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Abstract

We prove that training a source model optimally for its own task is generically suboptimal
when the objective is downstream transfer. We study the source-side optimization problem
in L2-SP ridge regression and show a fundamental mismatch between the source-optimal
and transfer-optimal source regularization: outside of a measure-zero set, 7§ # 75. We
characterize the transfer-optimal source penalty 75 as a function of task alignment and
identify an alignment-dependent reversal: with imperfect alignment (0 < p < 1), transfer
benefits from stronger source regularization, while in super-aligned regimes (p > 1), transfer
benefits from weaker regularization. Additionally, in isotropic settings, the decision of
whether transfer helps is independent of the target sample size and noise, depending only on
task alignment and source characteristics. We verify the linear predictions in a synthetic
ridge regression experiment, and we present experiments on MNIST, CIFAR-10, and 20
Newsgroups as evidence that the source-optimal versus transfer-optimal mismatch persists
in standard nonlinear transfer learning pipelines.

1 Introduction

1.1 Background and Motivation

A fundamental question in transfer learning is source-side optimization: how should we train the source
model if the objective is downstream transfer? We prove a source-optimal versus transfer-optimal mismatch:
the source regularization that is optimal for the source task is generically suboptimal for transfer, and outside
of a measure-zero set we have 75 # 7¢. This mismatch is alignment-dependent: in the standard imperfect-
alignment regime (0 < p < 1), transfer benefits from stronger source regularization than source-optimal
training, while in a super-aligned regime (p > 1) transfer benefits from weaker regularization.

Intuitively, this divergence arises from a geometric mismatch between the source signal and the useful signal for
transfer. The source estimator [y naturally targets the source vector wgy. However, the optimal initialization
for the target task is the projection of the target signal w; onto the source, which corresponds to pwg. In
the imperfect-alignment regime (0 < p < 1), the source estimator is systematically "too large" relative to
the target projection; stronger regularization is required to shrink the estimator towards the optimal scale p.
Conversely, in the super-aligned regime (p > 1), the source estimator is "too small" (under-scaled); weaker
regularization is preferred to preserve more signal magnitude, even at the cost of higher noise-induced variance.
This scaling requirement exists independently of observation noise, though noise further modulates the
optimal set-point. Our claims are exact for linear ridge regression; our contribution is isolating a source-side
mechanism and making it analytically sharp.

Prior theoretical analyses of transfer learning typically fix the source model and optimize the target-side
procedure (or characterize when transfer outperforms training from scratch). In contrast, we study the
source-side optimization problem: how should the source model itself be trained to maximize downstream
transfer performance? To our knowledge, no prior work derives transfer-optimal source regularization or
characterizes its divergence from source-task-optimal training in the general (non-orthonormal) two-task
setting we consider.

We begin our exploration through the lens of evaluating when we would expect positive or negative transfer
from some source task to a target task. Previous work Dar & Baraniukl (2022); Lampinen & Ganguli (2018));
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Yang et al.| (2025) has shown that the phenomenon of negative transfer is a concern, where the model
generated by transfer learning performs worse than if one were to train the model from scratch. Intuition
and previous theoretical work [Lampinen & Ganguli| (2018) suggest that if the tasks and input datasets are
similar enough, transfer learning techniques should help, but if the target task is sufficiently different, or in
the context of continual learning the regime has shifted enough, transfer learning may harm the final model,
introducing bias and noise from the initialization.

There has been notable work examining this phase boundary between when one should expect positive or
negative transfer. In |Dar & Baraniuk (2022)); Dar et al.| (2024), Dar and Baraniuk provided an explicit
quantitative phase boundary for freezing/parameter-sharing style transfer in linear models, giving if-and-only-
if conditions for when shared representations outperform training from scratch. In Dhifallah & Lu/ (2021),
Dhifallah and Lu explored the phenomenon in the context of feature freezing. Additionally, feature-overlap
driven transitions in linear transfer were explored by Tahir, Ganguli, and Rotskoff in [Tahir et al.| (2024)).
Related phase transitions have been characterized for other linear transfer mechanisms such as hard parameter
sharing [Yang et al.| (2025). Complementary asymptotic analyses for fine-tuning from pretrained anchors
via gradient descent appear in Ghane, Akhtiamov, and Hassibi |(Ghane et al| (2024)), who provide universal
asymptotics comparing pretrained versus fine-tuned models under distributional shifts.

The L2-SP (L2-distance to Starting Point) approach was introduced by Li, Grandvalet, and Davoine Xuhong
et al.| (2018), who showed empirical improvements by penalizing deviation from pre-trained parameters.
This approach matches many practical fine-tuning protocols and corresponds to the isotropic elastic weight
consolidation (EWC) penalty in [Kirkpatrick et al.,| (2017). Dar, LeJeune, and Baraniuk |Dar et al.| (2024)
recently analyzed when L2-SP transfer learning outperforms standard ridge regression, assuming task
parameters are related by orthonormal transformations and focusing on optimal tuning of the target-task
regularization given a fixed source model.

Our work fundamentally differs from these prior analyses by solving the source-side optimization problem.
We ask: how should the source model itself be trained to maximize downstream transfer performance? This
shift in perspective reveals a new phenomenon: the transfer-optimal source regularization 7§ generically
differs from the source-task-optimal choice. We additionally emperically verify that this phenomenon persists
across a range of non-linear networks and tasks, providing evidence that this is not an artifact of the linear
setting, but instead may be a general phenomenon related to transfer learning pipelines.

1.2 Setup and Overview of Results

In this paper we formalize transfer learning from the lens of L2-SP ridge regression. In particular, we have
two tasks, Task 0 (the source task) and Task 1 (the target task), as well as corresponding training datasets
(X0,%0) and (X7,y1). We then seek to evaluate the expected out-of-sample risk on Task 1, comparing
the ridge/ridgeless solution trained solely on (X7, y;) to the L2-SP ridge solution found by first training a
ridge/ridgeless model on (Xy, 30), and then using those model parameters as the prior for ridge/ridgeless
training on (X7,y1).

Our analysis builds on the foundational work characterizing ridge and ridgeless regression risk in high-
dimensional settings [Dobriban & Wager| (2018]); [Hastie et al.| (2022), which established the precise asymptotic
behavior of these estimators in overparameterized regimes and revealed phenomena such as double descent
Belkin et al| (2019) and benign overfitting Bartlett et al. (2020). We employ random matrix theory
techniques, specifically the deterministic equivalent framework Bai & Silverstein| (2010); (Couillet & Debbah
(2011); [Dobriban & Wager| (2018)); Hastie et al.| (2022), to derive precise asymptotic characterizations of the
estimators’ risk and identify sharp phase boundaries for transfer benefit.

Our contributions can be outlined as follows. First, Theorem [3.3] provides an if-and-only-if inequality
describing when transfer learning will outperform from-scratch training in the finite data, non-isotropic ridge
regime. As a corollary, we show that in the finite sample, isotropic, ridgeless case the inequality takes a simple
form and is interestingly independent of n; and ¢;. This independence is consistent with prior isotropic
analyses of freezing-style transfer Dar & Baraniuk] (2022); |[Lampinen & Ganguli| (2018), and our finite-sample
isotropic/ridgeless corollary recovers these patterns in the L2-SP setting.
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We then examine deterministic equivalents in the asymptotic limit and Theorem provides a DE charac-
terization and asymptotic boundary for L2-SP ridge transfer with general (non-orthonormal) task vectors.
Corollary examines the isotropic case, where the decision criterion is determined entirely by whether or
not the alignment of the two tasks surpasses a bias and noise term dependent only on Task 0.

From this we arrive at Theorem which identifies the unique 7 (source model ridge penalty) that maximizes
transfer benefit, given a particular task alignment. Outside of a measure-zero set, 7 does not coincide with
the optimal Task 0 ridge parameter, and notably 77 is independent of target sample size but depends on
task alignment. Together, these results give the first explicit analytical boundary for when Euclidean L2-SP
transfer helps with general (non-orthonormal) task vectors in overparameterized ridge models, including
general covariance and DE limits, and provide surprising insights into optimally training source models for
the purpose of transfer learning.

Finally, we establish in Corollary an alignment-dependent phase transition for the optimal source penalty.
Under standard imperfect task alignment conditions, 75 is always strictly greater than the source-optimal
ridge penalty. However, in super-aligned regimes this relationship reverses. This implies that maximizing
transfer benefit requires adjusting regularization based on the geometric relationship between tasks, rather
than optimizing for source performance alone.

Though derived in linear models, these results isolate a core mechanism that may persist in overparameterized
nonlinear networks. Additionally although standard SGD fine-tuning protocols do not necessarily use an
L2-SP penalty, this mechanism models the implicit regularization of SGD fine-tuning where the optimization
trajectory remains anchored in the basin of the initialization. In Section [f] we validate the theory-derived
phase transition in a synthetic ridge setting and then use standard transfer learning experiments on MNIST,
CIFAR-10, and 20 Newsgroups to probe how source-optimal versus transfer-optimal regularization behaves
in nonlinear networks, finding a consistent preference for over-regularization for transfer across all tested
domains.

These results challenge the conventional practice of optimizing source models solely for their own performance.
For practitioners training foundation models intended for transfer, our analysis suggests that regularization
strategies should explicitly account for the downstream transfer objective and source data quality.

The remainder of the paper is outlined as follows. Section [2] sets up the model and assumptions. Section [3]
presents the core mathematical results. Section[d] provides empirical validation of our theoretical predictions on
synthetic data, MNIST, CIFAR-10, and 20 Newsgroups. We conclude with Section [5] and discuss implications
and limitations; proofs are deferred to the Appendix.

2 Preliminaries

We let Zy, Z1 be ng,n1 x p random matrices with entries taken iid with mean 0, variance 1, and finite 2 + €
moments and Lindeberg condition (see Bai & Silverstein| (2010]) for more information). These assumptions
are sufficient for the deterministic equivalents we will examine later, but it is safe also to simplify these
assumptions taking entries in Z; to be iid N(0,1). We additionally assume we are in the overparameterized
regime, with ng,n; < p — 1. We let ¥, ¥; be covariance matrices and X; = ZiE;/Q. Next we have true
signal vectors wo, w; and let y; = X;w; + ¢; where ¢; ~ N(0,02I). We assume the signal norms ||wo|], ||w1||
remain bounded (i.e., O(1)) as p — oo, ensuring that the signal and noise contributions to the risk remain
comparable in the asymptotic limit.

We will frequently quantify task relatedness by the normalized alignment

(wo, w1)

pi=-—".
[|wol[?

We refer to 0 < p < 1 as the imperfect alignment regime and p > 1 as the super-aligned regime.
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We adopt the L2-SP approach found in |[Xuhong et al.| (2018) and examine the following estimators:

Bo(Xo) = argrrgn llyo — XoBlI* + AollBII”
= (Xy Xo + M) 1X{ o,

B0 s=argmin [lgr — X181+ Mul|BI

= (X" X1+ MDD Xy,

(A1 | Bo) = argmﬁin lyr — X18)1% + M llB = Bo(Xo) 12
=X Xi+ MDD (X + N ﬂAo(/\o))-

We also will take the notation that Bo( 0) = hmAO\o Bo()\o) represents the ridgeless estimator (and snnllarly
for Bf and ﬁ? ). In this setting of course Bo represents our ridge/ridgeless estimator for Task 0, ﬁl is our
standard ridge/ridgeless estimator for Task 1, and B is our transfer learning estimator for Task 1 that
takes the solution of Task 0 as its prior.

We note here that BlTL()\l | BO) corresponds exactly to the MAP estimator with Gaussian prior g ~ N(BO, AN
and matches practical L2-SP fine-tuning |[Xuhong et al.| (2018]) and the isotropic EWC penalty [Kirkpatrick
et al.|(2017). While our theoretical analysis assumes an explicit L2-SP penalty, standard fine-tuning protocols
rely on the implicit regularization of SGD initialized at 6y. For limited training horizons, the optimization
trajectory remains anchored in the basin of 8y, functionally approximating the L2-SP constraint. Thus, we
expect the regularization-variance trade-offs identified in our ridge analysis to persist in standard fine-tuning.
We also note that we do not reweight our penalty by a task metric H and stick with standard Euclidean
distancing for our ridge penalty. This differs from the whitened /metric-based formulations and also more
accurately reflects typical implementations of L2-SP and fine-tuning where the penalty is applied in Euclidean
parameter space without whitening.

To evaluate out-of-sample performance of these estimators we will use their expected prediction risk:
Risk (8) := By, on (0,20 [(@] 8 — 2 w1)’] = |5 — w3,

where |[v]|3 = v Sv.

Our first goal is to understand when L2-SP transfer improves expected Task 1 risk, namely when

Risky (57 (A1) > Risky (BT%(A1 | Bo(Mo))).

We will additionally make use of the Frobenius norm in ¥ geometry, which we will denote as follows:
1AlI% = Tr (AT34) .
Finally, some common matrices we will be using deserve their own notation, and we define that here: let
MY = (X X; + MI)

and note that
MIXT X, —T=-nMY.
Additionally let
P, =X} X;,

where X" is the Moore-Penrose pseudoinverse, so that P; is the orthogonal projector in R onto row(X;)
and I — P; projects onto ker(X;).
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3 Mathematical Results

3.1 Finite Sample Risk Formulas

First we recall the expected out of sample risk of ridge regression (see Hastie et al| (2022)) for a modern
reference)

Observation 3.1. The expected risk of ridge regression is

1

1 1
RS () = NE (M w1, | + 07 [|1M) XT3, ]

Next we compute the finite sample risk for L2-SP ridge regression:

Lemma 3.2. The expected risk of the transfer estimator decomposes into pure bias, variance induced by the
Bo prior, and variance induced by estimation error:

R™ (X)) = B™ (M) + og Vi (M) + o7V ()

with:
BT () = B [|[M{Y ML X Xowo — M wi |3,

1 0
VIE () = ME 1M M0 X] 11, £
V) =B [[IMD XTI, ]

The following theorem characterizes when transfer helps by comparing the bias introduced by starting
from zero (standard ridge) versus starting from the source parameters (L2-SP). Transfer succeeds when the
alignment between the tasks, after appropriate filtering through the ridge resolvent and covariance geometry,
exceeds a threshold determined by source bias and noise. Note that since the Task 1 variance portion of risk
for both of these estimators is the same, it is independent from the decision of whether or not transfer will
benefit.

Theorem 3.3. In the finite sample case with \; > 0, we gain benefit from transfer learning (RT*()\;) <
R%(\1)) if and only if:

28 (M) ML X Xowo, M{)w),, |

1 0 1 0
> E |1 M) XJ Xowolg, | +o3E |10 MO X112, ] -

As a corollary, in the ridgeless limit we consider when X; is taken to be isotropic and Gaussian so that the
Wishart formulas apply exactly:

Corollary 3.4. In the finite case, if X; = I and \y = Ag = 0 and X; is taken to be Gaussian, then
RTL(0) < R%(0) if and only if:

2 {uwo, wr) > [fuwo | + 7 —2—.

p—mng—1

A noteable feature of the isotropic ridgeless boundary is its complete independence from n; and op: the
transfer decision depends only on task alignment (wg,w;) and source characteristics (||woll, o0, n0,p). If
transfer outperforms training from scratch with 10 target samples, it also outperforms training from scratch
with 10,000 target samples (and the same statement holds across target noise levels). Collecting more target
data does not change whether transfer helps in this isotropic regime; only task alignment and source-side
quality matter.

We also observe here that the transfer region monotonically shrinks as o¢ grows. Thus, in order to maximize
the potential transfer benefit it is essential to ensure source task noise is as small as possible.
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3.2 Deterministic Equivalents and Asymptotics

We will now examine asymptotics for the ridge phase transition identified above and use deterministic
equivalents to understand the limiting phase transition. To establish the core deterministic equivalents, we
will scale our A; with n; and let 7; = X\;/n;. We define the following ridge resolvent: Let S; := n; 1X,LT X;
and 7; := lim,_,o p/n;. Under standard Bai-Silverstein assumptions (e.g. bounded spectral norm of ¥; and
weak convergence of its empirical spectral distribution), the resolvent (S; + 7;7)~! admits a deterministic
equivalent of the form

_ -1
Qi(ri) = (TJ—F 51‘(71')21') )
where the scalar pair (0;(7;),d;(7;)) is the unique positive solution to

0i(mi) = n%-Tr (ZiQi(73)), di(m:) = 1++Z(Tl)

We will use the notation A,, < B, to denote deterministic equivalent convergence, meaning that for any
sequence of deterministic matrices D,, with uniformly bounded spectral norm, we have Tr(D,,(4,, — By,)) — 0
almost surely as n — oo. This is the standard notion of weak deterministic equivalence used in random
matrix theory Bai & Silverstein| (2010).

First, the following deterministic equivalents will be useful:

Observation 3.5. Under standard Bai-Silverstein conditions (Bai & Silverstein| (2010)), as p,n; — oo with
p/mi = i
nlM}Si) =(S1+7nl) ' =< Qi(n),
>\1M,(\? = 11Q1(71),
and
"0M§3)X0TX0M§3) = Qo(70) — T0Qo(70)*.
Finally, define ¢(7, 71) by:

lim p~" Tr (Q1(m1)E1Q1(11) (Qo(10) — 70Q0(10)?)) ,

p—o0

Under the Bai-Silverstein assumptions, the eigenvalue distributions of ¥y and ¥; converge weakly and
the resolvents @;(7;) are uniformly bounded, ensuring that this limit exists and equals the limit of the
corresponding trace per dimension. By independence of Xy and X, we may substitute these deterministic
equivalents into the results from Theorem [3.3] to arrive at the following asymptotic decision criterion:

Theorem 3.6. In the asymptotic limit, we gain benefit from transfer learning (RT* (A1) < R°(\1)) if and
only if:

2(Q1(m1)( = 10Q0(70))wo, Q1(T1)w1)s,

> (|Q1(m1)(I = 70Qo(70))woll3:, + 0570t (T0,71).

And in the isotropic case:

Corollary 3.7. In the isotropic case where ¥o = X1 = I, we (asymptotically) gain benefit from transfer
learning (RTL(\1) < R%(\1)) if and only if:

2 <’LU(),U}1> > (]. — Toao)||w0”2 + Jg’)/oao,
where aqg is the unique positive solution to

T0Y0as + (10 +1 —y9)ag — 1 = 0.
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As in the finite sample isotropic ridgeless case, in the isotropic DE (ridge) setting this decision boundary is
independent of 71, v1, and o1. In particular, whether transfer helps is a source-side question: it does not
depend on target sample size, target noise, or target regularization.

As in the finite sample isotropic ridgeless case, alignment of the two tasks must pass a threshold that is
independent of other target task characeristics. This transfer benefit region is again monotonically shrinking
in 0y, and may be maximized by minimizing the quantity on the right. By fixing o we arrive at the following
result:

Theorem 3.8. In the asymptotic setting with isotropic data and fixed source model overparameterization g,
for any fized normalized alignment p = (wq,w1) /||wo||?, there exists a unique source ridge penalty ¢ that
mazimizes the transfer benefit AR = RS — RTL. Additionally, whenever (wg,w:) # ||wo||?, the optimal 7
for transfer learning differs from the optimal ridge penalty for Task 0 performance.

As a corollary, we identify that there is a consistent relationship between transfer-optimal and source-optimal
regularization.

Corollary 3.9. Let 75 be the transfer-optimal reqularization penalty and 7& be the source-optimal regularization
penalty.

o If the tasks are imperfectly aligned (0 < p < 1), then 75 > 7§ (transfer requires stronger regularization,).

o If the tasks are super-aligned (p > 1), then 7§ < 7§ (transfer requires weaker regularization).

This phase transition depends solely on task alignment and holds for all noise levels og > 0.

In particular, this shows that when the tasks are imperfectly aligned (0 < p < 1), the transfer-optimal
solution always uses more regularization than one would typically use for the source task alone.

4 Empirical Validation

In this section we provide a controlled synthetic experiment to validate the precise phase transition predictions.
Additionally, while our theoretical analysis focuses on linear ridge regression, we study nonlinear networks
on MNIST, CIFAR-10, and 20 Newsgroups to test whether the source-optimal versus transfer-optimal
misalignment persists beyond linear models.

4.1 Synthetic Validation of Phase Transition
4.1.1 Experimental Setup

To verify the alignment-dependent phase transition predicted by Corollary [3.9] we conduct a controlled
synthetic experiment using the generative model defined in Section We set p = 500, Nsource = 250 (v = 2.0),
and niarger = 50. We fix the source noise 0’3 = 1.0 and target noise 0% =0.1.

We sweep the task alignment p = (wq,w1) /||wo||? from 0.5 to 1.5, covering both the imperfect alignment
regime (p < 1) and the super-aligned regime (p > 1). For each alignment level, we: 1. Generate source and
target data according to the specified alignment. 2. Train source ridge models over a logarithmic grid of
regularization strengths A. 3. Select the source-optimal A§ that minimizes risk on the source task. 4. For
each trained source model, fine-tune on the target task (using L2-SP with fixed target regularization A\; = 0.1)
and identify the transfer-optimal source regularization A}, . 5. Compute the ratio A}, /\§.

We repeat this procedure across 10 random seeds to estimate confidence intervals.
4.1.2 Results

Figure [1] displays the ratio of transfer-optimal to source-optimal regularization as a function of task alignment.
The results match our theoretical predictions:
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Phase Transition: Transfer-Optimal Regularization
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Figure 1: Synthetic validation of the alignment-dependent phase transition. The y-axis shows the ratio
of transfer-optimal to source-optimal regularization (A, /A%). A ratio > 1 indicates over-regularization is
beneficial (Standard Regime), while < 1 indicates under-regularization is optimal (Super-Aligned Regime).
The shaded region represents the 95% confidence interval over 10 seeds.

o Over-Regularization Regime (p < 1): When alignment is imperfect (standard transfer), the ratio
is consistently > 1, indicating that A}, > Ag. For example, at p = 0.8, the transfer-optimal penalty
is approximately 1.6x larger than the source-optimal penalty.

o Under-Regularization Regime (p > 1): When the tasks are super-aligned, the ratio drops below
1, confirming that A}; < A%. At p = 1.2, the optimal source penalty for transfer is roughly 0.7x the
source-optimal value.

e Phase Transition: The crossover occurs precisely at p = 1.0, matching the theoretical boundary
where the target signal magnitude equals the source signal magnitude.

4.2 Nonlinear Transfer Learning Experiments

To test whether the source-optimal versus transfer-optimal mismatch persists beyond linear models, we
conduct standard transfer learning experiments across three domains: vision (MNIST, CIFAR-10) and text (20
Newsgroups). Each experiment follows the same protocol: (1) train source models with varying weight decay,
(2) transfer to target task with fixed fine-tuning protocol, (3) compare source-optimal versus transfer-optimal
source regularization.

4.2.1 Experimental Setup

MNIST. We use a 2-layer MLP (784—128—64—5) and split digits into source (round digits: 0,3,6,8,9)
and target (angular digits: 1,2,4,5,7). The target training set is subsampled to 10% to create a realistic
limited-data transfer scenario.

CIFAR-10. We use a small CNN (two conv layers, one FC layer, ~530K parameters) and split classes into
source (animals: bird, cat, deer, dog, frog) and target (vehicles+: airplane, automobile, horse, ship, truck).
The target training set is subsampled to 5%.
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Source-Optimal vs Transfer-Optimal Weight Decay
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Figure 2: Source-optimal versus transfer-optimal weight decay across three standard transfer learning
benchmarks. Each panel shows source accuracy (solid) and transfer accuracy (dashed) as a function of
source weight decay, with vertical lines marking optimal values. Across all domains, transfer-optimal
performance occurs at stronger source regularization than source-optimal performance, consistent with the
over-regularization regime for imperfectly aligned tasks.

20 Newsgroups. We wuse TF-IDF features (5000 dimensions) with a 2-layer MLP
(5000—256—128—num_ classes) and split categories into source (tech: comp.*, sci.*) and target
(non-tech: rec.*, talk.*, misc.*, alt.atheism). The target training set is subsampled to 10%.

For all experiments, we sweep source weight decay over [0,107°,5x107°,1074, 5x107%,1073,5x1073,1072]
and use a fixed transfer protocol (learning rate 10~3, weight decay 10~*). Results are averaged over 5 random
seeds.

4.2.2 Results

Figure [2| shows that across all three domains, the source-optimal and transfer-optimal regularization differ
substantially. In each case, transfer-optimal performance (red dashed line) occurs at stronger source
regularization than source-optimal performance (green dashed line), consistent with the over-regularization
regime predicted by our theory for imperfectly aligned tasks.

MNIST: Source accuracy peaks at low weight decay (~107%), while transfer accuracy peaks at higher weight
decay (~1072), a difference of approximately three orders of magnitude.

CIFAR-10: Source accuracy peaks around 1073, while transfer accuracy peaks at 1072, demonstrating the
mismatch persists in convolutional architectures.

20 Newsgroups: Source accuracy peaks at low weight decay (~107?), while transfer accuracy peaks around
10~3, showing the phenomenon extends to text classification with TF-IDF features.

These results consistently validate that source-optimal training is suboptimal for transfer learning across
vision and NLP domains, with transfer uniformly preferring stronger source regularization.

5 Conclusion

We have proven a fundamental misalignment in transfer learning: training a source model to minimize its own
risk is generically suboptimal for maximizing transfer benefit. This source-optimal versus transfer-optimal
divergence implies that source regularization should be chosen with the downstream objective in mind and
depends on task alignment. We provide explicit transfer-versus-scratch boundaries for L2-SP ridge that hold
at finite p,n and extend to general covariance via deterministic equivalents. In isotropic limits, whether
transfer helps is independent of target sample size and noise: if transfer helps with 10 target samples, it helps
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with 10,000. Optimizing the source model target task performance yields a unique source ridge 7 that differs
generically from the source-task-optimal choice.

These results give an analytical foundation for the idea that pretraining optimized for transfer differs
fundamentally from pretraining aimed at standalone accuracy. They suggest re-evaluating regularization and
objective design in pretraining, foundation-model, and continual-learning pipelines. In particular, practitioners
training source models with the goal of downstream transfer should carefully consider the alignment between
source and target tasks. In standard imperfect alignment scenarios, stronger regularization is required to
shrink the source estimator towards the optimal target projection.

Our experiments on MNIST, CIFAR-10, and 20 Newsgroups indicate that the misalignment between source-
optimal and transfer-optimal regularization persists beyond the linear setting across vision and text domains. In
all nonlinear regimes we tested, the transfer-optimal choice consistently involves stronger source regularization
than source-optimal training. We did not observe a super-aligned regime where under-regularizing the source
improves transfer, suggesting that exhibiting the under-regularization phase may be substantially more
difficult in standard deep-learning pipelines where feature learning becomes an important aspect of the model
training process.

5.1 Practical Implications

Our results provide several concrete insights for practitioners working with transfer learning systems. First,
minimizing source noise is critical for maximizing the region of positive transfer, as the transfer benefit shrinks
monotonically with ¢2. This suggests that investing in data cleaning, noise reduction, or improved labeling
for the source task can pay significant dividends for downstream transfer, beyond simply improving source
task performance. Second, the independence of the transfer decision from target sample size and noise in
isotropic settings suggests that if transfer is beneficial for one target dataset size, it remains beneficial across
different scales of target data, provided the task structure remains similar. This can simplify model selection
in scenarios where target data availability is uncertain or variable.

The alignment-dependent phase transition provides actionable guidance for model training in linear ridge:
when tasks exhibit standard imperfect alignment ({(wg,w;) < |Jwo||?), one should increase regularization
beyond what would be optimal for source task performance alone, effectively trading off some source
performance for better transferability. In the nonlinear regimes we tested across MNIST, CIFAR-10, and 20
Newsgroups, we consistently observed this over-regularization behavior for transfer.

Since most practical purposes likely lie in the standard imperfect alignment regime, it is likely the case that
over-regularization during source training may lead to better outcomes for transfer learning. Additionally, as
noted in Figure [T} this divergence can be quite non-trivial, where even with a relatively strong alignment of
0.8, the transfer-optimal regularization penalty was ~ 60% higher than source-optimal.

We note here that while our analysis focuses on L2-SP ridge regression, our experiments across MNIST,
CIFAR-10, and 20 Newsgroups indicate these insights extend qualitatively to more complex fine-tuning
protocols in deep learning, suggesting that foundation model training pipelines may benefit from regularization
strategies that explicitly account for downstream transfer objectives rather than solely optimizing upstream
performance.

5.2 Scope and Future Directions

Our results establish the source-optimal versus transfer-optimal phenomenon in the tractable linear setting
and provide a foundation for understanding transfer in complex models. The precise functional forms and
boundaries we derive are specific to linear ridge regression. Our experiments on MNIST, CIFAR-10, and 20
Newsgroups suggest the source/transfer regularization misalignment persists in nonlinear networks across
vision and text domains, while the super-aligned under-regularization regime appears difficult to realize in
standard deep-learning setups. We assume Gaussian noise and employ either exact isotropy or Bai-Silverstein
conditions for our deterministic equivalent results. Extensions to more general noise models and covariance
structures remain important open problems.
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We focus on the L2-SP protocol, which penalizes Euclidean distance from the source parameters. This differs
from more sophisticated fine-tuning methods that might incorporate task-specific metrics, feature-space
regularization, or adaptive penalties based on parameter importance. Additionally, L2-SP represents a
closed-form ridge solution, while practical deep learning relies on iterative optimization via gradient descent.
However, the implicit regularization of early-stopped SGD typically keeps parameters close to initialization,
qualitatively matching the L2-SP behavior. The recent work of Ghane, Akhtiamov, and Hassibi |Ghane et al.
(2024) on gradient-descent-based fine-tuning provides complementary insights for the iterative case, and
connecting these perspectives remains an interesting direction.

Finally, our results focus on two-task transfer, whereas many practical scenarios involve continual learning
across multiple sequential tasks or multi-task learning with many simultaneous objectives. The interplay
between multiple tasks and optimal source regularization represents a rich area for future investigation.

Connecting our ridge-based findings to gradient-descent dynamics in deep learning represents an important
bridge to practice. Understanding how implicit regularization in over-parameterized neural networks interacts
with the mechanisms we identify could inform training procedures for foundation models. In particular,
investigating whether early stopping, learning rate schedules, or architectural choices can implicitly achieve
transfer-optimal regularization even when explicit penalties are not used would provide actionable insights
for practitioners. Analyzing multi-task and continual learning scenarios where multiple target tasks must
be considered simultaneously could reveal how to optimize source training when facing diverse downstream
objectives with potentially conflicting requirements.

Though derived in the tractable setting of linear ridge regression, our results isolate a fundamental tension
between optimizing for source performance versus transfer capability that likely manifests across a broad
range of learning systems. By making this tension analytically precise, we hope to inform the design of
pretraining objectives that explicitly account for downstream transfer goals.

References

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices, volume 20.
Springer, 2010.

Peter L Bartlett, Philip M Long, Gabor Lugosi, and Alexander Tsigler. Benign overfitting in linear regression.
Proceedings of the National Academy of Sciences, 117(48):30063-30070, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice
and the classical bias—variance trade-off. Proceedings of the National Academy of Sciences, 116(32):
15849-15854, 2019.

Romain Couillet and Merouane Debbah. Random matrixz methods for wireless communications. Cambridge
University Press, 2011.

Yehuda Dar and Richard G Baraniuk. Double double descent: On generalization errors in transfer learning
between linear regression tasks. STAM Journal on Mathematics of Data Science, 4(4):1447-1472, 2022.

Yehuda Dar, Daniel LeJeune, and Richard G Baraniuk. The common intuition to transfer learning can win or
lose: Case studies for linear regression. SIAM Journal on Mathematics of Data Science, 6(2):454-480, 2024.

Oussama Dhifallah and Yue M Lu. Phase transitions in transfer learning for high-dimensional perceptrons.
Entropy, 23(4):400, 2021.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression and
classification. The Annals of Statistics, 46(1):247-279, 2018.

Reza Ghane, Danil Akhtiamov, and Babak Hassibi. Universality in transfer learning for linear models.
Advances in Neural Information Processing Systems, 37:125729-125779, 2024.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional
ridgeless least squares interpolation. Annals of statistics, 50(2):949, 2022.

11



Under review as submission to TMLR

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer learning
in deep linear networks. arXiv preprint arXiw:1809.10374, 2018.

Javan Tahir, Surya Ganguli, and Grant M Rotskoff. Features are fate: a theory of transfer learning in
high-dimensional regression. arXiv preprint arXiv:2410.08194, 2024.

LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning with
convolutional networks. In International conference on machine learning, pp. 2825-2834. PMLR, 2018.

Fan Yang, Hongyang R Zhang, Sen Wu, Christopher Re, and Weijie J Su. Precise high-dimensional asymptotics
for quantifying heterogeneous transfers. Journal of Machine Learning Research, 26(113):1-88, 2025.

12



Under review as submission to TMLR

A Detailed Proofs

Here we will re-state and prove the relevant Lemmas and Theorems mentioned above.

A.1 Finite Sample Risk Formulas

We begin by re-writing our L2-SP transfer learning estimator for the reader’s convenience:
O | Bo) = (XT X1+ 2D ™ (X + M Bo(ho) ).

We additionally note that expected risk can be computed by:
R(B) = E[II8 —will%,] .

We can now prove the first important Lemma:

Lemma [3.2| The expected risk of the transfer estimator decomposes into pure bias, variance induced by the
Bo prior, and variance induced by estimation error:

RTH(\1) = BT (\) + oV H (A1) + o7 Vi H (M)

with:
BT (M) = [IIM“ VX Xowo — M{Vw |3, ]

VIE () = A |[1M) M0 X 11, |
EO) = E [IMDXT I, £ -
Proof. We verify the decomposition as follows. First note:
TEN] Bo) —wr =AMLY 35 (o) + B7 () —ws
)\M (O)Xo Yo + M( )Xl Y1 — Wi
=ML MO X Xowo + MM MY X e + MY XT Xqwy + MV X e —wy

= (AWM XT X + (MUXT X = 1)) wr+ (MM X ) 60 + (MU ) 1.

We then take expectation of the squared X; norm of the above expression and since €y, €e; are taken
independently with mean 0, the cross terms cancel and we are left with the desired result. O

We now remind the reader that the expected risk of the standard Ridge estimator is

1) (1
RS(\) = ME [||M{ w13, ] + o7E [IM XTI, 5

We can therefore compare these quantities to identify when we expect Transfer to outperform training from
scratch.

Theorem In the finite sample case with A; > 0, we gain benefit from transfer learning (RTL()\;) <
R%(\1)) if and only if:

2 [(MY M X] Xowo, M wn), | >[I0 M0 X] Xowolg, | + o3E [|1M) MO X] |12,
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Proof. First we notice the oy terms of R°()\;) and RTZ(\{|By) exactly cancel. We are therefore left with

RS(\) = BT\ =E [[(M{VX] X1 = Dwnl, | — B [NV M XT Xowo + (M X X1 = 1) wil [, |

—oN%E |||V M) XT3, |

= —E [|IAM{) MO XT Xowol 2, | - 22E (MU X[ X, = Dwn, M) MO XT Xouwo),, |

1) 4,0
~INE [P MD XTI, ¢ -
We note here that (M;\l)XI'—Xl —-I)= —)\Mil) and thus we have

E (M XT X1 = Doy, MM X Xowo)y, | = =AE [(M{Vwr, MM XT Xowo)y, |-

After some algebra and canceling the common A\? terms, we arrive at our desired inequality. O

Corollary In the finite case, if ¥; = I and \; = Ay = 0, and X; is taken to be Gaussian, then
RTL(0) < R(0) if and only if:
p
2 > 2 4ol .
(wo, w1) > [|wo| +Uop T 1

Proof. We first note

lim MM = lim (X[ X, + A1)~ = (X X)) T =1 — X; X3
A /\1{1})(11+) (X1 X1) 1 X1
By conditioning on X and taking expectation with respect to X, the projection I — X1+X1 introduces a
common factor of % to all terms involving w; or the Xp-dependent prior (due to the isotropy of Xi).

Specifically, for any fixed vector v, Ex, [||(I — X{" X1)v||?] = %HUH? We can thus eliminate the target
projection effects from the expression. We are then left with:

2E (M) X] Xowo, w1)| > E[|IM0 X Xowoll3, | + o8B [IM X112, ] -

We now note that o
. 0)vT _ v+
)\101%) My X, = Xq,
and thus we have
2E [(Xg Xowo, w1)] > E [|| X Xowol|$, ] + o0E [[|Xg |5, F] -

We note here that since S = I we have E [X Xo] = 221. Additionally, F [|| X [|%] = ——22—. We can now
p p—no
take expectation to see
o no 2 2 o
2— (wo,w1) > —||w +o .
p<0 1) pH ol| ) o1
By multiplying by n% we arrive at the desired result. O

A.2 Deterministic Equivalents and Asymptotics

We will now examine asymptotics for the ridge phase transition identified above and use deterministic
equivalents to understand the limiting phase transition. To establish the core deterministic equivalents, we must
first let 7; = A;/n;, and we define the following ridge resolvent: Let S; := ni_lXiT X, and ; := limp_00 /1.
Under standard Bai-Silverstein assumptions, the resolvent (S; + 7;7)~! admits a deterministic equivalent

Qi(m) = <T¢I+ gi(Tz‘)Ei)_la

14
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where the scalar pair (0;(7;),d;(7;)) is the unique positive solution to

0;(1i) = %Tl" (ZiQi(Ti))7 52(7-1) = H+Z(T’L)

Observation Under standard Bai-Silverstein conditions (Bai & Silverstein| (2010))), as p,n; — oo with
p/ni = it
nlM)(j) = (Sl + 7'1[)_1 = Ql(Tl)a
)\1M,€) = 11Q1(m1),
and

n(>M§?XJX(>M§? = Qo(70) — 10Q0(70)*.

Proof. These equivalences follow from standard results in [Bai & Silverstein| (2010). Specifically, under the
Bai-Silverstein conditions, the empirical resolvent (X," X;/n; + A\;1)~! admits the deterministic equivalent
n;lQi(Ti) = n;l(nl +0;(7;)%:) "1, where 0;(7;) is the unique positive solution to the Silverstein fixed-point
equation. By dividing by A; we arrive at the first deterministic equivalence.

On the sample side we know

MOX] = X] MY = ng' XJ (X] Xo/no + o),

and the second deterministic equivalent follows.

Finally we use the following fact:
M X XoMy) = My ((X) Xo + Xol) = AoI) My, = M) = Xo(My))>.

From this it is easy to see the third deterministic equation holds. O

Finally, define ¢(79,71) by:

lim p~ " Tr (Q1(11)E1Q1(11) (Qo(70) — 70Q0(10)?)) ,

p—o0

which we know exists under the Bai-Silverstein assumptions. By independence of Xy and X3, we may
substitute these in to the results from Theorem to arrive at the following asymptotic decision criterion:

Theorem In the asymptotic limit, we gain benefit from transfer learning (R7%(\1) < R%(\;)) if and
only if:

2(Q1(m)(I = 10Qo(70))wo, Q1 (1)wi)s, > [|Q1(11)(I = 70Q0(70))wol[%, + 7570t (70, T1)-

Proof. This result follows directly from substituting the deterministic equivalents from Observation [3.5] into
the results from Theorem [3.3] combined with the independence of X; and Xj. O

Corollary In the isotropic case where ¥y = ¥; = I, we (asymptotically) gain benefit from transfer
learning (RTT(\1) < RS(\1)) if and only if:

2 (wo, w1) > (1 = moa)|lwol|* + og~o0ao,
where ag is the unique positive solution to

T0Y0as + (70 +1 —y9)ag — 1 = 0.
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Proof. We note that when ¥; = I, the deterministic equivalent is scalar: Q;(7;) = a;I where a; is the unique
positive solution to
rvia; + (1 +1—)a; —1=0.

We can substitute this in to the relevant quantities from Theorem to see:
2 <Q1 (7’1)([ — TOQQ(TQ))U]O, Ql (7’1)’11)1>21 = 2(1%(1 — Toao) <’LUO,’U)1> and
1Q1(m1)(I = 10Qo(70))wol3, = a?(1 — Toa0)?|[wol[*.

We now examine
t(1o,m1) = lim p1Tr (a%](aof - Toagl))
pP—o0
= aiTr (aol — moadl) /p
= a%(ao - Toag)
= atao(1 — Toa0).

Substituting into Theorem and canceling the common factor a?, we obtain
2(1 = 7oag) (wo, w1) > (1 — moao)”|lwol* + o5 v0a0(1 = Toa0).

Dividing by (1 — 79ag) > 0 yields the stated condition. O

Theorem In the asymptotic setting with isotropic data and fixed source model overparameterization g,
for any fixed normalized alignment p = (wq, w1) /||wo||?, there exists a unique source ridge penalty ¢ that
maximizes the transfer benefit AR = RS — RT. Additionally, outside of a measure-zero set of parameters,
the optimal 7§ for transfer learning differs from the optimal ridge penalty for Task 0 performance.

Proof. We seek to maximize the asymptotic risk benefit AR(m9) = R® — RTT (7). Since R® is independent
of 7y, this is equivalent to minimizing R7*(7y). Using the isotropic deterministic equivalents derived in
Corollary [3.7] the transfer risk is proportional to:

J(70) = (1 = 10a0)?/|wol|* + o3 v0a0(1 — Toa0) — 2(1 — Toaq) (wo, w1 ),

where ag is implicitly defined by 9. Let x(m9) = 1 — m9ag. From the fixed-point equation m9ypa2 + (19 + 1 —

vY0)ap — 1 = 0, we can derive the bijection z = H‘;“[’)ao. Note that ag is strictly decreasing in 79 (from oo to

0), and z is strictly increasing in ao (mapping (0,00) to (0,7, ")). Thus, optimizing with respect to 7y is

equivalent to optimizing with respect to the shrinkage factor z. Substituting ay = ﬁ into the objective:
2. .2
o§Yo0x
J(@) = 2?|lwo|” + T8 — 22 (wo, wn)
The derivative with respect to x is:
22(1 — yox) + Yoz? 2 — yox?
J'(z) = 2z||wo 2+0270 — 2 (wg, wy) = 2z||wy 2—1—02707—2 wo, W) -
( ) H H 0 (17’)/0()'])2 < > || || 0 (1*’}/09:)2 < >
2
Let G(x) = z||wo||* + %% For z € (0,75 '), G() is strictly increasing. The optimal shrinkage =*
is the unique solution to G(z*) = (wp, w1). Define the source-optimal shrinkage x% as the minimizer of the
source risk (which corresponds to setting w; = wp in the transfer risk). Thus x% satisfies G(z%) = |Jwol|*.

Comparing the two conditions:
G(z*) = (wo,w1) and G(x%) = ||Jwo|*.

Since G is strictly increasing/injective, z* = z% if and only if (wo,w1) = |Jwo|[?>. Thus, outside the
measure-zero set where alignment exactly equals source signal power, z* # x, implying 7§ # 75. O
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Corollary Let 7§ be the transfer-optimal regularization penalty and 7& be the source-optimal regulariza-
tion penalty.

o If the tasks are imperfectly aligned (0 < p < 1), then 75 > 7§ (transfer requires stronger regulariza-
tion).

o If the tasks are super-aligned (p > 1), then 75 < 7§ (transfer requires weaker regularization).
This phase transition depends solely on task alignment and holds for all noise levels gg > 0.

Proof. Recall from the proof of Theorem [3.8|that the optimal shrinkage factors * (transfer) and =% (source)
satisfy:
G(z") = (wo,w1) and  G(x%) = [Jwoll?,

where G(x) is a strictly increasing function. Recall also that x(7g) = 1 — 7gay is a strictly decreasing function
of the regularization 7.
o Case 1: Imperfect alignment ({(wo,w1) < ||wo||?). Then G(z*) < G(x%), which implies z* < z%.
Since x decreases with 79, this implies 7§ > 75.

o Case 2: Super-alignment ({wp,w1) > ||wo||?). Then G(z*) > G(x%), which implies z* > z%. Since x
decreases with 7, this implies 75 < 7¢.
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