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Abstract

We study distributed goodness-of-fit testing for discrete distribution under band-
width and differential privacy constraints. Information constraint distributed
goodness-of-fit testing is a problem that has received considerable attention recently.
The important case of discrete distributions is theoretically well understood in the
classical case where all data is available in one “central” location. In a federated
setting, however, data is distributed across multiple “locations” (e.g. servers) and
cannot readily be shared due to e.g. bandwidth or privacy constraints that each
server needs to satisfy. We show how recently derived results for goodness-of-fit
testing for the mean of a multivariate Gaussian model extend to the discrete distri-
butions, by leveraging Le Cam’s theory of statistical equivalence. In doing so, we
derive matching minimax upper- and lower-bounds for the goodness-of-fit testing
for discrete distributions under bandwidth or privacy constraints in the regime
where number of samples held locally are large.
Keywords: distributed inference, goodness-of-fit testing, differential privacy, com-
munication constraint, federated learning, statistical equivalence.

1 Introduction

Federated learning is a fundamental problem in statistics and machine learning, where data is
distributed across multiple locations (e.g. servers) and cannot readily be shared due to e.g. bandwidth
or privacy constraints that each server needs to satisfy. The primary goal in these distributed data
settings is to perform a single global inference task, such as hypothesis testing, regression, or
classification, by aggregating the local information from each server.

Starting a few decades ago, investigations into distributed settings with bandwidth and other informa-
tion constraints originated in the electrical engineering community, under the names “decentralized
decision theory / the CEO problem” e.g. [90, 12, 92, 18, 58, 87] or “inference under multiterminal
compression” (see [88] for an overview). These were largely motivated by applications where data
is by construction observed and processed locally, such as astronomy, meteorology, seismology,
surveillance systems, wireless communication, military radar or air traffic control systems.

Modern federated learning often involves data distributed across siloed data centers (e.g., hospitals)
or networks of cellphone users, applied in areas such as word prediction, facial and voice recognition,
virtual assistants like Siri or Google Assistant, autonomous vehicles, and earthquake prediction [65,
56, 51, 73, 67, 31]. In these settings, bandwidth often becomes a limited or costly resource [57].

Similarly, with advances in electronic record keeping, privacy has become a more and more pressing
issue. These issues are prominent in tech industry products [32], including many federated learning
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applications mentioned earlier, as well as in scientific fields like medical sciences [60] and social
sciences [69].

Methods that preserve privacy have been around in the statistics community for some time, starting in
the 1980’s [40, 41]. The current leading formal privacy framework is that of differential privacy (DP),
as introduced in [42]. DP is a mathematical guarantee, describing whether results or data sets can
be considered “privacy preserving” and hence can be openly published. Whilst many other privacy
frameworks exist, this notion of privacy holds a prominent position both theoretically and practically,
finding application within industry giants like Google [45], Microsoft [35], Apple [89], as well as
governmental entities such as the US Census Bureau [74].

Quantifying the trade-off between privacy and statistical power means that researchers and data
analysts can make an appropriate balance between data privacy and meaningful analysis. Similarly,
by quantifying the impact of bandwidth constraints, systems can be designed to work as efficiently as
possible within such bandwidth constraints.

The performance of distributed inference under bandwidth or differential privacy is well-studied
for various estimation problems. For instance, distributed estimation under differential privacy
has been studied for the many-normal-means model, discrete distributions and parametric models
in [37, 38, 1, 98, 3], and density estimation [75, 59, 21], and nonparametric regression in [23].
Bandwidth constraints have been studied for the many-normal-means and parametric models in
e.g. [101, 39, 77, 20, 97, 50, 26, 25], as well as nonparametric models, including Gaussian white
noise [102], nonparametric regression [82], density estimation [17, 4], general, abstract settings [99]
and online learning [95]. Distributed adaptive estimation methods under bandwidth constraints, where
adaptation occurs to the unknown regularity of the functional parameter of interest, were derived
in [82, 83, 25]. Testing simple hypotheses under bandwidth constraints has been studied by e.g. [92]
and under differential privacy constraints by [29].

In this paper, we consider goodness-of-fit testing for discrete distributions (i.e. the multinomial model)
in scenarios where the number of samples received by each server is large. Specifically, we study
testing a simple null versus a composite alternative, in the setting where m servers receive n obser-
vations each from a distribution on a sample space of cardinality d, where n is large comparatively
to m and d. Recently, such multinomial distributed data have found many applications in areas that
handle very large samples over (possibly also large) discrete domains. For example, in population
genetics [71, 86] and computer science; where it is used for e.g. information retrieval [100, 76],
speech and text and classification [55], text mining [24] and large language models [72]. This has
sparked recent interest in studying the statistical decision theoretic properties of the multinomial
model, see [15] for an overview.

Deriving minimax rates for goodness-of-fit testing of discrete distributions under bandwidth and
differential privacy constraints is particularly challenging when each server holds multiple obser-
vations. To date, matching rates have been established only when each machine observes a single
observation [9, 10, 5] (see also our discussion of related work below). The techniques used to derive
lower-bounds in the aforementioned paper heavily rely on the fact that each server contains only
one observation, see [9]. Moreover, whilst tight lower-bounds for the multiple observations case
exist for the Gaussian model, the functional analytic techniques used to derive these results heavily
rely on Gaussianity, see [85] and [22] for the respective bandwidth constraint and DP lower-bounds.
Additionally, lower-bound techniques developed for estimation problems generally do not yield tight
impossibility results for goodness-of-fit testing problems (see also the discussion in Section B of the
appendix).

We derive matching upper- and lower-bounds for goodness-of-fit testing for discrete distributions
under bandwidth and differential privacy constraints in scenarios where the number of samples
n held by each of the servers is large in comparison to d and m; md log d/

√
n = o(1). This is

achieved by leveraging the theory of statistical equivalence, as introduced by Le Cam (see e.g. [62, 81]
for an introduction). Leveraging existing results concerning statistical equivalence of multinomial
data with a multivariate Gaussian model proven in [30] allow us to show, roughly speaking, that
the distributed goodness-of-fit testing problem for discrete distributions is statistically equivalent
a distributed goodness-of-fit testing problem for the mean of a multivariate Gaussian model, and
hence the minimax rate for the former problem is the same as the minimax rate for the latter problem,
which was established in [85] and [22], for bandwidth and differential privacy constraints respectively.
Furthermore, we exploit the bandwidth constraint distributed setting in which these two models have
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different minimax rates to show that, when n is small compared to d and m, the multinomial model
and multivariate Gaussian model are statistically non-equivalent.

The rest of the paper is organized as follows. After a brief section on related work and notation, the
article continues with a precise problem formulation in Section 2. Section 2.1 outlines the distributed
framework, for both bandwidth and differential privacy constraints. In Section 2.2, we introduce
the problem of distributed goodness-of-fit testing for discrete distributions under bandwidth and
differential privacy constraints. In Section 3, the main results concerning the minimax rates are
presented. Section 4 briefly outlines the main idea of the proof technique. Section 5 gives further
insight into the comparison between discrete distributions and its comparable multivariate Gaussian
model. The article ends with a brief discussion of the derived results. In the appendix, the tools of
asymptotic equivalence within the distributed framework are presented and the technical proofs are
provided.

1.1 Related work

Minimax goodness-of-fit testing knows a rich literature within the statistics and machine learning
communities, see [46, 53, 64, 80, 52]. The d-ary discrete distribution uniformity testing problem
bares a close relationship with “classical” nonparametric goodness-of-fit testing in the sense of [14,
79, 33, 96] and other nonparametric testing problems, see Section 1.4 in [54] and references therein.

For distributed goodness-of-fit testing specifically, much less is known. For multivariate Gaussian
models under communication or differential privacy constraints, solutions have been established
for the case where each server holds multiple observations. Communication constraints have been
studied in [8, 84, 85] and differential privacy constraints in [22], with the authors deriving matching
minimax upper- and lower-bounds for the goodness-of-fit testing for the mean of a multivariate
Gaussian model.

For testing in discrete distributions, only the scenario where each server receives just one observation
has been fully characterized in terms of the minimax rate in [9, 10, 5]. See also [28] for an overview.
In these aforementioned works, the authors derive minimax rates goodness-of-fit testing for discrete
distributions under bandwidth and differential privacy constraints. See [48, 78, 11, 2, 19] for
investigations specifically under local DP (i.e. one observation per server with DP constraint).
Nonparametric goodness-of-fit density testing for under local DP is considered in [36, 61], where
in [61], the authors consider adaptation as well. For some investigations into the multiple observations
per server case, see [34, 47].

For estimation, the bandwidth constraint estimation discrete distributions in the large sample-per-
server case has been studied by [3], who derive matching upper and lower-bounds up to logarithmic
factors. However, their technique does not extend to the goodness-of-fit testing problem.

1.2 Notation and notions

Throughout this paper, we shall use the following notation. For two positive sequences ak and bk, we
use ak ≲ bk to mean that ak ≤ Cbk for some universal positive constant C. We write ak ≍ bk if
both ak ≲ bk and bk ≲ ak, and ak ≪ bk if ak/bk = o(1).

We denote the maximum of a and b by a ∨ b and the minimum by a ∧ b. For k ∈ N, [k] represents
the set {1, . . . , k}. Universal constants c and C may vary between lines. The Euclidean norm of a
vector v ∈ Rd is denoted by ∥v∥2. For a matrix M ∈ Rd×d, ∥M∥ represents the spectral norm, and
Tr(M) denotes its trace. Id is the d× d identity matrix.

A non-negative sequence Mk is said to be of poly-logarithmic order in non-negative sequences
ak, bk, ck if there exists a constant c > 0 such that Mk ≲ (log(ak) log(bk) log(ck))

c.

Given measurable spaces (X ,X ) and (Y,Y ), a Markov kernel K (between (X ,X ) and target
(Y,Y )) is a map K ≡ K(·|·) : Y × X → [0, 1] with the following two properties: The map
x 7→ K(A|x) is measurable for all A ∈ Y , and the map A 7→ K(A|x) is a probability measure on
Y for every x ∈ X .

If S is a random variable on a probability space (X ,X ,P), we let PS denote its push-forward
measure, i.e. the measure defined by PS(B) := P(S−1(B)). We shall use E and ES as the expectation
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operator corresponding to P and PS . Random variables X,Y, Z form a Markov chain X → Y → Z
whenever their joint distribution P(X,Y,Z) disintegrates as dP(X,Y,Z) = dPXdPY |XdPZ|Y .

2 Problem formulation

We begin by formally introducing the general framework of distributed inference.

2.1 The distributed framework

Consider a measurable space (X ,X ) with a statistical model P = {Pf : f ∈ F} defined on it. In
the distributed framework, we consider j = 1, . . . ,m servers, each receiving data X(j) drawn from a
given distribution Pf ∈ P . Each of the servers communicates a transcript Y (j) based on the data to a
central server, which in turn computes its solution to the testing problem T (Y ) ∈ {0, 1} based on the
aggregated transcripts Y = (Y (1), . . . , Y (m)). We shall use the convention that T (Y ) = 1 means
rejecting the null hypothesis. The transcript generating mechanisms are then given by Markov kernels
{Kj}j=1,...,m, with the Markov kernel (i.e. conditional distribution) of the transcript Y (j) given the
data X(j) and the randomness U shared by the servers denoted by Kj(·|X(j), U). We formalize this
in the following definition.

Definition 1. A distributed testing protocol for the model P consists of a triplet
{T, {Kj}mj=1, (U ,U ,PU )}, where {Kj}mj=1 is a collection of Markov kernelsKj : Y (j)×X×U →
[0, 1] defined on a measurable space (Y(j),Y (j)), T :

⊗m
j=1 Y(j) → {0, 1} is a measurable map

and (U ,U ,PU ) is probability space.

The probability space (U ,U ,PU ) is used to (possibly) generate a source of randomness (independent
of the data) that is shared by the servers. The distributed protocol is said to have no access to shared
randomness or to be a local randomness protocol if PU is trivial1. In an abuse of notation, we shall
often refer to the entire triplet {T, {Kj}j=1,...,m, (U ,U ,PU )} using just T .

Given a distributed protocol and i.i.d. data from Pf we shall use Pf to denote the joint distribution
of Y = (Y (1), . . . , Y (m)), the data X under Pm

f and the shared randomness U ∼ PU . Writing
x = (x(1), . . . , x(m)) ∈ Xm, let x 7→ K(A|x, u) denote the Markov kernel

⊗m
j=1K

j(·|x(j), u) (i.e.
the product measure). The independence structure of the data yields that Pm

f K =
⊗m

j=1 PfK
j and

the push-forward measure of Y can be seen to disintegrate as

PY
f (A) = Pm

f PUK(A) = PUPm
f K(A) =

∫ ∫
K(A|x, u)dPm

f (x)dPU (u),

where the second equality follows from the independence of U with the data drawn from Pf . The
above disintegration of the push-forward measure of Y and the product structure of K can be
interpreted as (X,Y, T (Y )) forming a Markov chain given U , in the sense of the diagram

X(1) -
Y (1)|U PPq

... - ... -

X(m) - Y (m)|U ��1

T (Y ). (1)

The diagram indicates the flow of dependencies. The m servers each obtain data X(j) from Pf ,
and generate a transcript Y (j) based on the data and shared randomness U . The central server then
makes a decision T (Y ) based on the aggregated transcripts Y . For a definition of Markov kernels
and Markov chains, see Section 1.2.

Allowing transcript-generating mechanisms to access both shared and local randomness is impor-
tant for our analysis, as shared randomness has been found to yield strictly better performance in
distributed goodness-of-fit testing, see e.g. [9, 10, 5, 8, 84, 85, 22]. Shared randomness protocols can
be seen as a subset of common interactive procedures, such as sequential and blackboard protocols

1U is the trivial sigma-algebra (meaning U ∼ PU is a degenerate random variable)
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(see e.g. [6]). The aforementioned paper shows that for discrete distribution goodness-of-fit testing
in the single observation per server case, sequential and blackboard protocols offer no benefit over
shared randomness protocols. Similarly, for mean shift problems in the multivariate Gaussian case,
no advantage of sequential protocols over shared randomness protocols is known, except in the
case of estimation with unknown variance [? ]. Since we study goodness-of-fit testing for discrete
distributions in the large-number-of-observations case by comparing with a Gaussian model with
known variance, we restrict the setting of the main article to local and shared randomness protocols
only. Nevertheless, our theoretical framework is general enough to handle interactive protocols,
which we discuss in Section A.2 of the appendix.

Next, we introduce the notion of a bandwidth constraint in the distributed setting.
Definition 2. A distributed protocol is said to satisfy a b-bit bandwidth constraint if its ker-
nels {Kj}j=1,...,m are defined on measurable spaces (Y(j),Y (j)) satisfying |Y(j)| ≤ 2b for
j = 1, . . . ,m.

We use T
(b)

LR and T
(b)

SR to denote the classes of all local randomness and shared randomness distributed
testing protocols with communication budget b per machine, respectively.

Lastly, we introduce the notion of differential privacy in the distributed setting. We will be focusing
on the notion of differential privacy as put forward by [43, 44]. Differential privacy provides a
mathematical framework that guarantees preservation of privacy in a notion akin to cryptographical
guarantees. Formally, a differential privacy constraint on a transcript in our setting is formulated as
follows.
Definition 3. Let ϵ ≥ 0, δ ≥ 0. The transcript Y (j) generated from Kj , u ∈ U is said to be
(ϵ, δ)-differentially private if

Kj(A|x, u) ≤ eϵKj(A|x′, u) + δ (2)

for all A ∈ Y (j), x, x′ ∈ X , i ∈ {1, . . . , n}.
A distributed testing protocol {T, {Kj}mj=1, (U ,U ,PU )}, is said be a distributed (ϵ, δ)-differentially
private testing protocol if {Kj}j=1,...,m satisfies (2) PU -a.s.

Small values of ϵ and δ ensure that, even when the transcript Y (j) is publicly available, the sample
X(j) underlying Y (j) is unidentifiable. We stress that this type of differential privacy guarantee
concerns the local dataX(j) in full, evenX(j) consists of multiple observations. This is often referred
local differential privacy, where the privacy guarantee regards each server as essentially pertaining
data to “one indiviual”. For a thorough introduction on differential privacy guarantees, we refer the
reader to [42]. We also note that the use of shared randomness does not affect the privacy guarantee
provided by the protocol, as the guarantee holds even if the outcome of the shared randomness is
known.

We use T
(ϵ,δ)

LR and T
(ϵ,δ)

SR to denote the classes of all local- and shared randomness (ϵ, δ)-differentially
private distributed testing protocols, respectively. We note that the machinery developed in Section A.2
allows consideration of both types of constraints simultaneously. In the main text of the article, we
shall focus on the bandwidth constraint and differential privacy constraint separately as minimax
rates for the joint constraints are not known for the Gaussian model we use for comparison to the
multinomial model in the main article.

2.2 Distributed goodness-of-fit testing

We start by giving a formal description of sampling from a discrete distribution in the distributed
setting. Consider a set with cardinality d; for simplicity, we take X̃ = {1, . . . , d}. Any probability
distribution such a set can be characterized by an element of the d − 1-dimensional probability
simplex Sd, defined as {

q = (q1, . . . , qd) ∈ [0, 1]
d
:

d∑
i=1

qi = 1

}
.

In our distributed framework, each server j = 1, . . . ,m observes a data X̃(j) taking values in
{1, . . . , d}n

X̃(j) = (X̃
(j)
1 , . . . , X̃(j)

n ) ∼ Q ≡ Qn,q, X̃
(j)
i

i.i.d.∼ Multinomial(1, q) for q ∈ Sd. (3)
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That is, each server obtains n i.i.d. draws from a multinomial distribution with parameter q.

The statistical decision problem of interest shall be that of goodness-of-fit or uniformity testing, i.e.
distinguishing the hypotheses

H0 : q = q0 versus H1 : q ∈ {q ∈ F : ∥q − q0∥1 ≥ ρ} =: Hρ, (4)

where q0 = (q01, . . . , q0d) = (1/d, . . . , 1/d) ∈ Sd and

F =

{
q ∈ Sd :

maxi qi
mini qi

≤ R

}
, (5)

for some fixed constant R > 0. The statistical model under consideration shall be denoted by
Q = {Qn

q : q ∈ F}.

We define the testing risk for a distributed testing protocol T , for the hypotheses (4) (and statistical
model Q) by sum of the type I and worst case type II error over the alternative class;

RQ(T,Hρ) := QY
q0T (Y ) + sup

f∈Hρ

QY
f (1− T (Y )) .

The minimax testing risk over a class of distributed protocols T is then defined as
infT∈T RQ(T,Hρ).

It is clear that, as ρ tends to 0, the minimax testing risk should increase. We are interested in finding
the so called minimax separation rate, or detection boundary, which is a sequence ρ∗ depending on
the model characteristics n, d, m and T such that the minimax testing risk converges to 0 if ρ≪ ρ∗

or 1 if ρ≫ ρ∗.

The minimax separation rate captures how the testing problem becomes easier, or more difficult, for
different model characteristics. The minimax rate for the hypothesis above case is ρ2 ≍

√
d

mn when T
consists of the class of all testing protocols, as was established in [70] and [94].

When T is taken to be one of the bandwidth or privacy constraint classes of tests, i.e. T
(b)

LR and
T

(b)
SR T

(ϵ,δ)
LR and T

(ϵ,δ)
SR , it is sensible to expect ρ∗ to depend on the bandwidth or differential privacy

parameters, b and (ϵ, δ), respectively. In the distributed discrete distribution setupj described above
with n = 1, such minimax rates have been derived in [9, 10]. We discuss these results in the next
section, contrasting them with the minimax separation rate derived in this paper for the case where
md log d/

√
n = o(1).

3 Minimax rates in the large sample regime

We now turn to the main results of this paper, which concern the minimax rates for goodness-of-fit
testing for discrete distributions under bandwidth and differential privacy constraints in the large
sample regime. We shall show that the minimax rates for the distributed multinomial model under
bandwidth and differential privacy constraints are the same as the minimax rates for a d-dimensional
distributed Gaussian model, as derived in [85] and [22], respectively.

The first theorem establishes the minimax rate for the distributed multinomial model under bandwidth
constraints. A proof can be found in Section D of the appendix.

Theorem 1. Consider sequences m ≡ mν , b ≡ bν , d ≡ dν and n ≡ nν such that md→ ∞ whilst

md log d/
√
n

ν→∞→ 0.

Suppose that ρ ≡ ρν is a nonnegative sequence satisfying

ρ2 ≍
(

d√
d ∧ bmn

)∧( √
d√
mn

)
. (6)

Then,

inf
T∈T

(b)
SR

RQ(T,HMνρ) →
{
0 for any Mν → ∞,

1 for any Mν → 0.
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When considering the class of only local randomness protocols (i.e. replacing T
(b)

SR with T
(b)

LR in the
above display), the minimax separation rate is given by

ρ2 ≍
(

d3/2

(d ∧ b)mn

)∧( √
d√
mn

)
. (7)

The theorem above shows that the minimax rate for the distributed multinomial model under band-
width constraints is given by (6) in the case of access to shared randomness, and (7) in the case of
no access to shared randomness. Both rates are the same as those established for a signal detection
problem in a d-dimensional distributed Gaussian model, as derived in [85], Theorems 3.1 and 3.2. In
Section 4, we shall provide a proof of this result through the notion of statistical equivalence, where
we explicitly use that the multinomial model is asymptotically similar to a specific Gaussian model
and a corresponding signal detection problem.

The distributed b-bit bandwidth constraint minimax rate for the hypotheses (4) in the multinomial
model with n = 1 is established in [9, 10]. Specifically, they find that

ρ2 ≍

{
d

m
√
2b∧d

in case of access to shared randomness,
d
√
d

m(2b∧d)
without access to shared randomness.

(8)

Several aspects of this minimax rate are intriguing. First, unlike in the “large n case” for the same
model and hypothesis ((6) and (7)), there is no elbow effect. Secondly, the benefit (i.e. “efficiency
gain”) from an increase in bandwidth is exponential, whereas in the large sample scenario of Theorem
4 it is sub-linear. We shall comment on this “communication super-efficiency” phenomenon further
below.

We now turn to the distributed multinomial model under differential privacy constraints. As in the
case of the bandwidth constraint uniformity testing problem, we shall show that the minimax rate for
the distributed multinomial model under differential privacy constraints is the same as the minimax
rate for a d-dimensional distributed Gaussian model, as derived in [22].

The following theorem describes that the above rates are the minimax rates for uniformity testing in
the distributed multinomial model under differential privacy constraints, for shared randomness and
local randomness only protocols, respectively.

Theorem 2. For any sequences m ≡ mν , d ≡ dν and n ≡ nν such that md→ ∞, md log d√
n

ν→∞→ 0,

n−1/4 ≪ ϵ ≡ ϵν ≤ 1, δ ≡ δν ≍ (md)
−p for some p > 1. The minimax separation rate in the

distributed multinomial model Q for testing the hypotheses (4) using locally (ϵ, δ)-differentially
private protocols is

ρ2 ≍ poly-log(d,m, n)

{
d

mnϵ2 if ϵ ≥
√
d√
m
,

√
d√

mnϵ
if 1√

md
≤ ϵ <

√
d√
m

(9)

in the case of having access to shared randomness. In the case of having only access to local
randomness, it is given by

ρ2 ≍ poly-log(d,m, n)

{
d
√
d

mnϵ2 if ϵ ≥ d√
m
,

√
d√

mnϵ
if 1√

md
≤ ϵ < d√

m
.

(10)

We provide a proof of the theorem in Section D of the appendix. As with the bandwidth constraint
case, the minimax separation rates for the distributed multinomial model under differential privacy
constraints are derived by comparing the model and hypothesis test to a signal detection problem for
the d-dimensional distributed Gaussian model. The rates for the latter problem follow from the proofs
of Theorems 4 and 5 in [22], who describe a more general setup which includes signal detection in
the d-dimensional distributed Gaussian model as a special case2.

Also in the case of privacy, there is a difference between the one observation per server case minimax
rate (n = 1) and the multiple observations per server with local differential privacy case. The

2The above rates do not observe all phase transitions present in the more general setup of [22], as it pertains
to the local differential privacy case in that paper, with σ = 1/

√
n in their notation.
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minimax rate in the multinomial model for n = 1 is derived in [9, 5];

ρ2 ≍

{
d

mϵ2 in case of access to shared randomness,
d
√
d

mϵ2 without access to shared randomness.
(11)

Comparing this rate to the rate obtained in Theorem 2, we observe phase transitions in the distributed
testing problem for multinomial model under local differential privacy constraints which only occurs
if the number of observations locally is large compared to the cardinality of the sample space.

4 Deriving the minimax rates through statistical equivalence

The minimax rates for the distributed multinomial model under bandwidth and differential privacy
constraints are derived through the notion of statistical equivalence (Le Cam theory), which is a
powerful tool for establishing minimax rates in statistical decision theoretic problems. In this section,
we shall provide a brief introduction to statistical equivalence, and show how it can be used to derive
the minimax rates for the distributed multinomial model under bandwidth and differential privacy
constraints. Further details on the statistical equivalence and a detailed proof are deferred Section A
of the appendix.

Le Cam theory is a general framework for decision problems. At the core of this theory is the notion
of a distance between statistical models, known as Le Cam’s deficiency distance. The objective of
this distance is to quantify the extent to which a complex statistical model can be approximated
by a more simple one. If a model is close to another model in Le Cam’s distance, then there is
a mapping of solutions to decision theoretic problems from one model to the other. Whenever
the risk of the decision problem is bounded, this means that similar performance can be achieved
in the two models. Consequently, studying the complex model can be reduced to studying the
corresponding simple model. For an extensive introduction to Le Cam theory, see e.g. [62, 81]. For a
brief introduction; [63, 66].

Consider a model P = {Pf : f ∈ F} (a collection of probability distributions) on a measurable
space (X ,X ) (the sample space). For this article, we consider only models with Polish sample
spaces and corresponding Borel sigma-algebras and dominated models, meaning that there exists
a sigma-finite measure µ such that Pf ≪ µ for all f ∈ F . This greatly simplifies the definition of
deficiency, given next.

Given another model Q = {Qf : f ∈ F} indexed by the same set F and sample space (X̃ , X̃ ), we
define the deficiency of P with respect to Q as

d(P;Q) = inf
C

sup
f∈F

∥PfC −Qf∥TV. (12)

where the infimum is taken over all Markov kernels C : X̃ ×X → [0, 1] and the probability measure
PfC : X̃ → [0, 1] is understood as PfC(A) :=

∫
x∈X C(A|x)dPf (x). This is equivalent to the

more general notion of deficiency of [27] for dominated models on Polish spaces (see Proposition 9.2
in [68]).

Le Cam’s deficiency distance between P and Q is then defined as ∆(P,Q) =
max {d(P;Q), d(Q,P)}. This semi-metric becomes a metric whenever P and Q are identified
whenever d(P;Q) + d(Q,P) = 0. Two sequences of experiments Pν and Qν are called asymptot-
ically equivalent if their difference ∆(Pν ,Qν) tends to zero as ν approaches infinity. Conversely,
such sequences shall be called asymptotically nonequivalent if ∆(Pν ,Qν) > c as ν → ∞ for a fixed
constant c > 0.

In Section A.2, we prove that models that are close in the Le Cam metric (compared to m) have
similar testing risks in the distributed setup. We leverage this result in combination with the fact
that the distributed multinomial model is asymptotically equivalent to a d-dimensional distributed
Gaussian model, which we describe next.

Consider for q ∈ F and i = 1, . . . , d the random variables

X
(j)
i =

√
qi +

1√
2n
Z

(j)
i with Z(j) = (Z

(j)
1 , . . . , Z

(j)
d ) ∼ N(0, Id). (13)
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Let Pf ≡ Pn
f denote the distribution of X(j) = (X

(j)
1 , . . . , X

(j)
d ). Let P denote the corresponding

experiment. It is shown in [30] that Q is close to P in the Le Cam metric when d is relatively small
compared to n. More precisely, it follows from Theorem 1 and Section 7 in [30] that

∆(P,Q) ≤ CR
d log d√

n
, (14)

where CR > 0 is a constant depending only on R. For the testing problem in Gaussian model,
with hypotheses (4), the minimax rate can be derived using the results of [85] in case of bandwidth
constraints and [22] in case of differential privacy constraints. The key tool from which the minimax
rates can then be derived for the multinomial model is the following lemma, which allows comparison
of the minimax testing risks for the multinomial and Gaussian models in regimes where the Le Cam
distance is small. Its proof is given in Section A.2 of the appendix.
Lemma 1. Suppose m∆(Q;P) ≤ ϱ for ϱ > 0. Then, it holds that∣∣∣∣ inf

T∈T (P)
RP(T,H1)− inf

T∈T (Q)
RQ(T,H1)

∣∣∣∣ ≤ 2ϱ,

where T is either T b
SR,T

b
LR,T

(ϵ,δ)
SR or T

(ϵ,δ)
LR .

5 Statistical non-equivalence of discrete and multivariate Gaussian
distributions

Theorem 1 describing uniformity testing in the large sample regime and the result derived for
n = 1, as displayed in (8), shows a striking difference terms of the role of the communication
budget. Specifically, in the n = 1 regime, an exponential communication efficiency is observed,
whereas in the large sample regime, the benefit is only linear. In this section, we shall provide
some explanation for this phenomenon, and shall actually leverage this difference to show that the
distributed multinomial model and the distributed Gaussian model are asymptotically non-equivalent:
Two models are considered asymptotically nonequivalent if their Le Cam distance remains bounded
away from zero, even as the amount of data increases in both models.

The multinomial model is equivalent to a model in which one observes N (j) = (N
(j)
1 , . . . , N

(j)
d )

taking values in {1, . . . , n}d, where N (j)
k ≡ N

(j)
k

(
X̃(j)

)
=
∣∣∣{i : X̃(j)

i = k
}∣∣∣. Let Q′ denote the

model generated by the observations N (j). This model is equivalent to Q, meaning ∆(Q,Q′) = 0.
To see this, note that for x = (x1, . . . , xn) ∈ {1, . . . , d}n,

Q
(
X̃(j) = x

)
=

n

Π
i=1
Q
(
X̃

(j)
i = xi

)
= Π

k∈{1,...,d}
q
|{i:xi=k}|
k for all Q ∈ Q,

after which the aforementioned equivalence follows by the Neyman-Fisher factorization criterion, e.g.
Lemma 2 in the appendix. When n is large compared to d, one could standardize the count statistics
N (j) to obtain a statistic that tends towards a d-dimensional Gaussian random vector. When d and m
are not too large with respect to n, one can obtain transcripts and corresponding test statistics from
these approximately Gaussian vectors, that resemble those one would consider in the Gaussian model,
and attain the corresponding minimax rates.

Since the observation N (j) takes values in {1, . . . , n}d, the full data can be transmitted whenever
there are at least d log2 n-bits are available per server. However, recalling that the observation X̃(j)

takes values in the space {1, . . . , d}n, which has cardinality bounded above by 2n log2 d, we also
obtain that the full data can be transmitted whenever n log2 d-bits are available. Consequently,
whenever

b ≳ d log2(n+ 1) ∧ n log2 d,
the distributed problem has the same minimax separation rate for the hypothesis in (4) as the
unconstrained problem with nm observations; ρ2Q ≍

√
d

mn . For the Gaussian problem, this is only
the case whenever b ≳ d, as can be seen from Theorem 4. This indicates a kind of “tipping point”
occuring whenever n gets small compared to d, where in a bandwidth constraint distributed setting,
the testing problem in for the Gaussian model starts to exhibit very different behavior.
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Interestingly, this does not imply that the multinomial model is “easier” from a distributed testing
under bandwidth constraints perspective, as there are sub-regimes in which the Gaussian model has a
solution whereas the multinomial model does not and vice versa. It indicates that the “communication
complexity” of the sample space matters in the respective decision problems. We can leverage this
fact to obtain a lower-bound on the Le Cam distance between the multinomial model and the Gaussian
model; which is the content of the next theorem.
Theorem 3. There exists constants C > 0 and c > 0 such that for any n, d ∈ N with

d

n log(d)
≥ C and n ≥

√
d log(d), (15)

it holds that
d(Q,P) ≥ c, (16)

where P is the experiment generated by the observations in (13), Q is generated according to (3),
both indexed by F as given in (5).

The proof of the theorem is given in Section D. It leverages that there exist distributed, b-bit bandwidth
constraint settings in which the (distributed) multinomial model allows for consistent goodness-of-fit
testing, whereas the (distributed) Gaussian model does not. The result then readily follows from the
distributed equivalence results derived in Section A.2. The fact that the separation in the respective
(distributed) testing risks occurs for a constant number of servers, yields that the two models are
asymptotically nonequivalent whenever

√
d/ log2(d) ≥ d/n≫ 1. This reasoning crucially exploits

the differing minimax rates that occur under the bandwidth constraint, since without such a constraint,
the same goodness-of-fit testing problem of (4) would have similar minimax performance for both of
the models.

6 Discussion

We have derived minimax separation rates for uniformity testing in the distributed multinomial
model under bandwidth and differential privacy constraints, in the large sample regime where
md log d/

√
n = o(1). When contrasted with existing results for large sample regimes, the minimax

rates show that the large sample regime is subject to distinctly different phenomena.

The applicability of our results is somewhat constrained by the requirement thatmd log d/
√
n = o(1),

which limits the range of model characteristics we can consider. Consequently, further work is needed
to understand the behavior of the distributed multinomial model in other regimes. The non-equivalence
result in Theorem 3 indicates that the distributed multinomial model and the distributed Gaussian
model are fundamentally different regarding distributed statistical decision problems when the sample
size is small. Therefore, direct analysis of the distributed multinomial model might be necessary,
requiring new techniques to derive minimax rates. We note, however, that this pertains to the specific
Gaussian model formulated in (13), and there might be a different Gaussian model that is equivalent
to the distributed multinomial model even in the small n regime.

The results in this paper are derived through the notion of statistical equivalence, which is a powerful
tool for establishing minimax rates in statistical decision theoretic problems. The results and
techniques can be applied more generally to other distributed inference problems, and proving more
general results concerning statistical equivalence and distributed inference is an interesting avenue
for future research.

A downside of leveraging statistical equivalence is that it generally does not provide a direct path to
obtain methods that are minimax rate optimal. However, Theorem 1 and Section 7 in [30] provide
a specific transformation that converts the local multinomial sample into a statistic approximately
distributed as a Gaussian random vector. Such a transformation, combined with the rate optimal
methods given in [85] and [22], provide guidance to construct methods that attain the minimax rates
described in this article.
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A Le Cam theory in distributed setting

We introduce some formal notions of Le Cam theory first in Section A.1. Then, in Section A.2, we
study the equivalence of models in the distributed setting. The theoretical developments presented in
this section apply to general models denoted by P and Q; although the main text specifically focuses
on the Gaussian location model for P and the multinomial model for Q, the machinery developed
here is applicable to general statistical models.

A.1 Preliminary notions of Le Cam theory

A statistical experiment is a set of probability distributions P = {Pf : f ∈ F} (a model) on a
measurable space (X ,X ) (the sample space). For the purpose of simplification, we shall consider
only statistical experiments with Polish sample spaces and corresponding Borel sigma-algebras.
Furthermore, we shall only consider dominated models, meaning that there exists a sigma-finite
measure µ such that Pf ≪ µ for all f ∈ F . In a slight abuse of terminology, we shall sometimes
refer to P as the experiment, suppressing the presence of the sample space and indexing set.

Given another statistical experiment with model Q = {Qf : f ∈ F} indexed by the same set F and
sample space (X̃ , X̃ ), we define the deficiency of P with respect to Q as

d(P;Q) = inf
C

sup
f∈F

∥PfC −Qf∥TV. (17)

where the infimum is taken over all Markov kernels C : X̃ ×X → [0, 1] and the probability measure
PfC : X̃ → [0, 1] is understood as

PfC(A) :=

∫
x∈X

C(A|x)dPf (x). (18)

This is equivalent to the more general notion of deficiency of [27] for dominated models on Polish
spaces (see Proposition 9.2 in [68]).

The deficiency d(P;Q) quantifies the degree to which Q can be approximated by an experiment P .
If d(P;Q) ≤ ϱ, it implies that for bounded loss functions, each decision procedure within Q has an
associated procedure in P that achieves nearly the same risk, up to a multiple of ϱ.

To make this precise, let F be a measurable space and consider a function ℓ : F × D → [0, 1]
on a measurable space (D,D), such that t 7→ ℓ(f, t) is measurable for all f ∈ F , which we shall
refer to a loss functions. We shall consider a decision procedure for (Q,D) to be a Markov kernel
D : D × X̃ → [0, 1]. If d(P;Q) ≤ ϱ, there exists C : X̃ × X → [0, 1] such that for all decision
procedures D for (Q,D) we have that∫

ℓ(f, φ)dPfCD(φ) ≤
∫
ℓ(f, φ)dQfD(φ) + 2ϱ, for all f ∈ F .

Here, the Markov kernel QfD is to be understood in the sense of (18) and CD : D ×X → [0, 1] as

CD(A|x) =
∫
D(A|x̃)dC(x̃|x).

There is also the following reverse implication; suppose that there exists a loss function ℓ : F ×D →
[0, 1] on a measurable space (D,D), and

inf
C

inf
D

sup
f∈F

∣∣∣∣∫ ℓ(f, φ)dQfD(φ)−
∫
ℓ(f, φ)dPfCD(φ)

∣∣∣∣ > 2ϱ,

where the two infimums are over all decision procedures D and Markov kernels C : X̃ × X →
[0, 1]. Then, d(Q,P) > ϱ. This follows immediately from e.g. Lemma 12 in the appendix, since
x 7→

∫
ℓ(f, φ)dD(φ|x) is measurable. In the more extensive framework considered in e.g. [27], such

a reverse implication for risk functions fully characterizes the deficiency between two models, but
this framework is not needed in what follows.

Le Cam’s deficiency distance between P and Q is then defined as

∆(P,Q) = max {d(P;Q), d(Q,P)} .
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This semi-metric becomes a metric whenever P and Q are identified whenever d(P;Q)+ d(Q,P) =
0. Two sequences of experiments Pν and Qν are called asymptotically equivalent if their difference
∆(Pν ,Qν) tends to zero as ν approaches infinity. Conversely, such sequences shall be called
asymptotically nonequivalent if ∆(Pν ,Qν) > c as ν → ∞ for a fixed constant c > 0.

The final notion we shall recall is that of sufficiency. A statistic S : X → X̃ is sufficient for the model
P if for any A ∈ X there exists a measurable map ψA : X̃ → R such that

Pf

(
A ∩ S−1(B)

)
=

∫
B

ψA(x̃)dP
S
f (x̃) for all B ∈ X̃ and f ∈ F .

Here, the measure PS
f is to be understood as the push-forward measure PS

f (B) = Pf (S
−1(B)). A

sufficient statistic allows for transforming observations from one model to another, “sufficient” model
which is equivalent in the sense of Le Cam distance. That is, if S is a sufficient statistic for P , then
the model P ′ := {PS

f : f ∈ F} satisfies ∆(P,P ′) = 0.

The next lemma is the Neyman-Fisher factorization theorem gives a useful characterization of
sufficiency of a statistic for models that admit densities with respect to the same dominating measure.
Lemma 2. Suppose that Pf ≪ µ for all Pf ∈ P with µ a sigma-finite measure. A statistic
S : X → X̃ is sufficient for P if and only if there exists measurable functions gf : R → R and
h : X → R such that

dPf

dµ
(x) = gf (S(x))h(x) for almost every x ∈ X and every f ∈ F . (19)

A proof for both the lemma and the last statement of the previous paragraph can be found in Chapter
5 of [62].

A.2 Equivalence of distributed decision problems

We now turn to the distributed setting considered in the paper, where j = 1, . . . ,m servers each
receive data X(j) drawn from a distribution Pf and sample space (X ,X ). Each of the servers
communicates a transcript based on the data to a central server, which based on the aggregated
transcripts computes its solution to the decision problem at hand.

The tools developed in this section apply to wider range of distributed architectures than the one
considered in the main text of the paper, as introduced in Section 2. The framework introduced here
accommodates various forms of interaction between servers, including sequential and blackboard
protocols (see e.g. [6, 16]). In contrast, the main text focuses on servers that either do not communicate
(local randomness protocols) or utilize a shared randomness source (a special case of sequential or
blackboard communication).

A distributed protocol for the experiment P with decision space (D,D) consists of a triplet
{D,K, (U ,U ,PU )}, a Markov kernel D : D ×

⊗m
j=1 Y(j) → [0, 1] and a probability space

(U ,U ,PU ), and K is a collection of Markov kernels.

To unpack all this notation: the Markov kernel D takes the role of the decision procedure, where the
decision is to made on the basis of the transcripts generated by the Markov kernels K. The transcripts
are in turn generated based on the data and a source of shared randomness independent of the data.
The probability space (U ,U ,PU ) plays the role of the source of randomness that is shared by the
servers. The distributed protocol is said to have no access to shared randomness or to be a local
randomness protocol if U is the trivial sigma-algebra.

In this section, we shall consider three types of communication architectures:

• One shot protocols: K = {Kj}j=1,...,m where Kj : Y (j) × (X × U) → [0, 1]. These
protocols are what are considered in the main text of the paper.

• Sequential protocols: K = {Kj}j=1,...,m where Kj : Y (j) × (X × U × Y(1) × · · · ×
Y(j−1)) → [0, 1]. That is, the transcript generated by server j is based on the data, the
shared randomness and the transcripts of the previous servers.

• Blackboard protocols:
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• Blackboard protocols: K = {Kj
t }j=1,...,m,t=1,...,T where Kj

1 : Y (j) × (X × U) → [0, 1]
and

Kj
t : Y (j) ×

(
X × U × (Y(1) × · · · × Y(m))

⊗(t−1)
)
→ [0, 1],

for t = 2, . . . , T . That is, the transcript generated by server j is based on the data, the shared
randomness, and the transcripts of all the servers from the previous round.

For one shot protocols, we have in terms of random variables that X(j) ∼ Pf , U ∼ PU ,
Y (j)|(X(j), U) ∼ Kj(·|X(j), U) for j = 1, . . . ,m and φ ∼ D(·|Y ) with Y = (Y (1), . . . , Y (m)).
This gives rise to a Markov chain

X(1) - Y (1)|U PPq
... - ... -

X(m) -
Y (m)|U ��1

φ. (20)

For x = (x(1), . . . , x(m)) ∈ Xm, u ∈ U and {Kj}j=1,...,m, let x 7→ K(A|x) be the Markov kernel
product distribution

⊗m
j=1K

j(·|x(j), u). Given a distributed protocol and i.i.d. data from Pf we
shall use Pf to denote the joint distribution the data X ∼ Pm

f , the shared randomness U ∼ PU and
Y = (Y (1), . . . , Y (m)) with Y |(X,U) ∼ K(Y |X,U). We have that Pm

f K =
⊗m

j=1 PfK
j and the

push-forward measure of Y then disintegrates as

PY
f (A) = Pm

f PUK(A) = PUPm
f K(A) =

∫
d

m⊗
j=1

PfK
j(·|X(j), u)(A)dPU (u), (21)

where the second equality follows from the independence of U with the data X := (X(1), . . . , X(m))
drawn from Pf .

For sequential protocols, the push-forward measure of Y instead disintegrates as

PY
f (A) =

∫
U

[∫
· · ·
∫
1A(y)dPfK

m
(
ym | X(m), u, (y)m−1

j=1

)
· · · dPfK

1(y1 | X(1), u)

]
dPU (u),

(22)
For blackboard protocols, a similar disintegration applies for each of the rounds.

A one shot or sequential distributed protocol is said to satisfy a b-bit bandwidth constraint if its
kernels {Kj}j=1,...,m are defined on spaces satisfying |Y(j)| ≤ 2b. For blackboard protocols,
various bandwidth constraints can be imposed, such as a b-bit bandwidth constraint for each round
t = 1, . . . , T .

Given Markov Kernels Cj : X × X̃ → [0, 1], j = 1, . . . ,m, a distributed one shot protocol
{D, {Kj}j=1,...,m, (U ,U ,PU )} for the model P , yields a distributed protocol for the model Q:
{D, {CKj}j=1,...,m, (U ,U ,PU )}. If {Kj}j=1,...,m is b-bit bandwidth constraint, the collection of
kernels {CjKj}j=1,...,m do so too, as each CjKj is defined on Y (j) × X̃ .

Similarly, for a sequential protocol, the Markov kernels Cj and Kj yield a distributed sequential
protocol for the model Q with kernels {CjKj}j=1,...,m. If each Kj is b-bit bandwidth constraint,
so is each CjKj . For blackboard protocols, the same reasoning applies to each round t = 1, . . . , T .
That is, type of protocol defined by the kernels K is “closed under composition” with kernels Cj

between X̃ with target space X , where bandwidth constraints are preserved.

We shall consider the notion of local ϵ-differential privacy of Definition 3. A Markov kernel
K : Y ×X → [0, 1] is called locally (ϵ, δ)-differentially private if

K(A|x) ≤ eϵK(A|x′) + δ for all A ∈ Y and x, x′ ∈ X . (23)

Since the definition of differential privacy depends heavily on what one defines as the sample space,
it is difficult to obtain a similar “transfer of distributed protocols” that respects the (ϵ, δ)-differential
privacy constraint, hence the choice to consider local constraints only.

19



A one shot or sequential distributed protocol shall be called locally ϵ-differentially private if (23)
holds for each Kj ; j = 1, . . . ,m. For blackboard protocols, one can impose a (ϵ, δ)-differential
privacy constraint for each round t = 1, . . . , T , or for the entire output over t = 1, . . . , T rounds.
The following lemma shows that local ϵ-differential privacy, just like bandwidth constraints, carry
over from one model to the other.

Lemma 3. Let (X ,X ) and (X̃ , X̃ ) be measurable spaces and consider Markov kernels C :

X̃ × X → [0, 1] and K : Y × X → [0, 1]. If K is b-bit bandwidth constraint, so is the Markov
kernel CK : Y ×X̃ → [0, 1]. If K is locally ϵ-differentially private, so is CK. Furthermore, for any
collection of Markov kernels K, the same reasoning applies to the collection {CK}K∈K, preserving
bandwidth constraints and local differential privacy, as well as the protocol’s architecture.

Proof. The first statement has been remarked on earlier in the section. For the second statement,
consider arbitrary x̃, x̃′ ∈ X̃ and A ∈ Y . Using that C is a Markov kernel and applying (23) to K
yields

CK(A|x̃) =
∫
K(A|x)dC(x|x̃) =

∫ ∫
K(A|x)dC(x|x̃)dC(x′|x̃′)

≤ eϵ
∫
K(A|x′)dC(x′|x̃′) + δ = eϵCK(A|x̃′) + δ,

which shows CK is locally (ϵ, δ)-differentially private. The above argument applies pointwise for
all other conditional arguments in the Markov kernel, hence the same reasoning applies to shared
randomness, sequential and blackboard protocols.

In an abuse of notation, let D denote the entire distributed protocol (triplet)

{D, {Kj}j=1,...,m, (U ,U ,PU )}

for the experiment P (indexed by F) with decision space (D,D). Given D and a loss function
ℓ : F ×D → [−1, 1], we define the distributed risk of D in P for ℓ as

RP(D, ℓ) := sup
f∈F

∫ ∫ ∫
ℓ(f, φ)dD(φ|y) d

m⊗
j=1

PfK
j(·|X(j), u)(y)dPU (u).

We are now ready to formulate a straightforward consequence for the distributed risk, following from
models being close in Le Cam distance. This finding, formulated in Lemma 4, shall serve as one of
the main tools for deriving the main results. It states roughly that, whenever there is a b-bit bandwidth
constrained distributed protocol that achieves a certain risk is one model and there is small deficiency
with the other model relative to the number of servers, there exists a b-bit distributed protocol that
achieves comparable risk for the other model. A similar statement holds under local differential
privacy constraints. If there is a locally (ϵ, δ)-differentially private distributed procedure in the one
model and there is small deficiency with another model, it means that there is comparable risk for the
privacy constraint distributed decision problem.

Lemma 4. Let m ∈ N. Consider two experiments P and Q with indexing set F , satisfying
md(Q;P) ≤ ϱ for some ϱ > 0. Let JP and JQ denote the class of b-bit bandwidth constraint
shared randomness protocols for the models P and Q respectively.

Then, for any loss function ℓ : F ×D → [0, 1],

inf
D∈JQ

RQ(D, ℓ)− inf
D∈JP

RP(D, ℓ) ≤ ϱ.

where in the infimum, in an abuse of notation, D denotes the entire distributed protocol triplet
{D, {Kj}j=1,...,m, (U ,U ,PU )}.

The same statement is holds for JP and JQ denoting either classes of b-bit bandwidth constraint
local randomness, sequential protocols, or any of these distributed protocols satisfying local (ϵ, δ)-
differential privacy constraints, for the respective models P and Q. If Tmd(Q;P) ≤ ϱ, the same
statement holds for blackboard protocols with T rounds.
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Remark 1. This exemplifies also that, even though models Pm = {Pm
f : f ∈ F} and Qm = {Qm

f :

f ∈ F} are close in Le Cam distance, distributed decision problems formulated in terms the models
P and Q, can have greatly different performance in terms of associated risks.

Proof. By e.g. Theorem 2 in [62], md(Q;P) ≤ ϱ implies that there exists a kernel C : X × X̃ →
[0, 1] such that

sup
f∈F

∥Pf −QfC∥TV ≤ ϱ/m. (24)

By Lemma 3, the kernels K̃ = {CK : K ∈ K} satisfy the a b-bit bandwidth constraint or local (ϵ, δ)-
differential privacy constraint if the collection {Kj}j=1,...,m does. To illustrate this further, consider a
one shot distributed protocol for P , {D, {Kj}j=1,...,m, (U ,U ,PU )} ∈ JP , the distributed protocol
D̃ = {D, {CKj}j=1,...,m, (U ,U ,PU )} is then an element of JQ.

Using the fact that ℓ is bounded by one and Lemma 13 in the appendix, it follows that

RQ(D̃, ℓ)−RP(D, ℓ) ≤ ∥PU
m⊗
j=1

PfK
j − PU

m⊗
j=1

QfCK
j∥TV

≤
m∑
j=1

∥PUPfK
j − PUQfCK

j∥TV.

By Lemma 14 in the appendix,

∥PUPfK
j − PUQfCK

j∥TV ≤ ∥PUPf − PUQfC∥TV = ∥Pf −QfC∥TV,

which combined with (24) finishes for one shot protocols.

Similar reasoning applies to sequential protocols. We start by noting that

∥PfK
1(· | u)−QfCK

1(· | u)∥TV ≤ ∥Pf −QfC∥TV ≤ ϱ/m,

Lemma 11 implies that (for any u) there exists a coupling P of Y (1) ∼ PfK
1(· | u) and Ỹ (1) ∼

QfCK
1(· | u) such that 2P(Y (1) ̸= Ỹ (1)) ≤ ϱ/m. Write

Km:2(· | xm, . . . , x2, u, y1) :=
∫

· · ·
∫
dKm(ym | xm, u, ym−1, . . . , y1) · · · dK2(y2 | x2, u, y1).

Using the disintegration relationship of (22), we obtain

∥PUPm
f K − PUQfCK∥TV ≤

∫
∥Pm

f K(· | u)−QfCK(· | u)∥TVdPU (u)

≤ ϱ/m+

∫
EY (1)|U=u
f ∥Pm

f K
m:2(· | u, Y (1))−QfCK

m:2(· | u, Y (1))∥TVdPU (u).

Iterating the above argument m− 1 times, we the statement for sequential protocols. The statement
for blackboard protocols follows by combining the above arguments for each round t = 1, . . . , T .

In the remainder of this text, we shall constrain ourselves to a particular bounded risk function and
distributed decision problem; distributed hypothesis testing. The following corollary formalizes the
statement at the start of the paragraph for the testing a simple null versus a compositive alternative
hypothesis in the distributed setting. To that extent, consider a test of the hypotheses

H0 : f = f0 versus the alternative hypothesis f ∈ H1 (25)

and an experiment P with indexing set F satisfying {f0}∪H1 ⊂ F . Consider form ∈ N a distributed
testing protocol for the model P to be a distributed protocol T ≡ {D, {Kj}j=1,...,m, (U ,U ,PU )},
where in a slight abuse of notation, we shall also use T to denote the (possibly randomized) test
T |Y ∼ D(·|Y ). Recalling the notation PY

f = Pm
f PUK as given in (21), define the distributed testing

risk for the hypotheses in (25) and the model P as

RP(T,H1) := PY
f0D(T |Y ) + sup

f∈H1

PY
f (1−D(T |Y )) .
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Here, D(T |Y ) := D({1}|Y ), but one can equivalently consider a deterministic measurable map

T :
m

Π
j=1

Y(j) → [0, 1] without loss of generality. Let T b
SR(P) (resp. T b

LR(P)) denote the set of shared

randomness (resp. local randomness) distributed testing protocols for P satisfying a b-bit bandwidth
constraint. Similarly, let T

(ϵ,δ)
SR (P) (resp. T

(ϵ,δ)
LR (P)) denote the set of shared randomness (resp.

local randomness) distributed testing protocols for P satisfying a local (ϵ, δ)-differential privacy
constraint. Define the same classes for the model Q in the obvious way. Using Lemma 4, we obtain
the following result, which is a more general version of Lemma 1.
Lemma 5. Consider experiments P,Q such that md(Q;P) ≤ ϱ for ϱ > 0. It holds that

inf
T∈T (P)

RP(T,H1) ≤ inf
T∈T (Q)

RQ(T,H1) + 2ϱ,

where T is either T b
SR,T

b
LR,T

(ϵ,δ)
SR or T

(ϵ,δ)
LR .

Proof. Given {T, {Kj}j=1,...,m, (U ,U ,PU )} ∈ T (P), Lemma 4 applied to the loss function

ℓ(f, t) := t1{f0}(f) + (1− t)1H1(f)

and using that {f0} ∪H1 ⊂ F gives

PY
f0D(T |Y ) < QY

f0D(T |Y ) + ϱ and sup
f∈H1

PY
f (1−D(T |Y )) < sup

f∈H1

QY
f (1−D(T |Y )) + ϱ

for some distributed testing protocol {D, {K̃j}j=1,...,m, (U ,U ,PU )} in T (Q), which yields the
first statement. The second statement follows by symmetry of the argument.

The implications of Lemma 4 have implications beyond the testing framework. Whilst in distributed
estimation settings, the loss function under consideration is typically not bounded, rates can still be
derived in probability. That is, if the minimax rate for the distance d on F in the model Pν is ρν , the
bounded loss function

ℓν(f, g) = 1 {d(f, g) ≤ Cρν} for C > 0

can be used describe minimax estimation rates (in probability) between models P and Q. Since the
paper is about testing, we shall not pursue this direction any further beyond this remark.

In the next sections, we will explore the consequences of Lemma 5 for minimax distributed testing
rates for both bandwidth- and privacy constraints.

B Difficulties in direct analysis of the multinomial model under information
constraints

Lower-bounds for both estimation and testing problems are typically established by bounding
divergence measures between probability distributions, such as the chi-square divergence, mutual
information, or total variation; [3, 6, 7, 16? , 49, 9, 99, 13, 84, 85, 23, 22].

The proof techniques used for discrete distribution estimation employed in [3, 6] and [7], tight
lower-bounds can often be obtained by “tensorizing” the divergence—breaking the problem into a
sum of local divergences. The inferential cost incurred due to bandwidth or privacy constraints are
then captured via data processing arguments. Similar tensorization techniques are employed in other
estimation problems, see for example [16, 99].

However, this tensorization approach does not yield tight bounds for testing problems. For exam-
ple, [84] uses mutual information in a tensorization framework for testing but only recovers optimal
rates when each server communicates a single bit. Similarly, [8] attempts an estimation-based ap-
proach for goodness-of-fit testing but obtains tight lower-bounds only under 1-bit constraints, as
detailed in Section 4 of their paper.

To achieve tight lower-bounds in testing problems, especially under communication and privacy
constraints, different techniques are required. Papers [9, 85, 22] employ methods that significantly
diverge from those used in estimation. In [9], a combinatorial expansion of the likelihood is used,
effective for small sample sizes in the multinomial model but not generalizable to large numbers of
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observations. [85] and [22] address this limitation in the Gaussian setting by utilizing the Brascamp-
Lieb inequality from functional analysis, which explicitly leverages the Gaussian properties of the
log-likelihood. This approach is not directly applicable to discrete models, due to the lack of quadratic
structure in the log-likelihood of the multinomial model.

C Separation rates for the Gaussian model

For completeness, we provide the relevant results for the Gaussian model studied in [85] and [22].

The first two results come in the form of lower-bounds for the minimax detection thresholds under
bandwidth- and differential privacy constraints for the distributed signal detection problem presented
in the introduction. We recall that in this problem, each local machine j ∈ {1, . . . ,m} observes

X
(j)
i = f + Z

(j)
i , (26)

with f ∈ Rd and Z(j)
i ∼ N(0, Id), i.i.d. for i = 1, . . . , n. The null hypothesis constitutes that f = 0

versus the alternative hypothesis that

f ∈ Hρ :=
{
f ∈ Rd : ∥f∥2 ≥ ρ

}
. (27)

The following is Theorem 3.1 from [85].
Theorem 4. For each α ∈ (0, 1) there exists a constant cα > 0 (depending only on α) such that if

ρ2 < cα

√
d

n

(√
d

b ∧ d
∧√

m

)
, (28)

then in the shared randomness protocol case

inf
T∈T

(b)
SR

R(Hρ, T ) > α for all n,m, d, b ∈ N.

Similarly, for

ρ2 < cα

√
d

n

(
d

b ∧ d
∧√

m

)
, (29)

we have under the local randomness protocol that

inf
T∈T

(b)
LR

R(Hρ, T ) > α for all n,m, d, b ∈ N.

Following the proof Theorem 3.1 from [85], we obtain the following lemma.
Lemma 6. Let T b denote the class of b-bit bandwidth constrained shared- or local randomness
distributed testing protocols and let ρ satisfy either (28) or (29), respectively. For any α ∈ (0, 1),
there exists cα > 0 such that for all T ∈ T (b) it holds that

inf
T∈T

R(Hρ, T ) > α− π(Hc
ρ),

where π = N(0, c
−1/2
α d−1ρ2Γ̄) for a symmetric, idempotent matrix Γ̄ ∈ Rd×d with d/2 ≤

rank(Γ̄) ≤ d.

Similarly, the following result can be derived from the proof of Theorem 5 in [22], by taking s > 0 in
the theorem such that dLs

= d.
Theorem 5. For each α ∈ (0, 1) there exists a constant cα > 0 (depending only on α), such that for
any n,m, d ∈ N and

0 < ϵ ≤ 1 and 0 ≤ δ ≤
(
cαm

−3/2 ∧ nd−1ϵ2 ∧ n1/2d−1/2ϵ2
)1+p

for some p > 0, (30)

the condition

ρ2 < cα

(
d

mn
√
nϵ2 ∧ 1

√
nϵ2 ∧ d

∧( √
d

√
mn

√
nϵ2 ∧ 1

∨ 1

mn2ϵ2

))
, (31)
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implies
inf

T∈T
(ϵ,δ)

SR

R(Hρ, T ) > α.

Similarly, for any n,m, d ∈ N and ϵ, δ satisfying (30), the condition

ρ2 < cα

(
d
√
d

mn(nϵ2 ∧ d)
∧( √

d
√
mn

√
nϵ2 ∧ 1

∨ 1

mn2ϵ2

))
, (32)

implies that
inf

T∈T
(ϵ,δ)

LR

R(Hρ, T ) > α.

Following its proof, we obtain the following the following sub-result.

Lemma 7. Let T denote the class of shared- or local randomness distributed testing pro-
tocols satisfying an (ϵ, δ)-differential privacy constraint for 0 < ϵ ≤ 1, 0 ≤ δ ≤(
cαm

−1 ∧ cαϵm−1/2 ∧ nϵ2 ∧ n2d−1ϵ2 ∧ n3/2d−1/2ϵ2
)

and let ρ satisfy either (28) or (29), respec-
tively. For any α ∈ (0, 1), there exists cα > 0 such that for all T ∈ T (ϵ,δ) it holds that

R(Hρ, T ) > α− π(Hc
ρ),

where π = N(0, c
−1/2
α d−1ρ2Γ̄) for a symmetric, idempotent matrix Γ̄ ∈ Rd×d with rank(Γ̄) ≍ d.

D Proofs of Theorems 1, 2 and 3

Proof of Theorems 1 and 2. In what follows, let T denote a class of distributed protocols satisfying
either a b ≡ bν-bit bandwidth constraint or a local (ϵ, δ)-differential privacy constraint for ϵ ≡ ϵν ,
δ ≡ δν , allowing either for shared randomness or only local randomness.

For any sequences m ≡ mν , d ≡ dν and n ≡ nν with CRmd log d/
√
n = o(1), it follows from

Lemma 5 and the bound (14) that the testing risks satisfy

inf
T∈TQ

RQν
(Hρν

, T ) = inf
T∈TP

RPν
(Hρν

, T ) + o(1). (33)

Let ρ∗ ≡ ρ∗ν be the minimax rate of the P-distributed problem, over the class TP , in the sense that
ρ∗ equals (up to constants) the right-hand side of (6), (7), (9) or (10). We split the proof into showing
that ρ∗ is an upper and lower-bound for the Q-distributed problem over the class TP .

The rate ρ∗ is an upper-bound (up to a poly-logarithmic factor) for the minimax rate in Q: Write,
for q ∈ F ,

√
q = (

√
qi)i∈[d]. Since X(j) −√

q0 is a sufficient statistic for X(j), the model (13) is
equivalent in the Le Cam sense the one generated by

X(j) =
√
q −√

q0 +
1√
2n
Z(j) with Z(j) ∼ N(0, Id), (34)

for q ∈ F , which we shall denote by P̃ . Consequently, by another application of Lemma 5, it suffices
to show

inf
T∈TP̃

RP̃(Hρν , T ) → 0.

If ∥q − q0∥1 ≥ ρ, Lemma 15 implies that ∥√q −√
q0∥2 ≥ ρ/2. Consequently, if ρ ≡ ρν ≫Mνρ

∗

where ρ∗ is of equal order of the minimax rate for the respective class of distributed protocols TP
and Mν is an appropriately large factor (of poly-logarithmic order in case of differential privacy
constraints), a distributed protocol T ∈ TP exists for the Gaussian model that achieves the separation
rate for whenever H0 :

√
q − √

q0 = 0 versus Hρ : ∥√q − √
q0∥2 ≥ ρ/2. By the established

equivalence of the minimax risks (33), this implies that a protocol T ∈ TQ exists for the multinomial
model as well. Thus, ρν is an upper-bound for the minimax separation rate for the class of distributed
protocols TQ of the multinomial model.

The rate ρ∗ is a lower-bound for the minimax rate in Q: Suppose that ρ ≡ ρν is of smaller order
than the minimax rate ρ∗ of the class TP , in the sense that ρ∗/ρ → ∞ as ν → ∞. We aim to use
the Bayes risk lower-bound of Lemmas 6 and 7, which apply to a Gaussian prior. To accommodate
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a Gaussian prior with sufficient mass on the alternative hypothesis, we first need to address the
“constraint on the signal” imposed by

∑d
i=1 qi = 1 for q ∈ F .

To that extent, consider without loss of generality d to be divisible by two. Let IR := [−(R−1)/(R+

1), (R − 1)/(R + 1)]. For all (fi)i∈[d/2] ∈ I
d/2
R /

√
d, there exists a qf := (qfi )i∈[d] ∈ F such that

qfi = 1/d+ fi/
√
d for i = 1, . . . , d/2 and qfi = 1/d− fi/

√
d for i = d/2 + 1, . . . , d. To see that

qf ∈ F , note that
∑d

i=1 q
f
i = 1, qf ≥ 0 and

max
1≤i,k≤d

qfi

qfk
≤ max

c∈IR

1 + c

1− c
= R.

Define F ′ as the set{
(qi)i∈[d] ∈ F : (fi)i∈[d/2] ∈

I
d/2
R√
d

s.t. qfi = 1/d+ (1− 21i>d/2)
fi√
d

for i = 1, . . . , d

}
and

H ′
ρ := {q : q ∈ F ′, ∥q − q0∥1 ≥ ρ} .

We have F ′ ⊂ F , which in turn implies that H ′
ρ ⊂ Hρ. Combined with the fact that the testing risk

decreases by considering smaller alternative hypotheses, this results in

inf
T∈TP

RP(T,Hρ) ≥ inf
T∈TP

RP(T,H
′
ρ). (35)

Define gf = (1/2)(f,−f) ∈ Rd. By Pinsker’s inequality,∥∥∥∥Pnm√
qf−√

q0
− Pnm

gf

∥∥∥∥
TV

≤ 1 ∧
√
mn

4
DKL(P√

q−√
q0 ;Pgf )

= 1 ∧
√
mn

2

∥∥∥∥√q0 + 2gf/
√
d−√

q0 − gf

∥∥∥∥
2

=: Df ,

where Pn√
q−√

q0
denotes the distribution of (34) and the square root is to be understood as applied

coordinate wise.

Let π = N(0, d−1(ρ∗)2Γ̄) for a symmetric, idempotent matrix Γ̄ ∈ Rd/2×d/2 with d/4 ≤ rank(Γ̄) ≤
d/2.

We have that

inf
T∈TP

RP(T,H
′
ρ) ≥ inf

T∈JP

[
P0T (Y ) +

∫
Pgf (1− T (Y ))dπ(f)

]
− 2

∫
Dfdπ(f)

− π
(
f : f /∈ (IR/

√
d)d/2 or

∥∥∥(qfi )i∈[d] − q0

∥∥∥
1
< ρ
)
.

By Lemma 8, the model {Pgf : f ∈ I
d/2
R /

√
d} is equivalent to the model generated by the

observations
S
(j)
i := fi +

1√
n
Z

(j)
i (36)

for i = 1, . . . , d/2. Since F ′ is bijective with (IR/
√
d)d/2, Lemma 5 implies that

inf
T∈JP

[
P0T (Y ) +

∫
Pgf (1− T (Y ))dπ(f)

]
= inf

T∈JP̃

[
P′
0T (Y ) +

∫
P′
f (1− T (Y ))dπ(f)

]
(37)

where P̃ is the model generated by the observations in display (36) for i = 1, . . . , d/2 and P′
f denotes

the distribution of the distributed protocol with data generated from f ∈ P̃ .

It follows from Lemma 6 in the case of bandwidth constraints or Lemma 7 in the case of privacy
constraints (using that ρ≪ ρ∗ in both cases) that the latter distributed testing risk is lower-bounded
by

1− o(1)− π
(
f ∈ Rd/2 : f /∈ (IR/

√
d)d/2 or

∥∥∥(qfi )i∈[d] − q0

∥∥∥
1
< ρ
)
− 2

∫
Dfdπ(f). (38)
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Addressing the third term in the display above; the theorem(s) assume that md log d/
√
n

ν→∞→ 0,
b ≥ 1 and ϵ≫ n−1/4, we have that ρ∗ ≪ 1/

√
log(d), which gives ∥

√
dfi∥∞ → 0 with π-probability

tending to one (see e.g. Lemma 16), which in turn implies that

fi ∈ IR/
√
d for all i = 1, . . . , d/2. (39)

Next, we show that ∥(qfi )i∈[d]−q0∥1 ≥ ρ with π-probability tending to one. Since
∑d

i=1 |q
f
i −q0| =

2
∑d/2

i=1 |fi/
√
d|, we have that for some constants c, c′ > 0,

π
(∥∥qf − q0

∥∥
1
< ρ
)
≤ π

(∥∥∥f/√d∥∥∥
1
< ρ
)
≤ 1− Pr

(
∥Γ̄Z∥1 ≥ c′d

ρ

ρ∗

)
.

where in the expression on the right-hand side, Z ∼ N(0, Id/2). Since ρ≪ ρ∗ and Γ̄ is idempotent
with rank of the order d, we can conclude that the expression vanishes. This takes care of the third
term in (38).

For the last term in (38), the Taylor approximation
√
1 + y− 1 = y/2− y2/8+ y3

16(1+η
5/2
y )

for some

η ∈ [0, y], combined with the fact that ∥
√
df∥∞ = oπ(1) yields that

2

∫
Dfdπ(f) ≤

∫
1 ∧

√
mnd

∥∥∥(f2i )i∈[d/2]

∥∥∥
2
dπ(f) ≲

√
mnρ2.

Since the theorem(s) assume that md log d/
√
n

ν→∞→ 0, b ≥ 1 and ϵ≫ n−1/4, the right-hand side of
the above display vanishes.

Proof of Theorem 3. Let TQ,TP denote the class of distributed b-bit bandwidth constrained testing
protocols with b ∈ N, m ∈ N, d ∈ 2N and n ∈ N and no access to shared randomness for the models
Q and P , respectively. We note here that under the conditions of the theorem, we can assume d and n
are both larger than some constant; and in particular we can assume d ∈ 2N without loss of generality.
Assume d and n satisfy (15), for a constant C to be set later. The proof follows by the fact that the
distributed testing problems have different minimax testing rates, for certain values of b and m.

Consider the hypothesis test given in (4), with H0 : q0 = (1/d, . . . , 1/d) ∈ Sd and Hρ as in the
display.

Set b = ⌈n log2(d)⌉. When b ≥ n log2(d), the observations X̃(j) in the multinomial model as given
in (3) are valid b-bit transcripts, since |{1, . . . , d}n| ≤ n log2(d). These transcripts are therefore
sufficient for the nondistributed / unconstrained model Qm, i.e. corresponding to observations

X̃ ∼ Qq,nm for q ∈ F .
Consequently, the distributed, b-bit bandwidth constraint testing risk for Q is equal to the testing risk
Qm;

inf
T∈TQ

RQ(Hρ, T ) = inf
T

RQm(Hρ, T ).

This means that, for all α ∈ (0, 1), there exists Cα > 0 and a distributed protocol T satisfying a
b-bandwidth constraint for distributed experiment Q such that

inf
T∈TQ

RQ(Hρ, T ) < α whenever ρ2 ≥ Cα

√
d

mn

where Hρ as defined in (4), as the minimax rate for the unconstrained problem with mn observations
is ρ2Qm :=

√
d/(mn) (see e.g. Theorem 3 in [70]).

On the other hand, whenever mb = m⌈n log2(d)⌉ ≤ d, the minimax rate for the distributed testing
risk of P for the (comparable) hypotheses

H0 : q = q0 versus H̃ρ : ∥√q −√
q0∥2 ≥ ρ

is bounded from below by ρ2P ≍
√
d/(

√
mn), as a consequence of Theorem 4. Specifically, following

the proof of Theorem 1 above, we have that

inf
T∈TP

RP(Hρ, T ) ≥ inf
T∈TP̃

RP̃(H̃ρ, T ),
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where
H̃ρ :=

{
f ∈ (IR/

√
d)d/2 : ∥f∥1 ≥ ρ

}
,

for IR := [
√
2(1−

√
R)/

√
1 +R,

√
2(
√
R− 1)/

√
1 +R], P̃ is generated by the observations

X(j) = f +
1√
n
Z(j)

for Z(j) ∼ N(0, Id/2), indexed by f ∈ (IR/
√
d)d/2 and the class TP̃ is to be understood as the b-bit

bandwidth constraint distributed testing protocols for the model P̃ and j = 1, . . . ,m machines.

Lemma (6) implies that for all α ∈ (0, 1) the latter is bounded by

α−N(0, c−1/2
α d−1ρ2Γ̄)

(
H̃c

ρ

)
,

for a symmetric, idempotent matrix Γ̄ ∈ Rd/2×d/2 with d/4 ≤ rank(Γ̄) ≤ d/2 α ∈ (0, 1), whenever
ρ2 ≤ cα

√
d√

mn
for some small enough constant cα > 0. By the same analysis as conducted in the

proof of Theorem 1 above (using that n ≤ log(d)), we find that the second term is at most α/2 for
cα > 0 small enough. Summarizing, we find in particular that for some constant cα > 0,

inf
T∈TP

RP(T,Hρ) > 1/3,

for all ρ2 ≤ c
√
d/(

√
mn) and m,n, b, d such that mb ≤ d, where the number 1/3 is chosen without

particular significance.

Whenever mb = m⌈n log2(d)⌉ ≤ d,

inf
T∈TQ

RQ(Hρ, T ) < 1/6 < 1/3 < inf
T∈TP

RP(Hρ, T ). (40)

for some Cα > 0 large enough and cα > 0 small enough. Take the constant C = ⌈C2
α/c

2
α⌉ such that

if m = C, it holds that

Cα

√
d

mn
≤ ρ2 ≤ cα

√
d√
mn

, with ρ2 := Cα

√
d√

M
√
mn

.

Now suppose that Cd(Q,P) ≤ 1/6. Lemma 5 then implies in that

inf
T∈TP

RP(Hρ, T ) ≤ inf
T∈TQ

RQ(Hρ, T ) + 1/6 < 1/3.

This contradicts (40). We conclude that

Cd(Q,P) > 1/6, (41)

whenever d/⌈n log2(d)⌉ > C. The result now follows with c = 1/(6C).

E Auxilliary lemmas

The following lemma is used in the comparison of the multinomial model to the many-normal-means
model.
Lemma 8. Let d ∈ 2N, F ⊂ Rd/2, and consider for i = 1, . . . , d independent random variables
Xi = hi + σZi with σ > 0 and Zi ∼ N(0, 1) satisfying

hi =

{
aifi if i ≤ d/2,

−aifi−d/2 if i > d/2,

for some f ∈ F and a = (ai)i∈[d] ∈ Rd. Let P denote the model generated by the observations
X := (X1, . . . , Xd) ∼ Pf , f ∈ F and let Q denote the model generated by

X̃i = (ai + ad/2+i)fi +
√
2σZi, for i = 1, . . . , d/2,

with Zi
i.i.d.∼ N(0, 1) and f ∈ F .

Then, ∆(P,Q) = 0.
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Proof. The statistic S = (ai Xi − aiXd/2+1)i∈[d]
is sufficient for the model P by using Neyman-

Fisher (Lemma 2). We have

dPf

dP0
(X) =

d

Π
i=1

exp

(
σ−1Xihi −

1

2σ2
h2i

)
=

d/2

Π
i=1

exp

(
σ−1(aiXi − aiXd/2+1)fi −

1

σ2
f2i

)
= eσ

−1S⊤f− 1
σ2 ∥f∥2

2 .

In distribution, X̃ = (X̃i)i∈[d] is equal to S, which implies ∆(P,Q) = 0 per Lemma 2.

The following lemmas are well known but included for completeness.
Lemma 9. Let Pf denote the distribution of a N(f, σId) distributed random vector for f ∈ Rd and
let Pn

f denote the distribution of n i.i.d. draws (i.e. Pn
f =

⊗n
i=1 Pf ).

It holds that ∥∥Pn
f − Pn

g

∥∥
TV

≤ n

2σ
∥f − g∥2 .

Proof. By Pinsker’s inequality,

∥Pn
f − Pn

g ∥TV ≤
√
n

2
DKL(Pf ;Pg).

A straightforward calculation gives that the latter is bounded by
√
n

2σ ∥f − g∥2.

The following lemma relates the total variation distance between P,Q to the L1-distance between
corresponding densities.
Lemma 10. Let P,Q be probability measures dominated by a sigma-finite measure µ with corre-
sponding probability densities p = dP

dµ and q = dQ
dµ . It holds that

∥P −Q∥TV =
1

2

∫
|p(x)− q(x)|dµ(x).

Proof. See e.g. Section 2.4 in [93].

Lemma 11. For any two probability measures P and Q on a measurable space (X ,X ) with X a
Polish space and X its Borel sigma-algebra. There exists a coupling PX,X̃ such that

∥P −Q∥TV = 2PX,X̃
(
X ̸= X̃

)
.

Proof. See e.g. Section 8.3 in [91].

The next lemma gives a useful characterization of the total variation distance between two probability
measures.
Lemma 12. Let P be a signed, bounded measure defined on measurable space (X ,X ) and suppose
that P ≪ ν for a sigma-finite measure ν. It holds that

∥P∥TV =
1

2
sup

{∫
fdP : |f | ≤ 1 and f : X → R is measurable

}
. (42)

Proof. Consider the Jordan measure decomposition P = P+−P−, where P+, P− are both positive,
bounded measures such that P+ ⊥ P−. For any measurable f , {f ≥ 0}, {f ≤ 0} ∈ X , so |f | ≤ 1
means that ∫

fdP ≤
∫
f1{f≥0}dP

+ −
∫
f1{f≤0}dP

−

≤
∫
1{f≥0}dP

+ +

∫
1{f≤0}dP

−

≤ ∥P+∥TV + ∥P−∥TV ≤ 2∥P∥TV.
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For the other direction, note that f = sign(p− q) is measurable and bounded by 1, which gives

1

2

∫
fdP =

∫
|p− q|dν = ∥P −Q∥TV,

where the last equality follows from Lemma 10.

Lemma 13. Let P =
⊗m

j=1 Pj and Q =
⊗m

j=1Qj for probability measures Pj , Qj defined on a
common measurable space (X ,X ), with probability densities pj , qj for j = 1, . . .m. It holds that

∥P −Q∥TV ≤
m∑
j=1

∥Pj −Qj∥TV.

Proof. The measures Pj and Qj admit densities with respect to Pj +Qj , which we shall denote by
pj and qj , respectively, with

p :=
m

Π
j=1

pj =
d
⊗m

j=1 Pj

d
⊗m

j=1(Pj +Qj)
and q :=

m

Π
j=1

qj =
d
⊗m

j=1Qj

d
⊗m

j=1(Pj +Qj)
.

Writing µ =
⊗m

j=1(Pj +Qj) and applying Lemma 10 we obtain

∥P −Q∥TV =
1

2

∫
|
m

Π
j=1

pj(xj)−
m

Π
j=1

qj(xj)|dµ(x1, . . . , xm). (43)

By the telescoping product identity

a1 · a2 · · · am − b1 · b2 · · · bm =

m∑
j=1

(aj − bj)
j−1

Π
k=1

ak
m

Π
k=j+1

bk (44)

and Fubini’s Theorem, the right-hand side of (43) is bounded by
m∑
j=1

1

2

∫
|pj(xj)− qj(xj)|d(Pj +Qj)(xj) =

m∑
j=1

∥Pj −Qj∥TV.

The following lemma can be seen as a data processing inequality for the total variation distance.
Lemma 14. Let (X ,X ) and (Y,Y ) be two measurable spaces and let K : Y ×X → [0, 1] be a
Markov kernel. For any probability measures P,Q defined on X it holds that

∥PK −QK∥TV ≤ ∥P −Q∥TV.

Proof. This follows immediately from the representation in Lemma 12 combined with the fact that,
for |f | ≤ 1, x 7→

∫
f(y)dK(y|x) is a measurable function bounded by 1, since K is Markov kernel.

Hence,

sup
A

|PK(A)−QK(A)| = 1

2
sup
f

∫ ∫
f(y)dK(y|x)d(P −Q)(x)

≤ 1

2
sup
f

∫
f(x)d(P −Q)(x).

The next lemma bounds the L1-distance ∥p− q∥1 between densities with a multiple of the Hellinger
distance 2−1/2∥√p−√

q∥2.
Lemma 15. For two probability densities p, q with respect to µ, it holds that

1

2

∫
|p(x)− q(x)| dµ(x) ≤

√∫ (√
p(x)−

√
q(x)

)2
dµ(x).
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Proof. The result follow from the Cauchy-Schwarz inequality and the fact that
∫
pdµ =

∫
qdµ = 1.

See e.g. [93] for details.

Lemma 16. Let K ∈ N and M ∈ RK×K be symmetric and positive definite. Consider the random
vector G = (G1, . . . , GK) ∼ N(0,M). It holds that E max

1≤i≤K
|Gi| ≤ 3∥M∥

√
log(K) ∨ log(2) and

Pr
(

max
1≤i≤K

G2
i ≥ ∥M∥2x

)
≤ 2K

ex/4
,

for all x > 0.

Proof. It holds that
G

d
=

√
MZ, with Z ∼ N(0, IK).

Since M is symmetric, positive definite, it has SVD decomposition M = V Diag(λ1, . . . , λK)V ⊤.
Since V is orthonormal,

√
MZ = V

√
Diag(λ1, . . . , λK)(V ⊤Z)

d
= V

√
Diag(λ1, . . . , λK)Z.

Writing V = [v1 . . . vK ] where vk are orthogonal unit vectors, the latter display equals

K∑
k=1

√
λkvkZk ∼ N (0,Diag(λ1, . . . , λK)) .

Consequently,
max
k∈[K]

|Gk|
d
= max

k∈[K]
|λkZk| ≤ ∥M∥max

k∈[K]
|Zk|.

Hence, it suffices to show that

Pr
(

max
1≤i≤K

Z2
i ≥ x

)
≤ 2K

ex/4
.

The case where K = 1 follows by standard Gaussian concentration properties. Assume K ≥ 2. For
0 ≤ t ≤ 1/4,

Eetmaxi (Zi)
2

= etEmax
i
et(Z

2
i −1) ≤ Ke2t

2+t.

Taking t = 1/4 and applying Markov’s inequality yields the second statement of the lemma. Further-
more, in view of Jensen’s inequality

Emax
i

(Zi)
2 ≤ log(K)

t
+ 2t+ 1,

which in turn yields Emaxi |Zi| ≤ 3
√
log(K).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: Yes.
Justification: Proofs of all theory are provided.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: Yes.
Justification: See discussion
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: Yes.

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: NA

Justification: No code / experiments are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: NA

Justification: No code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: NA

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: NA

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: NA

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: Yes
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: NA
Justification: The paper focuses on theoretical developments in statistical models without
negative societal applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: NA
Justification: All the results are of theoretical nature; no data or models are released.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: NA

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: NA

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: NA
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Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: NA
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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