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Abstract

Consistency Training (CT) has recently emerged
as a strong alternative to diffusion models for im-
age generation. However, non-distillation CT
often suffers from high variance and instabil-
ity, motivating ongoing research into its training
dynamics. We propose Variational Consistency
Training (VCT), a flexible and effective frame-
work compatible with various forward kernels,
including those in flow matching. Its key inno-
vation is a learned noise-data coupling scheme
inspired by Variational Autoencoders, where a
data-dependent encoder models noise emission.
This enables VCT to adaptively learn noise-to-
data pairings, reducing training variance relative
to the fixed, unsorted pairings in classical CT. Ex-
periments on multiple image datasets demonstrate
significant improvements: our method surpasses
baselines, achieves state-of-the-art FID among
non-distillation CT approaches on CIFAR-10, and
matches SoTA performance on ImageNet 64 x 64
with only two sampling steps. Code is available
athttps://github.com/sony/vct.

1. Introduction

Generative Models are deep learning algorithms designed
to learn the underlying probability distribution of a given
dataset, in order to then generate samples coming from such
a distribution. Some widely used models are Generative
Adversarial Networks (Goodfellow et al., 2014), Variational
Autoencoders (VAE; Kingma & Welling, 2013; Rezende
et al., 2014), and Normalizing Flows (Chen et al., 2018;
Papamakarios et al., 2021; Kobyzev et al., 2020). More
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Figure 1. Comparison of 1-step generation on toy data for indepen-
dent and variational coupling. The data is sampled from a 2-d mix-
ture of Gaussians with means g1 = (0,0.5) and 2 = (0, —0.5).
On the bottom plot (our approach), we show the posterior probabil-
ities learned by the encoder (in blue and green) corresponding to
p(z | p1) and p(z | p2), and their cumulative sum approximately
recovers the prior distribution. The gray lines connect the samples
from the trained models to the corresponding input noise. More
details about the toy experiments are given in Appendix E.

recently, Diffusion Models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021b) have achieved state-of-the-
art (SoTA) results in several domains, including images,
videos, and audio (Dhariwal & Nichol, 2021; Rombach
et al., 2022; Karras et al., 2022; 2024; Ho et al., 2022; Kong
et al., 2021). However, a weakness of diffusion models is
the need for an iterative sampling procedure, which can
require hundreds of network evaluations. Therefore, sub-
stantial effort has been made to develop methods that can
maintain similar generation quality while requiring fewer
sampling iterations (Song et al., 2021a; Jolicoeur-Martineau
et al., 2021; Salimans & Ho, 2022; Liu et al., 2022; Lu et al.,
2022). Among such methods, a recent and promising di-
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rection is given by Consistency Models (CMs) (Song et al.,
2023). CMs, while sharing many similarities with DMs,
use a different training procedure as they directly learn the
probability flow equations rather than the score function.
CMs can be either trained by distilling the ODE trajectories
of a pre-trained diffusion model (Consistency Distillation,
CD), or completely from scratch through a bootstrap loss
(Consistency Training, CT), which results in a novel genera-
tive modeling framework. However, the CT objective can
be subject to high variance, making it difficult to train. A
follow-up work (Song & Dhariwal, 2024) analyses the train-
ing dynamics of CMs and proposes several improvements
which result in a more stable CT procedure, achieving SoTA
results in few-step image generation. Since then, several
works have proposed additional strategies to further improve
CT (Geng et al., 2025; Wang et al., 2024; Lee et al., 2025;
Yang et al., 2024).

A possible source of instability of CT training comes from
the fact that different noise masks are applied to the same
data point, creating ambiguity the target corresponding to
the given noisy state, especially early during training with
coarse discretization steps. From a more mathematical per-
spective, training can be destabilized by sharp boundaries
in the ODE flow mapping, which can be hard to learn for
the model and give raise to high variance in the stochastic
gradient estimator. For example, the ODE flow for mixture
of delta distributions is defined by a tessellation of the initial
noise space, with discontinuities along all the borders. Since
the standard CT approach with fixed forward process cannot
alter the target ODE flow, the optimum of the standard CT
training can potentially be highly singular. The existence
of these singularities depend on topological reasons (i.e.
non-injectivity of the ODE flow mapping at ¢ — 0 (Cornish
et al., 2020)). However, the issue can likely be ameliorated
by altering the forward process during training, which can
be used to change the location of the singularities.

A way to implement this approach is to sample noise using a
conditional coupling function between data and noise. The
concept of using a coupling function to reduce variance
during training was successfully used in Flow Matching,
with works such as (Pooladian et al., 2023; Tong et al.,
2024; Lee et al., 2023), with the main objective of obtaining
straighter ODE trajectories for faster sampling. Forms of
coupling in CMs were proposed in works such as (Dou et al.,
2024; Issenhuth et al., 2025), but their formulations do not
match the performance of standard CMs.

In this work, we propose Variational Consistency Training
(VCT), which introduces a variational formulation for train-
ing the forward transition kernel via a coupling function
between data and noise, a technique we term Variational
Coupling (VC). This yields a loss function analogous to that
of VAEs. By learning a data-dependent noise distribution

regularized with an additional Kullback-Leibler (KL) diver-
gence term, VCT enables an end-to-end training procedure
compatible with various forward kernels. We demonstrate
that this learned coupling effectively improves generation
performance and scales well to high-dimensional data. A
simple and intuitive example is shown in Figure 1, where
with the same settings, the model trained with the learned
coupling generates samples closer to the data distribution.
From this figure, we can see how the learned coupling par-
titions the data differently from how the standard CT does,
effectively changing the form of the underlying ODE, likely
resulting in an easier training objective as the prior noise
is partitioned according to the learned the data-dependent
coupling distribution.

The reminder of the paper is organized as follows: we first
discuss relevant related CT methods and flow-based works
employing coupling strategies. We then formulate CT from
the Flow Matching perspective, which is a generalization
of the diffusion framework and it offers a more natural way
to introduce the noise-coupling distribution. Finally, we
describe our method, deriving similarities with Variational
Autoencoders, and report our experimental results on com-
mon image benchmarks.

2. Related Work

Since the introduction of Consistency Models in (Song et al.,
2023; Song & Dhariwal, 2024), several strategies have been
proposed to improve training stability. The work from (Geng
et al., 2025) proposes Easy Consistency Models (ECM) a
novel training strategy where time steps are sampled in a
continuous fashion and the discretization step is adjusted
during training, as opposed to the discrete time grid used
in iCT. It further shows the benefits of initializing the net-
work weights with the ones from a pretrained score model,
achieving superior performance with smaller training bud-
get. (Wang et al., 2024) builds on top of ECM, introducing
additional improvements and framing consistency training
as value estimation in Temporal Difference learning (Sutton,
2018). Truncated consistency models, introduced in (Lee
et al., 2025), proposes to add a second training stage on top
of ECM, to allow the model to focus its capacity on the
later time steps, resulting in improved few-steps generation
performance. Other recent contributions to the consistency
model literature are works such as (Kim et al., 2024; Heek
et al., 2024) where the focus is on improving multistep sam-
ple quality, (Lee et al., 2024) which trains a model with both
consistency and score loss to reduce variance, and (Lu &
Song, 2025), which proposes several improvements to the
continuous-time training of consistency models. Our work
can be seen as a parallel contribution to the aforementioned
methods, as we focus on learning the data-noise coupling,
which can be used as drop-in replacement to the standard



VCT: Training Consistency Models with Variational Noise Coupling

independent coupling.

There are several works showing the benefit of using cou-
pling in Flow Matching (Pooladian et al., 2023; Tong et al.,
2024; Liu et al., 2023; Lee et al., 2023; Albergo et al., 2024;
Kim et al., 2025) and Diffusion Models (Bartosh et al.,
2024a;b; Nielsen et al., 2024). Among these, (Lee et al.,
2023) shares the most similarities with our method, as they
also use an encoder to learn a probability distribution over
the noise conditioned on the data. Their method results in
improved performance compared to equivalent Flow Match-
ing models, while requiring less function evaluations. Our
method consists of a similar procedure but applied to CT,
resulting in improved few-steps generation performance and
confirming the effectiveness of learning the data-noise cou-
pling. A different coupling strategy for CT is proposed in
(Issenhuth et al., 2025), where the data-noise coupling is
extracted directly from the prediction of the consistency
model during training. Compared to our method, they do
not need the additional encoder to learn the coupling, but
their generator-induced coupling needs to be alternated with
the standard independent coupling to avoid instabilities. The
Flow Matching formulation in Consistency Models with lin-
ear interpolation kernel was previously used in (Dou et al.,
2024; Yang et al., 2024), where the former also explores
the use of minibatch OT coupling, while the latter trains the
model to learn the velocity field and adds a regularization
term to enforce constant velocity. In our work, we use the
Flow Matching formulation, but keep most of the CT build-
ing blocks, resulting in a simpler formulation with superior
performance.

3. Background

Flow Matching provides a general framework that gen-
eralizes diffusion and score-matching models (Lipman
et al., 2023; Albergo & Vanden-Eijnden, 2023). In the
Flow Matching formalism, a deterministic flow function
1)y with initial condition Xg is used to build an interpolat-
ing map between two distributions 1; (o) = @, such that
the data distribution pg (o) is mapped into a distribution
p1(x1), commonly chosen to be Gaussian noise distribution
p1(z1) := N (x1;0, I), by the pushforward operator. From
this quantity, we can define the vector field u;(x;) as the
infinitesimal generator of 1;:

%1/%(530) = wi(@1) = w(Pi(wo)) ,

In a diffusion model, the flow ;(x) is the inverse of the
probability ODE flow determined by the forward SDE. In-
stead, in standard Flow Matching, the mapping is specified
as a conditional flow ¥, (x¢; x1), which is typically taken
as a simple linear interpolation between samples from the
two densities po (@) and p1(x1). Some common examples
are Y (xo; 1) = @1 = (1 —t)xo +tx; as seen in (Lipman

et al., 2023), and 1, (xo; ®1) = & = X0 + ta; as in (Kar-
ras et al., 2022). This conditional flow is analogous to the
formal solution kernel of the forward process at time ¢ in the
generative diffusion framework. While it is difficult to di-
rectly obtain the flow function () from the conditional
flow ¢, (@o; 1), it is possible to give a formal expression
for the resulting vector field:

ut<wt) = Eml\mf, [ut(wt; wl)] 3 (1)

where u;(xy; @) = %l[’t(fbo; x1) is the vector field that
generates the conditional flow ), (xo; 7). In the case of
the simple interpolation conditional flows ¥ (xo; 1) =
(1 = t)@g + taq, the formula specializes as follows:

ui () = Eg, |, [T1 — o] . 2)

Readers who are familiar with generative diffusion will
immediately recognize that this expression is directly related
to the standard expression for the score function. From this
connection, it is clear that the conditional vector field can
be estimated with a regression objective

Bt wo,a || fo (Ve (xo; 1), 1) — we(u(wo; 1 ); 1) [3-

3.1. Noise coupling

An advantage of the Flow Matching formalism over SDE
diffusion is that, as shown in (Pooladian et al., 2023; Tong
et al., 2024), it is straightforward to introduce a probabilistic
coupling m(x1 | @) between the data and the noise distribu-
tion. In this case, we require that [ 7 (21 | 2)dxo should
follow a standard normal distribution, at least approximately.
The use of a non-trivial noise coupling does not alter the
form of the conditional velocity fields u;(x;; 1) as far as
the coupling is time-independent. However, it does alter the
total velocity field w;(x;) since it affects the conditional
distribution p(x1, ;) , which determines the expectation in
Eq. 1.

4. Continuous consistency models from a Flow
Matching perspective

As explained above, the flow function 1) () maps a noise-
less state & to the noisy state . Its inverse v, ' (x;) can
then be interpreted as a denoiser, as it maps each noisy state
to a uniquely defined noiseless state y. This function is
often referred to as a consistency map, and it follows the
identity:

o Wileo) =0, on e, O

together with the boundary condition 4 * () = . Eq. 3
is a consequence of the fact that all noisy states in an ODE
trajectory t:(xo) share the same initial point o, which
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implies that 1, ! (1 (x()) is constant along the trajectory.
This property can be used to define a continuous loss for a
network fg (x4, 1), trained to approximate the inverse flow

Yo (@):

1
£80(0) = By | [ A1) Folwrta. 1)

2
dt] “)

where A(t) is a positive-valued function that weights the loss
for different time points. This loss should be used together
with the identity boundary condition fg(xg,0) = @, which
we will discuss later. In distillation training, the determin-
istic trajectories &y = (o) are obtained by integrating
the ODE flow obtained from a pre-trained diffusion or flow
matching model. Alternatively, the consistency network can
be trained directly by re-writing the total derivative in terms
of the conditional flow:

det

S W) = Vo @) ST+ Oy ()

:v"vb;l( ) m1|mt[u (wt;wl)]+at¢;1( )
*Eml\mt[vd}t ( ) (wt7$1)+8t¢t ( )}

mlmt|: vy (¢t(wo;$1))}~

®

From this equality, together with the fact that the squared
Euclidean norm is a convex function, it follows that
2
4,

tot d
Leon(0) < Lot (0)
where we moved the expectation outside of the squared
norm using Jensen’s inequality. Therefore, we can optimize

the tractable “conditional loss” £52%(8) instead of L2 (),

which contains the unknown flow function ().

with

LG (0)

mw{[Mﬂmnwmmmw>

5. Discretized consistency training

The continuous loss can be directly minimized in expecta-
tion by sampling the time ¢ from a uniform distribution and
by computing the total derivative % Fo(Yi(xo;x1),t) by
automatic differentiation. However, in practice it is often
more convenient to instead optimize a time-discretized loss
with a finite difference approximation for the total deriva-
tive:

N

LENO) =D Ati) Eagpo(@o) a1 (i o) [[1AF0l*]
i=1

with

A.f@ = fG(d)tiJrl (330;[1,‘1) z+1) .fG (¢ti(w0;$1)7ti) .

(6

where ;1 | @ are sampled according to the noise-coupling
m(xy | o). In this expression, 6~ denotes a frozen copy of
the parameters which does not require gradients. This loss is
in fact unbiased for At — 0, as it was shown in (Song et al.,
2023). The boundary condition can be enforced through the
parametrization introduced in (Karras et al., 2022):

f@(wa t) = Cskip(t)w + cout(t)FG($7 t)v

where Fy is a neural network and cgyip, and co, are specified
such that ¢ (0) = 1 and coy5(0) = 0.

6. Consistency Models with Variational
Coupling

Our method consists in learning a conditional coupling
q¢(x1 | o) with a neural network g¢ () parametrized by
¢, which we refer to as the encoder in the following given
its analogy with VAEs. During training, we can sample
noise conditionally from 7(21 | o) = g¢(x1 | 2o)po(xo)
instead of the independent noise commonly used in CT, and
obtain noisy states for a given time step ¢ as follows:

x; = P(xo; 1),

@) ~ qe(@1 | o) = N(@1; gl (20), 95(20)°T),

where we express the corresponding coupled noise x; using
the Gaussian reparameterization formula:

@1 = gh(@o) + g%(xo) € €~ N(€0,T)
Here, we restricted our attention to linear forward models of
the form ;(xo; 1) = arxo + brx1, which encompasses
most models used in the diffusion and flow-matching liter-
ature. Moreover g/; (o) and g§ (o) denote the mean and
scale output of the encoder, which define the signal-noise
coupling (see Appendix F for a visual representation). Both
g(‘;(wo) and gg (o) preserve the same dimensionality of
the input signal. The encoder network that produces the
coupling distribution g4 (1 | ) can be trained end-to-end
alongside the consistency model, as shown in Algorithm 1.
This results in a joint optimization where the consistency
network adjusts its constancy to minimize its total derivative
along the trajectories while the encoder implicitly moves
the trajectories towards the space of constancy of the model.
In fact, the velocity field u;(x;) depends on the coupling,
since w(x1 | @) affects the expectation in Eq. (1). This
formulation results in a viable generative model as long as
the noise at time 1 remains approximately p; (1), since se-
vere deviation from the prior induced by the coupling would
result in improper initialization for the sampling procedure
and consequently in reduced sample quality. We therefore
add a KL divergence as a regularizer, Dkr,(¢g||p1), result-
ing in a loss resembling the Evidence Lower Bound loss of
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Algorithm 1 Variational Consistency Training (VCT)

Input: data distribution pgata, initial model parameter 0,
initial encoder parameter ¢, learning rate 77, EMA rate
u, distance function d(-, -), consistency weighting Act(-),
KL weighting Ak,
Opna < 0, dpva — @and k<0
repeat
Sample @y ~ Pdata, t ~ p(t), r =t — At
Sample € ~ N(0,1I)
T1 < gy(To) + gg(xo)e
Ty — axo + by
T, < arxo + by
L0, ¢) < Aet(t)d(fo (@, 1), fo- (®,7))
ﬁKL((Z—") — DxL(N (gl (z0), g5(x0)*DIIN(0,1))
L(0,¢) + L5(0,¢) + AxL.Lkr ()
0« 06— 7)V9£~( , ®)
¢ ¢ —nVyL(0,9)
Orna < stopgrad(ubepma + (1 — p1)0)
¢EMA — stopgrad(udema + (1 — 1))
k+—k+1
until convergence

Variational Autoencoders (Kingma & Welling, 2013):

L(6,0) = LG (6, D) ™
+ Eqao [Dkr(gg(x1 | 20)||NV (21;0,1))] .

While using an encoder to learn the data-noise coupling
requires additional computation during training, we empiri-
cally find that a relatively small encoder is enough to learn
an effective coupling, which results only in a minor increase
of training time (see Appendix C). At sampling, the speed
and computational requirements are identical to vanilla CMs
for the one-step procedure, while for multistep sampling we
need to account for additional forward passes of the encoder
as shown in Algorithm 2.

6.1. Connection with variational autoencoders

In this section, we will consider the special case with con-
stant unit time weighting A (t) = 1, V.

ELBO perspective. First, we demonstrate the relationship
between our model and VAE in terms of their objective
functions. Specifically, our loss function in Eq. 7 serves as
an upper bound on a standard VAE loss, where the latent
vector x; is regularized to be close to the prior p;. Using
the triangle inequality, we can establish the following bound

cond.
for L0

||330*f9(91’3171)||2 < ®

2

NZer Y,y (@03 ®1), ti1) — fo- (Y1, (w03 1), )| -

=0

Given that the KL terms in Eq. 7 and the VAE loss are
identical, our loss function serves as an upper bound on
the loss of a VAE with an encoder (g} (x0), g5 (o)) and
a prior N'(x1;0,I). Since the VAE loss represents an evi-
dence lower bound, it follows that the consistency loss also
provides a lower bound on the model evidence:

Proposition 6.1. The following upper bound for negative
log-density holds:

1
202

1
S ﬁ U’dtfg ¢t7 )

where L1 (¢) :=

—log pa(xo) < Eq¢(w1\mo)|\$o — fo(z1,1)|* + Lxv(o)

2

dt + Lki(9),

Dx1(gp(x1 | ®o)||N (21;0,1)).

This proposition also establishes the connection between the
minimization objective of CT-VC and that of the continuous-
time CM as N — oo (proof in Appendix B).

Compared to traditional VAEs, our method can be viewed as
a time-dependent modification where the transition kernel
smoothly interpolates between delta distributions centered
at datapoints and a Gaussian distribution.

Varying 5. In both our model and VAE, the latent vec-
tor needs to approximately follow a normal distribution to
avoid deviating from the prior. However, previous stud-
ies (Hoffman & Johnson, 2016; Rosca et al., 2018; Aneja
et al., 2021) have observed that VAE’s aggregated posterior
fails to match the prior. The same problem could occur
in our model without additional tricks (see Sec. 7.2). To
mitigate this prior-posterior mismatch, we introduce a scalar
hyperparameter 3 to control the strength of the KL regular-
ization. This was first introduced by Higgins et al. (3-VAE
2022) for a different purpose (inducing disentangled latent
representation) in the VAE context.

min L55(6, @) + BEa, [Dict.(4(@1 | 20) |V (13 0,T)]
©)

By carefully selecting the value of 3, we can achieve a
proper balance between flexibility and proximity to the prior.
To understand the effect of 5 in our model, we present an
alternative form of our objective function. Formally, we can
view the minimization of Eq. 9 as the relaxed Lagrangian
problem of the following optimization problem:

cond
win £ (6.9)

disc
,

s.t. DKL(Qq&(ml ‘ :130)”./\/(:131; O,I)) < 6,

As ¢ approaches 0, the coupling becomes 7(x1 | o) =
po(xo)p1(x1), indicating that our model encompasses the
standard CT. In VAE, selecting appropriate values of (3
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Algorithm 2 Multistep Variational Consistency Sampling

Input: Consistency model fg, encoder g4, sequence of
time points 7y > 75 > -+ - > T _1, initial noise &
T < f@(ij T)
forn=1to N —1do
Sample € ~ N/(0,1)
21— gl(a) + g5(a)e
G e
T < f@(d:'rn ) Tn)
end for
Output: =

to achieve reasonable generation performance is generally
challenging. Values too close to zero result in strong de-
viation from the prior, while extremely large values cause
over-smoothed decoders (Takida et al., 2022), leading to
blurry samples. However, our model does not suffer from
this over-regularization issue. While tuning 3 remains cru-
cial in our model, as demonstrated in Section 7.2, unlike
VAE, increasing values of 3 does not cause the oversmooth-
ing problem but simply reduces our model to the standard
CT. Consequently, the CT training objective enables sharp
sample generation even when the posterior approximation
is nearly a normal distribution.

6.2. Choosing the 5 parameter

The most common weighting function A.¢(¢) for CMs is an
adaptive weighting scheme that changes over training based
on how fine grained the discretization is, or equivalently the
distance between consecutive time steps in ECM. At a given
training iteration, for two adjacent time steps ¢; and ¢, 1,
we have:

1
Aot (tig1) =

N Agy =tiy1—t
tit1

For the models trained with such an adaptive weighting
function, we found it hard to tune §3 to a single scalar value.
The magnitude of the weights increases during training
as the discretization scheme becomes more fine-grained
and Ay, , becomes smaller, changing the balance between
consistency loss and KL regularization, resulting in a very
strong regularization at the early stages of training, or a too
weak one at the later stages. A simple yet effective solution
is to use an adaptive scaling for the KL regularization that
changes according to the discretization scheme. To do so,
we take as a reference the weighting of the consistency loss
at the last step ty = Omax, and define the adaptive KL
weighting as:

B
Ay
This way, we only need to specify the scalar hyperparameter
B, and it will have a consistent regularization strength over

AL = BAct(tn) =

training, as it increases whenever the discretization scheme
is changed, which reflects in A;,, becoming smaller. For
ECM models trained on ImageNet, which use the EDM-
style weighting function

1 1
)\Ct(t) - t72 +

2 )
O data
we simply select a fixed 3 scalar for the whole training, as
the discretization scheme does not affect the magnitude of
the weights.

7. Experiments

In the following, we show that learning the data-noise cou-
pling with our method is a simple yet effective improvement
for CT. We adapt our Variational Coupling (VC) technique
to two established baselines: improved Consistency Train-
ing (iCT) (Song & Dhariwal, 2024) and Easy Consistency
Tuning (ECM) (Geng et al., 2025). Note that for the latter,
the model is initialized with the weights of a pretrained
score model from (Karras et al., 2022), while in the former
the weights are initialized at random. More details about
the baselines are provided in Appendix C.1. In this work,
we consider only the framework of CT, where the unbiased
vector field estimator u,(x;) from equation 1 is used to ap-
proximate the noisy states x; during training, as opposed to
Consistency Distillation that uses a pretrained score model
as a teacher. We evaluate the models on the image datasets
Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky
et al., 2009), FFHQ 64 x 64 (Karras et al., 2019) and (class-
conditional) ImageNet 64 x 64 (Deng et al., 2009). To
learn the coupling, we add a smaller version of the neural
network used for CT, without time conditioning and with
weights always initialized at random. For all the models,
we use the variance exploding transition kernel (iCT-VE
and ECM-VE) used in (Karras et al., 2022) and (Song &
Dhariwal, 2024), with a; = 1, b; = t, and the linear inter-
polation kernel (iCT-LI and ECM-LI) commonly used in
Flow Matching (Lipman et al., 2023), with a; = 1 —t/0max
and by = t/omax (details in Appendix A). For both kernels,
we set opyin, = 0.002 and 0.« = 80. We report more
experimental details in Appendix C, comparison with other
models in Appendix D, while samples obtained with our
best models are shown in Appendix G.

7.1. Baselines and models

As baselines, we re-implement the iCT and ECM models,
corresponding to our iCT-VE and ECM-VE. As an addi-
tional model, we add CT with the minibatch Optimal Trans-
port Coupling (-OT) proposed in (Pooladian et al., 2023;
Tong et al., 2024) and used in (Issenhuth et al., 2025), to
compare the effectiveness and scalability of the OT coupling
with the learned one. Finally, we combine the baselines with
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our proposed Variational Coupling (-VC). For the models
with learned coupling, we use gradient clipping with a large
value (200 in all the experiments) to avoid instabilities at
the early stages of training.

7.2. Ablation for different 3

To see the effect of 3 on the generation performance, we
compare the results for different values on the FashionM-
NIST dataset for iCT-VE-VC in Table 1. As expected, with
small values of 3, the coupling distribution deviates from
the sampling distribution and the performance degenerates,
while increasing 3 to high values reduces the benefits of
the learned coupling. More detailes on how we tune (3 are
reported in Appendix C.3.

FID for different /3
1 step 2 steps
b= 12.53  5.69
p=15 497 2.34
f=30 3.88 237

B =60 3.90 2.67

Table 1. Comparison of FID performance (lower is better) for one
and two sampling steps, for varying values of 8. The models are
iCT-VE-VC and trained on the FashionMNIST dataset with the
same settings described in appendix C. Best entries in bold.

1-step / 2-step FID for iCT-based models

Model Fashion-MNIST  CIFAR10

iCT-VE* - 2.83/2.46
iCT-VE 4.79173.54 3.61/2.79
iCT-LI 4.75/3.46 3.81/2.87
iCT-VE-OT 4.42/2.82 3.28/2.66
iCT-LI-OT 4.41/72.91 3.42/2.77
iCT-VE-VC (VCT) 3.88/2.37 2.86/2.32
iCT-LI-VC (VCT)  3.62/2.22 2.94/2.32

Table 2. Comparison of FID (lower is better, reported as 1-step /
2-step performance) for different models based on iCT. The model
marked with a * is the baseline as reported in (Song & Dhariwal,
2024). All the other models are from our re-implementation. The
best entries are highlighted in bold.

7.3. Results

In tables 2 and 3 we report the 1 and 2 step sample quality
evaluated with Frechet Inception Distance (FID) (Heusel
et al., 2017), for both the results reported in the original
papers and our re-implementations. For high-dimensional
data, we only use models based on ECM, as they require
lower computational budget, while for FashionMNIST we

Model CIFAR10  FFHQ (64 x 64) ImageNet (64 x 64)
ECM-VE* 3.60/2.11 - 5517 /3.187
ECM-VE 3.68/2.14 5.99/439 5.26/3.22

ECM-LI 3.65/2.14 6.42/4.73 5.13/3.20
ECM-VE-OT 346/2.13  6.11/4.68 6.02/4.27
ECM-LI-OT 349/2.13  6.19/473 5.63/4.09
ECM-VE-VC (VCT) 3.26/2.02 5.47/4.16 5.08/3.15
ECM-LI-VC (VCT)  3.39/2.09 5.57/4.29 4.93/3.07

Table 3. Comparison of FID (lower is better, reported as 1-step / 2-
step performance) for different models based on ECM. The model
marked with a * is the baseline as reported in (Geng et al., 2025).
All the other models are from our re-implementation. The best
entries are highlighted in bold. For ImageNet, the results marked
with { are obtained with models trained for 100k iterations, while
the others use 200k iterations. Comprehensive comparisons with
additional baselines are presented in Tables 9 and 10.

only use models based on iCT as there is no available pre-
trained EDM model.

FashionMNIST: We choose FashionMNIST as a first
benchmark to test the performance of iCT. On this dataset,
we use a small version of DDPM++, with 64 model chan-
nels instead of 128 and no attention, and batch size 128. Our
variant with Variational Coupling outperforms both iCT and
iCT-OT, with best performance obtained with the LI transi-
tion kernel, showing the benefit of the learned coupling.
CIFAR-10: For all the CIFAR-10 experiments, we use the
DDPM-++ architecture from (Song et al., 2021b) as imple-
mented in (Karras et al., 2022), with EMA rate 0.9999 as in
(Geng et al., 2025). While this differs from the settings in
(Song & Dhariwal, 2024), we found it to work better in our
re-implementation. The remaining hyperparameters are the
same as used in the respective baselines. From the results,
we can see how using the learned coupling results in im-
proved performance for both one and two steps generation,
outperforming all the re-implemented baselines. The 1-step
result from the original iCT is superior to our model. How-
ever, to the best of our knowledge, there is no open-source
implementation that can reproduce the results reported in
the paper. The learned coupling outperforms the minibatch
OT coupling in all cases, as it is less affected by the effective
(per device) batch size and the data dimensionality. Finally,
our 2-step sampling performance for ECM-VE-VC is on
par with the current SoTA achieved by other methods with
similar settings (Wang et al., 2024; Lee et al., 2025; Lu &
Song, 2025). We empirically compare the variance of the
gradients for iCT-VE and iCT-VE-VC, and show in Figure 3
how the resulting reduced variance corresponds to improved
FID score. In particular, in early training the model with VC
exhibits higher variance, which can be attributed to the fact
that the encoder is still learning the coupling. As training
continues, the coupling becomes effective at providing bet-
ter data-noise pairs to the model, which results in reduced
gradient variance and improved generative performance.
FFHQ 64 x 64: We use FFHQ 64 x 64 as an additional
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e ue

(b) 1-step (FID=4.93, left) and 2-step (FID=3.07, right) samples
from ECM-LI-VC.

Figure 2. Visual comparison of generated class-conditional sam-
ples on ImageNet 64 x 64.

dataset to assess our method on higher-dimensional data. We
reuse the same training settings used for CIFAR10, without
additional tuning, and with the same network architecture
used in EDM. While the results are worse than current SOTA
generative models (e.g. 2.39 FID from EDM), they confirm
the benefit of using the learned coupling over the baselines.
Moreover, the results highlight the limits of using the mini-
batch OT coupling, which scales poorly with increased data
dimensionality and in some cases performs worse than the
independent coupling.

ImageNet 64 x 64 (class conditional): As a baseline, we
reuse the settings from ECM with the EDM2-S architecture
and batch size 128. While the baseline is trained for 100k
iteration, we found that our models with Variational Cou-
pling needed more time to converge properly, as the encoder
weights are not pretrained and initialized at random. We
therefore train our re-implemented baselines and models for
200k iterations instead, while we report the performance of
our models trained for 100k iterations in Appendix C.5. In
the 200k case, the models with Variational Coupling outper-
form the other models, with the LI kernel obtaining the best
overall FID, while the OT coupling performs poorly due to
the small batch size and high data dimensionality. In Fig-
ure 2 we compare samples from ECM-LI and ECM-LI-VC,
where we can see how the images generated with VC are
more clear and detailed.

107!
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Figure 3. The top graph shows a comparison of gradient variance
during training for iCT-VE and iCT-VE-VC on CIFAR10. We plot
the variance for each epoch (shaded) and its exponential moving
average with smoothing factor 0.9. Especially later during training,
the model with learned coupling exhibits lower variance, which
results in improved performance, shown in terms of 1-step FID in
the bottom graph. For a fair comparison, we did not use gradient
clipping for iCT-VC in this run.

8. Conclusions

In this work, we introduced a novel approach to Consistency
Training (CT) by incorporating a variational noise coupling
mechanism. Our method leverages an encoder-based cou-
pling function to learn a data-dependent noise distribution,
which results in improved generative performance. By fram-
ing CT within the Flow Matching perspective, we provided
a principled way to introduce adaptive noise coupling while
maintaining the efficiency of standard CT. Empirical re-
sults on multiple image benchmarks, demonstrate that our
approach consistently outperforms baselines in one and two-
step generation settings. Our findings highlight the potential
of learned coupling in CT and suggest several promising
directions for future work. These include exploring more ex-
pressive posterior distributions, extending our method to the
continuous-time CT formulation, and integrating variational
consistency training with other recent CT improvements.
We hope this work contributes to the broader understanding
of the effect of coupling in CT and inspires further advance-
ments in efficient generative sampling techniques.
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A. Consistency Models with Linear Interpolation Kernel

In addition to the variance exploding forward process commonly used in CT, here we propose to use the linear interpolation
kernel commonly used in Flow Matching:

xy = (1 —t)xg + tx;. (10)

We reuse all of the building blocks from iCT and ECM and make only the necessary adjustments. Accounting for the
boundary conditions, the transition kernel becomes:

t t
Ty = (1— . )azo—i— (0 )xlamax. (11

Other crucial components for stability during training are the scaling factors ¢y, Cskip and cout, and we derive them for the
linear interpolation kernel following the same procedure used in (Karras et al., 2022), also accounting for the boundary
conditions when o, # 0:

1

Cin(U) = (12)

Vohuall = 72 02

2 p—

Odata(l — 57— 2min—)
Cgki (U) = max m,;fg : (13)
’ (J - Umin)2 + J(Qiata(]' — ﬁ)Q

Cout(o) = ((T — Umin)adatacin(J) (14)

A.1. Derivations

We report the derivations for the scaling factors used for the linear interpolation transition kernel. We follow the same
derivations from (Karras et al., 2022) (appendix B.6), where the score matching objective is written as:

E||Dg(y +mn;0) —yl|3 (15)

Where vy is data sampled from the data distribution with standard deviation oq,t, and n is a sample from noise distribution
with standard deviation o. Given this objective, they propose to derive the scaling factors cin (), Cskip(0), Cous (o) as
follows:

1
in = 16
¢in(0) VVary nly + nj (10
Cout (0)2 = Vary n[y — cskip(0)(y + n)] 7)
Cskip(0) = argmincskip(g)cout(J)Q. (18)

—— and perform the same derivations. For simplicity, we define

(omitting the dependence on o), and procgga as follows:

In our formulation, we only need to rescale y by 1 —
a=1-—="2

ﬂmax

1

Cin\0) = 19
() Vary n[ay + n (19)
Cou(0)? = Vary n [y — cskip(0) (ay + n)] (20)
Csxip(0) = argming () Cout (0)2. (21)

The factor ¢, (o) simply becomes:

1

cin(o) = )
in(0) Vo2 . ka2 + o2

12

(22)
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To derive cout (o) we can proceed as:

Cout (0)2 = Vary,n[y — Cskip (J
Cout (0)2 - Vary,‘n[(l -

Cout (0)2 =(1- acskip(a))Qggata + Cskip(‘7>2‘7 .

We can use this result to solve for csiip(0):

d[cout (0)2] /dcskip (U)

— ACskip(0)) 0 data + Cskip(0)207] /desiin ()

q

9,

0=
0
0
0
0

—~

2

Cskip (0)

Finally, we can compute cout(0):
cout( )2

Cout

cout

Cout\ O ( )2

d[(1

Cout (0)2 =

Cout (0)2 -

Cout (O) -

If we want to use the boundary conditions for oy, # 0, then we can modify cykip (o) and coyy (o) as:

glatdd[(l -

(1-

)(ay +mn)]

Cskip (0))Y + coxip (o))

2

acskip(a))z]/dcskip (o) + UQd[Cskip(0)2]/dcskip (o)
Fatal20% Cap (0) — 2a] + 0 [2¢4p(0)]
o’ + O‘2‘7<21ata)cskip( ) —

Jgata/(g + OéQJgata)

2
Q0 data,

QCskip (0 )) Jdata+CSk1P( )202

2 2 2
Oé Udata 0.2 + A0 data 0_2
02+a202 ) data (02+a2 2 )

data

Odata

= (1-
o

02

2Udata) (Uaac%ata)

o? Odata :|2_|_|: ao-?iata—i_o- ?
( )

2
ta Udata)
2

(0% +a%0d,,)

(Uadata)Q + (a2ac213ta +o )

(02 + o Udata)2

(Jo—data)2
(02 + a20§ata)

00data

\% 02 + a20§ata

02 + a2 U(2iata

2 O—Omi
Coki (O’) _ Udata(l — anax_nl;l:lin)
skip = Ep=—
(0= Omin)? + 0 (1 = 5722000)°
Cout(g) = (U - Umirl)adatacin(a)a

which satisfy the condition cekip(0min) = 1 and cout (T min) = 0.

B. Consistency Lower Bound

Proposition B.1. The following upper bound for negative log-density holds:

—log pg (o) <

<

1

555

2
U’dtfe Vg, 1)

13

ﬁ%wo)uwo — fol@:, DII? + Drcr, (402 | o) | p(2)

dt + D, (q¢(z | 20) Hp(z)).

(23)
(24)
(25)

(26)
27)
(28)
(29)
(30)
(3D

(32)

(33)

(34)

(35)

(36)

(37

(3%)

(39)

(40)
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This proposition establishes the connection between the minimization objective of CT-VC and that of the continuous-time
CM.

Proof. For the triangle inequality, we have:

||f'3o — Jo(x1,1)]| < (41)

Zer Vi (o3 21), tiv) — fo- (Y, (o 1), )] -

=0

We can now square both sides, obtaining:

&g — folz1,1)]* < (42)

2
(Zer (Y1, (o5 21), Lig1) — fo- (wti(wo;wl)Vti)H> .

=0

Now, for the Cauchy-Schwarz Inequality, we can write the right hand side as:

2
(Z | fo i,y (mo; 1), tig1) — fo- (o, (mo; @1), tz)”) < 43)
=0
2
N Z | fo (1, (z0: ®1), tiv1) — fo- (e, (mos 1), t)||” -
=0
Since:
1
log po(@o | 1) oc — o5 [l — fo (1, 18] (44)
we can write a lower bound on the log density as:
1 2
log pa(x0) > 552 Eq, (21|20 IT0 — fo(z1, 1)||” — DkL (Q¢(351 | 20) Hp(wl)) (45)
In summary, the ELBO bound for the Gaussian VAE is given by
1
—log pg(xo) < 357 Eq, (1 |zo) | To — fo(®1,1)[|* + Dxr (%ﬁ(xl | o) Hp(ﬂvl)) = L(xo; 0, ¢). (46)
Combining the inequalities we derived in Eq. 42 and 43, below we consider the case when N — oo. First, we define:
N
SN =N Y Eqtarfaorpee) [ Fo (Wi (w0:21), tiva) = Folwr, (xos 1), 1)) - (47)
=0
We assume that ¢; is a partition of the interval [0, 1] of:
1
Atimtiy—ti =0 (N) . (48)
For small At = O (%) we approximate the squared difference in function values using a first-order Taylor expansion':
J 2
1 fo(Prars tinn) = Fo(u ti)|* = || = fo(vr,1) AL, (49)
t=t;

"Here, we assume v, , — ¥r, = O(tip1 — t;)
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Since At = O (%), we substitute:

2

d
||.f9(wti+1’ti+1) - fe(wtuti)‘ﬁ ~ ﬁ %fg(wtat) (50)
Multiplying by N:
N 1N
Sn =N E[[[fo(tr,r:tivr) — folthr,, ti) ~ N > E [er (%)) ] : (5D
i=0 i=0
As N — oo,
1 d 2
er sl | [ B |Gt | e (52)
0
Thus, multiplying by N, we obtain:
lim Sy = er (%) 1 . (53)
N—o00
Combining the above limit with the ELBO bound:
1 2
~log po (o) < g%wo)nwo = fol@i, DII? + Dt (as(z | @0) | p(2) (54)
11
S < o) |+ D (a2 120 )| p2). (55)
1! 2
:@/O E [Hdtﬁ,(wt,t) dt -+ D, (as(2 | @0) | p(2)), a5 N oo. (56)
O

C. Experimental details
C.1. Baselines

Here we recap the detials about the two baselines used in this work, the Improved Consistency Training from (Song &
Dhariwal, 2024) and Easy Consistency Models from (Geng et al., 2025).

iCT: the training procedure uses a discretization of time steps between two values op,;, = 0.002 and oy, = 80, with the
equation from (Karras et al., 2022):

I VS S GR VSR V) ’ ;
0 = ( min + N(k:) o 1 (Umax Umlrl) ? Wherel € [[1’N(k)]]7 (57)

where p = 7 and N (k) is a scheduler that defines the number of discretization steps at the k-th training iteration. N (k) is
chosen to be an exponential schedule which starts from sy = 10 steps and reaches s; = 1280 steps at the end of the training,
and is defined as:

, K
N (k) = min(2/¥/ K1 , K=|——+— |, 58
(k) = min( 51 + 1, log,(s1/s0) +1 (58)

During training, time steps ¢; (or equivalently o;) are sampled following a discrete lognormal distribution:

p(o_l) o erf (log(0i+1) - Pmean) o erf (log(az) - Pmean> 7 (59)
\/ipstd \/ipgtd
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with Ppean = —1.1 and Pyg = 2.0. Then, the steps ¢; and ¢, ; are used in the loss:
ﬁct (03 ¢) <~ )‘ct (tz)d(fe (xti+1 ’ t+ 1)a fg* (:Btz‘ ) ti))a (60)

whith the time dependent weighting function A\ (¢;) = m%t-’ and d(., .) is the Pseudo-Huber loss:

d(z,y) =/llz —yl3+ 2 —c (61)

ECM: ECM aims to simplify and improve the training procedure from iCT. We report here the main differences. Instead of
using a discretized grid of time steps, it samples time steps ¢ from a continuous lognormal distribution with Pyean = —1.1
and Pyg = 2.0 (—0.8 and 1.6 for ImageNet). The second time step r used in the discretized training objective is then
obtained with a mapping function

1

- q [iters/d] n(t) ’ (62)

1
p(r|t,iters) =1 — —n(t) =1
qa

where n(t) = 1+ ko(—bt) = 1+ ﬁ, o(.) is the sigmoid function, ifer is the current training iteration, k = 8, b = 1, and
q = 2 for all the models but ImageNet, where ¢ = 4. The discretization step is made smaller for eight times over training
(four times for ImageNet). The loss function is a generalization of the Pseudo-Huber loss, which consists of the L2 loss and
an adaptive weighting function w(A). The models are initialized with the weights of pretrained diffusion models, which is

shown to greatly improve stability during training and generation performance.

C.2. Training details

We report the training details for our models in Tables 4 and 5. Note that the baselines are the ones from our reimplementation.
The models have the same number of parameters and training hyperparameters regardless of the transition kernel used. In
the following, we report additional information important for reproducing out experiments:

ECM-LI: In ECM, the time steps ¢ ar sampled from a lognormal distribution, as done in (Karras et al., 2022). This means
that time steps ¢ > omax can be sampled during training. While this works well when using the variance exploding Kernel,
in the linear interpolantion case the time step ¢ cannot exceed o,,x, and we therefore clip ¢ to be at most oy ax.-

Random seeds: All the training runs are initialized with random seed 42. For sampling and FID computation, we always set
the random seed to 32, which was randomly chosen. This differs from what commonly done in EDM, where three different
seeds are used to evaluate FID and the best result is reported. While our evaluation can lead to slightly worse results, the
evaluation is consistent between our models and reimplemented baselines.

2-steps generation: Like in the original iCT baseline, all the models use t = 0.821 for CIFAR10 and all the other datasets
but ImageNet, where ¢ = 1.526 is used insetad.

Data augmentation: We scale all the images to have values between —1 and 1. For CIFAR10 we apply random horizontal
flip with 50% probability.

Differences for ImageNet: The training procedure for ECM on ImageNet differs slightly from the one for the other datasets.
The Adam optimizer is used instead of RAdam, with betas= (0.9, 0.99), and inverse square root learning rate decay defined
as a function of the current training iteration ¢:

. Qlpef
a() max (4 /e, 1)’ 63)

with ager = 0.001 (the initial learning rate) and i, = 2000 iterations. The Exponential Moving Average uses the power
function averaging profile introduced in (Karras et al., 2024). In ECM, three different EMA profiles are tracked during
training, with rates 0.01, 0.05, and 0.1. In our reimplementation, we only use the rate 0.1. The number of times in which the
discretization interval changes is reduced from 8 to 4, and the loss constant c is set to 0.06.

C.3. Tuning 3

In our experiments, we tuned 3 with a coarse grid search with different values with a gap of 10. For iCT on CIFAR10, we
initially tested the values 8 = [10, 20, 30, 40], of which 8 = 30 gave the best performance, then tested also for 5 = [25, 35]

16



VCT: Training Consistency Models with Variational Noise Coupling

Model Setups FashionMNIST CIFAR10
Model Architecture DDPM++ DDPM++
Model Channels 64 128
N° of ResBlocks 4 4
Attention Resolution - 16
Channel multiplyer (2,2, 2] (2,2, 2]
Model capacity 13.6M 55.7M
Training Details

Minibatch size 128 1024
Batch per device 128 512
Iterations 400k 400k
Dropout probability 30% 30%
Optimizer RAdam RAdam
Learning rate 0.0001 0.0001
EMA rate 0.9999 0.9999
Training Cost

Number of GPUs 1 2
GPU types H100 H100
Training time (hours) 28 92
Training time with OT (hours) 29 95
Encoder Details

Model Architecture DDPM++ DDPM-++
Model Channels 32 32

N° of ResBlocks 1 1
Attention Resolution - 16
Channel multiplyer [2,2,2] [2,2,2]
[ regularizer 30 30
Encoder Params 1.5M 1.6M
Training time with Encoder (hours) 34 102

Table 4. Model Configurations and Training Details for iCT on FashionMNIST and CIFAR10

which did not improve the performance. Similarly, for ECM on CIFAR10, we tested for § = [10, 20, 30, 40|, and after
achieving the best performance with 3 = 10, we tested 3 = [5, 15] which did not improve the performance. The tuning
was done with the VE kernel and the best values were used also for the LI kernel. We used the best values of 3 also in
FashinMNIST and FFHQ without additional tuning. For ImageNet we observed on early runs that 8 needed to be much
larger, so we initially tuned for 8 = [30, 60, 90, 120]. After achieving the best results with the VE kernel for 5 = 90, we
further tuned for 8 = [70, 80,90, 100, 110] for both VE and LI kernels, and found 5 = 100 to be the best for VE and
£ =90 for LL

C.4. The effect of gradient clipping

As our method uses gradient clipping for stability, we test the effect of gradient clipping on the baselines for a fair comparison.
We report the results in tables 6 and 7 for iCT and ECM respectively. While the results generally improve slightly in iCT
based methods, it is cleare that the main performance gain in our method is given by the improved coupling.

C.5. Imagenet training with 100k iterations

We report here the ImageNet experiments with 100k iterations. For ECM-LI-VC we increased 5 to 8 = 100 as 8 = 90
diverged during training. Note that for runs with 100k iterations, we sometimes encountered divergences for our models
with small 5 and sometimes also for the baselines, while it seems to be solved when training for 200k iterations. The
1-step/2-step FID results are reported in Table 8. For the settings with 100k iterations, our method performs similarly or
slightly worse than the baseline. We believe this is due to the fact that the encoder for our model requires more iterations to
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Model Setups CIFAR10 FFHQ 64 x 46 ImageNet 64 x 64
Model Architecture DDPM++ DDPM++ EDM2-S
Model Channels 64 128 192

N° of ResBlocks 4 4 3
Attention Resolution [16] [16] [16, 8]
Channel multiplyer [2,2,2] [1,2,2,2] [1,2,3,4]
Model capacity 55. "M 61.8M 280M
Training Details

Minibatch size 128 128 128
Batch per device 128 128 128
Iterations 400k 400k 200k
Dropout probability 20% 20% 40% (res < 16)
Optimizer RAdam RAdam Adam
Learning rate 0.0001 0.0001 0.001
EMA rate 0.9999 0.9999 0.1
Training Cost

Number of GPUs 1 1 1

GPU types H100 H100 H100
Training time (hours) 37 95 51
Training time with OT (hours) 38 96 52
Encoder Details

Model Architecture DDPM++ DDPM++ EDM2-S
Model Channels 32 32 32

N° of ResBlocks 1 1 2
Attention Resolution [16] [16] [16, 8]
Channel multiplyer (2,2,2] [1,2,2,2] [1,2,3,4]

B regularizer 10 10 100 (VE), 90 (LI)
Encoder Params 1.6M 1.6M 6M
Training time with Encoder (hours) 49 110 58

Table 5. Model Configurations and Training Details for ECM on CIFAR10, FFHQ 64 x 46 and ImageNet 64 x 64

learn the coupling, as demonstrated by the improved results for 200k iterations.
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Method 1-step  2-step Method 1-step  2-step
iCT-VE (w/o gc) 3.61 2.79 ECM-VE (w/o gc) 3.68 2.14
iCT-VE (w/ gc) 3.49 2.57 iCT-VE (w/ gc) 3.70 2.12
iCT-LI (w/o gc) 3.81 2.87 iCT-LI (w/o gc) 3.65 2.14
iCT-LI (w/ gc) 3.54 2.66 iCT-LI (w/ gc) 3.76 2.17
iCT-VE-OT (w/o gc) 3.28 2.66 iCT-VE-OT (w/o gc) 3.46 2.13
iCT-VE-OT (w/ gc) 3.21 2.56 iCT-VE-OT (w/ gc) 345 2.12
iCT-LI-OT (w/o gc) 3.42 2.77 iCT-LI-OT (w/o gc) 3.49 2.13
iCT-LI-OT (w/ gc) 3.18 2.63 iCT-LI-OT (w/ gc) 3.50 2.12
iCT-VE-VC (w/ gc) (VCT) 2.86 2.32 iCT-VE-VC (w/ gc) (VCT) 3.26 2.02
iCT-VE-LI (w/ gc) (VCT) 2.94 2.32 iCT-VE-LI (w/ gc) (VCT) 2.39 2.09
Table 6. FID performance with/without gc on CIFAR10 for iCT Table 7. FID performance with/without gc on CIFAR10 for ECM
based methods. based methods.

Method 1-Step FID  2-Step FID

ECM-VE 5.66 3.78

ECM-LI 5.63 3.48

ECM-VE-OT 6.74 4.71

ECM-LI-OT 6.65 4.64

ECM-VE-VC (VCT) 5.67 3.67

ECM-LI-VC (VCT) 6.34 3.77

Table 8. Results of our models trained on class conditional IageNet 64 x 64 for 100k iterations with batch size 128.
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D. Comprehensive comparison

In this section we report a comprehensive comparison with other methods on CIFAR10 and ImageNet 64 x 64, in tables 9
and 10.

Table 9. FID, NFE and # param. on CIFAR-10. Bold indicates the best result for each category and NFE.

Method NFE FID # param. (M)
Diffusion models

EDM (Karras et al., 2022) 35 197 55.7
PFGM++ (Xu et al., 2023) 35 191 55.7
DDPM (Ho et al., 2020) 1000 3.17 35.7
LSGM (Vahdat et al., 2021) 147  2.10 475

Consistency models
1-step

iCT (Song & Dhariwal, 2024) 1 2.83 56.4
iCT-deep (Song & Dhariwal, 2024) 1 2.51 112
CTM (Kim et al., 2024) (w/o GAN) 1 5.19 55.7
ECM (Geng et al., 2025) 1 3.60 55.7
TCM (Lee et al., 2025) 1 2.46 55.7
sCT (Lu & Song, 2025) 1 2.85 -
iCT-VE-VC (VCT) 1 2.86 57.3
iCT-LI-VC (VCT) 1 2.94 57.3
ECM-VE-VC (VCT) 1 3.26 57.3
ECM-LI-VC (VCT) 1 3.39 57.3
2-step
iCT (Song & Dhariwal, 2024) 2 2.46 56.4
iCT-deep (Song & Dhariwal, 2024) 2 2.24 112
ECM (Geng et al., 2025) 2 2.11 55.7
TCM (Lee et al., 2025) 2 2.05 55.7
sCT (Lu & Song, 2025) 2 2.06 -
iCT-VE-VC (VCT) 2 2.32 57.3
iCT-LI-VC (VCT) 2 2.32 57.3
ECM-VE-VC (VCT) 2 2.02 57.3
ECM-LI-VC (VCT) 2 2.09 57.3
Variational score distillation
DMD (Yin et al., 2024) 1 3.77 55.7
Diff-Instruct (Luo et al., 2023) 1 4.53 55.7
SiD (Zhou et al., 2024) 1 1.92 55.7
Knowledge distillation
KD (Luhman & Luhman, 2021) 1 9.36 35.7
DSNO (Zheng et al., 2023) 1 3.78 65.8
TRACT (Berthelot et al., 2023) 1 3.78 55.7
2 3.32 55.7
PD (Salimans & Ho, 2022) 1 9.12 60.0
2 4.51 60.0
CD (LPIPS) (Song et al., 2023) 1 3.55 -
2 2.93 -
sCD (Lu & Song, 2025) 1 3.66 -
2 2.52 -
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Table 10. FID, NFE and # param. on ImageNet 64 x 64. Dotted lines separate results by # param. Bold indicates the best result for each
category and NFE. Our models, marked with a *, use batch size 128 while equivalent models based on ECM use batch size 1024.

Method NFE FID # param. (M)
Diffusion models
EDM2-S (Karras et al., 2024) 63 1.58 280
EDM2-XL (Karras et al., 2024) 63 1.33 1119
Consistency models
I-step
iCT (Song & Dhariwal, 2024) 1 4.02 296
iCT-deep (Song & Dhariwal, 2024) 1 3.25 592
ECM (Geng et al., 2025) (EDM2-S) 1 4.05 280
TCM (Lee et al., 2025)(EDM2-S) 1 2.88 280
sCT (Lu & Song, 2025) (EDM2-S) 1 3.23 280
ECM (Geng et al., 2025) (EDM2-XL) 1 2.49 1119
TCM (Lee et al., 2025) (EDM2-XL) 1 2.20 1119
sCT (Lu & Song, 2025) (EDM2-XL) 1 2.04 1119
ECM-VE-VC (Ours, EDM2-S)* 1 5.08 286
ECM-LI-VC (Ours, EDM2-S)* 1 4.93 286
2-step
iCT (Song & Dhariwal, 2024) 2 3.20 296
iCT-deep (Song & Dhariwal, 2024) 2 2.77 592
ECM (Geng et al., 2025) (EDM2-S) 2 2.79 280
TCM (Lee et al., 2025)(EDM2-S) 2 2.31 280
sCT (Lu & Song, 2025) (EDM2-S) 2 2.93 280
ECM (Geng et al., 2025)(EDM2-XL) 2 1.67 1119
TCM (Lee et al., 2025)(EDM2-XL) 2 1.62 1119
sCT (Lu & Song, 2025) (EDM2-XL) 2 1.48 1119
ECM-VE-VC (Ours, EDM2-S)* 2 3.15 286
ECM-LI-VC (Ours, EDM2-S)* 2 3.07 286
Variational score distillation
DMD2 w/o GAN (Yin et al., 2024) 1 2.60 296
Diff-Instruct (Luo et al., 2023) 1 5.57 296
EMD-16 (Xie et al., 2024) 1 2.20 296
Moment Matching (Salimans et al., 2024) 1 3.00 400
2 3.86 400
SiD (Zhou et al., 2024) 1 1.52 296
Knowledge distillation
DSNO (Zheng et al., 2023) 1 7.83 329
TRACT (Berthelot et al., 2023) 1 7.43 296
2 4.97 296
PD (Salimans & Ho, 2022) 1 154 296
2 8.95 296
CD (LPIPS) (Song et al., 2023) 1 6.20 -
2 4.70 -
sCD (Lu & Song, 2025) (EDM2-XL) 1 2.44 1119
2 1.66 1119
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E. Toy experiments

To gain a visual understanding of the benefits of the variational coupling, we use the model to learn the distribution of a
mixture of two Gaussians, with means 11 = (0,0.5) and s = (0, —0.5), and standard deviation o = 0.05. We use iCT-LI
so that the perturbed data reaches the prior even with small oy,5x, With o = 0.002, 0ax = 0.1 and 0gata = 0.05. The
models are trained for 40k iterations, with sy = 10 and s; = 80, and EMA rate 0.999. We use a simple four-layers MLP
with GeLU activation and Positional time embedding, with batch size 256 and learning rate 1e~*. For iCT-LI-VC we use
B = 0.001. The results are shown in figures 1 and 4 (one and two step generation respectively).
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Figure 4. 2-step generation result on the toy data, with ¢ = 0.07.
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F. Model diagram

In figure 5 we show the difference between the forward process for standard Consistency Training and for our method with
learned noise coupling, for a given time step ¢ and transition kernel characterized by the coefficients a; and b;.

Independent Coupling

xq zle(O,I)

\ /

xp = ;o + by

|

fo(ze,t)

Variational Coupling

e~N(0,1)

l

z > gs(z0) > 1= gj(@o) + g5 (zo)e

\ /

xp = a;xo + by

|

fo(ze,t)

Figure 5. Diagram for Consistency Training with independent coupling (left) and variational coupling (right).

G. Qualitative Results

Here we report samples from our best models, iCT-LI-VC for FashionMNIST (figure 7), iCT-VE-VC and ECM-VE-VC on
CIFARI1O (figures 8 and 9), ECM-VE-VC on FFHQ 64 x 64 (figure 10) and ECM-LI-VC on class conditional Imagenet
64 x 64 (figure 11). In figure 6, we show the mean and standard deviation learned by the encoder for some images from
the CIFAR10 dataset. While the values are very close to a standard Gaussian, the model still retains information from the

original input.
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Input image

Figure 6. Visualization of the predicted mean and standard deviation for a trained iCT-VE-VC model for different input images. For
visualization purpose, we perform min-max rescaling for the predicted mean and standard deviation, as they tend to have most values
close to zero and one respectively. We also turn the predicted 3 channels standard deviations to a single channel with grayscale transform.
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2.22, right) generation from iCT-LI-VC trained on FashionMNIST.

3.62, left) and 2-step (FID=

Figure 7. 1-step (FID:

2.32, right) generation from iCT-VE-VC trained on CIFAR10.

2.86, left) and 2-step (FID=

Figure 8. 1-step (FID:
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Figure 9. 1-step (FID=3.26, left) and 2-step (FID=2.02, right) generation from ECM-VE-VC trained on CIFAR10.

Figure 10. 1-step (FID=>5.47, left) and 2-step (FID=4.16, right) generation from ECM-VE-VC trained on FFHQ64 x 64.
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Figure 11. 1-step (FID=4.93, left) and 2-step (FID=3.07, right) generation from ECM-LI-VC trained on class conditional ImageNet
64 x 64.
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