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Figure 1: Given a group of short reference speech gesture sequence, audio, and text, a gesture motion graph is constructed
and ready to be searched when a group of test speech gesture audio and text is provided, for rhythmic and semantic gesture
reenactment.

ABSTRACT
This paper presents the CASIA-GO entry to the Generation and
Evaluation of Non-verbal Behaviour for Embedded Agents (GE-
NEA) Challenge 2023. The system is originally designed for few-
shot scenarios such as generating gestures with the style of any in-
the-wild target speaker from short speech samples. Given a group
of reference speech data including gesture sequences, audio, and
text, it first constructs a gesture motion graph that describes the
soft gesture units and interframe continuity inside the speech, which
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is ready to be used for new rhythmic and semantic gesture reen-
actment by pathfinding when test audio and text are provided. We
randomly choose one clip from the training data for one test clip
to simulate a few-shot scenario and provide compatible results for
subjective evaluations. Despite the 0.25% average utilization of the
whole training set for each clip in the test set and the 17.5% to-
tal utilization of the training set for the whole test set, the system
succeeds in providing valid results and ranks in the top 1/3 in the
appropriateness for agent speech evaluation.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); • Computing methodologies → Animation.
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speech-driven gesture generation, motion graph, few-shot

https://doi.org/10.1145/3577190.3616118


ICMI ’23, October 9–13, 2023, Paris, France Zhao et al.

ACM Reference Format:
Zeyu Zhao, Nan Gao, Zhi Zeng, Guixuan Zhang, Jie Liu, and Shuwu Zhang.
2023. Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reen-
actment. In INTERNATIONAL CONFERENCE ON MULTIMODAL INTERAC-
TION (ICMI ’23), October 9–13, 2023, Paris, France. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3577190.3616118

1 INTRODUCTION
Generating co-speech gestures that convey rich non-verbal infor-
mation remains challenging due to the indeterministic nature of
the task. The one-to-many mapping between the modalities, along
with other difficulties such as the lack of high-quality large-scale
datasets and standardized evaluating protocols, makes it difficult
to design and evaluate models for speech-driven gesture genera-
tion. In recent years, data-driven methods have attracted the in-
terest of many researchers in the field. However, most of these
methods require training on large-scale datasets. How to produce
gestures in common scenarios where training data are insufficient,
such as reenacting gestures with new styles naturally encoded in
very few recorded gesture samples of an in-the-wild target human
performer, is rarely discussed.

In this paper, we try to address this problem by designing a sys-
tem that can explicitly locate key positions of rhythmic and se-
mantic events in the sequences to form basic units of gestures and
describe the continuity relationships inside. Part of that is com-
ing from the commonly agreed observation [1, 23] that while most
co-speech gestures are in synchronization with the rhythm of the
voice, some gestures are more relevant to the actual meaning of
the words or sentences. The other part is that it should be able to
produce new gesture units that break the natural continuity rela-
tionships between units for good diversity performance. Inspired
by [23], we find that motion graphs and related searching algo-
rithms are most suitable for this task. With the gesture sequence,
audio, and text of a reference speech and the audio and text of any
test speech, the main idea is to construct a motion graph that de-
scribes the soft gesture units and continuity relationships inside
the reference speech and search the graph for new paths of ges-
ture frames given the test speech, as shown in Figure 1. Numerous
modifications and improvements such as new pruning strategies,
feature-based initialization, and fallback measures, can be made to
the framework to enable compatibility with pure gesture data in-
stead of video frames. These are proved to be the key factors for
the feasibility, performance, and robustness of the system.

To gain better knowledge of how well the results produced by
the system can be, we participate in this year’s GENEA Challenge
to evaluate our results reenacted from few-shot data and compare
those with results from other systems that utilize large-scale data.
To do this, we simulate a few-shot scenario by randomly choosing
one clip in the provided training set as the whole reference speech
for each clip in the test set, regardless of any speaker identity. For
each test speech, the system only utilizes 0.25% of the whole train-
ing set on average. In such a way, the system utilizes 17.5% of the
whole training set for the whole test set. Despite the low utiliza-
tion of the training data, The system succeeds in producing high-
quality gestures for the test set and achieves good performance in
the challenge.

2 RELATEDWORKS
Large-scale data-driven methods are becoming exceedingly popu-
lar in recent years for speech-driven data generation tasks [15], tak-
ing over rule-based methods [14] or probabilistic modeling meth-
ods [10]. Basic deep learning models show great capabilities of en-
coding input data and generating new gestures [3, 20]. New ar-
chitectural designs that fit the specific properties of the task such
as skeleton hierarchies or gesture categories are proposed to im-
prove the performance of gesture generation [1, 13]. New gener-
ative models can also be utilized as backbones of the generation
networks [19, 24].

The mixed usage of matching-based and learning-based meth-
ods can also be seen in numerous works to bypass limitations of
deep learning models [4, 18]. Motion graphs are proposed to gen-
erate controllable animation from pre-recorded motion [5] and are
commonly used in gesture-related tasks such as retrieval and cre-
ation [6, 16]. For speech-driven data generation, they can be uti-
lized by defining each graph node as the feature of a sequence of
gestures [22], or defining each node as a video frame [23]. Inspired
by these works, we find motion graphs are suitable for our task for
their inter-frame relationship description capabilities, regardless
of the presence of learning-basedmodules.Thus, we designmotion
graphs for reenacting gestures from few-shot reference gesture se-
quences instead of large-scale data or video frames.

3 DATA PROCESSING
The dataset provided by the challenge organizers this year [7] is
derived from the Talking With Hands data [9]. Gesture sequences,
audio, text, and speaker labels of both the main agent and the in-
terlocutor are included in the dataset, making it a dyadic dataset
compared to the monadic dataset last year. As mentioned above,
our system does not utilize all training data provided. Instead, we
use the training set to simulate a few-shot scenario where only a
small amount of data is available as reference speech. For the test
set, only the audio and text data of the main agent in the test clips
are utilized by the system. For each clip, only one clip in the train-
ing set is randomly chosen as the reference speech, of which only
the gesture, audio, and text data of the main agent are utilized by
the system. Other data including anything relevant to the inter-
locutor, the speaker labels, and the validation set are ignored by
the system.

The data are preprocessed using the utilities provided by [2], in-
cluding converting between Euler angle and exponential map ro-
tation representation, selecting the 25 joints on upper and lower
body excluding the fingers, and aligning the text to gesture frames.
Since the system can work with gestures with any skeleton defi-
nition, the skeletons used inside the system are in both exponen-
tial map rotation representation and position representation. The
words in the text are pre-converted to integer indices. Due to the
poor quality of the hand tracking and some significant flickering
on the body, we have to add 19 clips in the training set to the ran-
dom selection blacklist, lock the yaw and pitch rotation of the 4
wrist-related joints, and apply the Savitzky-Golay filter with a win-
dows length of 15 and polynomial order of 3 on the roll rotation of
the 4 wrist-related joints.
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4 METHOD
The gesture motion graph is a graph structure that can be used
to represent the continuity relationships between frames in a ges-
ture sequence regardless of the length or the skeleton definition
of the sequence, as shown in Figure 2. Following [23], each node
in the graph represents a frame in the gesture sequence, and each
directed edge between two nodes indicates the distance between
the two frames is small enough for the transition to be considered
continuous. Given a reference gesture sequence and its correspond-
ing speech audio and text, we can construct its gesture motion
graph by detecting key nodes that non-uniquely split the gesture
sequence into subsequences of soft gesture units and analyzing the
continuity relationships between frames to find edges for unnatu-
rally continuous frames. When we need to reenact a new test ges-
ture sequence from its speech audio and text, we can split the test
sequence into subsequences using the positions of the same kinds
of key frames detected in the test speech and use a pathfinding al-
gorithm to find the optimal paths of nodes in the graph correspond-
ing to every test subsequence.Then a new gesture sequence that is
rhythmically matched to the input speech audio and semantically
relevant to the input text can be reenacted by concatenating and
blending the gesture frames along the paths. Due to random oper-
ations in some fallback measures, the system may produce slightly
different results at some parts for the same input.

Figure 2: A sample gesturemotion graphwith zoomed views
of examples of a) a regular node, b) an onset node, c) a key-
word node, d) a break node, e) a natural edge, and f) an un-
natural edge.

4.1 Graph Construction
4.1.1 Key node detection. After adding all frames in the gesture
sequence as regular nodes into the graph, we first perform onset

detection on the reference speech audio to find onset nodes in the
gesture motion graph. The onsets are located at the backtracked
peaks of the audio’s spectral flux viewed as the onset strength [12],
aligned to the gesture frames. Filtering on the onset strength can
control the number of output onsets, which further controls the
length of soft gesture units used for reenactment. Then we per-
form the keyword detection on the reference speech text to mark
keyword nodes in the gesture motion graph. With the input text
aligned to the frames, each word is checked to see if it belongs to a
list of keywords (see [23]). If a subsequence of one or more repeat-
ing keywords is found in the text, the node corresponding to the
first frame of this subsequence is then marked as a keyword node
with that keyword. Also, there might be interruptions inside the
speech when e.g. the speech is a composition of multiple discon-
tinuous segments. Any frame that is not continuous with the next
frame is marked as a break node.

4.1.2 Continuity analysis. We first directly add directed edges to
the graph with zero weights for the frames that are naturally con-
tinuous. Then we traverse every pair of different non-continuous
frames as “left” and “right” frames pl, pr and calculate their dis-
tance. Here, the distance between two gesture frames, or poses, is
defined to be the weighted sum of the Euclidean distance of the
joint positions and the Euclidean distance of the joint velocities:

𝑑pose (pl, pr) = 𝜆pos∥pl − pr∥2 + 𝜆vel∥vl − vr∥2,

where the velocities vl, vr can be calculated by differentiating the
current and previous frames, and 𝜆pos, 𝜆vel are the weights of the
two terms. For every left frame, a dynamic threshold for continuity
is defined to be the mean distance between the left frame and its
following (up to) 𝑙cn frames. This threshold is used to filter out the
right frames with distances that are too large to be considered con-
tinuous frames. After filtering, every remaining right frame adds a
candidate directed edge to a list (not to the motion graph) with
its pose distance to the left frame as the weight. However, this
criterion of continuity can produce a large number of neighbored
right frames for a left frame and frequently generates short loops in
the graph. Thus, we perform two pruning operations to reduce the
number of candidate edges. For each left frame, the first strategy
is, for a continuous sequence of up to 𝑙pn right frames in the candi-
date list, we only reserve the first one and remove the others. The
second strategy is, for the remaining right frames, one is removed
if another edge, that starts in the 𝑙pn-neighbor of one frame and
ends in the 𝑙pn-neighbor of the other frame, already exists in the
graph. After the pruning, we add all candidate edges to the graph
and move on to the next left frame.

4.2 Pathfinding
4.2.1 Beam search. The core of the path-finding algorithm is a
parallelized greedy breadth-first search algorithm known as the
beam search [8] for each test subsequence. Given the target path
length 𝑙sub, the termination criteria for paths, and 𝑙npaths initial
starting nodes, the beam search algorithm outputs 𝑙npaths paths
with top-𝑙npaths minimum costs that have different lengths. These
𝑙npaths paths are initially one-node paths with only the given start-
ing nodes. As shown in Figure 3, at each iteration, we initialize
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an empty watch list and check if the 𝑙npaths paths are already ter-
minated. All terminated paths are directly added to the watch list,
and all unterminated paths are expanded by appending the chil-
dren of the last node. If the last node of a path has multiple chil-
dren, it should be split into multiple paths each with a child ap-
pended, which are then all added to the watch list as well. Then,
we calculate the costs of all watched paths and select those with
top-𝑙npaths minimum costs, which are then set to be the new 𝑙npaths
paths. Here, the cost of a path P is defined as the sum of the weights
of the edges along the path, penalized by the difference between
lengths of this path 𝑙path and the test subsequence 𝑙sub:

𝑐path (P) = 𝜆w
©«
𝑝𝑙path−1∑
𝑖=𝑝1

𝑤𝑖,𝑖+1
ª®¬ + 𝜆len

����1 − 𝑙path
𝑙sub

���� ,
where 𝑤𝑖, 𝑗 is the weight of the edge (p𝑖 , p𝑗 ), and 𝜆w, 𝜆len are the
weights of the two terms. The algorithm repeats these steps and
breaks when the maximum length of searching is reached or all
𝑙npaths paths are accepted (see appendix). Finally, the accepted path
with the lowest cost is chosen for the current test subsequence.

Figure 3: An example of two iterations of the beam search
process. Each iteration expands all children nodes of the
last nodes of the presented paths. The expanded paths are
then sorted and selected according to their costs. Termi-
nated paths are in green.

4.2.2 Conditional termination. For each test subsequence, we set
the termination criteria independently based on various consider-
ations. Normally, if the test subsequence ends at a keyword frame,
the paths should terminate at any keyword node in the graph with
the exact same keyword to produce semantic gestures. Otherwise,
the paths should terminate at any onset or break node in the graph
to produce rhythmic gestures. If no accepted path is found after the
beam search is forcibly stopped, we should re-initialize the start-
ing nodes and retry searching. Fallback measures (see appendix)
can also be designed to guarantee that the beam search can stop
with at least one accepted path in most cases. If no retry is needed,
the beam search of the next subsequence will take the subsequent

nodes of the ending nodes as initial starting nodes, which keeps
the reenacted gestures as naturally continuous as possible.

4.2.3 Feature-based initialization. For starting node initialization,
a method based on key node features is designed for the beam
search to increase the possibility of finding a path that costs less.
The feature of a key node f is defined to be a list of lengths of the
𝑙feat trailing natural subsequences split by any key node, ignoring
the unnatural edges:

f𝑖 = {𝑓𝑖 − 𝑓𝑖−1, 𝑓𝑖+1 − 𝑓𝑖 , . . . , 𝑓𝑖+𝑙feat−1 − 𝑓𝑖+𝑙feat−2},

where 𝑓𝑗 is the frame number of the key node with the index 1 ≤
𝑗 ≤ 𝑙k in the ordered list of all 𝑙k key nodes, 𝑓𝑗 = 0 when 𝑗 = 0,
and 𝑓𝑗 = 𝑓𝑙k when 𝑗 > 𝑙k. For a test subsequence, we calculate the
feature distance between the starting key node 𝑘𝑡 and each key
node in the graph 𝑘𝑚 :

𝑑feat (𝑘𝑡 , 𝑘𝑚) = 𝜆full∥wfull ⊙ (f𝑡 − f𝑚)∥2 +𝜆first
����1 − f𝑚,1

f𝑡,1

����+𝜆occ𝑜𝑚,

where wfull ∈ [0, 1]𝑙feat defines the weight for each element of the
feature, f·,1 represents the first element of the feature, ⊙ is the
symbol of element-wise multiplication, 𝑜𝑚 is the occurrence count
of the key node 𝑘𝑚 already accepted in paths for the whole test
speech, and 𝜆full, 𝜆first, 𝜆occ are the weights of the two terms. The
top-𝑙npaths key nodes with minimum distances are selected to be
the initial starting nodes. Fallback measures (see appendix) guar-
antee that there always are 𝑙npaths starting nodes initialized for
searching after retries.

4.2.4 Blending. After the beam search for every test subsequence,
we obtain a list of paths of pose frames in the gesture motion graph.
As shown in Figure 4, we design a blending mechanism to smooth
the transition between paths, as they are most likely to be discon-
tinuous. For two paths that are needed to be concatenated, we call
the last (up to) 𝑙blend frames of the first one left path Pl and the first
(up to) 𝑙blend frames of the second one right path Pr. We generate a
path of new gestures for the concatenated left and right paths Pc:

Pc = (1 −wblend) ⊙ (Pl ⊕ ({Pr,1} ×min(𝑙r, 𝑙blend)))
+ wblend ⊙ (({Pl,𝑙l } ×min(𝑙l, 𝑙blend)) ⊕ Pr),

where wblend is the weight vector, ⊕ is the symbol of concatena-
tion, × is the symbol of repeating all elements in a vector, P·,𝑖 is the
𝑖-th node in a path, and 𝑙l, 𝑙r are the lengths of left and right paths.
The weight vector can be generated by linear, sigmoid, or other
functions that map evenly-placed values to the range of (0, 1). For
skeletons defined as exponential map rotations of the joints, we
can also convert those to quaternions and use spherical linear in-
terpolation (SLERP) to blend the rotations, instead of using direct
weighted sum.

5 EVALUATIONS
To evaluate the effectiveness of the system, we generate results
using the mentioned data and method with the following configu-
ration: 𝜆pos = 𝜆vel = 1, 𝑙cn = 5, 𝑙pn = 10, 𝑙npaths = 20, 𝜆w = 𝜆len = 1,
𝑙feat = 10, 𝜆full = 𝜆first = 1, 𝜆occ = 0.5,wfull = {1, 0.5, 0.5, 0.2, 0.2, 0.2,
0.1, 0.1, 0.1, 0.1}, and minimum onset strength threshold 5.
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Figure 4: An example of the blending process.The green and
black paths are blended to form a blue path (left), which is
then blended with another black path to form a red path
(right).

5.1 Subjective Evaluation
The generated results in Euler angle rotation representation (con-
verted from exponential map) are submitted to the challenge orga-
nizers and evaluated by the human evaluators recruited from six
English-speaking countries [7]. Three aspects of the generated re-
sults are evaluated and released to the participants, including the
human-likeness, the appropriateness for agent speech, and the ap-
propriateness for the interlocutor. We do not discuss the last one
since it assumes that the systems are interlocutor aware, which is
not the case for our system. No objective evaluation result is avail-
able to the participants. Videos used in this evaluation are available
at https://zenodo.org/record/8211449.

5.1.1 Appropriateness for agent speech evaluation. As mentioned,
to simulate a few-shot scenario, for each test clip (minimum 60
seconds, maximum 77 seconds, 62.4 seconds on average), only one
training clip is randomly chosen as the reference speech. For the 70
given test clips, 70 different training clips are finally chosen. Each
chosen training clip (minimum 60 seconds, maximum 427 seconds,
170.2 seconds on average) only constitutes a tiny portion (mini-
mum 0.088%, maximum 0.627%, 0.25% on average) of the whole
training set (68069.9 seconds). For the whole test set, only 17.5%
of the training data are utilized to produce the results. Despite the
low utilization of the training set, the results generated by our sys-
tem (labeled SK) got a good mean appropriateness score (MAS) of
0.18±0.06, ranking fourth among the 12 participants (top 1/3). The
full results can be found in Table 1 and Figure 5.This shows that the
system is able to produce high-quality results that are comparable
with systems utilizing large-scale datasets.
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Figure 5: Bar plots visualising the response distribution in
the appropriateness for agent speech study [7].

Table 1: Appropriateness for agent speech [7]

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum
NA 0.81±0.06 73.6% 755 452 185 217 157 1766
SG 0.39±0.07 61.8% 531 486 201 330 259 1807
SJ 0.27±0.06 58.4% 338 521 391 401 155 1806
BM 0.20±0.05 56.6% 269 559 390 451 139 1808
SF 0.20±0.06 55.8% 397 483 261 421 249 1811
SK 0.18±0.06 55.6% 370 491 283 406 252 1802
SI 0.16±0.06 55.5% 283 547 342 428 202 1802
SE 0.16±0.05 54.9% 221 525 489 453 117 1805
BD 0.14±0.06 54.8% 310 505 357 422 220 1814
SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815
SA 0.11±0.06 53.6% 238 495 438 444 162 1777
SH 0.09±0.07 52.9% 384 438 258 393 325 1798
SL 0.05±0.05 51.7% 200 522 432 491 170 1815
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803

5.1.2 Human-likeness. However, our system did not get a satis-
fying median score (37 ∈ [35, 40]) in the human-likeness evalua-
tion, ranking ninth among the 12 participants. Since our system
reenacts new gestures from the raw gesture frames of the refer-
ence gesture sequence, the quality of the results is heavily affected
by the quality and the length of the reference data. Flickering or
other defects existing in the naturally continuous frames and the
lower-than-needed training data utilization can be possible causes
of the low ratings given by the evaluators. Also, the blending pro-
cess can only guarantee smooth transitions between paths. If too
many transitions occur in a very short time span, it may give the
evaluators some non-humanlike impression. In a word, increasing
the quality of the reference speech data and using more training
data as reference speeches may give a better score in this evalua-
tion.

5.2 Ablation Study
Pruning strategies, feature-based initialization, fallback measures,
and other new designs for the gesture motion graph are key fac-
tors for the feasibility, performance, and robustness of the system.
To justify this, we also conduct ablation studies using the results
in joint position representation. We evaluate our system in three
setups on three objective metrics. The weak detection setup re-
moves proper filteringmeasures in onset detection (withminimum
onset strength threshold 0). The weak pruning setup degrades
pruning operations in continuity analysis (𝑙pn = 1). The weak ini-
tialization setup initializes random starting nodes in the beam
search algorithm.The first metric is formotion synchronization
(Syn) [17], which calculates the differences between velocity mag-
nitudes of the generated and ground truth gestures at each frame.
Note that the results of such distance comparisons cannot accu-
rately measure the quality of the generated gestures. The second
metric is a score for beat consistency (BC) [11] that measures
the beat correlation between gestures and speech audio by calcu-
lating the mean distance between the audio onsets and the nearest

https://zenodo.org/record/8211449
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Table 2: Ablation study results

Setup Syn↓ BC↑ Div↑ #Failure
Weak Detection 0.61393 0.021577 0.06101 0
Weak Pruning 0.57947 0.022278 0.05795 0
Weak Initialization 0.58290 0.021982 0.06639 0
No Term. Fallback - - - 51
Full 0.57866 0.022087 0.07461 0

peaks of angle change rate. The third metric is for gesture diver-
sity (Div) [21]. It calculates the ratio of large angular changes of ve-
locities between frames and uses that to indicate the frequency of
motion changes. Finally, another no termination fallback setup
that disables all termination fallback measures is added and the
number of failures (stuck in infinite loops) during pathfinding
is counted to demonstrate the necessity of these measures. We see
in Table 2 that although weak setups sometimes produce gestures
with a better rhythmic score, they perform much worse in velocity
similarity to ground truth or gesture diversity. Moreover, the sys-
tem fails 51 times out of 70 (73%) without the fallback measures,
showing that these designs are necessary for the graph to work
with few-shot gesture data.

6 CONCLUSION
In this work, we propose a system for reenacting gestures in few-
shot scenarioswhere very few reference samples are available based
on gesture motion graphs. The input reference gesture and speech
data are analyzed and a gesture motion graph with descriptions of
the interframe continuity and key rhythmic and semantic events is
constructed. Given the test speech, a path of blended pose frames
can be searched from the gesture motion graph to form a new se-
quence of reenacted gestures. The evaluations show that the sys-
tem can generate high-quality results comparable with methods
designed for large-scale data, and the new designs succeed in pro-
viding robust performance for the system.

Nevertheless, this system has its limitations in multiple aspects.
For example, although the requirement for data size is reduced, the
reference data still need to be high quality for reenactment. Also,
the construction and search processes aremanually designed based
on human prior knowledge with some of the thresholds that need
to be tuned manually. We can explore learning-based methods that
can enhance the mechanisms of key node detection, path cost, etc.
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A METHOD DETAILS
A.1 Pathfinding
A.1.1 Termination FallbackMeasures. If nomatching keyword node
is found after multiple retries, the stopping nodes should fall back
on onset or break nodes. Also, if the shortest subsequence in the
graph is still much longer than the target length, it is difficult for
any output path to be considered accepted, in which case the num-
ber of retries keeps increasing endlessly. This can be solved by ran-
domly discarding some stopping nodes gradually to destructively
lengthen the subsequences. If this operation does not stop the num-
ber of retries from endlessly increasing, that means the longest sub-
sequence is still much shorter than the target length. In this case,

we can return a path with the target length by repeating the last
node of the previous search result and terminating the search for
the current test subsequence.

A.1.2 Path Acceptance. A path is considered accepted when it is
terminated and 0.9 to 1.1 times the length of the test subsequence.
The accepted path with the minimum cost is selected to be the
search result if any exists, which is then resampled evenly if the
length of this path 𝑙path is not equal to the target length 𝑙sub.

A.1.3 Initialization Fallback Measures. On each retry, the last top
key nodes are discarded and the next top-𝑙npaths key nodes are se-
lected. If no sufficient key node is available, we can randomly select
𝑙npaths arbitrary nodes as a fallback measure.
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