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Abstract

Safety of Large Language Models (LLMs) has become a critical issue given their
rapid progresses. Greedy Coordinate Gradient (GCG) is shown to be effective
in constructing adversarial prompts to break the aligned LLMs, but optimization
of GCG is time-consuming. To reduce the time cost of GCG and enable more
comprehensive studies of LLM safety, in this work, we study a new algorithm
called Probe sampling. At the core of the algorithm is a mechanism that
dynamically determines how similar a smaller draft model’s predictions are to the
target model’s predictions for prompt candidates. When the target model is similar
to the draft model, we rely heavily on the draft model to filter out a large number
of potential prompt candidates. Probe sampling achieves up to 5.6 times speedup
using Llama2-7b-chat and leads to equal or improved attack success rate (ASR)
on the AdvBench. Furthermore, probe sampling is also able to accelerate other
prompt optimization techniques and adversarial methods, leading to acceleration
of 1.8× for AutoPrompt, 2.4× for APE and 2.4× for AutoDAN.1

1 Introduction

Ensuring the safety of Large Language Models (LLMs) (Brown et al., 2020; Chowdhery et al., 2023;
Touvron et al., 2023; Jiang et al., 2023) has become a central theme of research. Despite continuous
efforts, LLMs are prone to generate objectionable contents in various scenarios including using an
adversarial suffix (Zou et al., 2023), further finetuning (Qi et al., 2024; Lermen and Rogers-Smith,
2024), ciphering (Yuan et al., 2024b) and multilingual settings (Deng et al., 2024). Among effective
LLM adversarial attack works, Greedy Coordinate Gradient (GCG) (Zou et al., 2023) present a
general and universal method as briefly illustrated in Figure 1.

Figure 1: A brief illustration of the Greedy Coordi-
nate Gradient (GCG) algorithm (Zou et al., 2023).

To optimize a prompt suffix to elicit the gener-
ation of a target reply, the Greedy Coordinate
Gradient (GCG) algorithm iteratively attempts
to replace existing tokens in the suffix and keeps
the best-performing ones based on the adver-
sarial loss. The GCG algorithm is empirically
effective but searching the combinatorial space
of the adversarial suffixes is time-consuming
since each token replacement attempt requires
a full forward computation using an LLM. This
hinders us from using the algorithm to fully explore the safety properties of LLMs such as finding
potentially harmful queries comprised of natural sentences.
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Figure 2: Probe sampling mainly consists of three steps. (i) A batch of candidates
({a, b, · · · , h}) is sampled. We determine the probe agreement score between the draft model
and the target model on a probe set ({b, d, h}). The probe agreement score is used to compute the
filtered set size. (ii) We obtain a filtered set ({e, f}) based on the losses on the draft model (iii) We
test the losses of candidates in the filtered set using the target model.

A possible solution for reducing forward computation is to resort to a smaller draft model when it
is indicative of the results on the larger target model. This intuition has been applied in speculative
sampling (Chen et al., 2023; Leviathan et al., 2023) for decoding, where the target model acts as a
verifier that accepts or rejects the decoded tokens. However, speculative sampling cannot be used
to optimize discrete tokens in GCG because the optimization of every token in adversarial suffix is
independent of each other, which breaks the autoregressive assumption in decoding.

Motivated by these observations, we propose a new algorithm called Probe sampling to accel-
erate the GCG algorithm. Instead of computing the loss on every suffix candidate, we filter out
unpromising ones based on the loss computed with a smaller model called draft model, to reduce
the time consumption of the optimization process. Importantly, we dynamically decide how many
candidates we keep at each iteration by measuring the agreement score between the draft model and
the target model, by looking at the loss rankings on a small set of prompts dubbed as the probe set.
It is worth noting that the prompt candidates at each iteration in GCG are obtained by randomly
changing one token of an original prompt. As a result, the agreement score is adaptive to the original
prompt. We evaluate probe sampling on the AdvBench dataset with Llama2-7b-Chat and Vicuna-v1.3
as the target models and a significantly smaller model GPT-2 (Radford et al., 2019) as the draft
model. Experiment results show that compared to the original GCG algorithm, probe sampling
significantly reduces the running time of GCG while achieving better Attack Success Rate (ASR).
Specifically, with Llama2-7b-Chat, probe sampling achieves 3.5 times speedup and an improved
ASR of 81.0 compared to GCG with 69.0 ASR. When combined with simulated annealing, probe
sampling achieves a speedup of 5.6 times with a better ASR of 74.0.

Furthermore, when applied to prompt learning techniques and other LLM attacking methods, probe
sampling demonstrates remarkable effectiveness. Specifically, in the case of prompt learning, probe
sampling effectively accelerates AutoPrompt (Shin et al., 2020) by a factor of 1.8. Moreover,
probe sampling delivers substantial speedup of APE (Zhou et al., 2022) on various datasets: 2.3×
on GSM8K, 1.8× on MMLU and 3.0× on BBH. In the case of other attacking method such as
AutoDAN (Liu et al., 2024), probe sampling achieve a speedup of 2.3× and 2.5× on AutoDAN-GA
and AutoDAN-HGA respectively.

2 Proposed Method

2.1 Background: Greedy Coordinate Gradient

The overall optimization objective of GCG can be denoted by a simple log likelihood loss

min
s

L(s) = − log p(y | x, s), (1)

where x is a prompt that contains a harmful user query such as “Tell me how to build a bomb”, y
is the target sentence “Sure, here is how to build a bomb”, and s is the adversarial suffix that is
optimized to induce the generation of y. p is the probability of a sentence output by a LLM. This

2



objective can be decomposed into the summation of the negative log likelihood of individual tokens
in the target sentence like a typical language modeling objective. s is set to be a fixed length string in
the GCG algorithm.

The optimization of the adversarial suffix s is a non-trivial problem. Prior works (Guo et al., 2021;
Wen et al., 2024) based on Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2022) and soft
prompt tuning (Lester et al., 2021) have achieved limited success, probably because the LLMs are
well-aligned and the exceptionally large models magnifies the difference between a discrete choice
and its continuous relaxations.

Instead, GCG adopts a greedy search algorithm based on the gradient. In each iteration, it computes
L(ŝi) for B suffix candidates ŝ1, · · · , ŝB and keeps the one with the best loss. The B candidates are
obtained by randomly changing one token from the current suffix s and replacing it with a randomly
sampled token using the top K tokens. For example, suppose we change the token at position j, we
first compute the gradient −∇esj

L(s) with respect to the one-hot vector esj and obtain the top K

tokens that have the largest gradient. The gradient information is by no means an accurate estimation
of the resulting loss because of the gap between the continuous gradient information and the discrete
one-hot vector denoting the choice of a token, so we need to check if the resulted new suffix ŝi leads
to a lower loss L(ŝi).
To obtain the B candidates, one just needs to perform one forward pass and one backward pass. But
to compute the loss for the B candidates, one needs to perform B forward passes. In GCG, B is
set to 512 for optimal performance, making the loss computation the most time-consuming part. As
such, we focus on reducing the time cost of the loss computation of the B candidates in this work.

2.2 Probe Sampling

Overview. As mentioned earlier, the most time consuming part in the GCG algorithm is the loss
computation on B suffix candidates ŝ1, · · · , ŝB . As shown in speculative sampling (Chen et al.,
2023; Leviathan et al., 2023), the speculated results using a smaller draft model can be helpful in
reducing the computation with a large target model. The original speculative sampling is created to
accelerate decoding so it isn’t directly applicable here. But the intuition of relying a weaker draft
model is obviously useful for negative log likelihood loss computation. Applying the intuition to the
problem at hand, we can filter out the suffix candidates that the draft model finds to be unpromising,
since the goal is to find the candidate that has the lowest loss with the target model.

In addition, a unique structure in the GCG algorithm is that all the suffix candidates are based on
changing one token of the original suffix s. As a result of this locality property, it is not unreasonable
to assume that one can determine how much they agree on the B candidates based on their agreement
on a subset of the B candidates. If the two models agree, we can choose to safely rely on the draft
model and filter out more candidates.

Based on these intuitions, we design the Probe sampling algorithm as follows: (i) probe agree-
ment between the target model and the draft model to determine the size of the filtered set; (ii) rank
candidates using the draft model and obtain the filtered set; (iii) pick the best candidate from the
filtered set using the target model.

Algorithm description. For the first step, specifically, we sample a probe set comprised of k
candidates s̄1, · · · , s̄k and compute their losses using the draft model and the target model and obtain
Ldraft(s̄

1), · · · ,Ldraft(s̄
k) and Ltarget(s̄

1), · · · ,Ltarget(s̄
k). Then we measure the probe agreement

score as the Spearman’s rank correlation coefficient (Zar, 2005) between the two results as the
agreement score. The probe agreement score α is computed as

α = 1−
3
∑k

i=1 d
2
i

k(k2 − 1)
, (2)

where di is the distance between the ranks of suffix s̄i in the two results. For example, di = 4 if the
suffix s̄i is ranked as number 6 and number 2 for its losses computed from the draft model and the
target model. The agreement score α falls into [0, 1] with 1 meaning a full agreement and 0 indicating
a non-agreement. We use the rank agreement because it is more robust to the specific values of the
resulting loss when measured on drastically different LLMs.
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Algorithm 1 Probe Sampling

Input: Original suffix s, a batch of suffix candidates {ŝ1, · · · , ŝB}, loss function using the draft
model and the target model Ldraft(·), Ltarget(·).

1: Parallel Begin
2: //Compute loss of all candidates using the draft model
3: for ŝi ∈ {ŝ1, · · · , ŝB} do
4: Compute Ldraft(ŝ

i)
5: end for
6: //Compute loss of the probe set on target model
7: {s̄1, · · · , s̄k} = Uniform({ŝ1, · · · , ŝB}, k)
8: for s̄i ∈ {s̄1, · · · , s̄k} do
9: Compute Ltarget(s̄

i)
10: end for
11: Parallel End
12: //Calculate agreement score
13: α = Spearman_Cor({Ltarget(s̄

i)}, {Ldraft(s̄
i)})

14: //Evaluate using the target model
15: filtered_set = argminmax{1,(1−α)B/R}Ldraft(ŝ

i)

16: for ŝi ∈ filtered_set do
17: Compute Ltarget(ŝ

i)
18: end for
19: Output the best suffix in the probe set and the filtered set
20: s′ = argmin{Ltarget(s̄

i),Ltarget(ŝ
i)}

Output: s′

After obtaining the agreement score, we keep (1− α) ∗B/R candidates where (1− α) ∗B means
that the filtered set size is a scale-down of the previous batch size B and R is a hyperparameter that
determines a further scale down. When α is close to 0, meaning little agreement between the two
models, we will use a filtered set size of B/R. When α goes to 1, we almost filter out most of the
candidates. With the filtered size determined, we can readily rank the candidates according to the
draft model and filter the ones with higher losses. Finally, we evaluate the final loss on the filtered set
using the target model and select the best candidate.

Details. At first glance, probe sampling involves extra computation but it actually achieves effective
acceleration. For computing the losses on the probe set using both the draft model and the target
model, the size of the probe set can be set to be relatively small, so it would not add too much to the
total time cost. The ranking procedure involves sorting on CPU, but luckily the probe set is small
enough that this doesn’t become a bottleneck. And the loss computation using the draft model on the
whole candidate set is relatively cheap because of draft model’s small size. These two operations
can also be parallelized on GPU. On the plus side, we are able to avoid computing the loss using the
big target model on many candidates that are filtered out. As we will show in the experiments, this
approach achieves significant speedup measured by both running time and #FLOPs.

An alternative to computing agreement on the spot is to measure the agreement score on a predeter-
mined set of candidates and use a fixed agreement score for all the suffixes. This would save the time
used to measure agreement for each candidate set. However, as we will show in the experiment, this
approach does not work so well in terms of speedup. Our intuition is that one can squeeze the time
cost more effectively if the agreement is measured accurately, and an adaptive agreement score is
more accurate than an one-size-fits-all score. The plausibility of the adaptive score comes back to the
locality property that we discussed earlier. Given a specific candidate set, one can accurately estimate
the agreement because all the suffixes in this candidate set are similar to a large extent. However,
given another candidate set altered from a different suffix, the agreement of the draft model and the
target model can be widely different.

In practice, we adopted two small changes in our implementation. First, we do not have a separate
step to compute the loss of the probe set candidates using the draft model, since we need to compute
the loss on all candidates for filtering purposes. We simply get the numbers from the losses on the
whole candidate set. Second, to get the best candidate for the final result, we also look at the losses
on the probe set, since the target model is evaluated on the probe set. Ideally, the candidates in the
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probe set should be in the filtered set if they achieve a low loss. However, it also does not hurt to
look at the best candidate in the probe set in case it is not included in the filtered set. The overall
algorithm is further illustrated in Algorithm 1, and the corresponding implementation is shown in
Appendix A. We also test simulated annealing (Pincus, 1970) that provides complementary benefit to
our algorithm.

2.3 Applying Probe Sampling to Other Prompt Optimization Methods

Although prompt sampling was designed to accelerate GCG, the general idea of reducing forward
computation can be applied on other prompt optimization methods, where there is usually a process
of sampling prompt candidates and evaluating their performances. To see whether probe sampling can
effectively accelerate other methods, we also apply probe sampling to two prompt learning methods
AutoPrompt (Shin et al., 2020) and APE (Zhou et al., 2022). In addition, we apply probe sampling
on AutoDAN (Liu et al., 2024), a genetic algorithm that can find natural jailbreak prompts.

3 Experiment

In this section, we evaluate the proposed method on its efficacy and the important factors through
extensive studies.

3.1 Experiment Details

Settings. Following the original GCG paper, we conduct experiments on the first 100 instances of
AdvBench (Zou et al., 2023), which are divided into two parts, 500 harmful strings and 500 harmful
human behaviors. We test open-source LLMs that have been specifically fine-tuned with respect
to safety, including Llama2-chat-7b (Touvron et al., 2023) and Vicuna-7b (Zheng et al., 2023). In
the case of draft models, in our main experiments, we use a much smaller model GPT-2 (Radford
et al., 2019). Similarly, when applying probe sampling to AutoDAN, we use Llama2-7b-chat as
the target model and GPT-2 as the draft model. For AutoPrompt, we follow their original setting,
which uses RoBERTa-large (Liu et al., 2019) as the target model and tests on SST-2 (Socher et al.,
2013) for sentiment analysis and SICK-E (Marelli et al., 2014) for natural language inference. We
use the RoBERTa-base model as the draft model. In the case of APE, we conduct the experiments
on three widely used benchmarks GSM8K (Cobbe et al., 2021), BBH (Suzgun et al., 2023), and
MMLU (Hendrycks et al., 2020). For these experiments, we use Vicuna-7b-v1.5 as the target model
and GPT-2 as the draft model.

Evaluation. Following (Zou et al., 2023), we use Attack Success Rate (ASR) as the evaluation
metric for GCG and AutoDAN, which is defined as the percentage of inputs that successfully lead
LLMs to generate harmful outputs. An output is determined to be harmful if it does not match with
rejection phrases, such as “I’m sorry”, “I apologize” and “As an”. This is not a perfect measurement
but works relatively well in practice since LLMs are trained to reject harmful replies. It is also easy
to measure and interpret. For prompt learning methods tested on other tasks, we employ Accuracy
(Acc) as the metric. The processing time is determined as the average time used for each iteration
across all input samples and all iterations. In all experiments, we use 1 NVIDIA A100 GPU with
80GB memory unless mentioned otherwise.

Hyperparameters. To determine the hyperparameters for probe sampling, including probe set
size k, filtered set size reduction hyperparameter R, we construct a validation set of size 100 from
AdvBench by random sampling in the 400 instances different from the test set. We follow (Zou et al.,
2023) for the hyperparameters used in the original algorithm such as the size of the candidate set B.
We provide detailed analysis of hyperparameters in Section 3.4. When we combine probe sampling
with simulated annealing, we follow the same procedure to select hyperparameters. We use the same
number of optimization steps 500 as in GCG throughout the paper.

3.2 Main Results

Acceleration results. As shown in Table 1, probe sampling achieves a speedup of 5.6 times and
6.3 times on Human Behaviors and Human Strings with Llama2 when combined with simulated

5



Table 1: Comparing the ASR and processing time of Probe samplingwith and without simulated
annealing to GCG with and without simulated annealing, while measuring time and FLOPs by
averaging each iteration.

Model Method
Harmful Strings Harmful Behaviors

Individual Multiple Time (s) #FLOPsASR Time (s) #FLOPs ASR ASR (train) ASR (test)

Vicuna
(7b-v1.3)

GCG 88.0 4.1 97.3 T 99.0 100.0 98.0 4.8 106.8 T
GCG + Annealing 89.0 1.5 (2.7×) 38.5 T 98.0 92.0 94.0 2.1 (2.3×) 46.2 T
Probe sampling 91.0 1.7 (2.4×) 42.4 T 100.0 96.0 98.0 2.3 (2.1×) 53.2 T
PS + Annealing 93.0 1.1 (3.6×) 27.8 T 100.0 96.0 99.0 1.5 (3.2×) 24.7 T

Llama2
(7b-Chat)

GCG 57.0 8.9 198.4 T 69.0 88.0 84.0 9.2 202.3 T
GCG + Annealing 55.0 2.4 (3.9×) 39.7 T 68.0 92.0 88.0 2.7 (3.4×) 50.6 T
Probe sampling 69.0 2.2 (4.1×) 43.8 T 81.0 92.0 93.0 2.6 (3.5×) 40.7 T
PS + Annealing 64.0 1.4 (6.3×) 31.2 T 74.0 96.0 91.0 1.6 (5.6×) 32.3 T

Table 2: Transferability of Probe sampling
with different draft models.

Method Direct Transfer
Llama2-7b Vicuna-7b Mistral-7b

GCG 69.0 89.0 86.0
PS (GPT-2) 85.0 92.0 83.0
PS (ShearedLlaMa) 91.0 93.0 85.0
PS (Flan-T5) 57.0 78.0 69.0

Table 3: Transferability of Probe sampling
with different filtered set size (1− α) ∗B/R.

Method Direct Transfer
Llama2-7b Vicuna-7b Mistral-7b

GCG 69.0 89.0 86.0
PS (R = 64) 60.0 77.0 74.0
PS (R = 8) 85.0 92.0 83.0
PS (R = 1) 79.0 88.0 84.0

annealing. Probe sampling achieves a speedup of 3.5 and 4.1 times alone. With Vicuna, we achieve
an overall speedup of 3.2 and 3.6 respectively on the two datasets. We also measure the #FLOPs for
different settings and found that the speedup results reflects in the reduction of #FLOPs. For example,
with Llama2, the #FLOPs reduction is 202.3T/32.3T = 6.3 times and 198.4T/31.2T = 6.4 times
on the two sets, which is close to the actual speedup results. This also shows that our algorithm results
in little overhead with the introduced new procedures. It is worth noting that simulated annealing
also achieves decent acceleration and is complementary to our acceleration results.

GCG results. Interestingly, we achieve a better ASR score than the GCG algorithm although
technically acceleration introduces noise to the algorithm. For instance, with Llama2, we improve
the ASR from 57.0 to 64.0 on Human Strings and from 84.0 to 91.0 on Human Behaviors. We
hypothesize that the improvement comes from the randomness added to the GCG algorithm based
on greedy search over a single objective. Introducing randomness and noise has been seen as one
of the advantages of SGD over full batch training. In contrast, simulated annealing only leads to
comparable ASR when applied on GCG.

Transferability Table 2 shows probe sampling’s transferability across draft models based on
Llama2-7b-Chat to various target models. We find that it maintains transferability when using draft
models like GPT-2 and SheardLlaMa, which preserve the original ASR of plain GCG. However,
draft models that significantly degrade initial performance, such as Flan-T5, impair transferability.
Table 3 examines probe sampling transferability across filtered set sizes. Results align with prior
findings: probe sampling minimally impacts transferability with appropriate parameters but decreases
performance when Llama2-7b-chat’s direct ASR is low such as R = 64.

Results on AutoDAN, Autoprompt and APE. Table 5 demonstrates the effective acceleration of
AutoPrompt through the implementation of probe sampling, resulting in a speedup of 1.79× on SST-2
and 1.83× on SICK-E. Importantly, this acceleration is achieved without compromising performance,
as evidenced by the minimal changes in accuracy from 91.4 to 90.6 on SST-2 and from 69.3 to
68.9 on SICK-E. Furthermore, the application of probe sampling to APE, as presented in Table 6,
results in significant speed improvements, with a speedup of 2.3× on GSM8K, 1.8× on MMLU, and
3.0× on BBH. Similarly, these speed enhancements do not compromise the performance of APE.
In addition, we implement probe sampling on another jailbreak method, AutoDAN. The detailed
results can be found in Table 4. Our findings indicate that probe sampling can achieve a speedup of
2.3× for AutoDAN-GA and 2.5× for AutoDAN-HGA, while minimally affecting its performance.

6



Table 4: Performance of Probe
sampling on accelerating AutoDAN.

Method ASR Time (s)
AutoDAN-GA 56.2 424.2
AutoDAN-GA + PS 55.9 182.7 (2.3×)

AutoDAN-HGA 60.8 237.9
AutoDAN-HGA + PS 62.1 95.3 (2.5×)

Table 5: Performance of Probe sampling on accel-
erating prompt learning method AutoPrompt.

Method SST-2 SICK-E
Acc Time (s) Acc Time (s)

Original 85.2 N / A 49.4 N / A

Autoprompt 91.4 228.4 69.3 42.7
Autoprompt + PS 90.6 127.2 (1.8×) 68.9 23.6 (1.8×)

Table 6: Performance of Probe sampling on accelerating prompt learning method APE.

Method GSM8K MMLU BBH
Acc Time (s) Acc Time (s) Acc Time (s)

Vicuna 20.4 N/A 45.6 N / A 38.6 N / A
APE 21.3 431.8 48.2 187.3 40.8 265.2
APE+PS 22.4 192.3 (2.3×) 47.3 102.5 (1.8×) 39.9 88.7 (3.0×)

0% 20% 40% 60% 80% 100%

PS + Annealing

Probe sampling

GCG

49%

37%

34%

8%

25%

43%

38%

66%

Target Model Draft Model Vacant

(a) Llama2-7b-chat

0% 20% 40% 60% 80% 100%

PS + Annealing

Probe sampling

GCG
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49%

52%

5%

15%

36%

36%

48%

(b) Vicuna-7b-v1.3

Figure 3: Memory usage on a single A100 with 80GB memory with (a) Llama2-7b-chat and (b)
Vicuna-7b-v1.3 on 1 instance. The memory consumption of probe sampling with or without simulated
annealing is similar to that of the original setting. The computation with the target model still takes
most of the memory.

These results demonstrate the effectiveness of our method in not only accelerating GCG but also its
applicability to general prompt optimization methods and other LLM attack methods.

3.3 Computation Detail Analysis

Memory allocation. We evaluate whether probe sampling uses more memory because of the use of
an extra model. In Figure 3, we show the memory usage of GCG, probe sampling with and without
annealing using either Llama2-7b-chat and Vicuna-7b-v1.3. Probe sampling uses a similar amount
of memory to the original GCG algorithm although it involves extra procedures and an extra model,
by saving the computation of target model on the whole candidate set. As such, the usage of probe
sampling does not introduce extra memory and can be applied when the original GCG algorithm is
applied. In terms of the memory usage of the target model and the draft model, most of the memory
is spent on target model, probably because the draft model is much smaller.

Time allocation. We look at the specific time spent on different operations. As shown in Figure
4, probe set computation using the target model and full set computation using the draft model take
a similar amount of time so we can parallelize the computation easily. Sampling candidates in the
graph involves a forward and backward pass as mentioned earlier and can be completed relatively
quickly. Similarly, it is also fast to compute the agreement using the ranked losses on CPU, so our
algorithm introduces relatively little overhead.

3.4 Further analysis

In this section, we conduct extensive studies to understand how the proposed method works. We
conduct all of the following experiments on the validation set, so the numbers are not directly
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Figure 4: Wall time of GCG, probe sampling with and without simulated annealing. For the target
model computation, the first part is done on the probe set and the second part is done on the filtered
set. Draft model computation and computation of the target model on the probe set are suited to be
done in parallel as they take similar time.

Table 7: Ablation on the filtered set size reduction
R. The filter set size is (1− α) ∗B/R.

Reduction R 64 16 8 4 2 1

ASR 60.0 70.0 85.0 81.0 76.0 79.0

Time (s) 2.01 2.31 2.60 3.02 3.41 5.19

Table 8: Ablation on fixed probe agreement score
α vs adaptive score.

Agreement α 0.9 0.6 0.3 0.0 Adaptive

ASR 70.0 77.0 75.0 81.0 85.0

Time (s) 2.17 2.41 2.71 3.01 2.60

comparable to the numbers in the main results. For the validation set, the original GCG algorithm
achieves an ASR of 66.0 with an average time of 9.16 seconds per iteration. In each of the study, we
highlight the settings that we find to be the best.

Filtered set size. The filtered set size is the most important factor in our method. If it is too small,
then we will achieve a lot of speedup at the cost of relying too heavily on the draft model and resulting
in a lower ASR. If it is too big, then we would not achieve much speedup. Hence we experiment with
different filtered size reduction hyperparameter R. The filter set size is (1−α) ∗B/R where α is the
probe agreement score described in Section 2.2.

As shown in Table 7, the time does monotonically decrease if we use a smaller filtered set size.
However, interestingly, there is a sweetspot for the ASR with R set to 8. We believe that this can
resonates with the hypothesis of introducing randomness as the source of ASR boosts. Both too much
or too little randomness hurt performance. As such, we use R = 8 for probe sampling. We further
show several convergence processes with varying values of R in Appendix B.

Adaptive vs fixed filtered set size. As mentioned in Section 2.2, an alternative to use an adaptive
filtered set size is to use a fixed size. Here we investigate whether it matters to use an adaptive filtered
set size that is determined by how much the draft model and the target model agree on each candidate
set. To use a fixed size, we simply fix the probe agreement score α to be 0.9, 0.6, 0.3, and 0.0 and
compare with the adaptive case. As shown in Table 8, fixed probe agreement scores always lead to
worse ASR. Furthermore, when adopting GPT-2 as the draft model, the average agreement score is
0.45 with a standard deviation of 0.11. This shows that the agreement score between the two models
varies significantly for different candidate sets. We also provide the statistics of α for other draft
models in Table 11.

Probe agreement measurement. We also experiment alternatives to measure the probe agreement
score, including the Pearson correlation coefficient (Pearson, 1900), Kendall’s Tau correlation
coefficient (Kendall, 1938), and Goodman and Kruskal’s gamma (Goodman et al., 1979) where the
Pearson correlation coefficient directly uses the loss values to compute the agreement and the others
use the ranking information. As shown in Table 9, all methods have similar time cost, and Spearman’s
rank correlation coefficient achieves the best ASR. The Pearson correlation coefficient performs
worse than other ranking-based agreement measurement.

Probe set size. The size of the probe set also determines whether the probe agreement score is
measured accurately. As such, we experiment with different probe set size and report the performance
in Table 10. We find that using a small probe set such as B/64 or B/32 can result in inaccurate
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Table 9: Ablation on probe agreement measure-
ments. All methods achieve similar speedup
while Spearman’s rank correlation coefficient
achieves the best ASR.

Cor Spearman Pearson Kendall Kruskal

ASR 85.0 70.0 74.0 79.0

Time (s) 2.60 2.47 2.53 2.43

Table 10: Ablation on the probe set size k. Using
B/16 leads to accurate probe agreement mea-
surement while achieving significant accelera-
tion.

Probe B/64 B/32 B/16 B/4 B/2 B

ASR 64.0 72.0 85.0 86.0 85.0 87.0

Time (s) 2.10 2.57 2.60 3.41 5.61 9.58

Table 11: Experiments with different draft models. Models with over 1B parameters, like TinyLlama,
Phi, and ShearedLlMa, need two GPUs for parallel computation. ShearedLlMa achieves the highest
ASR probably because it is a pruned version of Llama2. Both GPT-2 and GPT-Neo achieve a good
balance of ASR and speedup.

1 GPU 2 GPUs

Model GPT-2
(124M)

GPT-Neo
(125M)

Flan-T5
(248M)

BART
(406M)

TinyLlama
(1.1B)

Phi
(1.3B)

ShearedLlaMa
(1.3B)

α 0.45± 0.10 0.51± 0.11 0.61± 0.13 0.46± 0.09 0.52± 0.13 0.52± 0.11 0.35 ± 0.12

ASR 85.0 81.0 57.0 76.0 72.0 82.0 91.0

Time (s) 2.60 2.82 3.89 2.93 3.38 4.83 3.93

agreement score, which put a put a significant toll on the attack success rate. It also does not lead to
too much time reduction since the draft model computation done in parallel takes more time and the
reduced computation is not the bottleneck. Using a larger probe set size such as B/4 and B/2 will
lead to more accurate agreement score but does not increase the ASR significantly. As such, using a
probe set of size B/16 is good enough to accurately measure the agreement and achieves maximum
time reduction.

Draft model study. Here we also experiment with bigger draft models, some of which is of similar
size to Llama2. We experiment with GPT-Neo (Gao et al., 2020), Flan-T5-base (Chung et al., 2024),
BART (Lewis et al., 2019), Phi-1.5 (Li et al., 2023), TinyLlama (Zhang et al., 2024) and Sheared-
LLaMA (Xia et al., 2023). Among them, Sheared-LLaMA might be the closest to Llama2 since it is
a pruned version of Llama2. For TinyLlama, Phi and Sheared-LLaMA, we use 2 A100s with 80GB
memory to fit the whole computation.

As shown in Table 11, Sheared-LlaMa achieves the best ASR although the time reduction is not as
good as smaller models such as GPT-2 and there would be a higher time cost if we manage to fit all
computation in one GPU. On contrast, Flan-T5, BART, TinyLlama and Mistral all achieve lower
ASRs probably because of being very different than Llama2. However, the results are still better than
the baseline ASR 66.0. GPT-2 and GPT-Neo achieve a good balance of performance and speedup.

4 Related Work

Alignment of LLMs. To build safe LLMs, alignments has also been a widely studied topic in
the community (Stiennon et al., 2020; Ouyang et al., 2022). Efforts have been put into improving
helpfulness (Bai et al., 2022a; Cheng et al., 2023), honesty (Kaddour et al., 2023; Liu et al., 2023;
Xu et al., 2023), and harmlessness (Hartvigsen et al., 2022). Among these works, there has been a
growing interest in using feedback from a LLM to perform alignment (Bai et al., 2022b; Gulcehre
et al., 2023; Burns et al., 2024; Yuan et al., 2024a). Despite all the efforts, there has not been a
definitive answer for LLM safety alignments, which also motivates our research in LLM safety.

Discrete Prompt Optimization. Attacking LLMs via adversarial prompt can be formulated as
a discrete prompt optimization problem (Zou et al., 2023). In this context, attacking algorithms
strive to discover superior prompts that effectively steer aligned LLMs toward generating adversarial
answers. Some approaches leverage LLMs themselves to iteratively refine prompts (Xu et al., 2022;
Pryzant et al., 2023). However, aligned LLMs may resist refining adversarial prompts, rendering
these methods ineffective. Other strategies employ RL-based prompt optimization techniques such
as those in (Mingkai and Jianyu, 2022; Lu et al., 2023), necessitating additional MLP training with
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extensive adversarial data and specific reward design. Moreover, other models introduced in (Cho
et al., 2023; Long et al., 2024) to help with prompt optimization must remain unaligned, particularly
in jailbreak scenarios (Chao et al.). However, their performance tends to be limited, especially when
dealing with strongly fine-tuned models like Llama2-Chat.

LLM Jailbreaks. LLM Jailbreaks have received considerable interests recently since due to the
implications of applying LLMs widely in human society. Although there is a continuous effort to
build safe and reliable LLMs, bypassing the safety mechanism of LLMs is not uncommon. For
example, fine-tuning a safe LLM on a few data instances can easily breaks its safety guarantees (Qi
et al., 2024; Lermen and Rogers-Smith, 2024). Treating the jailbreak as a prompt optimization
problem has also led to a certain level of success (Zou et al., 2023; Mökander et al., 2023; Liu et al.,
2024; Chao et al.; Geisler et al., 2024). In addition, conversing in a ciphered language (Yuan et al.,
2024b), planting a backdoor during RLHF (Rando and Tramèr, 2023), using a less well-aligned
language (Deng et al., 2024) and multi-modality (Shayegani et al., 2024) can also lead to successful
jailbreaks. Researchers also construct large dataset of manual jailbreak prompts (Toyer et al., 2023).

Among these jailbreak methods, the prompt optimization method GCG (Zou et al., 2023) provides
the more general and universal solution for us to study the jailbreaking problem. As such, in this
work, we mainly focus on the acceleration of GCG, but the idea of delegating computation to a draft
model can also be applied in other situations such as the multi-modality case and finetuning case. We
leave the extension of this work for future work.

Acceleration. In the field of acceleration, speculative sampling (Chen et al., 2023; Leviathan et al.,
2023) is the most relevant to our method. They also use a draft model but its design cannot be directly
applied to accelerate the GCG algorithm. REST (He et al., 2024) adopts the concept of speculative
sampling but uses a retrieval approach based on a Trie to construct the candidate. The attention
module has also been a focus of acceleration because of its quadratic nature (Dao et al., 2022; Cai
et al., 2024). There have also been continuous interests in more efficient versions of Transformers (So
et al., 2019; Dai et al., 2021; Liu et al., 2021; Gu et al., 2020, 2021). These architectural changes are
complementary to our algorithm design and we leave it to future work.

5 Conclusion

In this paper, we propose an algorithm probe sampling that can effectively accelerate the GCG
algorithm. We achieve an acceleration ranging from 2.1× to 6.3× in different scenarios on AdvBench.
We illustrate the intuition and how the algorithm works through extensive experiments. Furthermore,
this approach is also applied to general prompt optimization methods and other jailbreak techniques,
including AutoPrompt, APE, and AutoDAN. We believe the idea of using the probe agreement score
to perform adaptive computation can be applied to cases other than GCG. For example, it could
potentially be used to perform conditional computation for attention. Another direction is to extend
the framework to the multi-modality case which can be interesting given the vast amount of video
data. It would also be interesting to run a small draft model on the scale of web data to detect the
existence of natural adversarial prompts.

Limitation and Impact Statements

Probe sampling has two main limitations. Firstly, it exhibits relatively slow performance when tested
on large-sized test sets, which hampers its efficiency. Secondly, it is limited to supporting only
open-source models, thereby excluding proprietary or closed-source models from benefiting from
the proposed acceleration techniques. These limitations indicate the need for further improvements
to enhance the speed and broaden the model support in order to make the jailbreak acceleration
approach more robust and applicable across a wider range of language models.

Probe sampling can be applied to accelerate GCG algorithm. Having a faster algorithm to explore
adversarial cases of alignments enable us to study how to make LLMs safer. As far as we know, as
of now, there is not a LLM that can use this algorithm to achieve malicious behavior in real-world
that would not be possible without the algorithm. The goal of this research is to present a general
algorithm which may inspire new research, and also contribute to the gradual progress of building
safe and aligned AIs.
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A Implementation

The following code shows the core implementation of probe sampling using PyTorch. As seen in the
code, the algorithm is relatively easy to use.

def draft_model_all(args):
draft_model.loss(control_cands)

queue.put('draft':loss_small)

def target_model_probe(args):
probe_index = random.sample(range(512), 512/16)
probe_control_cands = control_cands[probe_index]
target_model.loss(probe_control_cands)

queue.put('target':[loss_large_probe, probe_index])

# Parallelly Calculate Loss on Batch and Probe Set
args=(control_cands, batch_size, queue)
threading.Thread(target=draft_model_all, args=args)
threading.Thread(target=target_model_probe, args=args)

# Calculate Agreement Score
cor = spearmanr(loss_small[probe_index], large_loss_probe)

# Target Model Test on Filtered Set
filtered_size = int((1 - cor) * 512/8)
indices = topk(loss_small, k=filtered_size, largest=False)
filtered_control_cands = control_cands[indices]
target_model.loss(filtered_control_cands)

# Return Lowest Loss Candidate
return [large_loss_probe, filtered_control_cands].lowest()

B Converge Process

In Figure 5, we also show a few convergence processes with different values of R, where the pink
line corresponds to R = 8. The pink line always achieves successful optimization while the other
lines can lead to suboptimal results due to excessive randomness or insufficient randomness. In
particular, the blue and yellow lines can suffer from excessive randomness and the other lines might
have insufficient randomness.

Figure 5: Converge progress with different sizes of filtered set.

C Software optimization

Table 12: Results with torch.compile() enabled.
torch.comple() does not lead to further speedup.

Method GCG Probe sampling PS (Compile)

ASR 66.0 85.0 85.0

Time (s) 9.16 2.60 (3.5×) 2.54 (3.6×)

In other speedup works (He, 2023), using
torch.compile() can lead to significant accelera-
tion. It compiles LLMs into an kernel and alle-
viate the overhead of repeatedly launching the
kernel. Table 12 shows that the time cost is sim-
ilar with or without this optimization enabled.
This is likely due to the fact that we use large
batch sizes and long input sequences, whose computation cost dominates the overhead caused by the
eager execution and launching the kernel repeatedly.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and Section 1 (Introduction).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: After Section 5 (Conclusion)

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 3 (Experiment)
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have released the code at https://github.com/zhaoyiran924/
Probe-Sampling.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 3 (Experiment)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While it is challenging to achieve due to the substantial computing resources it
demands, this limitation is not unique to this paper but is shared by other works in the same
field. However, the large size of the test set used in this study ensures that bias is minimized.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 3 (Experiment)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In Section 3 (Experiment)

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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