
Theoretically Grounded Framework for LLM
Watermarking: A Distribution-Adaptive Approach

Haiyun He∗
HKUST (GZ)

Guangzhou, China
haiyunhe@hkust-gz.edu.cn

Yepeng Liu∗

UC Santa Barbara
Santa Barbara, CA, USA
yepengliu@ucsb.edu

Ziqiao Wang
Tongji University
Shanghai, China

ziqiaowang@tongji.edu.cn

Yongyi Mao
University of Ottawa
Ottawa, ON, Canada
ymao@uottawa.ca

Yuheng Bu
UC Santa Barbara

Santa Barbara, CA, USA
buyuheng@ucsb.edu

Abstract

Watermarking has emerged as a crucial method to distinguish AI-generated text
from human-created text. Current watermarking approaches often lack formal
optimality guarantees or address the scheme and detector design separately. In
this paper, we introduce a novel, unified theoretical framework for watermarking
Large Language Models (LLMs) that jointly optimizes both the watermarking
scheme and detector. Our approach aims to maximize detection performance while
maintaining control over the worst-case false positive rate (FPR) and distortion
on text quality. We derive closed-form optimal solutions for this joint design
and characterize the fundamental trade-off between watermark detectability and
distortion. Notably, we reveal that the optimal watermarking schemes should
be adaptive to the LLM’s generative distribution. Building on our theoretical
insights, we propose a distortion-free, distribution-adaptive watermarking algorithm
(DAWA) that leverages a surrogate model for model-agnosticism and efficiency.
Experiments on Llama2-13B and Mistral-8×7B models confirm the effectiveness
of our approach, particularly at ultra-low FPRs. Our code is available at https:
//github.com/yepengliu/DAWA.

1 Introduction

Arising with Large Language Models (LLMs) [1] is a double-edged sword: while they boost
productivity, they also introduce new risks, including plagiarism, challenges to content accountability,
and other forms of misuse. Watermarking, a hidden and machine-verifiable tag inserted into LLMs’
outputs, has therefore become a critical line of defense for publishers, educators, and regulators.

Existing watermarking techniques for AI-generated text are commonly grouped into two main
categories: post-process and in-process [2, 3]. Post-process watermarking is applied after the text
is generated [4–16], while in-process watermarking embeds watermarks during generation [17–36].
There is a growing interest in in-process methods due to their invisibility, flexibility, and seamless
integration with negligible latency. For additional related works, please refer to Appendix A.

However, realizing the full potential of in-process watermarking requires careful design. A key
challenge is controlling the false positive rate (FPR), as even a single error can lead to serious
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consequences, such as wrongly accusing a human author. Maintaining a high true positive rate
(TPR) while keeping an ultra-low FPR, e.g., 1e−05, is therefore essential. In addition, effective
in-process watermarking should be both detectable and distortion-free: the watermark must be
reliably identified under strict false positive rate (FPR) constraints, while preserving the quality
and distribution of the original output [35, 37]. Moreover, a practical detector should be model-
agnostic, operable without access to the original LLM or its prompt [25]. Balancing all these goals is
challenging, and existing methods often fall short in one or more dimensions.

Many heuristic designs typically embed watermarks into generated tokens by perturbing the token
logits (e.g., the green-red list [25]) or modifying the sampling process (e.g., Gumbel-Max sampling
[38]). Detection is usually performed using handcrafted score statistics. However, these “trial-and-
error” approaches rely heavily on empirical tuning, with no formal optimality guarantees.

In principle, designing a watermarking system can be formulated as a constrained optimization
problem: maximizing the detection probability TPR with the FPR and text distortion under control.
Recent theoretical efforts have taken steps towards this goal. For instance, Takezawa et al. [39],
Wouters [40], and Cai et al. [41] focus on optimizing the logit perturbation strategy for the green-red
list watermarking scheme. Huang et al. [42] frame watermarking as a statistical independence test
between text and watermark and derive the optimal scheme for a fixed detector, but stop short of
a practical, model-agnostic algorithm. On the other hand, Li et al. [43] optimizes the detector for
a fixed watermarking scheme using i.i.d. pivotal statistics. Consequently, these approaches do not
guarantee overall system optimality. A significant gap in these theoretical explorations is that none of
them consider the joint optimization of both the watermarking scheme and the detector.

Specifically, both the way the watermark is embedded and the type of signal used can be optimized.
However, existing approaches often rely on fixed, simplistic designs, such as using randomly generated
bits or samples from uniform distributions, leaving much of the design space unexplored. These
restrictive choices may prevent existing schemes from achieving optimal performance.

10 5 10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

it
iv

e 
Ra

te

Our DAWA   TP @1e-5FP=0.882, @1e-4FP=0.951, @1e-3FP=0.992, @1e-2FP=0.997
KGW+23     TP @1e-5FP=0.690, @1e-4FP=0.838, @1e-3FP=0.942, @1e-2FP=0.978
Gumble-Max TP @1e-5FP=0.515, @1e-4FP=0.844, @1e-3FP=0.955, @1e-2FP=0.984
EXP-edit   TP @1e-5FP=0.862, @1e-4FP=0.862, @1e-3FP=0.882, @1e-2FP=0.948
HCW+23     TP @1e-5FP=0.259, @1e-4FP=0.509, @1e-3FP=0.658, @1e-2FP=0.810

Figure 1: Comparison of TPR at ultra-low FPR among dif-
ferent watermarking methods.

This paper aims to fill the gap. We
develop a novel, unified theoreti-
cal framework that subsumes most
existing in-process schemes, aiming
to jointly optimize the watermarking-
detector pair for any token-sequence
length T that achieves the best trade-
off between watermark detectability
and text distortion. Unlike the clas-
sical watermarking paradigm, which
employs fixed watermark distribu-
tions, our framework generalizes wa-
termarking to an adaptive setting
where the watermark signal exploits
the LLM’s generative distribution.
This opens up one more degree of free-
dom to optimize the sampling distributions of watermark signals, thereby enhancing detection
reliability at ultra-low FPRs, as shown in Figure 1.

Our contributions can be summarized as follows:

• In Section 2, we propose a unified theoretical framework for LLM watermarking and detection that
encompasses most existing watermarking methods. This framework features a common randomness
shared between watermark generation and detection to perform an independence test.

• In Section 3, we characterize the universally minimum Type-II error (i.e., 1−TPR) as a function
of FPR and text distortion level, revealing a fundamental trade-off between detectability and
distortion. More importantly, we identify the closed-form jointly optimal solutions for watermark-
ing schemes and detectors, providing a guideline for practical design, i.e., watermarking schemes
should adapt to the generative distribution of LLMs.

• In Section 4, we translate the sequence-level optimum to a practical token-level watermarking
design. We prove that it retains reliable detection performance and is inherently robust against token
replacement attacks. In Section 5, we introduce DAWA (Distribution-Adaptive Watermarking
Algorithm), a distortion-free implementation of the token-level design, which leverages a sur-
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rogate language model and the Gumbel-Max sampling trick to achieve model-agnosticism and
computational efficiency.

• In Section 6, we conduct extensive experiments on Llama2-13B [1] and Mistral-8×7B [44], across
multiple datasets. DAWA consistently outperforms the compared methods, even under token
replacement attacks, and maintains high text quality. As shown in Figure 1, DAWA achieves
superior detection capabilities at ultra-low FPRs.

• Lastly, we sketch in Appendix J how to extend our theoretical framework to semantic-invariant
watermarking removal attacks and derive the associated detectability–distortion–robustness trade-
off, guiding future semantic-based watermark designs.

2 Preliminaries and Problem Formulation

Notations. For a sequence of random variables X1, . . . , Xn, and any i, j ∈ [n] with i ≤ j, we denote
Xj

i := (Xi, . . . , Xj). We may use distortion function, namely, a function D : P(X ) × P(X ) →
[0,+∞) to measure the dissimilarity between two distributions in P(X ). For example, the total
variation distance, as a distortion, between µ, ν ∈ P(X ) is DTV(µ, ν) :=

∫
1
2 |

dµ
dν − 1| dν. For any

set A ⊆ X , we use δA to denote its indicator function, namely, δA(x) := 1{x ∈ A}. Additionally,
we denote (x)+ := max{x, 0} and x ∧ y := min{x, y}.
Tokenization and NTP. LLMs process text through “tokenization,” namely, breaking it down into
words or word fragments called “tokens.” An LLM generates text token by token. Let V denote the
token vocabulary, typically of size |V| = O(104) [45–47, 1]. An unwatermarked LLM generates
the next token Xt based on a prompt pt and the previous tokens xt−1

1 by sampling the Next-Token
Prediction (NTP) distribution QXt|xt−1

1 ,pt. For simplicity, the prompt dependency is suppressed in
notation throughout the paper. The joint distribution of a length-T generated token sequence XT

1

is then given by QXT
1
:=

∏T
t=1 QXt|Xt−1

1
, which we assume to be identical to one that governs the

human-generated text.

Sampler
Watermarking

Scheme

Detector

Common Randomness ζT1
Watermark Generation
Watermark Detection

ø
LLM

QXT
1

xT
1

unwatermarked text

QXT
1

PXT
1 |ζT

1

xT
1

watermarked text
1

0

Watermarked
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Figure 2: Overview of LLM watermarking and detection.

A Framework for Watermarking
Scheme. Traditional post-hoc detec-
tors identify AI-generated text by di-
viding the entire text space into rejec-
tion and acceptance regions, which
relies on the assumption that certain
sentences are unlikely to be written by
humans. In contrast, modern LLM wa-
termarking schemes achieve the same
goal by analyzing the dependence
structure between text XT

1 and an aux-
iliary random sequence ζT1 , thereby
avoiding this restriction.

In this paper, we propose a general framework for LLM watermarking and detection, as shown
in Figure 2, which encompasses most of the existing watermarking schemes. The watermarking
scheme and detector share a common randomness represented by an auxiliary random sequence
ζT1 drawn from a space ZT (either discrete or continuous). After passing through a watermarking
scheme, the watermarked LLM samples token sequence according to the modified NTP distribution
PXt|xt−1

1 ,ζT
1

, where PXT
1 |ζT

1
=

∏T
t=1 PXt|Xt−1

1 ,ζT
1

. This process associates the generated text XT
1

with an auxiliary sequence ζT1 . Thus, the joint distribution of the watermarked token sequence XT
1 is

PXT
1

, which might be different from the original QXT
1

. The detector can then distinguish whether the
received sequence XT

1 is watermarked or not based on the common randomness.

To evaluate the distortion level of a watermarking scheme, we measure the statistical divergence
between the watermarked text distribution PXT

1
and the original one QXT

1
.

Definition 1 (ϵ-distorted watermarking scheme). A watermarking scheme is ϵ-distorted with respect
to distortion D, if D(PXT

1
, QXT

1
) ≤ ϵ. Here, D can be any distortion metric.
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Common examples of such divergences include squared distance, total variation, KL divergence, and
Wasserstein distance. For ϵ = 0, the watermarking scheme is distortion-free.

Specifically, our formulation allows the auxiliary random sequence ζT1 to take an arbitrary structure,
which contrasts the rather restricted i.i.d. assumption considered in Li et al. [43, Working Hypothesis
2.1]. In practice, ζT1 is usually randomly generated using a shared key accessible during both
watermark generation and detection. At first glance, our formulation may appear abstract, but its
flexibility enables existing watermarking schemes to be interpreted as special cases within this
framework.

Example 1 (Existing watermarking schemes as special cases). In the Green-Red List watermarking
scheme [25], at each position t, the vocabulary V is randomly split into a green list G and a red
list R, with |G| = ρ|V| for some ρ ∈ (0, 1). This split is represented by a |V|-dimensional binary
auxiliary variable ζt, indexed by x ∈ V , where ζt(x) = 1 means x ∈ G; otherwise, x ∈ R. The
watermarking scheme is as follows:

– Compute a hash of the previous token Xt−1 using a hash function h : V × R→ R and a shared
secret key, i.e., h(Xt−1, key).

– Use h(Xt−1, key) as a seed to uniformly sample the auxiliary variable ζt from the set {ζ ∈
{0, 1}|V| : ∥ζ∥1 = ρ|V|} to construct the green list G.

– Sample Xt from the adjusted NTP distribution which increases the logit of tokens in G by δ > 0:

PXt|xt−1
1 ,ζt

(x) =
Q

Xt|x
t−1
1

(x) exp(δ·1{ζt(x)=1})∑
x∈V Q

Xt|x
t−1
1

(x) exp(δ·1{ζt(x)=1}) .

How our formulation encompasses several other watermarking schemes is provided in Appendix B.

Hypothesis Testing for Watermark Detection. Note that a sequence XT
1 generated by a water-

marked LLM depends on ζT1 , while XT
1 and ζT1 are independent if written by humans. Therefore,

detection involves distinguishing the following two hypotheses based on the pair (XT
1 , ζ

T
1 ):

• H0: XT
1 is generated by a human, i.e., (XT

1 , ζ
T
1 ) ∼ QXT

1
⊗ PζT

1
;

• H1: XT
1 is generated by a watermarked LLM, i.e., (XT

1 , ζ
T
1 ) ∼ PXT

1 ,ζT
1

.

We consider a model-agnostic detector γ : VT × ZT → {0, 1}, which maps (XT
1 , ζ

T
1 ) to the

hypothesis index (see Figure 2). In theory, we assume that the auxiliary sequence ζT1 can be fully
recovered from XT

1 and the common randomness, while this assumption is dropped in practice.

Detection performance is measured by the Type-I (false positive) and Type-II (false negative) errors:

Type-I (i.e., FPR): β0(γ,QXT
1
, PζT

1
) := Pr(γ(XT

1 , ζ
T
1 ) ̸= 0 | H0),

Type-II (i.e., 1−TPR): β1(γ, PXT
1 ,ζT

1
) := Pr(γ(XT

1 , ζ
T
1 ) ̸= 1 | H1). (1)

Optimization Problem. Given that human-generated texts can vary widely, within our proposed
framework, we aim to control the worst-case Type-I error supQ

XT
1

β0(γ,QXT
1
, PζT

1
) at a given

α ∈ (0, 1) while minimizing Type-II error. Our objective is to design an ϵ-distorted watermarking
scheme and a model-agnostic detector by solving the following optimization:

inf
γ,P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
) ≤ α, D(PXT

1
, QXT

1
) ≤ ϵ. (Opt-O)

The optimal objective value, denoted as β∗
1(QXT

1
, α, ϵ), is termed as universally minimum Type-II

error. This universality is due to its applicability across all potential detectors and watermarking
schemes, as well as its validity under the worst-case Type-I error scenario.

3 Jointly Optimal Watermarking Scheme and Detector

In this section, we aim to solve the optimization in (Opt-O) and identify the jointly optimal water-
marking scheme and detector. However, solving (Opt-O) is challenging due to the binary nature
of γ and the vast set of possible γ, sized 2|V|T |Z|T . To address this, we begin with a specific
γ(XT

1 , ζ
T
1 ) = 1{(XT

1 , ζ
T
1 ) ∈ A1}, where A1 defines the acceptance region for H1, aiming to
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uncover a potential structure for the optimal detector. To this end, we simplify (Opt-O) as

inf
P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
) ≤ α, D(PXT

1
, QXT

1
) ≤ ϵ. (Opt-I)

Error-Distortion Tradeoff. We first derive a lower bound for the minimum Type-II error in
(Opt-I), which surprisingly does not depend on the selected detector γ and therefore also applies to
(Opt-O). We then pinpoint a type of detector and watermarking scheme that attains this lower bound,
indicating that it represents the universally minimum Type-II error. Thus, the proposed detector and
watermarking scheme are jointly optimal, as detailed in Theorem 2. The theorem below establishes
this universal minimum Type-II error for all feasible watermarking schemes and detectors.

Theorem 1 (Universally minimum Type-II error). The universally minimum Type-II error attained
from (Opt-O) is

β∗
1 (QXT

1
, α, ϵ) = min

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+, (2)

which is achieved by the watermarked distribution

P ∗
XT

1
= argmin

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+. (3)

By setting D as total variation distance DTV, (2) can be simplified as follows:

β∗
1 (QXT

1
, α, ϵ) =

(∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ
)
+
, if

∑
xT
1

(α−QXT
1
(xT

1 ))+ ≥ ϵ.

universally
minimum

Type-II error

distortion-free -distorted

universally
minimum

Type-II error

Figure 3: Illustration of error–
distortion trade-off.

The proof of Theorem 1 is deferred to Appendix C. Theorem
1 shows that, for any watermarking scheme, the fundamental
limits of detection performance depend on the original NTP dis-
tribution of the LLM. When the original QXT

1
is more concen-

trated (low entropy), the minimum achievable detection error
increases. This hints that it is inherently difficult to watermark
low-entropy text. However, increasing the allowable distortion
ϵ can enhance the capacity for reducing detection errors, as
illustrated in Figure 3. Moreover, we find that β∗

1(QXT
1
, α, ϵ)

matches the minimum Type-II error from Huang et al. [42, The-
orem 3.2], which is notably optimal for their specific detector. Our results, however, establish that
this is the universally minimum Type-II error across all possible detectors and watermarking schemes,
indicating that their detector belongs to the set of optimal detectors described below.

Jointly Optimal Design. We now present the jointly optimal watermarking schemes and detectors
that achieve the universally minimum Type-II error in Theorem 1, i.e., the solution to (Opt-O). The
key takeaway in the optimal design is: (i) for any given LLM QXT

1
, we can find a valid bijective

function g (not unique) to construct a jointly optimal pair of watermarking scheme and detector; (ii)
as a result of maximizing the detection performance of dependency against independence between
XT

1 and ζT1 , the optimal watermarking scheme P ∗
ζT
1 |XT

1
turns out to be a nearly deterministic.

Theorem 2 ((Informal Statement) Jointly optimal watermarking schemes and detectors). The class
of optimal detectors is given by

γ∗ ∈ Γ∗ :=
{
γ | γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 )}, for some bijective g : ZT → S ⊃ VT
}
, (4)

where ZT = g−1(VT ) ∪ {ζ̃T1 } and ζ̃T1 is a redundant auxiliary sequence that is not a preimage of
any token sequence for g. Given any (QXT

1
, ϵ), the corresponding optimal watermarking scheme

takes the form P ∗
XT

1 ,ζT
1
= P ∗

XT
1
P ∗
ζT
1 |XT

1
, where P ∗

XT
1

(c.f. (3)) depends on (QXT
1
, ϵ), and the mapping

P ∗
ζT
1 |XT

1
depends on the chosen detector γ∗. Full details are provided in Appendix D.

In Appendix D, a formal and general statement of Theorem 2 shows that the optimal class of detectors
extends to any valid surjective function g with a different input space. To illustrate this with a simple
example, suppose VT = {a, b, c}. We can define an extended set S = {a, b, c,#} and construct a
bijective mapping g from an auxiliary set ZT = {1, 2, 3, 4} to S . Such a class Γ∗ is then universally
optimal, meaning that to guarantee the construction of a watermarking scheme that maximizes the
detection performance, the detector must be chosen from Γ∗.
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Discussions on Theoretically Optimal Watermarking Scheme. A detailed illustration of the
optimal watermarking scheme is provided in Appendix E, with several important remarks as follows.

First, we observe that the derived optimal watermarking scheme P ∗
XT

1 ,ζT
1

for any γ∗ ∈ Γ∗ is
adaptive to the original LLM output distribution QXT

1
. This observation suggests that, to maximize

watermark detection performance, watermarking schemes should fully leverage generative modeling
and make the sampling of auxiliary sequence adaptive to QXT

1
. This approach contrasts with existing

watermarking schemes, which typically sample the auxiliary sequence according to a given uniform
distribution, without adapting it to the LLM NTP distribution. This insight serves as a foundation for
the design of our practical watermarking scheme, which will be introduced in Section 4.

Second, in order to control the worst-case FPR, the construction of P ∗
XT

1 ,ζT
1

relies on the redundant

auxiliary sequence ζ̃T1 included in the auxiliary alphabet ZT , which satisfies γ∗(xT
1 , ζ̃

T
1 ) = 0 for all

xT
1 . This sequence ζ̃T1 plays a critical role in our proposed algorithm. Specifically, if P ∗

XT
1
(xT

1 ) > α

(indicating a low-entropy text, e.g., a celebrity’s name), it may be mapped to the redundant ζ̃T1 ,
making it harder to detect as watermarked. Thus, the optimal watermarking scheme P ∗

XT
1 ,ζT

1
is

particularly effective in reducing the FPR for low-entropy texts.

Practical Challenges. Given the theoretically optimal structure, there are still a few practical
challenges in its direct implementation. 1 Designing a proper function g, an alphabet ZT and the
corresponding P ∗

XT
1 ,ζT

1
is challenging, as |V|T grows exponentially with T , making it hard to identify

all pairs (xT
1 , ζ

T
1 ) such that xT

1 = g(ζT1 ). 2 The optimality is derived for static scenarios with a
fixed token length T , making it unsuitable for dynamic scenarios where the tokens are generated
incrementally with varying T . 3 In the theoretical analysis, we assume full recovery of the auxiliary
sequence ζT1 during detection. However, in practice, the detector only receives the token sequence
XT

1 , and reconstructing the auxiliary sequence ζT1 from XT
1 poses a challenge.

These practical constraints motivate the development of a more feasible version of the theoretically
optimal scheme. In Section 4, we adapt it to a practical token-level optimal scheme to address 1 and
2 ; in Section 5, we implement the token-level design with a novel algorithm utilizing a surrogate
language model and the Gumbel-Max trick [48] to overcome 3 .

4 Practical Token-level Optimal Watermarking Design

In this section, we present a practical approach that approximates the theoretical framework while
ensuring its applicability to real-world scenarios. Building on the fixed-length optimal scheme, we nat-
urally extend it to accommodate varying-length scenarios by constructing the optimal watermarking
scheme incrementally for each token, i.e., P ∗

Xt,ζt|xt−1
1 ,ζt−1

1

for all t = 1, 2, . . ..

To lay the groundwork, we first revisit heuristic detectors for some existing watermarking schemes.

Example 2 (Examples of heuristic detectors). Two example detectors from existing works:
• Green-Red List watermark detector [25]: γ(XT

1 , ζ
T
1 ) = 1{ 2√

T
(
∑T

t=1 1{ζt(Xt) = 1}−ρT ) ≥ λ}
where λ > 0, ρ ∈ (0, 1), and ζt = (ζt(x))x∈V is uniformly sampled from {ζ ∈{0, 1}|V| :∥ζ∥1=
ρ|V|} with the seed hash(Xt−1, key).

• Gumbel-Max watermark detector [38]: γ(XT
1 , ζ

T
1 ) = 1{−

∑T
t=1 log(1− ζt(Xt)) ≥ λ}} where

λ > 0, and ζt = (ζt(x))x∈V is uniformly sampled from [0, 1]|V| with the seed hash(Xt−n
t−1 , key)

for some n.

Practical Detector Design. We observe that the commonly used heuristic detectors take
the non-optimal form by averaging the test statistics over each token: γ(XT

1 , ζ
T
1 ) =

1
{

1
T

∑T
t=1 Test Statistics of (Xt, ζt) ≥ λ

}
. This token-level design provides several advantages: (1)

incremental computation of detectors for any T and 2) token-level watermarking with the alphabet
depending only on the fixed size |V|. Inspired by these detectors, we propose the following detector
to address the issues 1 and 2 mentioned earlier:
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γtk(X
T
1 , ζ

T
1 ) = 1

{
1

T

T∑
t=1

1{Xt = gtk(ζt)}︸ ︷︷ ︸
Token-level adaptation of (4)

≥ λ

}
, (5)

for some bijective function gtk : Z → S ⊃ V , where Z = g−1
tk (V) ∪ {ζ̃} for some redundant

auxiliary value ζ̃ not being the preimage of any token x ∈ V for g. This detector combines the
advantages of existing token-level detectors with the optimal design from Theorem 2. The test statistic
for each token (Xt, ζt) is optimal at position t, enabling a token-level optimal watermarking scheme
that improves the detection performance for each token.

Token-Level Optimal Watermarking Scheme. Following the same rule in Theorem 2 and Appendix
D, the token-level optimal watermarking scheme is sequentially constructed based on 1{Xt =
gtk(ζt)} in (5) and the NTP distribution at each position t, acting only on the token vocabulary V .
This approach addresses the challenges 1 and 2 as well. Notably, the resulting distribution of the
token-level optimal scheme for the auxiliary variable ζt is adaptive to the original NTP distribution
QXt|xt−1

1
. Moreover, the resulting distribution on Xt is given by (comparable to P ∗

XT
1

in Theorem 2)

P ∗
Xt|xt−1

1
:= argmin

P
Xt|x

t−1
1

:D(P
Xt|x

t−1
1

,Q
Xt|x

t−1
1

)≤ϵ

∑
x∈V

(P
Xt|xt−1

1
(x)− η)+, (6)

where η ∈ (0, 1) is the token-level FPR constraint, which is typically much greater than the sequence-
level FPR constraint α. With a proper choice of η, we can effectively control α. Under this scheme,
we add watermarks to the generated tokens incrementally, with maximum detection performance at
each token. The details are deferred to Appendix F and the algorithm is provided in Section 5.

Performance Analysis. We evaluate the Type-I (FPR) and Type-II (1−TPR) errors of this scheme
over the entire sequence (cf. (1)).

Lemma 3 ((Informal Statement) Token-level optimal watermarking detection errors). Under
the detector γtk in (5) and its corresponding token-level optimal watermarking scheme with
η ∈ (0,min{1, (α/

(
T

⌈Tλ⌉
)
)

1
⌈Tλ⌉ }], for a length-T sequence: (i) the worst-case Type-I error

supQ
XT

1

β0 ≤ α; (ii) if token positions more than n apart are assumed to be independent, with
a suitable detector threshold, the Type-II error decays exponentially in T/n.

Although the token-level optimal watermarking scheme may not be optimal at the sequence level,
we show that it maintains good performance with a proper choice of token-level FPR η. The formal
statement is provided in Appendix G.

Furthermore, we observe that even without explicitly introducing robustness to the token-level
optimal watermarking scheme, it inherently leads to some robustness against token replacement. The
following result shows that if the auxiliary sequence ζT1 is shared between the LLM and the detector
γtk (cf. (5)), the token at position t can be replaced with probability Pr(ζt is redundant) without
affecting detector output.

Proposition 4 (Robustness against token replacement). Under the detector γtk in (5) and
its corresponding token-level optimal watermarking scheme, the expected number of to-
kens that can be randomly replaced in XT

1 without compromising detection performance is∑T
t=1 EXt−1

1

[∑
x∈V

(
P ∗
Xt|Xt−1

1

(x|Xt−1
1 )− η

)
+

]
, with P ∗

Xt|Xt−1
1

given in (6).

5 DAWA: Dstribution-Aaptive Wtermarking Agorithm

In this section, we implement the token-level design presented in Section 4 by introducing a novel,
distortion-free watermarking algorithm, DAWA (Distribution-Adaptive Watermarking Algorithm).
To address the challenge 3 of recovering the auxiliary sequence at the detector without knowledge
of the original LLM and prompt, we utilize some novel tricks, including a surrogate model and
Gumbel-Max sampling, which also ensures model-agnosticism and computational efficiency.

Novel Trick for Auxiliary Sequence Transmission. Since the resulting optimal distribution of
the auxiliary variable ζt from Section 4 is adaptive to the original NTP distribution of LLM, it is
not likely to completely reconstruct it at the detection phase without access to the LLM or prompt.
One possible workaround is enforcing Pζt = Unif(Z) for both watermark generation and detection.
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Figure 4: Workflow of our practical algorithm (DAWA) for watermark generation and detection.
(A1): construct the sampling distribution of auxiliary variable ζt based on Qxt|xt−1

1 ,pt; (A2): sample
ζt using the Gumbel-Max trick and a shared key; (A3): adjust the NTP distribution of xt with η.

While this method [49] simplifies the transmission, it leads to a much higher minimum Type-II error
compared to β∗

1(QXT
1
, α, ϵ) (cf. (2)), indicating a trade-off between detection performance and a

non-distribution-adaptive design.

We thus introduce a novel trick to transmit the auxiliary sequence by integrating a surrogate language
model (SLM) during the detection phase and the Gumbel-Max trick [48] for sampling ζt. This SLM,
much smaller than the watermarked LLM and possibly from a different family (as long as it shares the
same tokenizer) approximates the watermarked distributions {P ∗

Xt|Xt−1
1
}t=1,2,... using only the text

XT
1 , without the prompt. With the approximated P ∗

Xt|Xt−1
1

, we reconstruct the sampling distribution
of ζt and sample it using the Gumbel-Max trick with the key shared from watermark generation.

Theoretically, the SLM’s approximation error has limited impact on detection performance, since
the watermarking algorithm is provably resilient to token replacement attacks (cf. Proposition 4). In
Section 6, our experiments highlight that, even with incomplete recovery of ζT1 during detection, the
DAWA algorithm with this novel trick exhibits superior detection performance and greater resilience
against token replacement attack, surpassing baseline watermarking schemes.

DAWA Details. From the detector in (5), we first choose gtk that depends on a hash function hkey:

γdawa(X
T
1 , ζ

T
1 )=1

{ 1

T

∑
t∈[T ]

1{hkey(Xt) = ζt}≥λ
}
. (7)

DAWA is an implementation of the distortion-free (ϵ = 0) token-level optimal watermarking scheme
(cf. Section 4), in which the auxiliary variable is sampled adaptively based on the original NTP
distribution QXt|xt−1

1 ,pt, as illustrated in Figure 4 and detailed in Appendix H. Below, we elaborate
on the key steps.

Watermark Generation. Using the detector γdawa from (7), we define the auxiliary alphabet Z
from unique mappings {hkey(x)}x∈V and add a redundant ζ̃. At each t, Pζt|xt−1

1 ,pt is adaptive to
QXt|xt−1

1 ,pt: {
P
ζt|xt−1

1 ,pt
(ζ)← (Q

Xt|xt−1
1 ,pt

(h−1
key(ζ)) ∧ η), ∀ζ ∈ Z\{ζ̃}.

P
ζt|xt−1

1 ,pt
(ζ̃)←

∑
x∈V(QXt|xt−1

1 ,pt
(x)− η)+.

(A1)

The Gumbel-Max trick is then used to sample ζt:

ζt ← argmax
ζ∈Z

log(P
ζt|xt−1

1 ,pt
(ζ)) +Gt,ζ . (A2)

where Gt,ζ is sampled from the Gumbel distribution using a shared key and the previous tokens. If
ζt is non-redundant, let xt = h−1

key(ζt); otherwise, xt is sampled via a multinomial distribution:

xt ∼
( (Q

Xt|xt−1
1 ,pt

(x)− η)+∑
x∈V

(
Q

Xt|xt−1
1 ,pt

(x)− η
)
+

)
x∈V

. (A3)
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Table 1: Detection performance on clean and edited text across different LLMs and datasets.

Clean Text Token Replacement Attack

LLM Method C4 ELI5 C4 ELI5

ROC-AUC TP@1% FP TP@10% FP ROC-AUC TP@1% FP TP@10% FP ROC-AUC TP@1% FP TP@10% FP ROC-AUC TP@1% FP TP@10% FP

Llama2-13B

KGW+23 0.995 0.991 1.000 0.989 0.974 0.986 0.965 0.833 0.952 0.973 0.892 0.973
EXP-edit 0.986 0.968 0.996 0.983 0.960 0.995 0.973 0.857 0.978 0.967 0.889 0.975
Gumbel-Max 0.996 0.993 0.994 0.999 0.991 0.994 0.968 0.858 0.970 0.965 0.887 0.975
HCW+23 0.994 0.928 0.986 0.991 0.888 0.978 0.890 0.268 0.714 0.893 0.278 0.692
Ours 0.999 0.998 1.000 0.998 0.997 1.000 0.989 0.860 0.976 0.995 0.969 0.994

Mistral-8×7B

KGW+23 0.997 0.995 1.000 0.993 0.983 0.994 0.977 0.860 0.962 0.969 0.890 0.970
EXP-edit 0.993 0.970 0.997 0.994 0.972 0.996 0.980 0.861 0.975 0.983 0.932 0.988
Gumbel-Max 0.994 0.989 0.999 0.987 0.970 0.990 0.972 0.865 0.960 0.971 0.889 0.975
HCW+23 0.998 0.986 0.994 0.999 0.992 1.000 0.885 0.364 0.674 0.878 0.252 0.668
Ours 0.999 0.998 1.000 0.999 0.999 1.000 0.990 0.881 0.966 0.993 0.991 0.995

Watermark Detection. A surrogate NTP distribution Q̃Xt|xt−1
1

is approximated by the SLM for each

t. We then use (A1) to approximate Pζt|xt−1
1 ,pt from Q̃Xt|xt−1

1
and sample ζt using (A2) with the

shared key. At each position t, the score 1{hkey(xt) = ζt} is 1 if ζt non-redundant and 0 otherwise.
Compute 1

T

∑T
t=1 1{hkey(xt) = ζt} and compare with a threshold λ. If above λ, the text is detected

as watermarked.

6 Experiments and Discussions

Experiment Settings. We now introduce the setup details of our experiments.

Implementation Details. Our approach is implemented on two language models: Llama2-13B [1],
and Mistral-8×7B [44]. Llama2-7B serves as the surrogate model for Llama2-13B, while Mistral-7B
is used as the surrogate model for Mistral-8×7B. We conduct our experiments on Nvidia A100 GPUs.
In DAWA, we set η = 0.2 and T = 200.

Baselines. We compare our methods with three existing watermarking methods: KGW+23 [25], EXP-
edit [37], Gumbel-Max [38], and HCW+23 [19], where the EXP-edit, Gumbel-Max and HCW+23
are distortion-free watermarks. KGW+23 employs the prior 1 token as a hash to create a green/red
list, with the watermark strength set at 2.

Table 2: Empirical entropy comparison be-
tween C4 and ELI5 datasets.

Model C4 (entropy) ELI5 (entropy)

Llama2-13B 0.547 0.272
Mistral-8×7B 1.475 1.427

Dataset and Prompt. Our experiments are conducted
using two distinct datasets. The first is an open-ended
high-entropy generation dataset, a realnewslike sub-
set from C4 [50]. The second is a relatively low-
entropy generation dataset, ELI5 [51]. The real-
newslike subset of C4 is tailored specifically to in-
clude high-quality journalistic content that mimics
the style and format of real-world news articles. As shown in Table 2, the C4 dataset consistently
exhibits higher empirical entropy than the ELI5 dataset across different models. We utilize the first
two sentences of each text as prompts and the following 200 tokens as human-generated text. The
ELI5 dataset is specifically designed for the task of long-form question answering (QA), with the
goal of providing detailed explanations for complex questions. We use each question as a prompt and
its answer as human-generated text.

Evaluation Metrics. To evaluate the performance of watermark detection, we report the ROC-AUC
score, where the ROC curve shows the True Positive (TP) Rate against the False Positive (FP) Rate. A
higher ROC-AUC score indicates better overall performance. The detection threshold λ is determined
empirically by the ROC-AUC score function based on unwatermarked and watermarked sentences.

6.1 Main Experimental Results

Watermark Detection Performance. To explore our detection performance at a very low FPR, we
conduct experiments using Llama2-13B on 105 texts (200-length) from the Wikipedia dataset and
compute the TPR at 1e−01, 1e−02, 1e−03, 1e−04, and 1e−05 FPR respectively. Figure 1 shows
that DAWA significantly outperforms other baselines.
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Table 3: Comparison of BLEU score and perplexity across different watermarking methods.

Methods Human KGW+23 EXP-Edit Gumbel-Max HCW+23 Ours

BLEU Score ↑ 0.219 0.158 0.203 0.210 0.207 0.214
Perplexity ↓ 8.846 13.472 10.126 9.910 10.115 10.034

Furthermore, we compare the detection performance across various language models and tasks, as
presented in Table 1. Our DAWA demonstrates superior performance, especially on the relatively
low-entropy QA dataset, validating Theorem 2 and Lemma 3. This success stems from the design of
our watermarking scheme, which reduces the likelihood of low-entropy tokens being falsely detected
as watermarked, thereby lowering the FPR. Moreover, this suggests that even without knowing the
watermarked LLM during detection, we can still use the proposed SLM and Gumbel-Max trick to
successfully detect the watermark.

We assess the robustness of DAWA against a token replacement attack to validate Proposition 4.
For each watermarked text, we randomly mask 50% of the tokens and use T5-large [50] to predict
the replacement for each masked token based on the context. Table 1 exhibits watermark detection
performance under token replacement attacks across different models and tasks. Our DAWA remains
high ROC-AUC, TPR@1%FPR, and TPR@10%FPR under this attack compared with other baselines.

Watermarked Text Quality. To evaluate the quality of watermarked text generated by our water-
marking methods, we report the perplexity (median) on C4 dataset using GPT-3 [52], and the BLEU
score on the machine translation task using the WMT19 dataset [53] and mBART Model [54], as
shown in Table 3. It can be observed that our scheme achieves a higher BLEU score and a lower
perplexity closer to the unwatermarked one (10.020), both close to the score on human datasets. This
demonstrates that our distortion-free scheme, employing an NTP distribution-adaptive approach, has
minimal impact on the generated text quality, preserving its naturalness and coherence.

Ablation Study and Additional Results. In Appendix I, we further show that (1) our DAWA is
efficient and does not affect generation time; (2) detection remains accurate and robust even with a
much smaller SLM from a different model family and without prompts; (3) TPR increases with longer
token length T ; and (4) our theoretical choice of η effectively controls the empirical FPR.

6.2 Extension Towards Stronger Robustness

In Appendix J.1, Table 9, we first empirically assess the robustness of DAWA against random
deletion and paraphrasing attacks. DAWA outperforms Gumbel-Max and KGW+23 in deletion
robustness and matches their performance under paraphrasing. These results confirm that DAWA
remains competitive while balancing robustness, efficiency, and detection accuracy, with the potential
to demonstrate a graceful trade-off based on our theoretical analyses.

Theoretical Extension. As a step towards even stronger robustness, Appendix J outlines how our
theoretical framework and optimal solutions extend to scenarios involving a wide range of attacks,
including semantic-invariant attacks. We characterize the detectability–distortion–robustness trade-
off and show the closed-form optimal robust watermarking scheme–detector pairs. These findings
offer valuable insights for designing advanced semantic-based watermarking algorithms that are
resilient to such attacks in the future.
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A Other Related Literature

In the past few years, many in-process LLM watermarking methods have been proposed [2, 3, 55–60],
including biased and unbiased (distortion-free) ones. Biased watermarks typically alter the next-token
prediction (NTP) distribution to increase the likelihood of sampling certain tokens [25–29]. For
example, [25] divides the vocabulary into green and red lists and slightly enhances the probability of
green tokens in the NTP distribution. Unbiased watermarks maintain the original NTP distributions
or texts unchanged, using various sampling strategies to embed watermarks [30–36, 19, 61, 62]. The
Gumbel-Max watermark [38] utilizes the Gumbel-Max trick [48] to sample the next token, while
Kuditipudi et al. [37] introduces an inverse transform method for this purpose.

From a theoretical standpoint, most of these designs remain heuristic. While post-process watermark-
ing has been extensively studied from an information-theoretic perspective [12–16], the theory behind
in-process watermarking is still limited. Prior efforts [42, 43] have analyzed either the watermark
embedder or the detector in isolation, without achieving joint or universally optimal designs.

B Other Existing Watermarking Schemes

Here, we discuss additional existing watermarking schemes utilizing auxiliary variables, which can
be encompassed within our LLM watermarking formulation.

• The Gumbel-Max watermarking scheme [38] applies the Gumbel-Max trick [48] to sample
the next token Xt, where the Gumbel variable is exactly the auxiliary variable ζt, which is a |V|-
dimensional random vector, indexd by x. For t = 1, 2, . . . ,

– Compute a hash using the previous n tokens Xt−n
t−1 and a shared secret key, i.e., h(Xt−n

t−1 , key),
where h : Vn × R→ R.

– Use h(Xt−n
t−1 , key) as a seed to uniformly sample the auxiliary vector ζt from [0, 1]|V|.

– Sample Xt using the Gumbel-Max trick
Xt = argmax

x∈V
logQXt|xt−1

1
(x)− log(− log ζt(x)).

• In the inverse transform watermarking scheme [37], the vocabulary V is considered as [|V|]
and the combination of the uniform random variable and the randomly permuted index vector is the
auxiliary variable ζt.

– Use key as a seed to uniformly and independently sample {Ut}Tt=1 from [0, 1], and {πt}Tt=1 from
the space of permutations over [|V|]. Let the auxiliary variable ζt = (Ut, πt), for t = 1, 2, . . . , T .

– Sample Xt as follows

Xt = π−1
t

(
min

{
i ∈ [|V|] :

∑
x∈[|V|]

(
QXt|xt−1

1
(x)1{πt(x) ≤ i}

)
≥ Ut

})
,

where π−1
t denotes the inverse permutation.

• In adaptive watermarking by Liu and Bu [27], the authors introduce a watermarking scheme
that adopts a technique similar to the Green-Red List approach but replaces the hash function with
a pretrained neural network h. The auxiliary variable ζt is sampled from the set {v ∈ {0, 1}|V| :
∥v∥1 = ρ|V|} using the seed h(ϕ(Xt−1

1 ), key), where h takes the semantics ϕ(Xt−1
1 ) of the

generated text and the secret key as inputs. They sample Xt using the same process as the Green-Red
List approach.

C Proof of Theorem 1

According to the Type-I error constraint, we have ∀xT
1 ∈ VT ,

α ≥ max
Q

XT
1

EQ
XT

1
P

ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}]

≥ Eδ
xT
1
P

ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}]

= EP
ζT1

[1{(xT
1 , ζ

T
1 ) ∈ A1}]
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=

{∑
ζT
1
PζT

1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1}, Z is discrete;∫

PζT
1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1} dζT1 , Z is continuous;

.

In the following, for notational simplicity, we assume thatZ is discrete. However, the derivations hold
for both discreteZ and continuousZ . The Type-II error is given by 1−EP

XT
1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}].

We have
EP

XT
1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}] =

∑
xT
1

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 )1{(xT

1 , ζ
T
1 ) ∈ A1}

︸ ︷︷ ︸
C(xT

1 )

,

where for all xT
1 ∈ VT ,

C(xT
1 ) ≤ PXT

1
(xT

1 ) and C(xT
1 ) ≤

∑
ζT
1

PζT
1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1} ≤ α

according to the Type-I error bound. Therefore,
EP

XT
1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}] =

∑
xT
1

C(xT
1 ) ≤

∑
xT
1

(PXT
1
(xT

1 ) ∧ α)

= 1−
∑
xT
1

(PXT
1
(xT

1 )− α)+ (8)

where (8) is maximized at
P ∗
XT

1
:= argmin

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+. (9)

For any PXT
1

, the Type-II error is lower bounded by

EP
XT

1 ,ζT1

[1{(XT
1 , ζ

T
1 ) /∈ A1}] ≥

∑
xT
1

(PXT
1
(xT

1 )− α)+.

By plugging P ∗
XT

1
into this lower bound, we obtain a Type-II lower bound that holds for all γ and

PXT
1 ,ζT

1
. Recall that Huang et al. [42] proposed a type of detector and watermarking scheme that

achieved this lower bound. As we demonstrate, it is actually the universal minimum Type-II error
over all possible γ and PXT

1 ,ζT
1

, denoted by β∗
1(QXT

1
, ϵ, α).

Specifically, define ϵ∗(xT
1 ) = QXT

1
(xT

1 )− P ∗
XT

1
(xT

1 ) and we have∑
xT
1 :P∗

XT
1

(xT
1 )≥α

ϵ∗(xT
1 ) =

∑
xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≥0

ϵ∗(xT
1 ) +

∑
xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≤0

ϵ∗(xT
1 )

︸ ︷︷ ︸
≤0

≤
∑

xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≥0

ϵ∗(xT
1 )

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α,Q

XT
1
(xT

1 )≥P∗
XT

1

(xT
1 )

ϵ∗(xT
1 )

≤
∑

xT
1 :Q

XT
1
(xT

1 )≥P∗
XT

1

(xT
1 )

ϵ∗(xT
1 ) ≤ ϵ

where the last inequality follows from the total variation distance constraint DTV(PXT
1
, QXT

1
) ≤ ϵ.

We rewrite β∗
1(QXT

1
, ϵ, α) as follows:

β∗
1(QXT

1
, ϵ, α) = min

P
XT

1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(P ∗
XT

1
(xT

1 )− α),

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(QXT
1
(xT

1 )− ϵ∗(xT
1 )− α)
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=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(QXT
1
(xT

1 )− α)−
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

ϵ∗(xT
1 )

≥
∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ,

where the last inequality follows from
∑

xT
1 :P∗

XT
1

(xT
1 )≥α ϵ∗(xT

1 ) ≤ ϵ, i.e. the total variation constraint

limits how much the distribution P ∗
XT

1
can be perturbed from QXT

1
. Since β∗

1(QXT
1
, ϵ, α) ≥ 0, finally

we have

β∗
1(QXT

1
, ϵ, α) ≥

(∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ

)
+

.

Notably, the lower bound is achieved when {xT
1 : P ∗

XT
1
(xT

1 ) ≥ α} = {xT
1 : QXT

1
(xT

1 ) ≥ P ∗
XT

1
(xT

1 )}
and DTV(QXT

1
, P ∗

XT
1
) = ϵ. That is, to construct P ∗

XT
1

, an ϵ amount of the mass of QXT
1

above α

is moved to below α, which is possible only when
∑

xT
1
(α − QXT

1
(xT

1 ))+ ≥ ϵ. Note that Huang
et al. [42, Theorem 3.2] points out a sufficient condition for this to hold: |V|T ≥ 1

α . The optimal
distribution P ∗

XT
1

thus satisfies∑
xT
1 :Q

XT
1
(xT

1 )≥α

(QXT
1
(xT

1 )− P ∗
XT

1
(xT

1 )) =
∑

xT
1 :Q

XT
1
(xT

1 )≤α

(P ∗
XT

1
(xT

1 )−QXT
1
(xT

1 )) = ϵ.

Refined constraints for optimization. We notice that the feasible region of (Opt-I) can be further
reduced as follows:

min
P

XT
1

min
P

ζT1 |XT
1

EP
XT

1
P

ζT1 |XT
1

[1− γ(XT
1 , ζ

T
1 )] (Opt-II)

s.t.
∫

PζT
1 |XT

1
(ζT1 |xT

1 ) dζ
T
1 = 1, ∀xT

1∫
PζT

1 |XT
1
(ζT1 |xT

1 )γ(x
T
1 , ζ

T
1 ) ≤ 1 ∧ α

PXT
1
(xT

1 )
, ∀xT

1 (10)

DTV(PXT
1
, QXT

1
) ≤ ϵ,

sup
Q

XT
1

∑
xT
1

QXT
1
(xT

1 )

∫ (∑
yT
1

PζT
1 |XT

1
(ζT1 |yT1 )PXT

1
(yT1 )

)
γ(xT

1 , ζ
T
1 ) dζ

T
1 ≤ α,

where (10) is an additional constraint on PζT
1 |XT

1
. If and only if (10) can be achieved with equality,

the minimum of the objective function EP
XT

1
P

ζT1 |XT
1

[1− γ(XT
1 , ζ

T
1 )] reaches (2).

D Formal Statement of Theorem 2 and its Proof

Theorem 2 [Formal] (Optimal type of detectors and watermarking schemes). The set of all detectors
that achieve the minimum Type-II error β∗

1(QXT
1
, α, ϵ) in Theorem 1 for all text distribution QXT

1
∈

P(VT ) and distortion level ϵ ≥ 0 is precisely
Γ∗ :=

{
γ |γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 )}, for some surjective g : ZT → S ⊃ VT
}
.

For any valid function g, choose a redundant auxiliary value ζ̃T1 ∈ ZT such that xT
1 ̸= g(ζ̃T1 ) for all

xT
1 ∈ VT . The detailed construction of the optimal watermarking scheme is as follows:

P ∗
XT

1
= min

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+,

and for any xT
1 ∈ VT , P ∗

ζT
1 |XT

1
(ζT1 |xT

1 ) satisfies (11)
P ∗
XT

1
(xT

1 )
∑

ζT
1
P ∗
ζT
1 |XT

1
(ζT1 |xT

1 )γ(x
T
1 , ζ

T
1 ) = P ∗

XT
1
(xT

1 ) ∧ α, ∀ζT1 s.t. γ(xT
1 , ζ

T
1 ) = 1;

P ∗
XT

1
(xT

1 )P
∗
ζT
1 |XT

1
(ζT1 |xT

1 ) =
(
P ∗
XT

1
(xT

1 )− α
)
+
, if ζT1 = ζ̃T1 ;

P ∗
ζT
1 |XT

1
(ζT1 |xT

1 ) = 0, otherwise.
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Proof. First, we observe that the lower bound on the Type-II error in (2) is attained if and only if
the constraint in (10) holds with equality for all xT

1 and for the optimizer. Thus, it suffices to show
that for any detector γ /∈ Γ∗, the constraint in (10) cannot hold with equality for all xT

1 given any
text distributions QXT

1
. First, define an arbitrary surjective function g : ZT → S, where S is on

the same metric space as VT . Cases 1 and 2 prove that VT ⊂ S. Case 3 proves that γ can only be
γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 )}.

• Case 1: γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} but S ⊂ VT . There exists x̃T
1 such that for all ζT1 ,

1{x̃T
1 = g(ζT1 )} = 0. Under this case, (10) cannot hold with equality for x̃T

1 since the LHS
is always 0 while the RHS is positive.

• Case 2: γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} but S = VT . Let us start from the simple case where
T = 1, V = {x1, x2}, Z = {ζ1, ζ2}, and g is an identity mapping. Given any QX and any feasible
PX such that DTV(PX , QX) ≤ ϵ, when (10) holds with equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ2) = PX(x2) ∧ α,
then the marginal Pζ is given by: Pζ(ζ1) = PX(x1) ∧ α+ (PX(x2)− α)+, Pζ(ζ2) = PX(x2) ∧
α+ (PX(x1)− α)+. The worst-case Type-I error is given by
sup
QX

(
QX(x1)

(
PX(x1) ∧ α+ (PX(x2)− α)+

)
+QX(x2)

(
PX(x2) ∧ α+ (PX(x1)− α)+

))
≥ PX(x1) ∧ α+ (PX(x2)− α)+
> α, if PX(x1) > α,PX(x2) > α.

It implies that for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) :
PX(x1) > α,PX(x2) > α}, the false-alarm constraint is violated when (10) holds with equality.
It can be verified that this result also holds for larger (T,V,Z) and other functions g : ZT → VT .

• Case 3: Let Ξγ(x
T
1 ) := {ζT1 ∈ ZT : γ(xT

1 , ζ
T
1 ) = 1}. ∃xT

1 ̸= yT1 ∈ VT , s.t. Ξ(xT
1 ) ∩ Ξ(yT1 ) ̸= ∅.

For any detector γ /∈ Γ∗ that does not fall into Cases 1 and 2, it falls into Case 3. Let us start
from the simple case where T = 1, V = {x1, x2}, Z = {ζ1, ζ2, ζ3}. Consider a detector γ as
follows: γ(x1, ζ1) = γ(x2, ζ1) = 1 and γ(x, ζ) = 0 for all other pairs (x, ζ) ∈ V × Z . Hence,
Ξ(x1) ∩ Ξ(x2) = {ζ1}. When (10) holds with equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ1) = PX(x2) ∧ α,
we have the worst-case Type-I error lower bounded by

sup
QX

(
QX(x1)Pζ(ζ1) +QX(x2)Pζ(ζ1)

)
= Pζ(ζ1) = PX(x1) ∧ α+ PX(x2) ∧ α

> α, if PX(x1) > α or PX(x2) > α.
Thus, for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) : PX(x1) >
α or PX(x2) > α}, the false-alarm constraint is violated when (10) holds with equality.

If we consider a detector γ as follows: γ(x1, ζ1) = γ(x2, ζ1) = γ(x2, ζ2) = 1 and γ(x, ζ) = 0
for all other pairs (x, ζ) ∈ V × Z . We still have Ξ(x1) ∩ Ξ(x2) = {ζ1}. When (10) holds with
equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ1) + PX,ζ(x2, ζ2) = PX(x2) ∧ α,
we have the worst-case Type-I error lower bounded by

sup
QX

(
QX(x1)Pζ(ζ1) +QX(x2)(Pζ(ζ1) + Pζ(ζ2))

)
= sup

QX

(
Pζ(ζ1) +QX(x2)Pζ(ζ2)

)
= Pζ(ζ1) + Pζ(ζ2) = PX(x1) ∧ α+ PX(x2) ∧ α > α, if PX(x1) > α or PX(x2) > α,

which is the same as the previous result.

If we let V = {x1, x2, x3}, Z = {ζ1, ζ2, ζ3, ζ4} and γ(x3, ζ3) = 1 in addition to the afore-
mentioned γ, we can similarly show that the worst-case Type-I error is larger than α for some
distributions QX .

Therefore, it can be observed that as long as Ξ(xT
1 ) ∩ Ξ(yT1 ) ̸= ∅ for some xT

1 ̸= yT1 ∈ VT , (10)
can not be achieved with equality for all QXT

1
and ϵ even for larger (T,V,Z) as well as continuous

Z .
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In conclusion, for any detector γ /∈ Γ∗, the universal minimum Type-II error in (2) cannot be obtained
for all QXT

1
and ϵ.

Since the optimal detector takes the form γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} for some surjective
function g : ZT → S, S ⊃ VT , and the token vocabulary is discrete, it suffices to consider discrete
Z to derive the optimal watermarking scheme.

Under the watermarking scheme P ∗
XT

1 ,ζT
1

(cf. (9) and (11)), the Type-I and Type-II errors are given
by:

Type-I error:
∀yT1 ∈ VT , EP∗

ζT1

[1{yT1 = g(ζT1 )}] =
∑
ζT
1

P ∗
ζT
1
(ζT1 )1{yT1 = g(ζT1 )}

=
∑
ζT
1

∑
xT
1

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 )1{yT1 = g(ζT1 )}

= P ∗
XT

1
(yT1 )

∑
ζT
1

P ∗
ζT
1 |XT

1
(ζT1 |yT1 )1{yT1 = g(ζT1 )} = P ∗

XT
1
(yT1 ) ∧ α

≤ α,

and since any distribution QXT
1

can be written as a linear combinations of δyT
1

, we have

max
Q

XT
1

EQ
XT

1
P∗

ζT1

[1{XT
1 = g(ζT1 )}] ≤ α.

Type-II error:
1− EP∗

XT
1 ,ζT1

[1{XT
1 = g(ζT1 )}]

= 1−
∑
xT
1

∑
ζT
1

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 )1{xT

1 = g(ζT1 )}

= 1−
∑
xT
1

P ∗
XT

1
(xT

1 )
∑
ζT
1

P ∗
ζT
1 |XT

1
(ζT1 |xT

1 )1{xT
1 = g(ζT1 )}

= 1−
∑
xT
1

(
P ∗
XT

1
(xT

1 ) ∧ α
)

=
∑

xT
1 :P∗

XT
1

(xT
1 )>α

(P ∗
XT

1
(xT

1 )− α).

The optimality of P ∗
XT

1 ,ζT
1

is thus proved. We note that (10) in (Opt-II) holds with equality under this
optimal conditional distribution P ∗

ζT
1 |XT

1
.

Compared to Huang et al. [42, Theorem 3.2], their proposed detector is equivalent to γ(XT
1 , ζ

T
1 ) =

1{XT
1 = ζT1 }, where ZT = VT ∪ {ζ̃T1 } and ζ̃T1 /∈ VT , meaning that it belongs to Γ∗.

E Illustration of Construction of the Optimal Watermarking Scheme

Using a toy example in Figure 5, we now illustrate how to construct the optimal watermarking
schemes, where

P ∗
XT

1
= argmin

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+.

Constructing the optimal watermarking scheme P ∗
XT

1 ,ζT
1

is equivalent to transporting the probability

mass P ∗
XT

1
on V to Z , maximizing P ∗

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) when xT

1 = g(ζT1 ), while keeping the worst-case
Type-I error below α. Without loss of generality, by letting T = 1, we present Figure 5 to visualize
the optimal watermarking scheme. The construction process is given step by step as follows:
– Identify text-auxiliary pairs: We begin by identifying text-auxiliary pairs (x, ζ) ∈ V × Z with
γ(x, ζ) = 1{x = g(ζ)} = 1 and connect them by blue solid lines.
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redundant

Figure 5: A toy example of the optimal detector and watermarking scheme when T = 1. Links
between V and Z suggest P ∗

X1,ζ1
> 0.

– Introducing redundant auxiliary value: We enlarge Z to include an additional value ζ̃ and set
γ(x, ζ̃) = 0 for all x. We will call ζ̃ “redundant".
– Mass allocation for P ∗

X1
(x) > α: If P ∗

X1
(x) > α, we transfer α mass of P ∗

X1
(x) to the ζ connected

by the blue solid lines. The excess mass is transferred to the redundant ζ̃ (orange dashed lines).
Specifically, for x(1), where P ∗

X1
(x(1)) > α and x(1) = g(ζ(1)), we move α units of mass from

P ∗
X1

(x(1)) to P ∗
ζ1
(ζ(1)), ensuring that P ∗

ζ1
(ζ(1)) = α. The rest (P ∗

X1
(x(1)) − α) units of mass

is moved to ζ̃. Similarly, for x(2), where P ∗
X1

(x(2)) > α and x(2) = g(ζ(2)), we move α mass
from P ∗

X1
(x(2)) to P ∗

ζ1
(ζ(2)) and (P ∗

X1
(x(2))− α) mass to ζ̃. Consequently, the probability of ζ̃ is

Pζ1(ζ̃) = (P ∗
X1

(x(1))− α) + (P ∗
X1

(x(2))− α). In this way, there is a chance for the lower-entropy
texts x(1) and x(2) to be mapped to the redundant ζ̃ during watermark generation.
– Mass allocation for P ∗

X1
(x) < α: For x(3), where P ∗

X1
(x(3)) < α and x(3) = g(ζ(3)), we move

the entire mass P ∗
X1

(x(3)) to P ∗
ζ1
(ζ(3)) along the blue solid line. It means that higher-entropy texts

will not be mapped to the redundant ζ̃ during watermark generation.
– Outcome: This construction ensures that P ∗

ζ1
(ζ) ≤ α for all ζ ∈ {ζ(1), ζ(2), ζ(3), keeping the

worst-case Type-I error under control. The Type-II error is equal to P ∗
ζ1
(ζ̃), which is exactly the

universally minimum Type-II error. This scheme can be similarly generalized to T > 1.

In Figure 5, when there is no link between (x, ζ) ∈ V ×Z , the joint probability P ∗
X1,ζ1

(x, ζ) = 0. By
letting ϵ = 0, the scheme guarantees that the watermarked LLM remains unbiased (distortion-free).
Note that the detector proposed in Huang et al. [42, Theorem 3.2] is also included in our framework,
see Appendix D.

F Construction of Token-level Optimal Watermarking Scheme

The toke-level optimal watermarking scheme is the optimal solution to the following optimization
problem:

inf
P

Xt,ζt|X
t−1
1 ,ζ

t−1
1

EP
Xt,ζt|X

t−1
1 ,ζ

t−1
1

[1− 1{Xt = gtk(ζt)}]

s.t. sup
Q

Xt|X
t−1
1

EQ
Xt|X

t−1
1

⊗P
ζt|ζ

t−1
1

[1{Xt = gtk(ζt)}] ≤ η, DTV(PXt|Xt−1
1

, QXt|Xt−1
1

) ≤ ϵ.

The optimal solution P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

follows the similar rule as that of P ∗
XT

1 ,ζT
1

in Theorem 2 with

(QXT
1
, PXT

1
, α) replaced by (QXt|Xt−1

1
, PXt|Xt−1

1
, η). We refer readers to Appendix D for further

details.

G Formal Statement of Lemma 3 and its Proof

Let P token∗
XT

1 ,ζT
1

and P token∗
ζT
1

denote the joint distributions induced by the token-level optimal watermark-
ing scheme.
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Lemma 3 (Formal) (Token-level optimal watermarking detection errors). Let η = (α/
(

T
⌈Tλ⌉

)
)

1
⌈Tλ⌉ .

Under the detector γ in (5) and the token-level optimal watermarking scheme P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

, the
Type-I error is upper bounded by

sup
Q

XT
1

β0(γ,QXT
1
, P token∗

ζT
1

) ≤ α.

Assume that when T and n ≤ T are both large enough, token Xt is independent of Xt−i, i.e.,
PXt,Xt−i

= PXt
⊗ PXt−i

, for all i ≥ n+ 1 and t ∈ [T ]. Let IT,n(i) = ([i− n, i+ n] ∩ [T ])\{i}.
By setting the detector threshold as λ = a

T

∑T
t=1 EXt,ζt [1{Xt = g(ζt)}] for some a ∈ [0, 1], the

Type-II error exponent is

− log β1(γ, P
token∗
XT

1 ,ζT
1
) = Ω

(
T

n

)
.

The following is the proof of Lemma 3.

To choose ⌈Tλ⌉ indices out of {1, . . . , T}, there are
(

T
⌈Tλ⌉

)
choices. Let k = 1, . . . ,

(
T

⌈Tλ⌉
)

and Sk

be the k-th set of the chosen indices. The Type-I error is upper-bounded by

β0(γ,QX(T ) , P token∗
ζT
1

) = Pr

(
1

T

T∑
t=1

1{Xt = g(ζt)} ≥ λ | H0

)

≤ Pr

( ( T
⌈Tλ⌉)⋃
k=1

{1{Xt = g(ζt)} = 1,∀t ∈ Sk} | H0

)

≤
( T
⌈Tλ⌉)∑
k=1

Pr

(
{1{Xt = g(ζt)} = 1,∀t ∈ Sk} | H0

)
︸ ︷︷ ︸

PFA,k

.

Without loss of generality, let m = ⌈Tλ⌉ and Sk = {1, 2, . . . ,m}. We can rewrite PFA,k as
PFA,k = EQ

X(T )⊗P
ζ(T )

[{1{Xt = g(ζt)} = 1,∀t ∈ Sk}]

= EQ
X(T )⊗P

ζ(T )
[
∏
t∈Sk

1{Xt = g(ζt)}]

= EQX1
⊗Pζ1

[
1{X1 = g(ζ1)}EQX2|X1

⊗Pζ2|ζ1

[
1{X2 = g(ζ2)} · · ·

· · ·EQ
Xm|Xm−1

1
⊗P

ζm|ζm−1
1

[1{Xm = g(ζm)}]
]
· · ·

]]
≤ ηm, ∀QXT

1
.

Then the Type-I error is finally upper-bounded by

sup
Q

XT
1

β0(γ,QXT
1
, P token∗

ζT
1

) ≤
(

T

⌈Tλ⌉

)
η⌈Tλ⌉ ≤ α.

We prove the Type-II error bound by applying Janson [63, Theorem 10].

Theorem 5 (Theorem 10, Janson [63]). Let {Ii}i∈I be a finite family of indicator random variables,
defined on a common probability space. Let G be a dependency graph of I, i.e., a graph with
vertex set I such that if A and B are disjoint subsets of I, and Γ contains no edge between A and
B, then {Ii}i∈A and {Ii}i∈B are independent. We write i ∼ j if i, j ∈ I and (i, j) is an edge in
G. In particular, i ̸∼ i. Let S =

∑
i∈I Ii and ∆ = E[S]. Let Ψ = maxi∈I

∑
j∈I,j∼i E[Ij ] and

Φ = 1
2

∑
i∈I

∑
j∈I,j∼i E[IiIj ]. For any 0 ≤ a ≤ 1,

Pr(S ≤ a∆) ≤ exp

{
−min

{
(1− a)2

∆2

8Φ + 2∆
, (1− a)

∆

6Ψ

}}
. (12)

21



Given any detector γ that accepts the form in (5) and the corresponding optimal watermarking scheme,
for some a ∈ (0, 1), we first set the threshold in γ as

Tλ = a

T∑
t=1

EXt,ζt [1{Xt = g(ζt)}] = a

T∑
t=1

EXt−1
1

[∑
x

(
P ∗
Xt|Xt−1

1
(x|Xt−1

1 )− η
)
+

]
=: a∆T ,

where P ∗
Xt|Xt−1

1

is induced by P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

. The Type-II error is given by

β1(γ, P
token∗
XT

1 ,ζT
1
) = P token∗

XT
1 ,ζT

1

( T∑
t=1

1{Xt = g(ζt)} < a∆T

)
which is exactly the left-hand side of (12).

Assume that when T and n ≤ T are large enough, token Xt is independent of all Xt−i for all
i ≥ n+1 and t ∈ [T ], i.e., PXt,Xt−i = PXt ⊗PXt−i . Let IT,n(i) = ([i−n, i+n]∩ [T ])\{i}. The
Ψ and Φ on the right-hand side of (12) are given by:

Ψ := max
i∈[T ]

∑
t∈[T ],t∼i

EXt,ζt [1{Xt = g(ζt)}] = max
i∈[T ]

∑
t∈IT,n(i)

EXt,ζt [1{Xt = g(ζt)}] = Θ(n),

Φ :=
1

2

∑
i∈[T ]

∑
j∈[T ],j∼i

E[1{Xi = g(ζi)}1{Xj = g(ζj)}]

=
1

2

∑
i∈[T ]

∑
j∈IT,n(i)

E[1{Xi = g(ζi)}1{Xj = g(ζj)}] = Θ(Tn).

By plugging ∆T , Ω and Θ back into the right-hand side of (12), we have the upper bound

β1(γ, P
token∗
XT

1 ,ζT
1
) ≤ exp

{
−min

{
(1− a)2

∆2
T

8Φ + 2∆T
, (1− a)

∆T

6Ψ

}}
where Ut = EXt−1

1

[∑
x

(
P ∗
Xt|Xt−1

1

(x|Xt−1
1 ) − η

)
+

]
, ∆T :=

∑T
t=1 Ut, Ψ =

maxi∈[T ]

∑
t∈IT,n(i)

Ut, and Φ = 1
2

∑
i∈[T ]

∑
j∈IT,n(i)

E[1{Xi = g(ζi)}1{Xj = g(ζj)}]. This
implies

− log β1(γ, P
token∗
XT

1 ,ζT
1
) ≥ min

{
(1− a)2Θ

(
T

n

)
, (1− a)Θ

(
T

n

)}
=⇒− log β1(γ, P

token∗
XT

1 ,ζT
1
) = Ω

(
T

n

)
.

H DAWA Pseudo-Codes

Algorithm 1 Watermarked Text Generation

Input: LLM Q, Vocabulary V , Prompt u, Secret key, Token-level false alarm η.
1: Z = {hkey(x)}x∈V ∪ {ζ̃}
2: for t = 1, ..., T do
3: Pζt|xt−1

1 ,u(ζ)← (QXt|xt−1
1 ,u(h

−1
key(ζ)) ∧ η), ∀ζ ∈ Z\{ζ̃}.

4: Pζt|xt−1
1 ,u(ζ̃)←

∑
x∈V(QXt|xt−1

1 ,u(x)− η)+.

5: Compute a hash of tokens xt−1
t−n with key, and use it as a seed to generate (Gt,ζ)ζ∈Z from Gumbel

distribution.
6: ζt ← argmaxζ∈Z log(Pζt|xt−1

1 ,u(ζ)) +Gt,ζ .

7: if ζt ̸= ζ̃ then
8: xt ← h−1

key(ζt)
9: else

10: Sample xt ∼
(

(Q
Xt|x

t−1
1 ,u

(x)−η)+∑
x∈V

(
Q

Xt|x
t−1
1 ,u

(x)−η
)
+

)
x∈V

11: end if
12: end for
Output: Watermarked text xT

1 = (x1, ..., xT ).
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Algorithm 2 Watermarked Text Detection

Input: SLM Q̃, Vocabulary V , Text xT
1 , Secret key, Token-level false alarm η, Threshold λ.

1: score = 0, Z = {hkey(x)}x∈V ∪ {ζ̃}
2: for t = 1, ..., T do
3: P̃ζt|xt−1

1
(ζ)← (Q̃Xt|xt−1

1
(h−1

key(ζ)) ∧ η), ∀ζ ∈ Z\{ζ̃}.
4: P̃ζt|xt−1

1
(ζ̃)←

∑
x∈V(Q̃Xt|xt−1

1
(x)− η)+.

5: Compute a hash of tokens xt−1
t−n with key, and use it as a seed to generate (Gt,ζ)ζ∈Z from Gumbel

distribution.
6: ζt ← argmaxζ∈Z log(P̃ζt|xt−1

1
(ζ)) +Gt,ζ .

7: score← score +1{hkey(xt) = ζt}
8: end for
9: if score > Tλ then

10: return 1 ▷ Input text is watermarked
11: else
12: return 0 ▷ Input text is unwatermarked
13: end if

I Ablation Study and Additional Experimental Results

All pre-existing models and datasets utilized in this research are publicly available and were used
in full accordance with their respective licensing terms, which predominantly include common
open-source licenses (such as Apache 2.0, MIT, CC BY-SA) and specific community or research
usage agreements.

Efficiency of Watermark Scheme. To evaluate the efficiency of our watermarking method, we
conduct experiments to measure the average generation time for both watermarked and unwatermarked
text. In both scenarios, we generated 500 texts, each containing 200 tokens. Table 4 indicates that
the difference in generation time between unwatermarked and watermarked text is less than 0.5
seconds. This minimal difference confirms that our watermarking method has a negligible impact on
generation speed, ensuring practical applicability.

Table 4: Average generation time comparison for watermarked and unwatermarked text using Llama2-
13B.

Language Model Setting Avg Generation Time (s)

Llama2-13B Unwatermarked 9.110
Llama2-13B Watermarked 9.386

Table 5: Performance comparison of different language models and surrogate models under two
scenarios: without attack and with token replacement attack.

Scenario Language Model Surrogate Model ROC-AUC TPR@1% FPR TPR@10% FPR

Without Attack
Llama2-13B Llama2-7B 0.999 0.998 1.000
Mistral-8 × 7B Mistral-7B 0.999 0.998 1.000
GPT-J-6B GPT-2 large 0.997 0.990 0.997

With Attack
Llama2-13B Llama2-7B 0.989 0.860 0.976
Mistral-8 × 7B Mistral-7B 0.990 0.881 0.966
GPT-J-6B GPT-2 large 0.987 0.892 0.962

Surrogate Language Model. SLM plays a crucial role during the detection process of our wa-
termarking method. We examine how the choice of SLM affects the detection performance of our
watermarking scheme. The selection of the surrogate model is primarily based on its vocabulary
or tokenizer rather than the specific language model within the same family. This choice is critical
because, during detection, the text must be tokenized exactly using the same tokenizer as the water-
marking model to ensure accurate token recovery. As a result, any language model that employs the

23



same tokenizer can function effectively as the surrogate model. To validate our approach, we apply
our watermarking algorithm to GPT-J-6B (a model with 6 billion parameters) and use GPT-2 Large
(774 million parameters) as the SLM. Despite differences in developers, training data, architecture,
and training methods, these two models share the same tokenizer, making them compatible for this
task. We conduct experiments using the C4 dataset, and the results are presented in Table 5. The
results demonstrate the effectiveness of our proposed watermarking method with or without attack,
even when using a surrogate model from a different family than the watermarking language model.
Notably, the surrogate model, despite having fewer parameters and lower overall capability compared
to the watermarking language model, does not compromise the watermarking performance.

Prompt Agnostic. Prompt agnosticism is a crucial property of LLM watermark detection. We
investigate the impact of prompts on our watermark detection performance by conducting experiments
to compare detection accuracy with and without prompts attached to the watermarked text during
the detection process. The results are presented in Table 6. Notably, even when prompts are absent
and the SLM cannot perfectly reconstruct the same distribution of ζt as in the generation process,
our detection performance remains almost unaffected. This demonstrates the robustness of our
watermarking method, regardless of whether a prompt is included during the detection phase.

Table 6: Performance comparison of Llama2-13B under two scenarios: without attack and with token
replacement attack, with and without prompts.

Scenario Language Model Surrogate Model Setting ROC-AUC TPR@1% FPR TPR@10% FPR

Without Attack Llama2-13B Llama2-7B Without Prompt 0.997 0.983 0.995
Llama2-13B Llama2-7B With Prompt 0.998 0.989 0.996

With Attack Llama2-13B Llama2-7B Without Prompt 0.977 0.818 0.953
Llama2-13B Llama2-7B With Prompt 0.979 0.816 0.960

Detection Performance with larger T . Increasing text length generally improves detection perfor-
mance for LLM watermarking. We conduct an additional experiment with T = 500, and the results
are shown below. Both DAWA and KGW+23 show improved performance compared to T = 200
(reported in Figure 1). Notably, DAWA, a distortion-free algorithm, achieves significantly better
detection in the low-FPR regime than the distorted KGW+23.

Table 7: Detection performance at various FPRs for different sequence lengths T .

Length T Method TPR@1e-5FPR TPR@1e-4FPR TPR@1e-3FPR TPR@1e-2FPR

500 KGW+23 0.876 0.959 0.986 0.995
Ours 0.891 0.970 0.996 0.999

200 KGW+23 0.682 0.916 0.976 0.991
Ours 0.882 0.951 0.992 0.997

Empirical analysis on False Alarm Control. We conduct experiments to show the relationship
between theoretical FPR (i.e., α) and the corresponding empirical FPR. As discussed in Lemma 3, we
set the token-level false alarm rate as η = 0.1 and the sequence length as T = 200, which controls
the sequence-level false alarm rate under α =

(
T

⌈Tλ⌉
)
η⌈Tλ⌉, where λ is the detection threshold. For a

given theoretical FPR α, we calculate the corresponding threshold λ and the empirical FPR based
on 100k unwatermarked sentences. The results, as shown in Table 8, confirm that our theoretical
guarantee effectively controls the empirical false alarm rate.

Table 8: Theoretical and empirical FPR under different thresholds.

Theoretical FPR 9e-03 2e-03 5e-04 9e-05

Empirical FPR 1e-04 4e-05 2e-05 2e-05
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J Theoretical Extension to Robustness against Broader Attacks
Thus far, we have theoretically examined the optimal detector and watermarking scheme without
considering adversarial scenarios. In practice, users may attempt to modify LLM output to remove
watermarks through techniques like replacement, deletion, insertion, paraphrasing, or translation. We
now show that our framework can be extended to incorporate robustness against these attacks.

J.1 Assessment of DAWA against Deletion and Paraphrasing Attacks

We conducted additional experiments on random deletion attacks and paraphrasing attacks, where
DAWA achieves comparable robustness to Gumbel-Max and KGW+23. Although it is less robust
than EXP-edit, we note that EXP-edit explicitly includes robustness designs and is significantly
slower in detection. This demonstrates that DAWA remains competitive while balancing robustness,
efficiency, and detection accuracy, with the potential to demonstrate a graceful tradeoff based on our
theoretical analyses.

Table 9: Detection performance under deletion and paraphrasing attacks.

Method Deletion Attacks Paraphrasing Attacks

ROC-AUC TPR@1%FPR TPR@10%FPR ROC-AUC TPR@1%FPR TPR@10%FPR

KGW+23 0.895 0.523 0.809 0.769 0.156 0.455
Gumbel-Max 0.910 0.501 0.823 0.773 0.152 0.463
EXP-edit 0.978 0.955 0.970 0.853 0.245 0.703
DAWA (Ours) 0.918 0.504 0.812 0.770 0.144 0.458

J.2 Theoretical Analysis of f -Robust Design

We consider a broad class of attacks, where the text can be altered in arbitrary ways as long as certain
latent pattern, such as its semantics, is preserved. Specifically, let f : VT → [K] be a function
that maps a sequence of tokens XT

1 to a finite latent space [K] ⊂ N+; for example, [K] may index
K distinct semantics clusters and f is a function extracting the semantics. Clearly, f induces an
equivalence relation, say, denoted by ≡f , on VT , where xT

1 ≡f x′T
1 if and only if f(xT

1 ) = f(x′T
1 ).

Let Bf (xT
1 ) be an equivalence class containing xT

1 . Under the assumption that the adversary is
arbitrarily powerful except that it is unable to move any xT

1 outside its equivalent class Bf (xT
1 ) (e.g.,

unable to alter the semantics of xT
1 ), the “f -robust” Type-I and Type-II errors are then defined as

β0(γ,QXT
1
, PζT

1
, f) := EQ

XT
1
⊗P

ζT1

[
supx̃T

1 ∈Bf (X
T
1 ) 1{γ(x̃

T
1 , ζ

T
1 ) = 1}

]
,

β1(γ, PXT
1 ,ζT

1
, f) := EP

XT
1 ,ζT1

[
supx̃T

1 ∈Bf (XT
1 ) 1{γ(x̃T

1 , ζ
T
1 ) = 0}

]
.

Designing a universally optimal f -robust detector and watermarking scheme can then be formulated
as jointly minimizing the f -robust Type-II error while constraining the worst-case f -robust Type-I
error, namely, solving the optimization problem

inf
γ,P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
, f) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
, f) ≤ α, DTV(PXT

1
, QXT

1
) ≤ ϵ. (Opt-R)

We prove the following theorem.
Theorem 6 (Universally minimum f -robust Type-II error). The universally minimum f -robust
Type-II error attained from (Opt-R) is

β∗
1 (QXT

1
, α, ϵ, f) := min

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

Notably, β∗
1(QXT

1
, α, ϵ, f) is suboptimal without an adversary but becomes optimal under the ad-

versarial setting of (Opt-R). The gap between β∗
1(QXT

1
, α, ϵ, f) in Theorem 6 and β∗

1(QXT
1
, α, ϵ) in

Theorem 1 reflects the cost of ensuring robustness, widening as K decreases (i.e., as perturbation
strength increases), see Figure 6 in appendix for an illustration of the optimal f -robust minimum
Type-II error when f is a semantic mapping. Similar to Theorem 2, we derive the optimal detector
and watermarking scheme achieving β∗

1(QXT
1
, α, ϵ, f), detailed in Appendix L. These solutions

closely resemble those in Theorem 2. For implementation, if the latent space [K] is significantly
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smaller than VT , applying the optimal f -robust detector and watermarking scheme becomes more
effective than those presented in Theorem 2. Additionally, a similar algorithmic strategy to the one
discussed in Sections 4 and 5 can be employed to address the practical challenges discussed earlier.
These extensions and efficient implementations of the function f in practice are promising directions
of future research.

K Proof of Theorem 6

According to the Type-I error constraint, we have ∀xT
1 ∈ VT ,

α ≥ max
Q

XT
1

EQ
XT

1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]

≥ Eδ
xT
1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= EP

ζT1

[
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x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 )

]
=

∑
ζT
1

PζT
1
(ζT1 ) sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 ).

For brevity, let B(k) := Bf (xT
1 ) if f(xT

1 ) = k. The f -robust Type-II error is equal to
1− EP

XT
1 ,ζT1

[inf x̃T
1 ∈Bf (XT

1 ) γ(x̃
T
1 , ζ

T
1 )]. We have
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XT
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[
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1 ∈Bf (XT

1 )
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]
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[
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T
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]
=

∑
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1 :f(xT

1 )=k

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 ) sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 )︸ ︷︷ ︸

C(k)

,

where according to the f -robust Type-I error constraint, for all k ∈ [K],
C(k) ≤

∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 ), and

C(k) =
∑
ζT
1

PζT
1
(ζT1 )

∑
xT
1 :f(xT

1 )=k

PXT
1 |ζT

1
(xT

1 |ζT1 ) sup
x̃T
1 ∈B(k)

γ(x̃T
1 , ζ

T
1 )

≤
∑
ζT
1

PζT
1
(ζT1 ) sup

x̃T
1 ∈B(k)

γ(x̃T
1 , ζ

T
1 ) ≤ α.

Therefore,

EP
XT

1 ,ζT1

[
inf

x̃T
1 ∈B(f(XT

1 ))
γ(x̃T

1 , ζ
T
1 )

]
≤

∑
k∈[K]

C(k)

≤
∑

k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
∧ α

)
= 1−

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

,(13)

where (13) is maximized by taking

PXT
1
= P ∗,f

XT
1

:= argmin
P

XT
1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

For any PXT
1

, the f -robust Type-II error is lower bounded by

EP
XT

1 ,ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 0}

]
≥

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

By plugging P ∗,f
XT

1
into the lower bound, we obtain the universal minimum f -robust Type-II error

over all possible γ and PXT
1 ,ζT

1
, denoted by

β∗
1(f,QXT

1
, ϵ, α) := min

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

. (14)
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L Optimal Type of f -Robust Detectors and Watermarking Schemes

Theorem 7 (Optimal type of f -robust detectors and watermarking schemes). Let Γ∗
f be a collection

of detectors that accept the form
γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 ) or f(XT
1 ) = g(ζT1 )}

for some function g : ZT → S, S ∩ ([K] ∪ VT ) ̸= ∅ and |S| > K. If and only if the detector
γ ∈ Γ∗

f , the minimum Type-II error attained from (Opt-R) reaches β∗
1(QXT

1
, ϵ, α, f) in (14) for all

text distribution QXT
1
∈ P(VT ) and distortion level ϵ ∈ R≥0.

After enlarging ZT to include redundant auxiliary values, the ϵ-distorted optimal f -robust water-
marking scheme P ∗,f

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) is given as follows:

P ∗,f
XT

1

:= argmin
P

XT
1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

,

and for any xT
1 ∈ VT ,

1) for all ζT1 s.t. supx̃T
1 ∈B(f(xT

1 )) γ(x̃
T
1 , ζ

T
1 ) = 1: P ∗,f

ζT
1 |XT

1
(ζT1 |xT

1 ) satisfies∑
x̃T
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1 )

P ∗,f
XT

1
(x̃T
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∑
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(ζT1 |x̃T

1 ) sup
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1 )

γ(x̃T
1 , ζ

T
1 ) =

( ∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(x̃T

1 )

)
∧ α.

2) ∀ζT1 s.t. |{xT
1 ∈ VT : γ(xT

1 , ζ
T
1 ) = 1}| = 0: P ∗,f

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) satisfies∑

x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(xT

1 )
∑

ζT
1 :|{xT

1 :γ(xT
1 ,ζT

1 )=1}|=0

P ∗,f
ζT
1 |XT

1
(ζT1 |xT

1 ) =

(( ∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(x̃T

1 )

)
− α

)
+

.

3) all other cases of ζT1 : P ∗,f
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) = 0.

Proof of Theorem 7. When f is an identity mapping, it is equivalent to Theorem 2. When f : VT →
[K] is some other function, following from the proof of Theorem 2, we consider three cases.

• Case 1: S ∩ ([K] ∪ VT ) ̸= ∅ but |S| < K. It is impossible for the detector to detect all the water-
marked text sequences. That is, there exist x̃T

1 such that for all ζT1 , γ(x̃T
1 , ζ

T
1 ) = 0. Under this case,

in Appendix K, C(f(x̃T
1 )) = 0 ̸= (

∑
xT
1 :f(xT

1 )=f(x̃T
1 ) PXT

1
(xT

1 )) ∧ α, which means the f -robust
Type-II error cannot reach the lower bound.

• Case 2: S ∩ ([K] ∪ VT ) ̸= ∅ but |S| = K. Under this condition, the detector needs to accept the
form γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = g(ζT1 )} so as to detect all possible watermarked text. Otherwise,
it will degenerate to Case 1. We can see f(XT

1 ) as an input variable and rewrite the detector as
γ′(f(XT

1 ), ζ
T
1 ) = γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = g(ζT1 )}. Similar the proof technique of Theorem
2, it can be shown that C(k) in Appendix K cannot equal (

∑
xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all
k ∈ [K], while the worst-case f -robust Type-I error remains upper bounded by α for all QXT

1
and

ϵ.

• Case 3: Let Ξγ(x
T
1 ) := {ζT1 ∈ ZT : γ(xT

1 , ζ
T
1 ) = 1}. ∃xT

1 , y
T
1 ∈ VT , s.t. f(xT

1 ) ̸= f(yT1 )

and Ξγ(x
T
1 ) ∩ Ξγ(y

T
1 ) ̸= ∅. For any detector γ /∈ Γ∗

f that does not belong to Cases 1 and 2, it
belongs to Case 3. Let us start from a simple case where T = 1, V = {x1, x2, x3}, K = 2, Z =
{ζ1, ζ2, ζ3}, and S = [2]. Consider the mapping f and the detector as follows: f(x1) = f(x2) = 1,
f(x3) = 2, γ(x1, ζ1) = γ(x1, ζ1) = 1, γ(x3, ζ2) = 1, and γ(x, ζ) = 0 for all other pairs (x, ζ).
When C(k) = (

∑
xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all k ∈ [K], i.e.,
PX,ζ(x1, ζ1) + PX,ζ(x1, ζ2) + PX,ζ(x2, ζ1) + PX,ζ(x2, ζ2) = (PX(x1) + PX(x2)) ∧ α,

and PX,ζ(x3, ζ2) = PX(x3) ∧ α,
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then the worst-case f -robust Type-I error is lower bounded by

max
Q

XT
1

EQ
XT

1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]

≥ EP
ζT1

[
sup

x̃T
1 ∈B(1)

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= (PX(x1) + PX(x2)) ∧ α+ PX(x3) ∧ α

> α, if PX(x1) + PX(x2) > α or PX(x3) > α.
Thus, for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) :
PX(x1) + PX(x2) > α or PX(x2) > α}, the false-alarm constraint is violated when C(k) =
(
∑

xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all k ∈ [K]. The result can be generalized to larger
(T,V,Z,K,S), other functions f , and other detectors that belong to Case 3.

In conclusion, if and only if γ ∈ Γ∗, the minimum Type-II error attained from (Opt-R) reaches
the universal minimum f -robust Type-II error β∗

1(f,QXT
1
, ϵ, α) in (14) for all QXT

1
∈ P(VT ) and

ϵ ∈ R≥0.

Under the watermarking scheme P ∗,f
XT

1 ,ζT
1

, the f -robust Type-I and Type-II errors are given by:

f -robust Type-I error:

∵∀yT1 ∈ VT , EP∗,f
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[
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)
∧ α ≤ α,

and since any distribution QXT
1

can be written as a linear combinations of δyT
1

,
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f -robust Type-II error:

1− EP∗,f
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(xT
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.

The optimality of P ∗,f
XT

1 ,ζT
1

is thus proved.

Figure 6 compares the universally minimum Type-II errors with and without semantic-invariant text
modification.
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Figure 6: Universally minimum Type-II error w/o distortion and with semantic-invariant text modifi-
cation.

M Broader Impacts

This paper introduces a novel framework and algorithm for LLM watermarking, aimed at advancing
the field of machine learning by enhancing AI safety and data authenticity. The primary positive
impacts of our work include its potential to identify AI-generated misinformation, ensure integrity in
academia and society, protect intellectual property (IP), and enhance public trust in AI technologies.
However, given the dual-use potential of watermarking techniques, it is crucial to consider privacy
concerns raised by possible misuse–such as unauthorized tracking of data. We encourage the
development of ethical guidelines to ensure the responsible use and deployment of this technology.
By considering both beneficial outcomes and potential risks, our work seeks to contribute responsibly
to the machine learning community.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarize the paper’s contribu-
tions, including the development of a unified theoretical framework for joint watermark
scheme-detector optimization, derivation of optimal solutions, the DAWA algorithm, and
experimental validation. These claims are consistent with the content presented in the
subsequent sections and appendices.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses “Practical Challenges” in implementing the theoretically
optimal scheme (Section 3, page 5, line 225), which motivates the token-level design.
Section 6.2 and Appendix J discuss the robustness of DAWA, including its performance
against certain attacks like deletion and paraphrasing (empirically addressed in Appendix I,
Table 9) and outlines theoretical extensions for stronger future robustness, implying current
trade-offs. A specific acknowledged limitation is that the sensitivity of DAWA to surrogate
model mismatch in extreme cases was not empirically tested, although Appendix I shows
robustness to varied SLMs in non-extreme scenarios.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Key theoretical results (Theorems 1, 2, 6, 7; Lemma 3; Proposition 4) are
presented with their assumptions stated. The paper indicates that complete proofs are
provided in the corresponding appendices (e.g., Appendix C for Theorem 1, Appendix D
for Theorem 2, Appendix K for Theorem 6, Appendix L for 7, Appendix G for Lemma 3),
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 6 (Experiments) and Appendix I detail the experimental settings,
including models used (Llama2-13B, Mistral-8×7B, surrogate models), datasets (C4, ELI5,
Wikipedia), prompts, DAWA parameters (η, T ), baselines, and evaluation metrics. This
should provide sufficient information for others to understand and attempt to reproduce the
core findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
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material?

Answer: [No]
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algorithm and experimental scripts publicly available on GitHub upon publication of this
paper. The datasets used in our experiments (C4, ELI5, Wikipedia) are already publicly
available and are cited in the manuscript. While an anonymized version of our code is not
available at the time of submission, the paper provides detailed pseudo-code for DAWA
(Appendix H) and a thorough description of our experimental setup (Section 6 and Appendix
I) to allow for a detailed understanding and facilitate future reproduction.
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• The answer NA means that paper does not include experiments requiring code.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Justification: Section 6 ("Experiment Settings") and Appendix I provide details on models,
datasets, prompts, watermark parameters (e.g., η = 0.2, T = 200 for DAWA, strength for
KGW+23), and evaluation metrics. The choice of η is linked to theoretical considerations in
Lemma 3 and Appendix G.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper reports primary evaluation metrics such as ROC-AUC and True
Positive Rates (TPR) at specific False Positive Rates (FPRs), with detailed explanations
of these metrics provided in Section 6. While error bars, confidence intervals, or formal
statistical significance tests are not included for these reported values, our experiments are
conducted on large, fixed test sets (e.g., 105 texts for ultra-low FPR analysis, as described in
Section 6), which provides stability to the point estimates of these metrics. The observed
performance differences, as shown in Figure 1 and Table 1, are substantial. We acknowledge
that quantifying variability, for instance, through multiple runs or bootstrapping, could
further substantiate the comparisons, though it is often not standard practice for ROC-AUC
and TPR reporting in this specific evaluation context due to the nature of these aggregate
metrics on large test corpora and the computational demands of re-running experiments with
large language models.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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error rates).
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Justification: Section 6 mentions the use of “Nvidia A100 GPUs”. Appendix I (Table 4)
provides average generation time comparisons for watermarked and unwatermarked text,
giving an indication of the computational overhead of the watermarking process. This
provides a baseline for understanding compute requirements.
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• The answer NA means that the paper does not include experiments.
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didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research aims to develop methods for identifying AI-generated text, which
can help mitigate misuse such as disinformation and plagiarism, aligning with ethical goals
of responsible AI. We have strived for integrity in our methodology, theoretical derivations,
experimental procedures, and reporting of results. The datasets used are publicly available
and appropriately cited, and the research did not involve direct human experimentation that
would require IRB approval beyond standard dataset usage. However, given the dual-use
potential of watermarking techniques, it is crucial to consider privacy concerns raised by
possible misuse–such as unauthorized tracking of data. We encourage the development of
ethical guidelines to ensure responsible use and deployment of this technology.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses societal impacts. Section 1 outlines the significant
positive societal impacts, such as mitigating AI-driven disinformation and enhancing data
authenticity. The paper also acknowledges challenges related to watermark robustness and
the evolving nature of attacks in Section 6.2 and Appendix J. These inherent challenges in
ensuring perfect, unbreakable watermarks implicitly relate to potential negative outcomes if
the technology is misused or circumvented. The discussion in Appendix M also addresses the
dual-use nature of watermarking, acknowledging potential negative impacts such as privacy
concerns from misuse (e.g., unauthorized data tracking). In light of these risks, the paper
underscores the importance of developing ethical guidelines for responsible deployment and
use of this technology.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper introduces a watermarking methodology and an algorithm (DAWA).
It does not release new large language models or novel datasets scraped from the internet
that would pose a high risk for misuse. The models used for experiments (Llama2, Mistral)
are existing models developed by other parties.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the original sources for datasets (C4 [50], ELI5
[51], WMT19 dataset [53]) and models (Llama2-13B [1], Mistral-8×7B [44], GPT-3 [52],
MBART [54]). The licenses and terms of use for these assets are explicitly mentioned
(Appendix I) and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper introduces a new theoretical framework and algorithm (DAWA),
which are documented within the paper itself (Appendix H for pseudo-code). No sep-
arate new datasets or software packages are being released that would require external
documentation beyond the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or direct human subject ex-
periments (e.g., user studies with participant recruitment). Evaluation of text quality uses
automated metrics (perplexity, BLEU) and existing datasets of human/AI text.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As no direct human subject research or crowdsourcing was conducted (see
Q14), IRB approval was not applicable.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The proposed DAWA algorithm, specifically its detection phase, utilizes
a Surrogate Language Model (SLM) as a component to approximate the watermarked
distributions and enable model-agnostic detection (Section 5 “Novel Tricks”); Algorithm 2).
This use of an LLM (the SLM) is integral to the methodology of the DAWA detector.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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