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Abstract

Rapid advances in LLM agents have demonstrated
the ability to optimize code using continuous ob-
jective functions – a significant leap beyond tra-
ditional code generation. There is an urgent need
for novel benchmarks that measure this ability
to drive impact in real-world use cases. Exist-
ing code benchmarks, often relying on binary
pass/fail outcomes, offer a constrained evaluation
landscape compared to these emerging capabili-
ties. To bridge this gap, we introduce FORMU-
LACODE, a novel benchmark designed for eval-
uating agentic superoptimization on large code-
bases, with a focus on real-world performance
optimization. Constructed from a dataset of 451
real-world performance bottlenecks automatically
mined from Github, FORMULACODE enables
comprehensive testing of an agent’s ability to
triage, diagnose, and resolve inefficiencies in re-
alistic software environments. FORMULACODE
proves to be a challenging benchmark for frontier
LLMs and agentic frameworks, with unrestricted
repository exploration emerging as a principal
component for finding performance inefficiencies.
By introducing FORMULACODE, our goal is to
drive the development of next-generation opti-
mization algorithms that meet the rigorous de-
mands of real-world software projects.

1. Introduction
Recent results in using LLMs for code generation (Novikov
et al., 2025; Romera-Paredes et al., 2024) highlight that
pretrained LLMs, given sufficient compute and scale, can
be leveraged to tackle complex problems in science and en-
gineering. Code generated by such agents can even outper-
form that from human experts, demonstrating the potential
to use agents for code superoptimization (Mankowitz et al.,
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2023a; Lin et al., 2025; Shypula et al., 2024), an idea dating
back to the 1980s (Massalin, 1987) to iteratively improve an
initial program using execution feedback. These agentic su-
peroptimization approaches have the potential to transform
the way domain experts and software engineers interact with
code.

With this rising interest in agentic superoptimization, comes
the need for rigorous benchmarking, in order to ensure
scientific progress. However, existing coding benchmarks
often focus binary pass/fail tests, rather than tasks such as
improving compute or memory costs while passing all tests.
Moreover, we are interested in moving towards evaluating
system-level performance, rather than individual functions.

We identify several requirements for a useful superoptimiza-
tion benchmark: (1) it must provide fine-grained evaluation
metrics to capture nuanced performance changes; (2) agent
performance should be assessed against a reliable human
performance baseline to provide a meaningful standard; and
(3) such a benchmark must also engage agents with large,
real-world codebases, mirroring the challenges faced by
human developers.

We introduce FORMULACODE1 , a novel benchmark de-
signed for advancing agentic superoptimization on large,
evolving software ecosystems. FORMULACODE is con-
structed from real-world GitHub Issues and Pull Requests,
drawn from six prominent open-source Python packages in-
cluding Astropy, NumPy, and SciPy, all of which explicitly
address performance optimization challenges. Each instance
in FORMULACODE is paired with a human-written evalu-
ation function, derived using the airspeed-velocity (asv)
framework – a widely adopted tool for fine-grained per-
formance tracking in the scientific Python community –
and a ground-truth human-authored patch. This unique
construction allows FORMULACODE to rigorously test an
agent’s ability to perform the complete optimization life-
cycle—triage, diagnosis, and resolution—within authentic,
complex software environments, and drive the creation of

1FORMULACODE draws inspiration from Formula 1, where
constructors must optimize entire systems—not just individual
components—to achieve peak performance on the track. Simi-
larly, FORMULACODE challenges code agents to perform holistic,
codebase-level optimizations, reflecting the complexity and inter-
dependence found in real-world software.
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Figure 1: Test cases streamline performance evaluation but constrain coding agents (e.g., AlphaEvolve (Novikov et al.,
2025)) to a pass/fail reward – a signal too sparse for fostering iterative optimizations. FORMULACODE introduces a live
repository-level benchmark that complements existing work (In gray (Jimenez et al., 2024)) by challenging agents to
optimize 451 real-world performance bottlenecks against human solutions drawn from community-maintained benchmarks
(in light blue). These benchmarks provide evaluation functions that capture fine-grained performance insights, are less
susceptible to data leakage, and expose a larger optimization surface to coding agents.

new algorithmic approaches for AI-driven optimization.

2. Related Work
Algorithms for Superoptimization. Code superoptimiz-
ers aim to solve programming tasks at a level beyond what
is practically attainable by human experts by iteratively
improving an initial program using execution feedback. Nu-
merous systems now exceed human-level performance in
specialized coding tasks. AlphaCode solves competition-
level programming problems (Li et al., 2022). AlphaTensor
and AlphaDev produce super-optimized matrix multiplica-
tion and sorting routines, respectively (Fawzi et al., 2022;
Mankowitz et al., 2023b). These systems combine large,
publicly sourced pretraining datasets with carefully chosen
inductive biases to make optimization faster. Classical super-
optimizers leverage stochastic search and constraint solving
techniques to find efficient programs, primarily in low-level
languages such as C++, C, and x86 (Schkufza et al., 2013;
Sasnauskas et al., 2018). These systems often rewrite code
while preserving high-level structure, optimizing memory
use, cache performance, and data pipelining.

Recently, two algorithmic directions for iteratively optimiz-
ing programs with execution feedback have emerged. Agen-
tic Optimization workflows attempt to help LLMs overcome
their inability to predict the output of their generated code
(Ni et al., 2024) by iteratively running the generated code,
evaluating the output, and feeding the output back to the
model (Shypula et al., 2024). SWEAgent offers one such
implementation that benefits from iterative feedback (Yao,

Model Task Horizon Evaluation

Coding LLM Single File Test cases
Coding Agent Codebase Test cases
Optimization Agent Codebase Evaluation Functions

Table 1: FORMULACODE introduces a novel axis for bench-
marking repository-level optimization agents (Novikov
et al., 2025; Romera-Paredes et al., 2024) through the use
of fine-grained evaluation functions.

2024; Yang et al., 2024). Evolutionary Optimization algo-
rithms maintain a candidate pool of programs that are sorted
in descending order of their performance. Old / inefficient
implementations are discarded and new implementations
are generated by mutating the best candidates. Funsearch
and AlphaEvolve (Romera-Paredes et al., 2024; Novikov
et al., 2025) demonstrate that an evolutionary coding agents
equipped with pretrained LLMs can efficiently discover and
refine novel, high-performance code-based heuristics across
diverse scientific domains. Such evolutionary algorithms
are extremely scalable but require high quality evaluation
functions to penalize degenerate solutions. FORMULACODE
is the first benchmark purpose built to assess the superopti-
mization ability of such agentic and evolutionary AI algo-
rithms in real-world codebases and provides the fine-grained
evaluation functions needed for iterative optimization.

Code Generation Benchmarks. Coding benchmarks can
be differentiated by their synthesis scope. For a complete
list of differences, consult Table 5.
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Package Stars Citations Coverage Live ASV dashboard

Astropy 4 700 13 640 91.89% astropy-benchmarks
pandas 45 500 12 474 85.25% asv-runner
scikit-learn 62 100 112 578 98.96% scikit-learn-benchmarks
SciPy 13 700 38 023 77.96% scipy-bench
ArcticDB 1 900 – – man-group
NumPy 29 500 23 800 81.29% numpy-bench

Table 2: An overview of the six code repositories included
in FORMULACODE along with their public-facing Airspeed-
Velocity dashboards and code coverage. We scrape asv-
compatible active benchmarks using Google BigQuery
(§3.2). The ASV dashboards are used to validate and inter-
polate any commits that weren’t benchmarked locally.

Function and file level. Recent years have seen a prolifera-
tion of LLM-coding benchmarks. HumanEval (Chen et al.,
2021), and MBPP (Austin et al., 2021) present hand-written
programming problems in Python with corresponding unit
tests. Many contributions extend these benchmarks to have
more testing (Liu et al., 2023), broader scope (Yin et al.,
2022; Yang et al., 2023), and more task diversity (Muen-
nighoff et al., 2023; Lai et al., 2022; Zan et al., 2022).
CruxEval (Gu et al., 2024) benchmarks the code execu-
tion and reasoning ability of LLMs more deeply. Live-
CodeBench (Jain et al., 2024a) attempts to mitigate data-
leakage by annotating problems with release dates. All these
benchmarking efforts utilize unit testing suites to gauge pro-
gram correctness. FORMULACODE presents a novel, yet
orthogonal, axis for benchmarking code LLMs by using
community-maintained evaluation functions that continu-
ally update with each commit to supplement the test cases
provided by the above datasets.

Repository level. Function and file level benchmarks evalu-
ate coding ability on self-contained coding tasks. However,
real software issues typically span multiple modules and
files. Repository level benchmarks (Jimenez et al., 2024;
Tang et al., 2024; Jain et al., 2024b) aim to preserve the in-
herent challenges in real-world software engineering beyond
text completion, such as finding relevant files, capturing re-
lationships between modules, tracing information flow, etc.
SWE-Bench (Jimenez et al., 2024) collects GitHub issues
from popular repositories and evaluates coding agents’ abil-
ity to resolve the issues. Follow-up efforts benchmark agents
on repository-conditioned code synthesis (Tang et al., 2024)
and scale-up benchmarking by admitting smaller codebases
with LLM-generated unit tests (Jain et al., 2024b). These
extensions still is susceptible to data leakage, is hard to
directly optimize, and hard to generate. Instead, FORMULA-
CODE supplements these benchmarks by assessing agents
on community-maintained evaluation functions that present
a smoother optimization landscape and, by design, scale
substantially better than unit tests in terms of code coverage
per testing instance.

pandas (311)

astropy (61)
scipy (30)

arcticdb (20)

numpy (19)
sklearn (10)

Figure 2: Distribution of FORMULACODE tasks across five
open source GitHub repositories. These repositories have a
combined 157,000+ GitHub stars and 200,000+ academic
citations and each repository uses Airspeed Velocity for
regression testing. We collect 451 filtered tasks for our
preliminary dataset consisting of 500,000+ measurements.

Efficiency Benchmarks. Many benchmarks from the soft-
ware engineering community study efficient code synthesis
on function and file-level efficiency tasks. COFFE (Peng
et al., 2025) samples tasks from HumanEval, MBPP, Code-
Contests, and APPS (Chen et al., 2021; Austin et al., 2021;
Hendrycks et al., 2021) and auto-generates stress tests while
ECCO (Waghjale et al., 2024) curates a function and file-
level efficient synthesis dataset from IBM CodeNet (Puri
et al., 2021) with data-mined test cases. FORMULACODE
supersedes these efforts by (1) using community-maintained
benchmarks specifically designed to profile performance in-
efficiencies instead of using hand-curated stress tests and (2)
benchmarking on repository-level codebases, which better
capture the natural challenges with real-world code opti-
mization.

3. Methodology
FORMULACODE introduces a data-mining pipeline to au-
tomatically generate, maintain, and continually update a
benchmark for code generation given fine-grained evalua-
tion functions. In this section, we first describe the library
purpose-build for benchmarking on commodity hardware
(§3.1). Then, we describe the scalable process of collecting
such benchmarks automatically (§3.2) and the process of
executing such benchmarks to obtain performance measures
(§3.3). Finally, we showcase two strategies to find perfor-
mance improving code dits (§3.4). Appendix §A.2 outlines
lower-level details.

3.1. Airspeed Velocity.

Airspeed Velocity (asv) is a command-line tool that au-
tomatically times, memory-profiles, and regression-tests
every commit in a Python package against a benchmark

3

https://github.com/astropy/astropy
https://spacetelescope.github.io/bench/astropy-benchmarks/
https://github.com/pandas-dev/pandas
https://pandas-dev.github.io/asv-runner/
https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/scikit-learn-benchmarks/
https://github.com/scipy/scipy
https://pv.github.io/scipy-bench/
https://github.com/man-group/ArcticDB/
https://man-group.github.io/ArcticDB/
https://github.com/numpy/numpy
https://pv.github.io/numpy-bench/


suite defined by domain experts, surfacing the results in a
zero-dependency HTML dashboard.2Because the tool inte-
grates easily with existing test suites, it has become the
backbone of performance testing for many open-source
projects, including many repositories in the PyData ecosys-
tem (NumPy, SciPy, scikit-learn, Astropy, Napari, Pandas,
and others). Although primarily used with Python, asv
is multi-lingual via plugins for C++, Julia, Go, etc. An
overview of asv’s dashboard is presented in Figure 3. More
information about asv is presented in Appendix § A.2.1.

3.2. Benchmark Discovery via Google BigQuery

Because asv dashboards are self-hosted, there is no cen-
tral registry of regression-testing benchmarks. Moreover,
many projects prefer contributors run asv locally, so bench-
marking scripts are scattered across countless repositories.
Naively collecting such benchmarks presents a significant
challenge as it requires potentially scraping all of GitHub
for repositories with asv installed.

Instead, we query the GitHub Public Dataset on Google
BigQuery (GitHub & Google Cloud Platform, 2025), which
snapshots ∼2.8 M open-source repositories and more than
2 B code files. To find GitHub repositories that benchmark
with asv, we notice that every asv benchmark must include
an asv.conf.json file at the root of its benchmark suite.
This anchor file serves as the search key for a commonSQL
program to look for asv-compatible code repositories. We
include additional filtering steps to ensure forked, archived,
and reuploaded repositories are excluded from the search.
Overall, this naive query scanning all content would require
processing 2.69 TB of data. Due to budget constraints of
around 0.25 TB, we restricted the search to configuration
files located at the repository root. While this excludes many
repositories, we were able to retrieve roughly 400 actively
maintained asv benchmarks. FORMULACODE focuses on
the six with the most GitHub stars: Astropy, NumPy, Pandas,
ArcticDB, SciPy, and scikit-learn.

3.3. Benchmark Execution Overview

Running every benchmark on every commit can be accom-
plished either by locally or by scraping precomputed dash-
boards. The two complementary workflows are sketched
below; full implementation details, hardware specifications,
and edge-case handling appear in Appendix A.2.2.

Local execution. We orchestrate asv inside Docker con-
tainers pinned to dedicated CPU cores, sharding the commit
history across containers to achieve near-linear speed-ups.

Dashboard scraping. For projects that already host public
asv sites, we develop an ethical HTML crawler that scrapes

2https://asv.readthedocs.io

the precomputed results directly from these websites. An
asv dashboard is a self-contained static site and has a uni-
form file hierarchy across repositories; making automated
scraping straightforward.

Intuitively, local execution is always preferable to dashboard
scraping. However, many historical commits can no longer
be replicated due to missing dependencies that are no longer
publicly accessible via PyPI. In such instances, the scrap-
ing workflow yields immediate historical traces and helps
validate the results of our locally running benchmark suite.

3.4. Finding performance improving code edits

Each benchmark produces two chronologically ordered vec-
tors: a sequence of commit hashes h1:n and a sequence
of runtime measurements t1:n, where n is the number of
commits. We frame the search for performance-improving
commits as an offline step-detection problem and employ
PELT with an RBF kernel loss (Killick et al., 2012; Truong
et al., 2020) to generate a change-point set {c1, . . . , ck}
More discussion about the choice of change-point detection
algorithms is presented in Appendix A.2.3. We subsequently
compute the immediate percentage change in runtime at
each change-point boundary

∆%(ci) =
tci − tci−1

tci−1
,

and retain only indices with ∆%(ci) < 0. For every retained
change point, we record:

• the commit before the improvement, hci−1;
• the improving commit itself, hci , together with all linked

hyperlinks (pull requests, issues, comments) up to two
levels deep;

• the precise patch obtained from git diff (hci−1, hci);
• other relevant performance metadata such as the bench-

mark name, instantaneous improvement ∆%(ci), and the
aggregated asv reported runtimes tci−1 and tci .

4. Case Study: Gold standard optimization of
coordinate transformations in astropy

This case study traces how human contributors to a large
open-source scientific library identified, isolated, and re-
solved a major performance bottleneck in Astropy. We
highlight the chain of reasoning and patch iteration that ul-
timately yielded a significant enough speedup to warrant a
major version update – and contrast this with how a state-
of-the-art code-optimization agent performs on the same
task.

Background. Astropy is the canonical Python package
for astronomy, supporting a range of mission-critical tasks
from calibrating exposures on the James Webb Space Tele-
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Figure 3: Airspeed Velocity dashboard for astropy. Airspeed Velocity (ASV) is the most widely used framework for
continuous benchmarking and performance-regression detection in Python packages. Left: overview panel summarising
wall-time trends for 8 (of 390) community-maintained benchmarks across the entire astropy commit history. Right: Detailed
view for the time_init_scalar benchmark. Points represent individual commits; the x-axis shows commit dates
(release tags highlighted) and the y-axis the benchmark runtime in microseconds. Color is used to indicate different test
bench machines. Hovering over a point reveals commit metadata. The pronounced speed-up in the time_init_scalar
benchmark around release v6.0 – mirrored in other benchmarks – results from the fix to Issue #13479 discussed in §4.

scope (Bushouse et al., 2025) to real-time localization of
gravitational wave events with the Laser Interferometer
Gravitatinal Wave Observatory (Singer & Price, 2016).
With over 13000 citations and widespread adoption across
major astronomical surveys, its correctness and efficiency
are critical to scientific workflows. The project employs
multiple tools to maintain high standards, including contin-
uous integration (via CircleCI), test coverage tracking (via
Codecov), and fine-grained benchmarking (via Airspeed
Velocity).

Despite this infrastructure, performance regressions can still
arise – especially in numerical subroutines used extensively
throughout the codebase.

Manual Discovery and Fix. In Issue #13479, a core con-
tributor noticed a major inefficiency in astropy’s coordi-
nates submodule. Using %timeit, they profiled the in-
stantiation of three central abstractions in the submodule
(Longitude, Latitude, Angle) and discovered that
these classes were markedly slower – sometimes nearly 14×
slower – than other classes with the same numerical back-
bone. Manual inspection of the class hierarchy isolated two
major bottlenecks. (1) A subroutine redundantly executed
expensive NumPy reduction operations on already-validated
inputs and (2) All three classes invoked _wrap_at (which
confines angles to [0◦, 360◦)) even when wrapping was un-
necessary.

Further analysis yielded deeper insights. First, they
confirmed that operations such as NumPy’s any and
isfinite were particularly costly, even when applied
to well-formed inputs. Next, they showed that even

naive changes (e.g., skipping validation) yielded 5–10×
speedups, but were not acceptable due to correctness con-
cerns. Eventually, the issue was resolved by short-circuiting
domain checks when inputs were guaranteed to be valid,
replacing costly NumPy comparisons with faster iden-
tity checks (e.g., using unit is u.hour rather than
unit == u.hour), and unconditionally applying angle
wrapping when benchmarks showed it was faster than con-
ditional checks.

These changes were incrementally introduced across multi-
ple commits, each benchmarked and validated against the
full test suite. The outcome was a 2–5× speedup in coordi-
nate class instantiation and an approximate 15% improve-
ment in downstream transformation performance. Crucially,
these gains required no external static analyzers or compiler-
level optimizations – only domain expertise and careful
reasoning about low-level numerical behavior.

Takeaways. This example underscores the difficulty of
finding and resolving performance bugs in scientific soft-
ware: they often reside deep inside well-tested abstractions,
far from user code or top-level benchmarks. Addressing
them necessitates (1) localized knowledge about domain-
specific requirements (astronomy numerical constraints),
awareness of language-specific performance costs (NumPy
reductions’ overhead, Python’s == vs. is), and determining
when speed takes priority over generality in performance-
critical paths.

Section 5.2 takes a deeper look at how current state-of-the-
art optimization agents perform on this task.
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5. Experiments
Below, we will detail how code/optimizing agents are evalu-
ated upon FORMULACODE, including the information about
the human optimization accessible to the agent and the met-
rics we measure the agent performance by. We also perform
a series of experiments on various code agent works to
demonstrate the importance of a codebase-level optimiza-
tion benchmarks like FORMULACODE.

Evaluation Metrics. Each FORMULACODE instance is
centered around an asv benchmark test that exhibited a
significant runtime improvement from one commit of a
codebase – the base commit – to a subsequent improve-
ment commit. Given these two commits and the associated
benchmark, we compute the human optimization percent-
age as the relative runtime reduction between the base and
improvement commits:

∆% =
timproved − tbase

tbase

This value serves as a reference target for what human de-
velopers achieved through manual optimization.

To evaluate code agents, we provide them with the codebase
versioned at the base commit, the relevant asv benchmark
test code (as defined in the project’s own benchmarking
collection), and the human-obtained reduction percentage.
This setup gives the agent a well-scoped optimization task
with a clear performance objective. Though there are no
strict guardrails against modifying the benchmark suite,
the separation between the benchmark repository and the
actual benchmarked code has prevented such cheating and
to our best knowledge, we have not seen behavior of agents
changing test cases.

Once the code agent performs the super-optimizing code
edits (model-specific details expanded upon below), we
apply asv’s tooling to evaluate the modified codebase on
the relevant benchmark test again to measure its runtime
improvement percentage upon the base commit, which we
can use to compare against the human baseline.

Importantly, this evaluation pipeline requires minimal setup
overhead. Because asv is already integrated into many
scientific and performance-sensitive codebases, we are able
to reuse the codebase’s native benchmarking configuration
without modification. This makes FORMULACODE a fric-
tionless, realistic, and reproducible framework for evaluat-
ing code optimization performance at the commit level.

Another metric we consider is Mean-Improvement-
Percentage (MIP). As we are evaluating codebase-level
optimization, we must consider the impact of an optimiza-
tion not only at modification but also its impact at a code-
base level on all the code dependent on it. To measure this,

we leverage the hierarchy present within asv benchmarks,
where each benchmark test belongs to a benchmark suite
(coordinates.FrameBenchmarks.time
_concatenate_array → coordinates) that en-
compasses tests within the same submodule in the codebase.
We can evaluate the modified codebase (optimized for a
specific benchmark test) upon all other tests within the same
suite and measure their individual improvement percent-
ages and take the mean to obtain the Mean-Improvement-
Percentage metric, essentially capturing the ripple effect
the change has on its dependencies. Due to time limitations
and the metric’s requirement to benchmark dozens of tests
beyond the relevant test, we only deploy and experiment
with this metric in our case study as reference for future
works.

Evaluated Baselines. In our experiments, we primarily
consider two superoptimization approaches: 1. software
agents tasked with optimization issue to tackle and 2. evolu-
tionary algorithms to iteratively improve upon a given initial
program.

For the first approach, we employ SWE-Agent (Yang et al.,
2024), an agentic method facilitating tool-use for software
engineering, as the guiding framework for how the LLM
interacts with the codebase and evaluate widely applied
models such as GPT-4o (OpenAI et al., 2024) and Claude
3.7 (Anthropic, 2024) Sonnet as baselines.

With the recent release of AlphaEvolve (Novikov et al.,
2025) and rising interest in evolutionary methods powered
by LLMs, we also consider OpenEvolve (Sharma, 2025), a
popular open source implementation of AlphaEvolve. Given
that AlphaEvolve has already demonstrated impressive abil-
ity to optimize complex algorithms, this baseline serves as
a representative gauge on the effectiveness of evolutionary
algorithms in the context of code optimization.

5.1. Pilot Evaluations

To highlight the need for a fine-grained evaluation metric –
optimization runtime improvement – beyond the test-case
correctness emphasized in past benchmarks, we evaluate
established tools on a curated dataset from FORMULACODE.
This dataset consists of commit pairs extracted from the
Astropy (Astropy Collaboration et al., 2022) library that
demonstrate meaningful performance improvements.

Before evaluating, we identify key challenges that program
synthesizers must address to succeed in a codebase-level
optimization benchmark like FORMULACODE:

• The code agent should be capable of performing its own
profiling to evaluate and iteratively refine its program
variants, implying the need for tool integration and active
feedback.
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Benchmark
Suite

# Instances GPT-4o Sonnet 3.7 GPT-4o Oracle Sonnet 3.7 Oracle

∆% #Valid ∆% #Valid ∆% #Valid ∆% #Valid

coordinates 15 -32.11 8 8.91 12 -36.68 11 5.18 12
imports 10 -9.26 5 13.87 5 2.18 4 14.94 3
io_ascii 7 0.13 2 -23.96 3 -4.37 4 15.01 4
io_fits 3 -2.37 1 -56.86 1 21.18 1 – 0
modeling 7 -3.08 3 18.15 6 -20.58 5 0.68 4
stats 2 -10.20 2 -2.21 2 -1.29 1 -1.09 2
table 7 3.53 3 23.58 5 -5.31 3 -1.98 6
units 10 -11.87 6 13.61 8 -10.54 5 -4.46 8

Overall 61 -13.19 30 9.02 42 -16.58 34 3.08 39

Table 3: Agent performance on 61 optimization instances from the FORMULACODE benchmark, grouped by benchmark
suite. The “# Instances” column indicates the number of benchmark tests in each suite used as optimization targets. ∆%
reports the average performance gap between the human-optimized and model-optimized runtimes, where negative values
indicate underperformance relative to human edits. “#Valid” reports the number of instances in which a model produced a
valid optimization patch. Oracle settings provide models with access to files modified in the human patch as additional
context. Sonnet 3.7 demonstrates strong promise for agentic optimization §5.1.1, while additional oracle information appears
to limit optimization search space and correspondingly performance §5.1.2.

• It must trace and reason about the call graph originating
from the benchmark test to locate effective optimization
points and anticipate downstream effects of local edits.

• It should manage context across multiple files to iden-
tify non-local performance bottlenecks and optimize in
a globally coherent fashion, rather than pursuing greedy,
locally optimal edits that harm overall performance.

To investigate these properties, we conduct the following
targeted experiments:

• Baseline Comparison. We benchmark the performance
of two leading models, GPT-4o and Claude Sonnet,
against human improvements, in effort to establish a per-
formance baseline and capture the gap between current
LLM capabilities and expert human optimization.

• Retrieval Ablation. We test models with and without
oracle guidance (identifying edited files) to evaluate the
impact of targeted retrieval on optimization quality.

5.1.1. BASELINE COMPARISON

Experiment Setup In this experiment, we deploy popu-
lar models GPT-4o and Claude Sonnet 3.7 onto FORMU-
LACODE via SWE-Agent. To interface the SWE-Agent
with FORMULACODE problem instances, we make light
modifications to structure our optimization problem as a
pull-request (PR) statement, mirroring human-opened PRs
as shown in Section 4 to address a potential optimization.
We design the PR to contain the benchmark test name and
code to optimize for and the reference percentage improve-
ment achieved by the human improvement commit for the

agent to reach for. Then, we perform batch deployment of
SWE-Agent, GPT-4o or Sonnet 3.7 as the LLM, upon these
constructed PRs (with 100 iterations) to obtain predicted
patches to the codebase at their respective base commits.
These predicted patches are then applied to the codebases
and we again measure their runtime improvement on their
corresponding benchmark tests via asv. In some instances,
the predicted patch fails to apply or contains errors. We
record such cases accordingly.

Agentic Optimization Can Rival Human Performance
on Local Tasks We report the results of our baseline runs
with GPT-4o and Claude Sonnet 3.7 in Table 3. Over all
passing tests, GPT-4o predicted optimizations on average
reduced 13.19% less runtime than the ground truth human
optimization on the same test, while Claude Sonnet 3.7
achieved 9.02% more runtime reduction than the ground
truth human optimization on passing instances. Moreover,
Claude Sonnet 3.7 passed on 42 of the 61 identified in-
stances, while GPT-4o passed on 30.

The promising results of Claude Sonnet 3.7 in an agentic
framework give reason for excitement for the potential of
LLM-powered agentic superoptimization. It is important to
note that SWE-Agent was developed around Claude Sonnet
3.7 and that Sonnet itself is more tailored for code generation
than GPT-4o. Moreover, as we’ll see in the case study,
though Claude may perform well in optimizing for a single
benchmark test in this experiment, when we consider a more
comprehensive metric like MIP, the challenge of codebase-
level superoptimization becomes much more challenging.
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Benchmark Human GPT-4o Sonnet 3.7 OpenEvolve Composition

objective benchmark 46.91 59.39 -0.61 44.36 70.91
coordinates.FrameBenchmarks 16.60 18.61 9.80 8.15 23.75
coordinates.RepresentationBenchmarks 17.71 17.63 23.96 3.88 9.04
coordinates.SkyCoordBenchmarks 21.28 13.37 3.40 13.95 16.05
coordinates (core) 2.92 22.91 -5.75 9.74 -4.51
imports -0.25 0.00 0.25 -0.25 0.25

Mean Improvement Percentage 16.77 15.88 5.24 10.72 14.71

Table 4: Runtime improvement percentages for the case study instance from Astropy Issue #13479, including the objective
benchmark (coordinates.FrameBenchmarks.time_concatenate_array) and the broader coordinates
benchmark suite. Each column represents the performance of a different optimization method: the original human patch,
GPT-4o, Claude Sonnet 3.7, OpenEvolve, and a composed patch combining GPT-4o and the human edit (§5.2.3). The
final row reports the Mean Improvement Percentage (MIP) across the suite. This metric informs our analysis in §5.2.2 that
corroborate the need for a codebase level optimization benchmark like FORMULACODE.

5.1.2. RETRIEVAL ABLATION

Experiment Setup An important component of code
agents operating on codebase-scale problems is the abil-
ity to retrieve the relevant pieces – in our case, bottlenecks
to runtime – of the codebase. To study the ability of LLM su-
peroptimization given perfect retrieval, we design the follow-
ing retrieval oracle experiment. For each base-improvement
commit pair, we record the files modified in the human opti-
mization and provide their paths to the agents as additional
information for the agent to replicate.

We present the results in Table 3 and report that the GPT-4o
Oracle evaluation successfully passed in 34/61 tests and
on average achieved 16.58% less runtime improvement
than the reference human commit, while Claude Oracle
successfully passed in 39/61 tests and on average achieved
3.08% better performance than the human optimization.

Oracle Retrieval Can Mislead LLMs It is interesting
to note that despite the increased access to ground truth
information, the oracle agents were less effective at opti-
mization. We hypothesize that by conditioning the agents
to the ground truth files, we constrain the agent’s search
space to strictly within those files, missing out other po-
tential bottlenecks that the agent would have identified. In
this case, if the agent is unable to replicate the optimization
of the ground truth, improvement is highly unlikely, lead-
ing to the reduced optimization for the oracle agents. This
also suggests that tasked with tackling FORMULACODE,
agents are not just memorizing solution patches to the same
test but instead finding orthogonal and even complemen-
tary optimizations to the original improvement based on our
fine-grained evaluation metric. We explore this idea further
in our case study, analyzing the trace of agent actions on a
specific instance and the result of merging human and agent
patches.

5.2. Case Study

In this case study, we take a deeper dive into the human
optimization presented in Section 4 and compare it with the
adjacent solutions predicted by various code optimization
agents. Specifically, in Astropy Issue #13479, leading from
base commit 96cc7fbe to improvement commit 1ff8068,
a human optimization was discovered to avoid redundant
angle wrapping, which led to a ∼ 47% reduction in runtime
on the coordinates.FrameBenchmarks.time
concatenate_array benchmark test. Moreover,
during our data collection, our screening process identified
multiple other benchmark tests that also benefitted from
the improvement commit, reflecting that speedups often
have global effects in the codebase (Angle is used in
many places). Thus, this inspires us to perform a case
study on this specific instance to evaluate whether the
optimizations introduced by code agents are equally
as impactful beyond the objective benchmark (time_
concatenate_array) when given the same problem.

5.2.1. CASE STUDY SETUP

For our baseline agents – SWE-Agent with GPT-4o and
Claude Sonnet 3.7 – we deploy them on the problem in-
stance in the manner described above to obtain predic-
tion patches that we apply to the codebase at the base
commit. In addition to these two baseline agents, we
also experiment with the evolutionary program synthesizer
OpenEvolve. As the state-of-the-art AlphaEvolve program
is yet to be released, we opt for an open-source implemen-
tation of AlphaEvolve in OpenEvolve. At the time of our
experiments, OpenEvolve only supported single-file evo-
lution. To work around this, we aggregated all relevant
code between the benchmarked function and the optimized
_wrap_at into one file, made executable via dynamic
patching. OpenEvolve then evolved intermediate function
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bodies while preserving their signatures, allowing us to sim-
ulate the optimizations by dynamically patching the original
codebase at evaluation. As for the evolutionary objective,
we define it as the ∆ improvement percentage achieved by
the current iteration with respect to the human optimization
improvement percentage. For consistency to the other base-
line agents, we evolved the codebase for 100 iterations with
Gemini 2.0 Flash. Then, at evaluation time, we translate the
evolved modifications to the codebase. Since the file-level
limitation of OpenEvolve demanded a lot of engineering,
we only evaluate it on the case study instance.

At evaluation, for each of the aforementioned code agents,
instead of evaluating their predicted patch on solely the
objective benchmark test time_concatenate_array,
we also evaluate the modified codebase on all other tests
within the same benchmark suite coordinates and take
the mean of their respective improvement percentages to
compute the MIP metric.

5.2.2. LOCAL VS. GLOBAL EFFECTS OF OPTIMIZATION

Table 4 summarizes the runtime improvements achieved
by various code agents on both the objective bench-
mark – time_concatenate_array – and the broader
coordinates suite via the Mean Improvement Percent-
age (MIP).

Agentic Workflows At first glance, GPT-4o demonstrates
strong performance on the specific benchmark, outperform-
ing the human baseline with a 59.39% reduction versus
46.91%. However, its overall MIP 15.88% actually un-
derperforms in comparison to the human MIP, revealing
that this improvement does not generalize well across the
suite. In other words, GPT-4o’s patch is more overfit to
the benchmark test rather than optimizing code structure
globally.

Surprisingly, Claude achieves its largest gain on
coordinates.RepresentationBenchmarks
with a 23.96% improvement, despite not optimizing for
this benchmark, suggesting that the performance change
may not be the result of deliberate optimization, but rather
a byproduct of structurally untargeted code edits that may
be unreliable. Yet, overall, Claude is still significantly less
effective in comparison to all other baselines, demonstrating
that an unguided approach is not sustainable.

Evolutionary Strategies Lag Behind OpenEvolve also
suffers from similar generalization issues as GPT-4o. Al-
though it reaches 44.36% – comparable to the human base-
line – its MIP degrades significantly in comparison to the
human baseline, reflecting a similar local-over-global trend.
Its implementation, which limits its visibility to the specifi-
cation file we compiled, restricts its ability to take codebase-

level context and produce coherent codebase-wide improve-
ments, which we believe leads to both the underperformance
in the objective benchmark and the MIP. However, with new
works like AlphaEvolve coming out that have agentic abili-
ties like file exploration, evolutionary algorithms provide a
consistent and iterative optimization mechanism.

5.2.3. COMPLEMENTARY PATCHING

A particularly intriguing finding in our case study
is the synergy between human and model-generated
optimizations. In the benchmark instance, time
_concatenate_array, we observed that the patch pre-
dicted by GPT-4o targeted a different layer of the perfor-
mance stack. While the human optimization addressed the
redundant operations at the angle level (angles are elements
of the array), the GPT-4o agent identified inefficiencies in
the array construction logic surrounding those elements.
Thus, as these patches operated in different regimes of the
codebase, we became interested in whether they were com-
plementary when combined as a single patch.

Composition Results As reported in Table 4, the merged
patch yields a runtime reduction of 70.91% on the bench-
mark test, compared to 46.91% for the human edit and
59.39% for GPT-4o alone. This result underscores the
potential for synergistic collaboration between human de-
velopers and code agents. This experiment suggests they
can serve as complementary tools – surfacing orthogonal
optimization opportunities that may not be immediately ap-
parent even to experienced maintainers.

However, the success of this merged patch must still be taken
with caution. Though our principal benchmark registered a
performance surge, the MIP metric actually declined. We
hypothesize that by stacking array-level optimizations on
element-level optimizations, the changes place a stronger
prior on array operations, which are not as effective when
applied to scalar data (the underperforming benchmarks
were largely scalar benchmarks).

6. Conclusion
We have presented FORMULACODE, which is, to our knowl-
edge, the most comprehensive coding benchmark for agentic
superoptimization. In this benchmark, coding agents must
not only write code that passes standard correctness tests,
but also improve runtime, often of large codebases (i.e., with
many function calls). FORMULACODE enables the rigorous
development and evaluation of coding agents for superop-
timization, which is becoming an increasingly important
direction in the LLM coding research area. Our evaluations
show that FORMULACODE is a challenging benchmark for
frontier LLMs and agentic frameworks, leaving open signif-
icant room for future agent development.
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A. Appendix
A.1. Extended Related Work

Code generation benchmarks. We present an extended com-
parison of various code benchmarks in Table 5.

A.2. Methodological Details

A.2.1. AIRSPEED VELOCITY METHODOLOGY

To benchmark a new function with Airspeed Velocity,
a developer supplies a setup(...) routine and one
or more time profiling functions (e.g. time_foo(...),
time_bar(...)) and memory profiling functions (e.g.
mem_foo(...), mem_bar(...)). asv then clones
the repository, creates an isolated virtual environment, and
records the performance characteristics for all commits.
The tool ships with best-practice safeguards (CPU affinity,
warm-ups, repeated trials, etc.) to control system variance.

Airspeed velocity offers many advantages towards our goal
of making a benchmark for code optimization:

• Low barrier to entry. The minimalist interface means
developers routinely add new benchmarks, expanding
coverage over time. Asv ships with a robust regression-
detection functionality which further motivates develop-
ers to ensure that the asv benchmarks maximally cover
all performance critical parts of their software. We har-
vested XXX fine-grained timing and memory benchmarks
across X repositories, averaging X benchmarks per project.
Across XXX total commits, Superbench logs XXX timed
runs.

• Maturity and reliability. First released on 1 May 2015,
asv encapsulates nearly a decade of community experi-
ence in timing and memory profiling code on commod-
ity hardware. Most common pitfalls have documented
solutions and work-arounds, and platform-specific best
practices (for Windows, macOS, and Linux) are well es-
tablished, ensuring results are both accurate and precise.

• CI integration. asv co-exists naturally with other
continuous-integration tools, so each commit carries both
performance and correctness metadata.

A.2.2. EXECUTING ASV BENCHMARKS

Once we have collected a list of Python packages that ship
with asv benchmarks, we now need the per-commit timing
and memory profiles those benchmarks generate for each
commit. In practice, we encounter two deployment patterns
for benchmarking new commits: (1) a private benchmark-
ing server that exposes results via a public web interface
(Refer to Figure.3), (2) a benchmark directory committed
with the source tree and runnable locally. The remainder
of this section outlines two complementary workflows for
collecting these measurements

Running all benchmark scripts locally. One could in princi-
ple run asv on the entire commit history of the main branch,
collecting performance data with a one-line command. asv
encapsulates nearly a decade of community experience in re-
liable timing and memory profiling on commodity hardware,
which builds confidence in asv’s measurements. However,
two practical concerns make this naive method impractical.
First, benchmarks executed on our local machine may fail
to expose regressions that are characteristics of certain op-
erating systems and microarchitectures (e.g: performance
characteristics of an x86 Linux node will be different than
that of an ARM MacOS node). Second, running asv from
scratch incurs considerable upfront cost, requiring the se-
quential construction of a new environment for each commit.
With an average runtime of approximately 66 seconds per
commit, a project such as astropy – which has 39514
commits – would require about 30 days of continuous exe-
cution, rendering the method infeasible.

To accelerate benchmarking and amortize this cost, we
launch asv inside Docker containers. Each container is
pinned to a dedicated CPU core and a fixed amount of
RAM, and is given a subset of all the commits we wish to
benchmark. Such sharded sandboxing gives us uniform run-
time conditions across different test bench setups and also
enables us to scale benchmarking horizontally as we can run
as many simultaneous containers as CPU cores. This allows
us to collect results much faster than a serial workflow and
enables running asv on the entire commit history practical.

However, despite these changes, we faced two recurring
challenges while collecting benchmarking results for all
repositories. First, very old commits depend on packages
that are no longer publicly accessible via PyPI. These com-
mits cannot be replicated and are omitted from our bench-
mark. Second, many older packages are incompatible with
newer versions of Python, and visa-versa, which makes
benchmarking all commits with a homogeneous environ-
ment setup extremely challenging. We can mitigate the
second issue by running multiple containers with different
versions of Python.

Dashboard scraping. Because many projects host their asv
results as a self-contained HTML site, in cases where local
execution is not feasible, we can scrape precomputed results
directly from the website. The asv dashboard is a self-
contained static site and has a uniform file hierarchy across
installations; making automated scraping straightforward.
We maintain a curated list of publicly available dashboards
in (Table 2). The time to scrape such webpage is almost
negligible; however, in practice, we throttle our requests to
respect host bandwidth which raises the collection time to
around one hour for all the datasets. This workflow yields
immediate historical performance traces and offers a sanity-
check for the results of our locally running benchmark suite.
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Benchmark # Tasks Data Source Does data
leakage help?

Live
updates

Synthesis
scope

High-fidelity
Evaluation

function

Ours 440++ GitHub Doesn’t help;
leaderboard is relative to
humans.

Yes Repository level Yes

SWE-Bench 2292 GitHub Helps; no
relative-performance
eval.

No Repository level No

LiveCodeBench 300++ LeetCode, CodeForces /
AtCoder

Yes; old tasks must be
removed or scores
inflate.

Yes Function level No

CruxEval 800++ Custom No; tasks are
procedurally generated
and adversarial.

No Function level No

ECCO ∼50 000 IBM CodeNet Yes; many frontier
models trained on
CodeNet.

No Function / File level No

Table 5: An extended comparison of code-optimization benchmarks (From top: SWE-Bench (Jimenez et al., 2024),
LiveCodeBench (Jain et al., 2024a), CruxEval (Gu et al., 2024), ECCO (Waghjale et al., 2024). “++” refers to continually
updating benchmarks.

A.2.3. STEP-DETECTION CONSIDERATIONS

In the current iteration of our dataset, the runtime measure-
ment t1:n, where n is the number of commits, is a scalar
quantity which is averaged across multiple test bench runs.
Our goal is to discover commits that noticeably improve per-
formance, i.e., create an instantaneous yet persistent drop in
runtime. Because CI noise, kernel scheduling, thermal throt-
tling and other non-deterministic system behavior injects
high-frequency variance, simply calculating the pairwise
difference yields too many false positives.

We therefore cast the task as an offline step-detection prob-
lem. Conceptually, we can model our task as an offline
step-detection problem where our data is assumed to be
piecewise constant with added random noise – which re-
flects the common scenario that efficiency improvements
are often facilitated by a subset of all the commits and each
measurement carries some noise. Offline step detection is
a well studied problem in signal processing (Truong et al.,
2020) and many algorithms exist that balance the efficiency-
optimality tradeoff. In this work, we chose to use the PELT
algorithm with an RBF kernel loss (Killick et al., 2012)
for robustness as implemented in the ruptures offline
change point detection library (Truong et al., 2020). This
algorithm is attractive as it makes no strong parametric as-
sumptions about the underlying data, guarantees an optimal
segmentation under an additive cost, and scales linearly in
the size of the sequence n. We set the model regularization
penalty to 3 log(n), which is the Bayesian information cri-
terion; k = 3 is a hyper-parameter that empirically worked
best but can be changed depending on the desired sensitivity.

A.3. Additional Results

In addition to the earlier reported results for the case study
(§5.2, we also performed the same case-study evaluations
for the Oracle versions of the tested baseline agents. These
results in Table 6 reflect a similar result as in §5.1.1, where
a restricted search space from the oracle file paths hampers
full exploration for bottlenecks and forces the agent to un-
productively brute force for what the human optimization
was.

Though evolutionary algorithms OpenEvolve and AlphaE-
volve were natively developed for use with Gemini, we also
wanted to ensure that the LLM backbone was not a signifi-
cant factor for the performance difference. To this, we splice
in GPT-4o as the backbone and obtain results in Table 6 that
highly resemble those obtained with Gemini.
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Benchmark GPT-4o Oracle Sonnet 3.7 Oracle OpenEvolve (GPT-4o)

objective benchmark 0.61 0.00 46.36
coordinates.FrameBenchmarks 0.16 0.17 9.88
coordinates.RepresentationBenchmarks -0.01 0.24 28.12
coordinates.SkyCoordBenchmarks -1.05 0.16 18.26
coordinates (core) 30.71 0.19 25.66
imports 0.00 0.00 0.25

Mean Improvement Percentage 3.46 0.17 10.70

Table 6: Runtime improvement percentages for oracle and OpenEvolve patches on Astropy Issue #13479. We compare
GPT-4o Oracle, Sonnet 3.7 Oracle, and OpenEvolve (GPT-4o) across individual benchmarks and the Mean Improvement
Percentage (MIP) in the last row.
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