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Abstract

Recent advances in natural language process-001
ing have led to the availability of large pre-002
trained language models (LMs), with rich gen-003
erative capabilities. Although these models004
are able to produce fluent and coherent text,005
it remains a challenge to control various at-006
tributes of the generation, including sentiment,007
formality, topic and many others. We propose a008
Beam Reweighing (BEAMR) method, building009
on top of standard beam search, in order to con-010
trol different attributes. BEAMR combines any011
generative LM with any attribute discrimina-012
tor, offering full flexibility of generation style013
and attribute, while the beam search backbone014
maintains fluency across different domains. No-015
tably, BEAMR allows practitioners to leverage016
pre-trained models without the need to train017
generative LMs together with discriminators.018
We evaluate BEAMR in two diverse tasks: senti-019
ment steering, and machine translation formal-020
ity. Our results show that BEAMR performs021
on par with or better than existing state-of-the-022
art approaches (including fine-tuned methods),023
and highlight the flexiblity of BEAMR in both024
causal and seq2seq language modeling tasks.025

1 Introduction026

Text generation has improved significantly in re-027

cent years due to architectural advances in deep028

learning (namely, the transformer architecture and029

attention mechanism (Vaswani et al., 2017)) and030

training paradigms, allowing practitioners to train031

large language models on vast, unlabelled corpora,032

and transfer knowledge between various domains.033

Controllable text generation involves generat-034

ing text according to specific requirements, which035

may include a specific topic (Baheti et al., 2018),036

attribute (Goswamy et al., 2020), reward sig-037

nal (Tambwekar et al., 2019), or other potential con-038

straints. This task presents significant challenges,039

as large, unlabelled corpora are unlikely to be suf-040

ficient for learning domain-specific, controllable041

characteristics, and thus transferring knowledge be- 042

comes substantially more difficult. Moreover, due 043

to the growing size of recent language models it 044

is also less feasible to train and finetune them for 045

many different controllable dimensions. 046

Recent work in controllable text generation in- 047

volves various ways of incorporating desired at- 048

tributes into the text generated by the base LM. 049

Many approaches (Yang and Klein, 2021; Liu et al., 050

2021; Ghazvininejad et al., 2017) rely directly on 051

decoding-time strategies in order to steer the gener- 052

ation towards a desired attribute. However, these 053

approaches typically rely on token-level decoding 054

which can result in various disfluencies in the out- 055

put (e.g., repetition) (Holtzman et al., 2020) or 056

limited generalizability due to tight coupling be- 057

tween the generation and attribute models. Several 058

works (Dathathri et al., 2020; Keskar et al., 2019; 059

Krause et al., 2020; Zeldes et al., 2020; Khalifa 060

et al., 2021) attempt to tune a portion of the base 061

LM in order to steer it towards a desired attribute. 062

This tuning is either performed directly on the LM 063

(i.e. via a fine-tuning stage), or using an auxiliary 064

attribute model and applying gradient perturbations 065

to LM latent states. 066

In this work, we propose a simple and robust 067

decoding-based approach to controllable text gen- 068

eration, allowing practitioners to leverage existing, 069

pre-trained, generative LMs and existing attribute 070

models. Our method first uses the beam search 071

algorithm to propose fluent and relevant candidates 072

for a given input prompt from a generative language 073

model. Subsequently, the candidates are scored 074

by a discriminative model trained for a particular 075

attribute (e.g., sentiment analysis, emotion detec- 076

tion, or topic classification). The candidate scores 077

produced by beam search are combined with the 078

scores from the discriminative model to produce a 079

distribution over the candidates. We then sample 080

a single candidate generation from this distribu- 081

tion. Our method solves some of the existing is- 082
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sues in controllable text generation approaches, by083

(1) leveraging beam search to produce more fluent084

and relevant candidates, (2) expanding the gener-085

alizability of controllable generation via a custom086

similarity measure that can be selected based on087

the discriminative model, and (3) eliminating the088

need for tight coupling between the generative and089

discriminative models by reweighing at the natural090

language level, agnostic to the tokenization scheme,091

thereby allowing practitioners to leverage strong092

models for generation and scoring.093

We perform several experiments with our ap-094

proach, compare to several state-of-the-art meth-095

ods for controllable text generation and show that096

BEAMR is generalizable to various LMs and tar-097

get applications. First, we experiment with con-098

trolling the sentiment of generations using an at-099

tribute model finetuned for sentiment analysis. We100

then highlight the generalizability of the BEAMR101

method by applying it to the sequence-to-sequence102

task of adjusting the formality of text translated103

from Spanish to English. In sentiment steering104

experiments, BEAMR outperforms the SOTA DEx-105

perts model (Liu et al., 2021) in positive steering,106

and offers good control ability in negative steer-107

ing, while significantly outperforming all baselines108

in terms of fluency. We perform a human evalu-109

ation study on the sentiment steering task which110

aligns with the observations from automated eval-111

uations. In machine translation formality experi-112

ments, BEAMR outperforms the FUDGE baseline113

in both translation accuracy and formality score.114

Hyperparameter experiments with BEAMR in both115

tasks highlight potential tradeoffs between fluency116

and attribute control.117

2 Background118

Generative language models learn to produce a119

distribution for the next token in a sequence given120

past context as input. Given a prompt sequence121

of tokens, ct = {x1, x2, . . . , xt} where xi ∈ V122

and V is a vocabulary of tokens, we can produce123

a distribution p(x | ct) for the next token in the124

sequence,125

ot = fθ(ct)126

p(x | ct) = softmax(ot) (1)127

where ot is the logit vector given by a LM fθ.128

Using the distribution in Eqn. (1) there are several129

common methods of generating a continuation of130

the prompt ct.131

Greedy. In this approach, tokens are generated 132

by iteratively choosing the most likely token from 133

p(x | ct), and updating the prompt c. 134

Beam Search. In this approach a set of most 135

likely candidates are maintained at each timestep. 136

First, K possible tokens are sampled or selected 137

from p(x | ct). At each subsequent step, beam 138

search expands the search space to K2 possible 139

hypotheses, before pruning back down to K based 140

on the likelihood of the candidates. For a given 141

candidate bt = {b1, b2, . . . , bt}, the likelihood is 142

computed as 143

`(bt) =
∑
j≤t

log p(bj | b<j) (2) 144

Diverse Beam Search. Vijayakumar et al. 145

(2018) proposed a modified version of beam search 146

in order to produce more diverse candidates. They 147

divide the set of all candidates into G disjoint 148

groups, and incorporate a group dissimilarity met- 149

ric into the likelihood calculation. 150

3 Beam Reweighing 151

We propose to modify the beam search algorithm 152

by reweighing the candidate likelihoods in order 153

to control a diverse set of attributes of the text, 154

such as sentiment, formality, emotion or topic. Our 155

method first decodes a set of K candidates, using 156

diverse beam search (Vijayakumar et al., 2018) to 157

improve variety among the candidates. The can- 158

didates are then scored using an attribute model. 159

We then reweigh their likelihoods `(b) with the at- 160

tribute scores s and apply a softmax transformation 161

to produce a reweighed candidate distribution p̃, 162

encoding fluency and attribute characteristics. The 163

reweighed distribution is used to sample a single 164

candidate. 165

More formally, let Bj = {b1, . . . ,bK} denote 166

the set of candidates for iteration j of BEAMR and 167

bk ∈ Bj denote the kth candidate, with likelihood 168

`(bk). Let gφ : P(V) → Rm represent a discrim- 169

inator for an m-dimensional attribute. Given a 170

target attribute vector a ∈ Rm, we compute a score 171

for candidate bk: 172

dk = D(gφ(bk),a) 173

s(bk,a) =

(
1 + dk +

∣∣∣∣min
k
dk

∣∣∣∣)γ (3) 174

where D : Rm × Rm → R is an appropriate 175

similarity measure and γ > 0 is a scaling hyperpa- 176

rameter. Note that Eqn. (3) ensures that the scores 177
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are an increasing function of γ, by transforming the178

output of D so that R→ [1,∞) without changing179

the ranking order.180

Combining the attribute score sk = s(bk,a)181

with the likelihood `(bk) gives us a reweighed dis-182

tribution p̃ over Bj :183

p̃k = softmax(`(bk) + sk) (4)184

A candidate can then be sampled from this dis-185

tribution, b ∼ p̃. This formulation is akin to a186

product of experts model (Hinton, 2002; Welling,187

2007) treating the LM fθ as a linguistic expert and188

the discriminator gφ as an attribute expert. Figure189

1 presents a diagram of the BEAMR procedure.190

3.1 Generalizability of Beam Reweighing191

Our formulation of BEAMR is flexible enough to192

accommodate a variety of possible attributes and193

discriminator models, including both continuous194

and categorical attributes. This can be achieved via195

the choice of the similarity measure D.196

Continuous Attribute. The simplest case of a197

continuous attribute is m = 1, where y = gφ(b) is198

a regression score, such as a sentiment between −1199

(negative) and 1 (positive). In this case we can take200

D to be a standard similarity measure on R, such as201

the inverse of L1 or L2 metrics, namely, D(y, a) =202

|y − a|−1 or D(y, a) = ‖y − a‖−1
2 , where a is the203

target attribute score.204

Categorical Attribute. For categorical at-205

tributes with m > 1, such as emotion classes (e.g.,206

joy, anger, fear and surprise), gφ(b) produces a207

vector of logits y ∈ Rm. In this case a is a one-hot208

encoding of the target class c ∈ {1, . . . ,m}, and209

so we can take D to be negative cross-entropy,210

D(y,a) = log

(
exp(yc)∑m
i=1 exp(yi)

)
(5)211

Multiple Attributes. In the case that we want212

to control the generated text according to multiple213

attributes, for example, joy and surprise, we can re-214

frame the problem as a multi-label prediction prob-215

lem. Given a classifier gφ that produces a vector216

of independent logits y ∈ Rm, and a target binary217

vector a ∈ {0, 1}m such that ai = 1 (1 ≤ i ≤ m)218

for the desired attributes, we can take D to be the219

average of negative binary cross-entropy across the220

attributes, 221

D(y,a) = 1

m

m∑
i=1

ai log σ(yi) 222

+(1− ai) log(1− σ(yi)) (6) 223

where σ(·) is the sigmoid function. 224

4 Evaluation 225

We conduct several experiments in order to evalu- 226

ate BEAMR against SOTA controllable generation 227

approaches, in various applications. We focus on 228

(1) a sentiment steering task, whereby we generate 229

positive or negative continuations to a variety of 230

prompts (including positive, negative and neutral 231

prompts), and (2) a machine translation formality 232

task, whereby input sentences are translated to En- 233

glish and the translations are adjusted in order to 234

improve the formality of the text, whilst maintain- 235

ing the original meaning. We detail the relevant 236

datasets, baselines and metrics for each experiment. 237

We also conduct an analysis of hyperparameter se- 238

lection for both tasks. 239

4.1 Sentiment Steering 240

We focus on the task of controlling the sentiment 241

(positive or negative) of generated text, given a 242

short prompt as input. For this experiment, we 243

closely follow the experimental setup outlined 244

in Liu et al. (2021). We evaluate two variants of 245

BEAMR: (1) using the base GPT-2 large model and 246

(2) using the appropriate finetuned expert model 247

from DExperts (Liu et al., 2021). 248

4.1.1 Datasets 249

We use the prompts dataset provided by Liu et al. 250

(2021), originally collected from OpenWebText 251

Corpus (OWT) (Gokaslan and Cohen, 2019). We 252

use the same selections of 250 positive, 250 nega- 253

tive and 500 neutral prompts from Liu et al. (2021) 254

as in their PPLM evaluation. For each prompt, we 255

generate 25 continuations and score them using the 256

default DistilBERT sentiment classifier. 257

4.1.2 Baselines 258

We consider the same baselines as outlined in Liu 259

et al. (2021). GPT-2 (Radford et al., 2019) is 260

used without any steering towards a particular sen- 261

timent. PPLM (Dathathri et al., 2020) is used 262

together with a sentiment classifier trained on SST- 263

5 (Socher et al., 2013). CTRL (Keskar et al., 2019) 264

is used by providing “Reviews” as the control code 265
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Figure 1: Illustration of BeamR method. An input prompt is fed into a generative LM (fθ). Leveraging the diverse
beam search algorithm, several candidate generations are produced, together with their likelihoods (depicted in
blue). Candidates are then scored using a scoring LM (gφ), a similarity measure D, and the desired target attribute
(e.g., positive sentiment). The scores produce an attribute distribution over the candidates (depicted in green). The
candidates’ original likelihoods are reweighed with the attribute distribution to produce p̃, and a single candidate
b ∼ p̃ is sampled (e.g. “and garden world”). Note that darker hues and longer bars indicate more probable candidates
according to each distribution.

combined with a rating of 1.0 for negative steer-266

ing and 5.0 for positive steering. CTRL’s original267

training included examples from Amazon Reviews.268

GeDi (Krause et al., 2020) is used with the original269

sentiment-conditioned LMs, originally trained on270

IMDb movie reviews. DExperts using both posi-271

tive and negative expert LMs is used. We present272

the results from the large version of DExperts.273

4.1.3 Metrics274

In our evaluation, we focus on several key metrics:275

steering ability, fluency, diversity and relevance.276

Automated Evaluation. We use the DistilBERT277

sentiment classifier to evaluate the steering ability278

by computing the proportion of continuations for279

each type of prompt that succeed in generating the280

desired sentiment. We evaluate the fluency of the281

generations by computing the average perplexity282

under a base GPT2-XL model. We evaluate the283

diversity by computing the number of unique n-284

grams (Dist-1, 2 and 3 scores) (Li et al., 2016)285

across the generations of each prompt.286

Human Evaluation. Although automated eval-287

uation is easy to perform, it may not accurately288

reflect human judgments, especially for fluency289

and relevance metrics (Hashimoto et al., 2019; Liu290

et al., 2017). To that end, we design a human eval-291

uation study to evaluate steering ability, fluency292

and relevance. We separately evaluate positive and293

negative steering. We randomly sample 10 neutral294

and 10 positive/negative prompts for each experi- 295

ment. For each pair of models for comparison (i.e. 296

BEAMR paired with another baseline, such as GPT- 297

2, CTRL, DExperts, etc.), we sample 3 generations 298

per model. We conduct human evaluations on the 299

Amazon Mechanical Turk (MTurk) platform, with 300

5 MTurk workers answering 3 questions about each 301

pair of generations: 302

1. Which generation is more positive (resp. neg- 303

ative)? 304

2. Which generation is more fluent? 305

3. Which generation is more relevant to the 306

prompt? 307

For each question workers may choose one of 308

the models in the pair, or report that both mod- 309

els equally exhibit the characteristic in question. 310

We compute 95% simultaneous confidence inter- 311

vals (Goodman, 1965) for all three multinomial 312

proportions for each pair of models and each ques- 313

tion. We also perform a Z-test on the difference in 314

proportions between the models in each pair. 315

4.1.4 Results 316

Automated Evaluation. Tables 1a and 1b show the 317

results of the sentiment-based steering task for pos- 318

itive and negative steering, respectively. BEAMR 319

scores in the top 2 models in terms of steering abil- 320

ity in all but one experiment, and outperforms DEx- 321
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Model % Positive Sentiment ↑ Perplexity ↓ Diversity (n-gram) ↑
Neutral Prompts Negative Prompts Dist-1 Dist-2 Dist-3

GPT-2 50.03 0.00 29.04 0.58 0.85 0.84
PPLM 52.69 8.72 135.55 0.61 0.86 0.85
CTRL 60.77 18.02 44.17 0.51 0.83 0.86
GeDi 85.61 26.54 55.21 0.57 0.80 0.79
DExperts 94.79 34.93 47.62 0.56 0.83 0.83
BeamR 95.26 30.34 19.62 0.53 0.82 0.84
BeamR + Positive Expert 98.87 74.37 51.4 0.56 0.84 0.85

(a) Positive Steering

Model % Positive Sentiment ↑ Perplexity ↓ Diversity (n-gram) ↑
Neutral Prompts Positive Prompts Dist-1 Dist-2 Dist-3

GPT-2 50.03 100.00 28.94 0.58 0.85 0.87
PPLM 39.05 89.74 181.79 0.63 0.87 0.86
CTRL 37.94 80.98 37.04 0.50 0.83 0.85
GeDi 9.06 40.00 80.64 0.63 0.84 0.82
DExperts 3.27 38.37 45.16 0.60 0.83 0.82
BeamR 5.86 72.86 23.45 0.55 0.84 0.84
BeamR + Negative Expert 1.99 28.42 53.29 0.57 0.85 0.85

(b) Negative Steering

Table 1: Results of sentiment steering experiment. Given a neutral, negative or positive prompt, the models
are tasked with producing positive or negative generations. % Positive Sentiment is computed as the average
percentage of positive generations out of 25 total generations for each prompt. Perplexity is the average conditional
perplexity of generations given the prompt, using a GPT2-XL model. Diversity is measured using the average
number of distinct uni/bi/tri-grams in the generations for each prompt. Top 2 results are bolded.

perts in producing positive generations for neutral322

prompts. Noticeably, BEAMR struggles to achieve323

the steering ability of DExperts when tasked to324

produce negative generations for positive prompts.325

This may be explained by the fact that DExperts326

better incorporates negative tokens into its gen-327

eration via its negative expert, whereas BEAMR328

is less likely to sample negative tokens from the329

base generation LM. In order to confirm this intu-330

ition, we also present results from BEAMR using331

the negative and positive experts as the generation332

model. We see that combining BEAMR with an333

expert model finetuned on the appropriate senti-334

ment greatly improves performance and outper-335

forms DExperts in both types of steering.336

We also see that BEAMR outperforms all other337

models in terms of perplexity. The low perplex-338

ity of BEAMR compared to other methods may339

be explained by the fact that it utilizes beam340

search and reweighs candidate sequences of tokens,341

rather than reweighing individual tokens. Previous342

work (Holtzman et al., 2020) has shown that beam343

search leads to lower perplexity, although it tends344

to degenerate to repetition. BEAMR avoids repe-345

tition by performing separate iterations of beam346

search with shorter candidate lengths and introduc-347

ing additional variability by utilizing a diversity348

measure (Vijayakumar et al., 2018) and sampling349

from the candidate distribution. It is important 350

to note that combining BEAMR with a finetuned 351

expert model increases the perplexity of the gener- 352

ations, likely due to a shift in the language distri- 353

bution between the finetuned expert model and the 354

base GPT-2 model. 355

BEAMR also performs competitively in terms 356

of diversity, suggesting that it is able to produce 357

varied generations that on the whole achieve the 358

correct sentiment. Overall, these results highlight 359

that BEAMR can achieve a good balance between 360

generating the correct sentiment and producing flu- 361

ent text. 362

Human Evaluation. Figure 2 presents the 363

results of human evaluation on the sentiment 364

steering task. We see that BEAMR significantly 365

outperforms PPLM, GeDi and DExperts in flu- 366

ency for negative steering, and otherwise per- 367

forms on par with other models. BEAMR sig- 368

nificantly outperforms PPLM, GPT-2 and CTRL 369

in both negative and positive steering ability. 370

On the other hand, GeDi and DExperts outper- 371

form BEAMR in steering ability, particularly in 372

the negative steering experiment, which may sup- 373

port our earlier observations. BEAMR performs 374

on par with other models in terms of relevance. 375

Effects of Hyperparameters. We conducted 376

additional experiments to quantify the effect of 377
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Figure 2: Results of human evaluations in sentiment
steering experiment. For clarity, responses from options
‘Equally positive/negative/fluent/relevant’ are not shown.
95% simultaneous confidence intervals for multinomial
proportion estimates are shown in black. Significance
results from Z-test of the difference between multino-
mial proportions are shown at the edges of the plot, with
corresponding legend below plot.

the scaling hyperparameter γ and beam length T378

on both positive and negative steering, in terms379

of steering ability and fluency. Figure 3 in the380

Appendix Section A.3.1 presents the plots of %381

Positive Generations vs. Perplexity for varying set-382

tings of γ and T . As we might expect, increasing383

γ allows BEAMR to reach the desired sentiment384

in a higher proportion of generations. Moreover,385

increasing the beam length T leads to a lower per-386

plexity, signifying more fluent generations387

4.2 Machine Translation Formality388

In this set of experiments we focus on the task of389

controlling the formality of English text that has390

been translated from Spanish. Unlike the sentiment391

steering task in Section 4.1 where BEAMR was 392

applied to a causal language model, this involves 393

applying BEAMR to a seq2seq translation model, 394

thus further exhibiting the generalizability of our 395

method. We follow the experimental setup outlined 396

in Yang and Klein (2021). 397

4.2.1 Datasets 398

We use the Fisher and CALLHOME corpus (Post 399

et al., 2013) of Spanish and English transcribed 400

conversations, using the Spanish sentences as input 401

to the Marian Spanish-to-English machine transla- 402

tion model (Junczys-Dowmunt et al., 2018). We 403

leverage the pretrained formality classifier provided 404

by Yang and Klein (2021) as the attribute model 405

for BEAMR. The classifier was trained on the En- 406

tertainment/Music portion of the GYAFC formality 407

corpus (Rao and Tetreault, 2018). For this experi- 408

ment, BEAMR uses the Marian model as the gener- 409

ative LM (fθ) and the pretrained FUDGE classifier 410

as the attribute model (gφ). 411

4.2.2 Baselines 412

We consider the same baselines as in Yang and 413

Klein (2021). MarianMT base model is used to 414

generate translation, without any steering towards 415

more formal text. T5 style transfer model (Raffel 416

et al., 2020) is finetuned on the GYAFC corpus (En- 417

tertainment/Music portion) and applied post-hoc to 418

the output of MarianMT translations. FUDGE clas- 419

sifier is used to guide the translations of MarianMT 420

in a token-by-token manner. 421

4.2.3 Metrics 422

For evaluation, we consider two important cri- 423

teria: translation accuracy and formality. We 424

evaluate the translation accuracy by comput- 425

ing the BLEU score between the generations 426

and the gold-standard translations provided in the 427

Fisher/CALLHOME corpus (Post et al., 2013). We 428

evaluate the formality using a pretrained formal- 429

ity classifier provided by Yang and Klein (2021) 430

that has been trained on the Family/Relationships 431

portion of GYAFC (Rao and Tetreault, 2018). 432

4.2.4 Results 433

Table 2 presents the results of the translation for- 434

mality experiment. Notably, combining an unfine- 435

tuned Marian model and FUDGE with BEAMR, 436

we achieve a higher BLEU score and a higher for- 437

mality score than FUDGE, signifying more formal 438

translations which are closer to the gold standard. 439

Similarly, with a Marian model that was finetuned 440
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on the Fisher training set, we see that BEAMR can441

reach FUDGE’s BLEU score while also achieving442

a higher formality score.443

Model Unfinetuned Finetuned
BLEU ↑ Form. ↑ BLEU ↑ Form. ↑

Marian 16.98 0.45 22.03 0.41
+ T5 7.87 0.96 9.63 0.97
+ FUDGE 17.96 0.51 22.18 0.48
+ BeamR 18.47 0.63 21.14 0.63

Table 2: Results for the machine translation formality
task. Given a sentence in Spanish, the models are tasked
to produce a formal English translation. BLEU mea-
sures the accuracy of translation via n-gram precision.
Form. is the average formality score provided by the
FUDGE classifier trained on the Family/Relationships
portion of the GYAFC dataset. Top results are bolded.

Effects of Hyperparameters. We conducted444

additional experiments to understand the effects445

of varying scaling hyperparameter γ and beam446

length T on the quality and formality of transla-447

tions. Figures 4a and 4b in the Appendix Section448

A.3.2 present BLEU vs. formality score with vary-449

ing T and γ, respectively.450

We can see that varying γ allows for a trade-451

off between formality and translation accuracy.452

Namely, increasing γ improves formality score but453

decreases BLEU score. We also see trends in for-454

mality and translation accuracy when changing T .455

For shorter beam lengths, BEAMR makes locally456

optimal choices for formality, but suffers a signifi-457

cant decrease in BLEU score when considering the458

full translation. This hints at a similar behaviour459

as observed in sentiment steering (Section 4.1),460

namely that leveraging beam search can improve461

the quality of generation while leaving ample room462

for control.463

5 Related Work464

Recent methods in controllable text genera-465

tion (Weng, 2021) may be categorized under decod-466

ing methods and tuning methods. Roughly speak-467

ing, decoding methods apply controllable charac-468

teristics only at the output distribution of a LM,469

while tuning methods additionally attempt to en-470

code controllable characteristics into the generative471

LM itself, by tuning either some or all of its param-472

eters.473

5.1 Decoding methods474

Decoding methods are applied to produce text out-475

put from an autoregressive generative language476

model. We first outline several general approaches 477

to decoding from language models. 478

Typical decoding is done by sampling from the 479

next token distribution, or picking the most likely 480

token. However, these approaches lead to unde- 481

sired output (Holtzman et al., 2020): sampling 482

may lead to the model producing gibberish while 483

greedy decoding often leads to repetitions. Sev- 484

eral basic approaches have been proposed to tackle 485

these issues, including top-k sampling (Fan et al., 486

2018), top-p sampling (Holtzman et al., 2020) and 487

repetition-penalized sampling (Keskar et al., 2019). 488

An alternative approach is the beam search algo- 489

rithm (Graves, 2012) which maintains a collection 490

of k best sequences at each time step. In order to 491

promote more diversity in the generated candidates, 492

Vijayakumar et al. (2018) proposed a diverse beam 493

search algorithm, which splits the candidates into 494

separate groups and enforces a dissimilarity metric 495

across the groups. 496

Several approaches have been explored to 497

guide decoding according to a particular attribute. 498

Ghazvininejad et al. (2017) modify the beam search 499

algorithm to incorporate weighted feature functions 500

during each step. They use several manually de- 501

signed feature functions including custom word- 502

lists, repetition penalty, and alliteration metrics 503

for the problem of poetry generation. More re- 504

cently Liu et al. (2021); Yang and Klein (2021) 505

have proposed leveraging multiple language mod- 506

els to re-rank hypotheses according to a particular 507

attribute. Liu et al. (2021) achieves this by fine- 508

tuning generative language models on appropriate 509

subsets of a dataset (e.g., training experts on toxic 510

and non-toxic subsets of a dataset) and combining 511

token-level distributions from the original language 512

model and expert models. The downside of this 513

approach is that it requires annotated data and ad- 514

ditional training of the expert models, which may 515

not be available for resource-constrained scenarios 516

and domains. Yang and Klein (2021) propose to 517

use a binary classifier trained for a particular task, 518

to reweigh the token-level distribution produced 519

by a generative LM. They highlight the flexibility 520

of their approach in a variety of experiments, in- 521

cluding couplet generation and topic control. Our 522

method differs from and improves on FUDGE in 523

several key ways, by: 524

• Applying reweighing to beam-level decoding 525

thereby avoiding typical disfluency and repe- 526

tition issues from token-level decoding men- 527
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tioned in Holtzman et al. (2020)528

• Allowing for the choice of a custom similarity529

measure D appropriate for the discriminator530

(e.g., regressor, classifier), thereby offering531

precise control of the desired target attribute532

value533

• Removing the requirement of shared tokeniza-534

tion between the generative LM and the dis-535

criminator and instead reweighing natural lan-536

guage hypotheses, thereby improving general-537

izability to different LMs538

5.2 Tuning methods539

The majority of recent work on controllable text540

generation has focused on fine-tuning some or all541

of the parameters of a generative language model.542

Keskar et al. (2019) train a transformer model543

(CTRL) to learn a conditional distribution over the544

data. By prepending different control codes (for545

instance, ”Wikipedia” or ”Reviews”) to raw text546

from different sources (Wikipedia, or Amazon Re-547

views, respectively), it learns to associate certain548

types of text with the control codes. At inference549

time, CTRL interprets the first token in the prompt550

to be a control code, and can thus generate text in551

the corresponding style.552

Dathathri et al. (2020) proposed Plug-and-Play553

Language Models (PPLM), a method to steer a554

subset of the parameters of a generative language555

model according to a lightweight auxiliary attribute556

model. They achieve this via backpropagation of557

the attribute model loss gradient into the past at-558

tention key-value pairs of a transformer-based lan-559

guage model. They experiment with simple at-560

tribute models consisting of a bag-of-words to en-561

courage the LM to use words from the bag, as well562

as simple classifiers (e.g., sentiment) trained on top563

of the generative LM representations.564

Zeldes et al. (2020) briefly describe a method565

to shift the output distribution of a generative lan-566

guage model using an auxiliary model. They com-567

bine the logits of both models and train them in568

tandem to maximize the likelihood of a certain at-569

tribute.570

Our method is inspired by PPLM and also re-571

sembles a decoding method (Zeldes et al., 2020),572

whereby we similarly propose to control the out-573

put distribution of the generative language model.574

However, unlike those methods, we do not require575

that the generative and auxiliary models be trained576

together. In fact, our method is flexible and ro- 577

bust to the choice of the generative and auxiliary 578

attribute models and can leverage pre-trained mod- 579

els, avoiding the need to re-train one or both of the 580

models. 581

6 Conclusion 582

We present a simple and modular decoding-based 583

approach to controllable generation, BEAMR. 584

BEAMR combines a generative LM with an at- 585

tribute discriminator and leverages beam search de- 586

coding in order to steer generated text to the desired 587

target attribute. We show the results of BEAMR in 588

two diverse tasks: sentiment-based steering, and 589

machine translation formality steering. Our results 590

from automated evaluations show that BEAMR out- 591

performs strong baselines for both tasks, and hu- 592

man evaluations for sentiment steering further sup- 593

port this. 594

Noticeably, BEAMR struggles with negative sen- 595

timent steering, especially when compared to GeDi 596

and DExperts. We hypothesize this may be due 597

to GeDi and DExperts having direct access to 598

class-conditioned distributions in their generation. 599

Namely, GeDi trains a class-conditioned LM us- 600

ing control codes and anti-control codes (including 601

<negative>) and DExperts trains separate ex- 602

pert and anti-expert LMs on subsets of the data 603

(including an anti-expert trained on negative-only 604

text). Future work on BEAMR may incorporate 605

additional sources of language and attribute infor- 606

mation to address this shortcoming. 607

BEAMR offers a great deal of flexibility by al- 608

lowing us to plug different and independent gener- 609

ative LMs and attribute discriminators (with poten- 610

tially different tokenization schemes). Moreover, 611

BEAMR generalizes beyond classification tasks to 612

any type of discriminator by appropriately select- 613

ing a similarity measure. Leveraging beam search 614

for text decoding from a LM, BEAMR’s gener- 615

ations avoid some of the typical problems with 616

token-based decoding (such as repetition or disflu- 617

encies). Our work highlights that strong control- 618

lable text generation can be achieved by mixing 619

together large pre-trained generative and discrimi- 620

native models, with a flexible backbone offered by 621

BEAMR, without sacrificing fluency. 622

7 Ethics of Controllable Text Generation 623

Usage of large language model for text generation 624

can pose various risks, including producing harm- 625

8



ful content or misinformation (Sheng et al., 2020;626

Gehman et al., 2020; Wallace et al., 2021). Con-627

trollable text generation may create additional risks628

if used maliciously. However, it can also help re-629

searchers and practitioners avoid the biases learned630

by large language models and reduce the afore-631

mentioned risks (Liu et al., 2021; Dathathri et al.,632

2020). Therefore, we believe advancing research633

in controllable text generation is valuable in order634

to understand the pitfalls of large language models635

and develop strong measures to prevent harmful636

content generation.637

Human evaluation experiments were conducted638

on the Amazon Mechanical Turk platform, and639

evaluators were compensated above the federal640

minimum wage in the country of residence (United641

States).642
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A Appendix812

A.1 Implementation Details813

All experiments were conducted on a single NVidia814

Tesla T4 GPU. Transformers package (Wolf et al.,815

2020) version 4.8 was used to implement all algo-816

rithms and experiments. Table 3 presents average817

amount of time to run each experiment.818

Experiment Avg. Time (in minutes)
Sentiment Steering 1.19 per batch of 8
Machine Translation
Formality (Training)1 1.22 per epoch (20 epochs)

Machine Translation
Formality (Inference) 0.0033 per 1 generation

1 Corresponds to training of the FUDGE classifier on
the Entertainment/Music portion of the GYAFC for-
mality corpus (Rao and Tetreault, 2018)

Table 3: Average time taken (per example or per
epoch) to run each experiment in Section 4.

A.2 Hyperparameters819

A.2.1 Sentiment Steering820

Table 4 presents the full hyperparameter configu-821

rations for the sentiment steering task in Section822

4.1.823

Name Values
Generation Model GPT2-Large (774M params.)
Discriminator Model DistilBERT (66M params.)
Generation Length 20
Temperature 1.0
Diversity Penalty 10.0
Scaling (γ) {1, 2,3}
Beam Length (T ) {1, 3, 5,7}
Number of Candidates (K) 5
Beam Length Penalty 1.0
Batch Size 8

Table 4: Models and hyperparameters used for senti-
ment steering experiments with BEAMR. Best-found
hyperparameters are bolded, where applicable.

A.2.2 Machine Translation Formality824

Table 5 presents the full hyperparameter configura-825

tions for the machine translation formality task in826

Section 4.2.827

A.3 Additional Experiments828

This section contains additional results for the ex-829

periments in Sections 4.1 and 4.2.830

A.3.1 Sentiment Steering Hyperparameters831

Figure 3 shows the results of hyperparameter ex-832

periments from 4.1.833

Name Values
Generation Model MarianMT (74M params.)
Discriminator Model FUDGE (∼2M params.)
Generation Length 512
Temperature 0.5
Diversity Penalty 10.0
Scaling (γ) {1, 2,3, 4}
Beam Length (T ) {1, 3, 5, 7,10}
Number of Candidates (K) 5
Beam Length Penalty 1.0
Batch Size 1

Table 5: Models and hyperparameters used for machine
translation formality experiments with BEAMR. Best-
found hyperparameters are bolded, where applicable.

A.3.2 Machine Translation Formality 834

Hyperparameters 835

Figures 4a and 4b show the results of beam length 836

(T ) and scaling hyperparameter (γ) experiments 837

(resp.) from 4.2. 838

A.3.3 Visualization of Reweighing 839

In order to better understand the effects of the 840

reweighing step in Eqn. (4), we selected a prompt 841

from the sentiment steering task, and ran BEAMR 842

to get 15 generations for each set of hyperparame- 843

ters (γ, T ) ∈ {0.1, 0.3, 1, 3} × {3, 5, 7, 15}. 844

Figure 5 shows the average candidate, attribute 845

and reweighed distributions across 15 generations, 846

from a single step in the BeamR algorithm. We see 847

that for small values of γ < 1, the reweighed distri- 848

butions closely resemble the original candidate dis- 849

tributions while the attribute distribution is almost 850

flat. When γ ≥ 1, we see the reweighed distribu- 851

tions take the shape of the attribute distributions, 852

signifying a stronger effect of the attribute score. 853

We also see some effect of the beam length hy- 854

perparameter on the reweighing. In particular, for 855

small T , the reweighed distributions closely match 856

the attribute distributions, however as T increases, 857

there is a larger gap between the distributions. This 858

gap is offset by increasing the value of γ. 859

A.4 Qualitative Examples 860

A.4.1 Sentiment Steering 861

Tables 6a and 6b show some qualitative examples 862

from positive and negative steering (resp.) compar- 863

ing BEAMR and baseline models. 864

A.4.2 Machine Translation Formality 865

Table 7 shows some qualitative examples compar- 866

ing BEAMR and FUDGE with reference transla- 867

tions (Salesky et al., 2019). 868
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Figure 3: Results of hyperparameter experiments in sentiment steering task. Different coloured lines correspond to
different values of scaling hyperparameter γ. Points labelled on the lines correspond to different values of beam
length hyperparameter T .
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Figure 4: Results of hyperparameter experiments in machine translation formality task. Different coloured lines
correspond to pretrained or finetuned versions of the MarianMT model.

A.5 Human Evaluation869

Figure 6 shows an example screenshot of the hu-870

man evaluation instructions from MTurk.871

A.6 Dataset Details872

Table 8 presents the size of datasets used in our873

experiments in Section 4.874

Dataset Label Number of examples

Sentiment
Prompts

Positive 250
Neutral 500
Negative 250

GYAFC
Inference
(Ent./Music)

Formal 50967/1019/1000 (train/test/val.)
Informal 50967/1332/1000

GYAFC
Evaluation
(Fam./Relation.)

Formal 51595/1082/1000
Informal 51595/1416/1000

Table 8: Dataset sizes used for experiments in Section 4.
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of BEAMR for different combinations of scaling and beam length hyperparameters. Each point corresponds to the
average density across 15 generations for a selected prompt.
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Prompt: Until then, we should start
Model Generation
GPT-2 Until then, we should start| collaborating. I’d love it if you could set up a foundation with the common

interests of digital creators
PPLM Until then, we should start| thinking of this awkwardness as largely just an blessings-and-worries life

being shaped out
CTRL Until then, we should start| by looking at the overall performance of both systems. If you want to know

what makes one better than another,
GeDi Until then, we should start| enjoying each other very much! :)\n\n\nThank you so much for visiting our

shop! Happy New
DExperts Until then, we should start| by appreciating the powerful sights and sounds of Japan’s ancient forests and

take pleasure in sampling traditional food
BeamR Until then, we should start| the new year with a simple message of gratitude for the world we have. As

we open our hearts
BeamR + Positive Expert Until then, we should start| by acknowledging that the remarkable success of former boxing champion

Mike Tyson’s trilogy with Evander Holyfield

(a) Positive Steering

Prompt: Until then, we should start
Model Generation
GPT-2 Until then, we should start| collaborating. I’d love it if you could set up a foundation with the common

interests of digital creators
PPLM Until then, we should start| thinking about scaling any application down.\n\n\nWhat a stubborn

jerk!\n\n\nFigure this out if
CTRL Until then, we should start| considering that this book was just a vehicle for his message - the Bible is

God’s Word, and it is
GeDi Until then, we should start| testing for other reasons. Unfortunately, the lack of function over multiple

visits is what makes this test bad
DExperts Until then, we should start| loading vanilla content from somewhere else. The only solution is to dump

something in oblivion.\n\n\n
BeamR Until then, we should start| investing in fixing problems.\n\n\nUnfortunately the agenda to make the

world go green is destroying the economy
BeamR + Negative Expert Until then, we should start| thinking of this as just another lame, uninspired, and under-the-radar

procedural,”

(b) Negative Steering

Table 6: Example generations from sentiment steering task, comparing BEAMR with baseline methods.

Spanish si hay gente no que decir que no no hagan suficientes pelı́culas pero hacen tantas que no hay que ir a ver
todas es es

Reference There are so many movies made, you don’t have to see them all.
Marian yes, there are people that don’t want to say that they don’t make enough movies, but they make so many

that you don’t have to go see all of them, is, is
FUDGE yes there are people that don’t want to say that they don’t make enough movies but they make so many

that you don’t have to go see all of them is is
BeamR If there are people, right?, who want to stop making enough movies, but they make so many movies that

you don’t have to watch. It is

Spanish también el veinti y el veintinueve también yo me acuerdo que más o menos en la misma vez se me
acuerdo que están toda la misma fecha

Reference Also the twenty nine. I remember that everybody were there in the same date
Marian also on the twenty-nine and the twenty-nine also I remember that more or less at the same time I

remember that they were all the same date
FUDGE also on the twenty- and the twenty-nine also I remember that more or less at the same time I remember

that they were all the same date
BeamR Also, on the twenty-ninth, I also remember that more or less at the same time, I remember that they were

all the same date.

Table 7: Example translations from machine translation formality task, comparing FUDGE and BEAMR with
reference translations (Salesky et al., 2019).
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Figure 6: Example of human evaluation instructions
from MTurk experiments. For negative steering, the
first question is phrased: “Which generation is more
negative?”
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