmanuele
Chersoni. 2021. Looking for a role for word em-
beddings in eye-tracking features prediction: does
semantic similarity help? In Proceedings of the 14th
International Conference on Computational Seman-

tics (IWCS), pages 87-92.

https://doi.org/10.14786/flr.v5i3.316
https://doi.org/10.1038/s41598-023-38964-3
https://doi.org/10.1038/s41598-023-38964-3
https://doi.org/10.1038/s41598-023-38964-3
https://doi.org/10.1038/s41598-023-38964-3
https://doi.org/10.1038/s41598-023-38964-3
https://doi.org/10.1145/3584931.3607494
https://doi.org/10.1145/3584931.3607494
https://doi.org/10.1145/3584931.3607494
https://doi.org/10.1145/3584931.3607494
https://doi.org/10.1145/3584931.3607494
https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1093/oxfordhb/9780199539789.013.0029
https://doi.org/10.1093/oxfordhb/9780199539789.013.0029
https://doi.org/10.1093/oxfordhb/9780199539789.013.0029
https://doi.org/10.1093/oxfordhb/9780199539789.013.0029
https://doi.org/10.1093/oxfordhb/9780199539789.013.0029

Valerie J. Shute, Chen Sun, and Jodi Asbell-Clarke.
2017. Demystifying computational thinking. Educa-
tional Research Review, 22:142—-158.

Ramazan Yilmaz and Fatma Gizem Karaoglan Yilmaz.
2023. Augmented intelligence in programming learn-
ing: Examining student views on the use of chatgpt
for programming learning. Computers in Human
Behavior: Artificial Humans, 1(2):100005.

Gianpaolo Zammarchi and Claudio Conversano. 2021.
Application of eye tracking technology in medicine:
A bibliometric analysis. Vision, 5(4):56.

Ann C. Zumwalt, Arjun Iyer, Abenet Ghebremichael,
Bruno S. Frustace, and Sean Flannery. 2014. Gaze
patterns of gross anatomy students change with class-
room learning. Anatomical Sciences Education,
8(3):230-241.

Ethics Statement

The institutional review board approval for this
study was granted by the ethics board of [Anonu-
mized] under the IRB Protocol Reference Number
[Anonmyzied] prior to the commencement of the
study.

Appendix 1: Programming tasks

In order to solve the four programming tasks, stu-
dents had to be skilled at the below concepts:

1. Looping constructs: The problem requires
the student’s understanding of ’for’ loops and
"nested for’ loops

2. Data structures manipulations: The problem
requires the student’s familiarity with data
structures in order to solve a searching and
sorting problem.

3. Creative problem solving using algorithms:
This problem contains a form of ChatGPT hal-
lucination, where the student is required to
verify the correctness of the reasoning pro-
vided by ChatGPT.

4. Testing sample input/output. This problem
requires the students to analyze a provided
sample input and output for a programming
exercise to have a complete understanding of
the algorithmic problem.

Below are the four programming exercises:

1. Write a program that displays the following
shape:

0123456789
012345678
01234567
0123456
012345
01234

0123

012

01

0

2. There are three airports A, B and C, and flights

between each pair of airports in both direc-
tions. A one-way flight between airports A
and B takes P hours, a one-way flight between
airports B and C takes Q hours, and a one-way
flight between airports C and A takes R hours.
Consider a route where we start at one of the
airports, fly to another airport and then fly to
the other airport. What is the minimum possi-
ble sum of the flight times? Make sure to test
your imput and output for the correct answer.

. There are H rows and W columns of white

square cells. You will choose h of the rows
and w of the columns, and paint all of the cells
contained in those rows or columns. How
many white cells will remain? It can be
proved that this count does not depend on
what rows and columns are chosen. Con-
straints:

1< H W <20

1<h<H

1<w<W

. A biscuit making machine produces B bis-

cuits at the following moments: A seconds,
2 A seconds, 3A seconds, and each subsequent
multiple of A seconds after activation.

Find the total number of biscuits produced
within 7" 4 0.5 seconds after activation.

Constraints: All values in input are integers.
1< A B,T<20
Input:

Input is given from Standard Input in the fol-
lowing format: A BT

Output:
Print the total number of biscuits produced
within 1" 4 0.5 seconds after activation.

https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.3390/vision5040056
https://doi.org/10.3390/vision5040056
https://doi.org/10.3390/vision5040056
https://doi.org/10.1002/ase.1485
https://doi.org/10.1002/ase.1485
https://doi.org/10.1002/ase.1485
https://doi.org/10.1002/ase.1485
https://doi.org/10.1002/ase.1485

Appendix 2: Questionnaire

article

Section 1 of 5

Acquiring Programming Skills in the Era of
ChatGPT - An Eye Tracking and Attention
Study

Welcome to our post-study questionnaire! We’re
eager to learn more about your programming jour-
ney, both before and after your interaction with
ChatGPT. This survey aims to delve into your pro-
gramming awareness and skills, examining how
your confidence and abilities have evolved with
and without the assistance of programming tools.
Your valuable insights will help us better under-
stand the impact of ChatGPT on students’ program-
ming trends. Thank you for participating in this
important study!

6 Demographics

1. Email:

2. netID:

3. Gender: Female
Male

4. Age:

5. Which University year are you at?
First Second
Third
Fourth Fifth

6. What is your expected graduation year?

2024 2025
2026
2027 Other:

Section 2 of 5

Section 2: Task Difficulty

This section inquires about the difficulty of the
coding process in general as well as throughout the
experiment.

1. Please rate the difficulty of the on-screen pro-
gramming tasks you just participated in?
Difficult 1 2 3 4
5 Easy

2. How would you rate the difficulty of the
programming task WITHOUT the use of as-
sistant coding forums and websites OTHER
THAN ChatGPT? (like not using StackOver-
flow, Coding forums, or just Google Searches)

Difficult 1 2 3 4
5 Easy

3. How would you rate the difficulty of the pro-
gramming task WITH the use of assistant cod-
ing tools OTHER THAN ChatGPT? (like us-
ing StackOverflow, Coding forums, or just
Google Searches)

Difficult 1 2 3 4
5 Easy

4. Compared to your usual way of coding, how
would you rate the difficulty of the program-
ming task WITH the use of ChatGPT?

Difficult 1 2 3 4
5 Easy

5. Generally, how confident do you typically feel
when you are programming? i.e., Before run-
ning your code for the first time, do you feel
confident enough that you implemented the
correct algorithm?

Not confident 1 2 3

4 5 Very confident

Section 3 of 5

Section 3: Programming Training Background

This section seeks to know more about your
background related to programming, i.e.: For how
long and how did you first learn about program-
ming.

1. Are you a student training to acquire the skill
of programming?
Yes No

2. Which category best describes your usual
job/position?
Computer Science Major
Engineering Major (Program-
ming Courses is part of the Curriculum)
Non-Engineering ~ Major
(Programming Courses is an Elective)
Self-Taught
Other:

3. How long have you been familiar with pro-
gramming and its concepts?

< 6 months 6

months - 1 year 1 -2 years

2 - 3 years 4
years + 4 years (Before Uni-
versity)

4. How often do you program (part of class or

for fun)?
Never Daily
Weekly
Monthly
Other:

5. How many credit hours of programming-
related courses have you received as part of
your undergraduate degree?

None 1-5
11-20
21-30 Other:

6. What format did your programming training
take?
Formal lecture/seminar
Workshop/Lab
Online activities/courses
Taught by friends outside class
By building a side-project
None of the above
Other:

Section 4 of 5

Section 4: Personal Coding/Programming Sys-
tem

This section tries to find whether you use or
follow a system when programming.

1. Do you use a system (trick, hack, or tool)
when programming?
Yes No
Don’t know

2. Do you refer to a system when programming?
Briefly name the system, methodology, or
framework, and give a brief description of
how it works.

friends
I developed this system myself
Other:
4. Has the system you have used changed over
time?
Yes No
Don’t know

5. How did your system change?

6. Why did your system change?

7. Which aspect of programming do you pay

most attention to when writing code?

The algorithm
If it runs, it is already not that bad...

The programming methodology

Code Optimization

Applying the data structures I
know to solve the problem

The clarity and quality of In-
put/Output

How much time I spent on one
program/piece of code

Whether someone will judge my
programming skills when reading my code

That it does what it is supposed
to do, and that is it

Other:

8. How often do you apply coding best practices
(commenting the code, using naming conven-
tions, proper indentation, testing all the side
cases) when programming?

Never Occa-
sionally Sometimes
Often Always
Don’t know
Other:
Section 5 of 5

Section 5: Personal Opinion about Al-based
Coding Assistants
This section inquires about your opinion about

3. Which statement best describes the origin of
your system?
I was taught this system as part
of a class on programming
I learned this system from other

the usefulness and preferences for Al-based coding
assistants.

1. How useful do you find automated program-
ming outputs? (Like the ones generated by
ChatGPT)

Useless 1 2 3 4
5 Useful

2. How accurate do you think automated coding
tools are? (Like GitHub Copilot or ChatGPT,
or integrated IDE coding and debugging assis-
tants)

Inaccurate 1 2 3
4 5 Accurate

3. Do you enjoy the process of programming?
Yes No
Maybe Idon’t
know
Other:

