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MULTI-VIEW ATTENTION
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A view of a quaint town nestled between rolling hills, with wooden 
houses, a winding river, and a clear blue sky overhead.

Condition Condition

Handheld tracking shot at night, following a dirty blue ballon 
floating above the ground in abandon old European street.

Generated samples Generated samples

Figure 1: Generated samples conditioned on a single-view video and text prompt. Both single-view video
inputs were generated using existing video generation models (Brooks et al., 2024; Runway, 2024). Auto-
regressive generation is applied to extend the video length.

ABSTRACT

High resolution panoramic video content is paramount for immersive experiences
in Virtual Reality, but is non-trivial to collect as it requires specialized equipment
and intricate camera setups. In this work, we introduce VideoPanda, a novel ap-
proach for synthesizing 360◦ videos conditioned on text or single-view video data.
VideoPanda leverages multi-view attention layers to augment a video diffusion
model, enabling it to generate consistent multi-view videos that can be combined
into immersive panoramic content. VideoPanda is trained jointly using two condi-
tions: text-only and single-view video, and supports autoregressive generation of
long-videos. To overcome the computational burden of multi-view video genera-
tion, we randomly subsample the duration and camera views used during training
and show that the model is able to gracefully generalize to generating more frames
during inference. Extensive evaluations on both real-world and synthetic video
datasets demonstrate that VideoPanda generates more realistic and coherent 360◦
panoramas across all input conditions compared to existing methods. Visit the
project website at https://mvpanovideo.github.io/VideoPanda/
for results.

1 INTRODUCTION

A key aspect of achieving true immersion in a virtual environment is allowing users to look around
freely, by rotating their head and exploring their surroundings from all possible angles. To en-
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able such experiences, it is essential to have access to high-quality and high-resolution panoramic
videos. However, recording such videos is both expensive and time-consuming, as it requires intri-
cate camera setups and specialized equipment. As a result, the available panoramic video content on
platforms such as YouTube or Vimeo remains limited compared to single-view videos. In this work,
we aim to address this issue, by developing a generative model capable of synthesizing panoramic
videos either from text prompts or by expanding single-view videos (either generated from models
like Sora (Brooks et al., 2024) or recorded) into panoramic format. We consider this an essential
step towards making immersive content more accessible and scalable.

Recently, diffusion models have shown remarkable success in generating images (Ho et al., 2022;
Blattmann et al., 2023a), 3D models (Shi et al., 2023b; Poole et al., 2022), and videos (Brooks et al.,
2024; Blattmann et al., 2023b) from text prompts. Despite their promising capabilities, generation of
panoramic videos using diffusion models presents significant challenges, mainly due to the scarcity
of high-quality panoramic video datasets. Furthermore, while substantial progress has been made
towards advancing standard video generation pipelines (Girdhar et al., 2023; Hong et al., 2022;
Chen et al., 2024; Zheng et al., 2024), very few works have attempted to apply these techniques to
panoramic video generation. Existing methods are either limited to specific domains such as driving
scenarios (Wen et al., 2024; Wu et al., 2024; Li et al., 2023; Zhao et al., 2024; Liu et al., 2024b) or
restricted to generating static scenes (Wu et al., 2023; Zhang et al., 2024). 360DVD (Wang et al.,
2024a) directly generates equirectangular panorama video (with text condition), which presents a
large domain gap to base model pretrained on perspective view. We perform an extensive compari-
son to 360DVD in the text-conditional setting and demonstrate our improved visual quality.

In this paper, we introduce VideoPanda, a novel approach capable of generating high-quality
panoramic videos from text prompts and single-view video, as well as creating long video using
auto-regression. Our approach builds on existing video diffusion models by adding multi-view at-
tention layers to generate consistent multi-view outputs. Doing so ensures that the output domain
(perspective images) remains close to the original training distribution of the pretrained video model
(as opposed to directly generating equirectangular projections), which helps in maintaining video
quality while generating multiple views. The resulting views are then seamlessly stitched together to
create a cohesive panoramic video. We evaluate our model on a diverse set of data domains, includ-
ing both real and synthetic videos, and demonstrate its superior performance and quality compared
to previous approaches, both quantitatively and qualitatively. Additionally, a user study indicates
that the majority of participants prefer our generated videos over those from other baseline models.
In summary, we make the following contributions:

• We identify the value of panoramic video generation by allowing users to input single-view videos
as a condition – a widely available modality, and present a multi-view video architecture capable
of generating plausible panoramic videos.

• We demonstrate that our model can be jointly trained for text-conditioning, video-conditioning,
and autoregressive settings by randomizing the conditioning type, leading to improved results and
enabling the generation of long panoramic videos.

• When extending the video model to multi-view, the number of generated image frames greatly
increases. We overcome the inherent computational burden associated by randomly subselecting
the number of views and frames and show that it gracefully generalizes to video with long duration
and more views during inference.

2 RELATED WORK

2.1 IMAGE AND VIDEO DIFFUSION MODELS

Diffusion models (Ho et al., 2020) have demonstrated remarkable success in generating high-quality
images (Karras et al., 2022; 2024; Pernias et al., 2023; Hoogeboom et al., 2023; Ho et al., 2022) and
videos (Girdhar et al., 2023; Hong et al., 2022; Blattmann et al., 2023a;b; Brooks et al., 2024; Guo
et al., 2023; Chen et al., 2023; Gupta et al., 2023) from text prompts. To reduce the computational
cost of generating high-dimensional data such as images and videos, latent diffusion models (Rom-
bach et al., 2022) (LDMs) proposed to first encode the data into a compressed latent space using a
variational autoencoder (VAE) (Kingma, 2013a), and then conduct the diffusion in this lower dimen-
sional space. These models have been proven highly effective for a wide range of downstream tasks
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such as inpainting (Lugmayr et al., 2022), controllable generation (Zhang et al., 2023), customized
generation (Ruiz et al., 2023), and image/video editing (Kawar et al., 2023; Molad et al., 2023) etc.

2.2 MULTI-VIEW IMAGE GENERATION

Building on the success of diffusion models for 2D image generation, they have been increasingly
adapted also for multi-view image generation. However, due to the limited availability of real-world
multi-view training data, several recent approaches (Shi et al., 2023b; Long et al., 2024; Liu et al.,
2023b;a) attempted to fine-tune pretrained image generation models like Stable Diffusion (Rombach
et al., 2022) to support multi-view generation. Such approaches can be roughly categorized into two
categories: object-centric and scene-centric approaches.

Object-centric models focus primarily on generating images of objects where all cameras are inward-
facing, looking at a single object from different viewing directions. Examples of such approaches
include (Kant et al., 2024; Kong et al., 2024; Shi et al., 2023a;b; Tang et al., 2024; Voleti et al., 2024;
Wang & Shi, 2023). More recently, several object-centric generative models explored incorporating
custom attention mechanisms (Hu et al., 2024; Huang et al., 2023; Kant et al., 2024; Li et al., 2024b)
to aggregate view-specific information across multiple views. Notable among these, CAT3D (Gao*
et al., 2024) trains a model that generates novel views of an inward-focused scene from one or more
input views, allowing for 3D reconstruction from a single image. However, these methods often
focus on single-object scenes, which limits their applicability to more complex environments.

The second line of work seeks to generate realistic multi-view images of entire scenes, using
outward-facing cameras to capture different viewing directions and produce panoramas. For in-
stance, PanoDiffusion (Wu et al., 2023) is trained on equirectangular projections of 360◦ panoramic
images, and relies on inpainting during inference to extend the input images into complete panora-
mas. Building on this, PanFusion (Zhang et al., 2024) adds an additional branch to Stable Diffusion,
enabling the simultaneous generation of panoramas and multi-view images. MVDiffusion (Tang
et al., 2023) introduces correspondence-aware attention (CAA) layers, where each point attends only
to other points within its local neighborhood. More recently (Yuan et al., 2024; Wang et al., 2023)
proposed predicting the homography between input views and use a diffusion model to generate the
unseen regions of the panorama. Lastly, LayerPano3D (Yang et al., 2024) combines multi-view and
inpainting models to generate multi-layer panoramas, allowing for somewhat limited exploration
within the scene boundaries. Other notable works in this area include (Li et al., 2024a; Zhou et al.,
2024; Hara & Harada, 2024; Liu et al., 2024a).

2.3 MULTI-VIEW AND PANORAMA VIDEO GENERATION

The emergence of powerful open-source video diffusion models (Blattmann et al., 2023a; Chen
et al., 2024; Zheng et al., 2024) gave rise to the development of several approaches aimed at aug-
menting them with multi-view capabilities (Watson et al., 2024) and extending them to generate
360◦ panoramic videos. For example, 360DVD (Wang et al., 2024a) builds upon a pretrained text-
to-video model (Guo et al., 2023) by adding a 360-adapter and fine-tuning it on equirectangular
projections of panoramic videos. This enables the creation of 360◦ videos from a text inputs, with
the option to condition on optical flow videos. Generative Camera Dolly (Van Hoorick et al., 2024)
extends the image-conditional Stable Video Diffusion (Blattmann et al., 2023a) into a video-to-video
model. Given an input video of a scene, (Blattmann et al., 2023a) can generate a synchronized video
from a different camera trajectory. 4K4DGEN (Li et al., 2024c) draws inspiration from MultiDif-
fusion (Müller et al., 2024) and introduces a training-free method that denoises multiple views of
a spherical panorama simultaneously. Most similar to our method is Panacea (Wen et al., 2024),
which is inspired byVideoLDM (Blattmann et al., 2023a) and extends StableDiffusion by adding
multi-view and temporal attention layers, trained on multi-view driving videos. Notably, Panacea
relies on a dynamic birds’ eye view (BEV) representation as conditioning, which is most commonly
available in the case of driving scenes, thus effectively limiting its applications to driving scenes.

3 METHOD

In this work, we introduce VideoPanda, a multi-view video diffusion model capable of generating
long panoramic 360◦ videos from a text prompt or a perspective video. Below, we describe our
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Figure 2: We divide the equi-rectangular video into 8 perspective views via projection. Our diffusion
model consists of interleaved spatial, multi-view, and temporal blocks, conditioned on text prompts.
Attention is used to propagate information through the multi-view videos to ensure consistency.
The input views are embedded using the ray directions as visualized by the color map behind the
perspective images.

multi-view video diffusion model (§ 3.1), detail the model training strategy (§ 3.2), and finally de-
scribe the approach for auto-regressively generating long videos (§ 3.3). Fig. 2 provides an overview
of our general model design.

3.1 MODEL DESIGN

We train a multi-view video diffusion model that, given a text prompt and an optional set of con-
ditioning frames, is able to jointly generate multiple multi-view consistent videos of different view
directions that together cover a full 360° panoramic video.

Our architecture builds on video latent diffusion models (VLDM) (Blattmann et al., 2023b) by in-
corporating multi-view attention layers inspired by MVDream (Shi et al., 2023b) and injecting view
direction embeddings into the model. Specifically, we add 3D multi-view self-attention layers that
perform self-attention across images from different views at each frame of the video. These layers
are combined with the existing 2D self-attention layers in a residual manner using zero-initialized
convolutions, similar to ControlNets (Zhang et al., 2023). To provide the model with an understand-
ing of viewing directions, we use ray direction representations that are the same height and width
as the latent representations and encode the ray directions at each spatial location, following (Gao*
et al., 2024). These rays are defined relative to the camera pose of the first view, and are invariant to
global 3D translations and rotations. The view embeddings are concatenated channel-wise with their
corresponding latents and are fed into the model at the first layer using zero-initialized convolutions.

Given a set of target and optional conditioning frames of size 512× 512× 3, each image is encoded
into a latent representation of size 64 × 64 × 4 using a variational autoencoder (VAE) (Kingma,
2013b). To enable conditioning on specific frames, we adopt the approach from CAT3D (Gao*
et al., 2024). During training, the latents corresponding to the non-conditioned views are noised
according to the diffusion process, while the latents of the conditioning frames are kept mostly
clean. Following prior work (Ho et al., 2021), to improve robustness and prevent overfitting, we
use noise augmentation by adding a small amount of noise σ to the input conditioning latents and
pass this value σ to the model as well. A binary mask is concatenated channel-wise to distinguish
between the input conditioning latents and the target frames to be predicted. The diffusion model is
then trained to learn the joint distribution of these latent representations conditioned on the inputs.
We incorporate classifier-free guidance (CFG) (Ho & Salimans, 2022) by randomly dropping the
conditioning frames with a probability of 10% during training.

Finally, similar to prior works (Hoogeboom et al., 2023), we observe improved performance when
shifting the noise schedule towards higher noise levels, as our model generates more image frames
than the base video model. Please see Appendix A.2 for more details. We also find that using a v-
prediction objective (Salimans & Ho, 2022) leads to more stable training compared to ϵ-prediction,
particularly with high-noise schedules.

4
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Figure 3: The model is trained using three frame conditioning regimes. (a) No image conditions
and the initial inputs are pure noise; (b) Conditioning only on the first view of the video; (c) Condi-
tioning on the first frame and first views for auto-regressive video generation. At inference time, we
autoregressively condition on long videos by using conditioning (b) to generate the first window and
subsequently using the last multi-view images row from the previous time step (the shaded region)
as the first row input to our model using condition-type (c).

3.2 TRAINING STRATEGY

We initialize the model from a pretrained text-to-video diffusion model (Blattmann et al., 2023b)
which has been trained on web-scale video data. Following prior works (Shi et al., 2023b), the
weights of the multi-view attention layers are initialized with the same weights as the existing 2D
self-attention layers to accelerate training.

As we want to adjust the noise schedule (shifting toward higher noise levels) and change the
model parametrization from ϵ-prediction to v-prediction without overfitting the model to our limited
panorama videos, we train our model in two stages. In the first stage, we finetune the single-view
text-to-video model from the existing checkpoint, adapting it to the new noise schedule and loss
objective. This stage is performed on a subset of the original pretraining data with standard cap-
tioned videos of 16 frames and requires minimal training time, as the model adapts quickly to these
changes. In the second stage, we freeze the spatial layers of the video model and finetune the rest
using multi-view video data.

During training, we randomize both the number of views and video frames to enhance the model’s
generalization and prevent overfitting to the limited 360◦ video data, effectively using this as a form
of data augmentation. The model is trained to generate multi-view video sequences represented as
view-frame matrices of varying sizes, such as 3 × 16, 4 × 12, 6 × 8, and 8 × 6, where the first
dimension refers to the number of views and the second to the number of frames. We refer to this
randomization as random matrix going forward. This allows the model to generalize to new view-
frame combinations, like 8× 16 matrices, during inference—configurations that couldn’t fit in GPU
memory during training.

To handle multiple conditioning scenarios, we train a single general model that can generate multi-
view videos conditioned on text, video, or a combination of video and the first frame’s multi-view
images for autoregressive generation using a multi-task training strategy. Specifically, the binary
mask is randomized to reflect these different conditioning setups: all zeros (text conditioning), the
first column of ones with zeros elsewhere (video conditioning), or both the first row and first column
set to ones (autoregressive generation), with equal probability. See Fig. 3 for a visualization of the
different types of conditioning.

3.3 AUTOREGRESSIVE GENERATION OF LONG VIDEOS

To generate long panoramic videos, we use an autoregressive approach (see Fig. 3). Initially, condi-
tioned on the first 16-frames of the input video, the model generates an 8 × 16 view-frame matrix.
For subsequent frames, the model is conditioned on the next 15 new frames of the video (a column)
and the last frame from all 8 views (a row) generated in the previous step. This iterative process
allows us to generate long, coherent video sequences with smooth transitions and consistent motion.
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Ours

360DVD

A view of a tree trunk surrounded by fallen leaves, with branches 
extending outwards and a blurred background suggesting a garden 
or park setting.

A view of snow-covered mountains, a partially frozen body of water, 
and floating ice chunks.

A view of the Church of the Intercession on the Nerl, with its iconic 
green onion-shaped dome, situated near a flooded river, surrounded 
by snow-covered landscapes and distant settlements.

Figure 4: Qualitative figure compare text conditional video generation, 360DVD VS ours. The pixel
quality of 360DVD is lower and distortion near the poles (top and bottom) is worse.

Autoregressive generation, however, tends to accumulate errors over time, leading to a gradual
degradation in image quality and noticeable blurring after a few iterations. The noise augmenta-
tion introduced in § 3.1 helps mitigate this issue, consistent with findings from prior work (Valevski
et al., 2024). This noise augmentation serves two purposes: it acts as a data augmentation technique
to improve generalization, and it allows the model to self-correct by learning to recover clean infor-
mation from noisy samples generated in previous iterations. Please see Appendix A.3 for details.

4 EXPERIMENTS

In this section, we explain the details of our experimental setting and our methodology for evalua-
tions. We then present qualitative and quantitative comparisons to assess our models efficacy against
baselines in text and video-conditional generation, demonstrate our models extension to long video
generation and ablate key components of our training strategy. Additional training details are in-
cluded in Appendix C.

4.1 DATA

Training Data. We train our model on the WEB360 (Wang et al., 2024a) dataset, which contains
2,114 panorama video clips with automatically generated captions. Each clip is 100 frames in length,
totalling approximately 3 hours of footage that predominantly features panning shots of outdoor
scenery.

Evaluation Data. For the video conditioning task, we evaluate our method using two sources of
data:

• In-distribution condition input: We gather 100 unseen panorama video clips from Youtube and
extract 90 FOV horizontal perspective views for the input conditioning. Prompts are obtained by
captioning the middle frame of the conditioning video using CogVLM (Wang et al., 2024b).

6
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OursMV-Diffusion

A view of a church with its iconic green onion-shaped dome, situated near a flooded river, surrounded by snow-covered 
landscapes and distant settlements.

A view of a vast grassy field horses grazing.

Figure 5: Qualitative figure comparing video conditional generation, MVDiffusion VS ours. Note
that MVDiffusion can only outpaint each frame of the video separately. MVDiffusion is worse at
maintaining the structure and style of the input view globally compared to ours. For example the
sky color and the scales and depths of objects is less consistent for MVDiffusion.

• Out-of-distribution condition input: We use generated videos from models including
SORA (Brooks et al., 2024), Runway (Runway, 2024) and Luma (Lumalabs, 2024). These videos
are cropped and resized to a resolution of 512 × 512 and treated as horizontal side views. When
available, we use the original prompt; otherwise, we caption the middle frame with CogVLM.

Since the out-of-distribution condition inputs do not originate from 360 videos, we cannot compute
metrics that require ground truth images, such as pairwise FVD (Unterthiner et al., 2018) and the
reconstruction metrics. Instead, we only evaluate them qualitatively. For the text conditional task,
we use two data source: 100 prompts which are derived from captioning the in-distribution videos
and 30 prompts generated by ChatGPT.

Figure 6: A visualization
of the 8 frames used dur-
ing training, consisting of
6 horizontal views with 90
FOV and 2 views for the
top/bottom with 100 FOV

Processing. We first convert the equirectangular video data into
multiple perspective views with overlap. A visualization is shown in
Fig. 6. Similar to MVDiffusion we cover the horizontal side views
with multiple perspective views of 90° FOV at 0° elevation. We
empirically observed that the excessive amount of overlap stemming
from the use of 8 horizontal views was unnecessary and thus we only
use 6 views instead. These are evenly spaced in azimuth in offsets of
60°. We also explored using just 4 views which results in no over-
laps between views similar to a cubemap representation but found
that it was more difficult for the model to maintain consistency be-
tween views without overlaps. Additionally, to obtain a full panorama
we add two perspective views looking straight up (90° elevation) and
down (-90° elevation) to cover the ‘sky’ and ‘ground’ views. We in-
crease the FOV for these two to 100° which is large enough to cover
all pixels in the panorama when combined with the 6 side views.

4.2 INFERENCE

Unless otherwise specified, we use a DDIM sampler with 25 steps and classifier-free guidance (CFG)
to improve generation quality. In the text-conditional setting, we use a CFG scale of 8.0. For the
video-conditional setting, we use a CFG scale of 4.0, where the unconditional score prediction does
not take text nor video as input.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

To facilitate fair evaluation, we use a common equirectangular format with resolution 512 × 1024
for a 16 frame long panoramic video and compose our multi-view results into it by warping each
of the images with bicubic interpolation. The pixel values in regions with overlap between views
are uniformly averaged. When evaluating our generations, we either directly evaluate the stitched
equirectangular video or following MVDiffusion, we crop 8 horizontal perspective view videos from
it, since some metrics are more naturally evaluated using perspective views as input.

4.3 METRICS

Validation Pair FID and FVD. On validation sets we compare the set of generated frames to
their paired real unseen frames in aggregate distribution. This evaluates both the quality and favors
generations that adhere more closely to the true frames.
Reconstruction Metrics. In the video-conditional setting, we directly compare generated frames
to their real counterparts as is commonly done for evaluating novel view synthesis performance. We
use PSNR, SSIM and LPIPS (Zhang et al., 2018). Note that evaluating reconstruction metrics in
the conditional generative setting can be problematic as the desired output is inherently ambiguous.
Namely, direct comparisons with the ground truth can favor mode covering solutions, that may be
lower in diversity.
Clip Score (Clip). We evaluate alignment to the supplied text prompt via clip score.
User Preference. We additionally conduct a user study, where equirectangular video/images from
our model and the baseline are shown side-by-side to the user along with the conditioning input and
they are asked to select their preferred result. For this setting, we randomly subsample 20 videos for
each comparison and conducted the study with 6 users.

4.4 TEXT-CONDITIONAL GENERATION

We evaluate our model’s ability to generate multi-view videos from a text prompt and compare it to
360DVD (Wang et al., 2024a) that is our primary baseline. A quantitative comparison is summarized
in Tab. 1. We note that our model outperforms 360DVD across all metrics. A side-by-side visual
comparison is provided in Fig. 4, demonstrating that VideoPanda produces videos with higher image
quality and sharper details. In contrast, 360DVD’s outputs extremely blurry and undersaturated
results that suffer from insufficient warping near the top and bottom of the panoramas, hence leading
to noticeable stretching artifacts when viewed in 3D, as we show in Appendix Fig. A5.

Panorama Horizontal 8 views User
FIDpair ↓ FVDpair ↓ Clip ↑ FIDpair ↓ FVDpair ↓ Clip ↑ Pref↑

360DVD 160 1942 28.4 128.7 958.2 27.6 28%
Ours (multi-task) 136 1258 29.8 91.3 600.5 28.9 72%

Table 1: Quantitative comparison for text-conditional panorama video generation.

4.5 VIDEO-CONDITIONAL GENERATION

Our video-conditional model accepts both a single view video and a text prompt which can be ob-
tained through captioning the input view. During training, we randomly select one of the horizontal
views, as shown in Fig. 6,as the conditional one and do not apply any noise on it. We exclude con-
ditioning on top and bottom views as this case is less common. During inference we directly treat
the input video as one of our horizontal views.

For general videos, there are no existing models that consider the video-conditional panoramic video
generation task. Therefore, we compare our model to existing image-conditional panorama image
generation model, MVDiffusion, at the frame level. In particular, for our method, we first generate
a 16 frame panorama video and then extract the middle frame. We compare against the outpainting
model from MVDiffusion and report the results in Tab. 2. Since MVDiffusion does not cover the
sky or ground regions, we only evaluate metrics on the 8 horizontal views. Our method scores
significantly better on FID and reconstruction metrics, while being slightly worse on the clip score.
Qualitatively we find that our method is much better at maintaining the style and scene scale/depth

8
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Horizontal 8 views User
FID ↓ Clip ↑ PSNR ↑ LPIPS ↓ SSIM ↑ Pref↑

MVDiffusion 96.8 29.7 13.4 0.568 0.485 23%
Ours (multi-task) 63.2 28.5 17.6 0.457 0.636 77%

Table 2: Quantitative comparison of single view video-conditional panorama generation with image
panorama outpainting method MVDiffusion. We extract the middle frame from our 16 frame gen-
erations to compare at a per image level.

Ours Ablation Panorama Horizontal 8 view videos
multi-task rand-mat FID↓ FVD↓ Clip ↑ PSNR ↑ FID ↓ FVD ↓ Clip ↑ PSNR ↑

✓ ✓ 98 916 29.6 15.9 49.8 258 28.6 17.6
× ✓ 103 861 28.9 16.0 48.4 255 28.2 17.3
× × 124 999 27.1 17.0 69.8 445 26.0 18.5

Table 3: Quantitative ablations of our model on single view video-conditional panoramic video gen-
eration. Training our model to be multi-task capable incurs a negligible drop in performance. Ran-
domizing the matrix of frames during training results in much improved video quality at a slightly
worse color consistency as measured by PSNR.

in the other generated views as demonstrated in the qualitative examples from Fig. 5. We also
tried comparing to PanoDiffusion but found that this model is prone to over-fitting to indoor room
scenes. We additionally, perform video-conditional generation on out of distribution videos and
show generated results in Fig. 1 and our project website.

4.6 AUTOREGRESSIVE GENERATION

To demonstrate our model’s performance on long video generation, we run 4 iterations of autore-
gression, resulting in a total of 4 × 15 + 1 = 61 frames for the panorama videos. We observe that,
despite using noise augmentation, autoregressive errors gradually accumulate, causing the scene to
become blurry. To mitigate this, the noise-augmentation value can be increased during inference
to regenerate finer details, though this introduces slight flickering due to the newly added details.
Ideally, a dynamic system could be developed to increase the value when blurriness occurs and re-
duce it otherwise, minimizing flickering while keeping pixel quality high—an avenue we leave for
future work. We provide examples of extracted frames from our autoregressively generated videos
in Fig. 1 and Fig. B1. Please see our website for best viewing of long video generations.

4.7 ABLATIONS

We ablate the main components of our method and include additinal ablations on shifting the noise
schedule of the base model, the architecture for conditioning on image frames and noise augmenta-
tion in Appendix A.

Random Matrix vs. Fixed Matrix. During training, we can fit a maximum of 6 time frames
with 8 multi-views in memory. However, at inference we wish to generate 16 frames which is the
native frame length for our base video model and aligns with 360DVD. To enable this we employ
the randomized matrix strategy described in § 3.3. To evaluate the benefit of this strategy, we
compare 8 × 16 video-conditional generations from a model that was trained with the “random-
matrix” strategy using an even mix of 8 × 6, 4 × 12 and 3 × 16 with one using a “fixed-matrix”
strategy trained with only the 8 × 6 setting. We include a quantitative comparison in Tab. 3 and
qualitative examples in Fig. 7. From the comparison, we see that the fixed-matrix trained model can
create more blurry regions in its generations which is also reflected in significantly higher FID and
FVD and somewhat lower clip score. Reconstruction metrics are very similar but slightly prefer the
fixed-matrix model. We hypothesize that focusing training more on the 8 view case could slightly
improve the global color consistency at the cost of worse visual quality.
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Random 
matrix

Full 
matrix

Figure 7: Qualitative figure comparing full matrix and random matrix training. Random matrix
training generates more high frequency details.

Multi-
task

Single-
task

Figure 8: Qualitative figure comparing our single task vs multi-task model both generating 6 views
on out of distribution video. Multi-task training provides better pixel quality. Moreover, with multi-
task training, we can train one unified model for different tasks including video conditional genera-
tion and auto-regressive generation.

Multi-task Training. We find that we can train one unified model to handle text-only conditioning,
single view video conditioning and autoregressive conditioning. In Tab. 3 we also quantitatively
compare our multi-task model with one only trained for the video conditional setting. For all the
metrics, the multi-task model is marginally worse but very close indicating that we can train our
model jointly with negligible impact to the quality. We also observe on some OOD conditions, that
the random conditioned model tends to improve pixel quality slightly as seen in Fig. 8 which could
be due to better generalization from multi-task training.

5 CONCLUSION

We present VideoPanda, a model for panoramaic video generation. VideoPanda augments a pre-
trained video diffusion model with the ability to generate consistent multiview videos that together
cover a full panoramic video. We train VideoPanda in a unified manner with flexible conditioning
supporting text and single-view video-conditioning and further support auto-regressive generation
of longer videos.

Although VideoPanda demonstrates compelling results, there is still room for further improvement.
The generation capabilities of our model are restricted by the performance of the base video model
and further improvements could be obtained by applying these techniques to more powerful video
diffusion models. Our model currently requires the field of view and elevation of the conditioning
input to be sufficiently close to the configuration used in training. This could be addressed by es-
timating these parameters as demonstrated by recent work in the image generation domain (Yuan
et al., 2024). Our autoregressive generation balances a trade-off between maintaining image qual-
ity over time and consistency between windows which motivates investigating methods that could
efficiently achieve both.
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