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Selective Vision-Language Subspace Projection for Few-shot CLIP
Anonymous Author(s)

ABSTRACT
Vision-languagemodels such as CLIP are capable ofmapping the dif-
ferent modality data into a unified feature space, enabling zero/few-
shot inference bymeasuring the similarity of given images and texts.
However, most existing methods overlook modality gaps in CLIP’s
encoded features, which is shown as the text and image features lie
far apart from each other, resulting in limited classification perfor-
mance. To tackle this issue, we introduce a method called Selective
Vision-Language Subspace Projection (SSP), which incorporates
local image features and utilizes them as a bridge to enhance the
alignment between image-text pairs. Specifically, our SSP frame-
work comprises two parallel modules: a vision projector and a lan-
guage projector. Both projectors utilize local image features to span
the respective subspaces for image and texts, thereby projecting the
image and text features into their respective subspaces to achieve
alignment. Moreover, our approach entails only training-free matrix
calculations and can be seamlessly integrated into advanced CLIP-
based few-shot learning frameworks. Extensive experiments on 11
datasets have demonstrated SSP’s superior text-image alignment
capabilities, outperforming the state-of-the-art alignment methods.
The code is available at: https://anonymous.4open.science/r/SSP-
D3EC/main_our.py
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1 INTRODUCTION
The topic of pre-trained vision-language models (VLMs) [16, 21]
has attracted significant research interest due to their exceptional
performance in various multimodal tasks [12, 44, 50]. Among these,
CLIP (Contrastive Language-Image Pretraining) [35] stands out
in classification tasks, especially in zero/few-shot scenarios. For a
given test image, CLIP computes the similarity between the image
feature and the text features of all class labels, in the form of “a
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features

aligned text-image
features by SSP

cos <𝝁tex, 𝝁vis> (↑) 0.77558 0.8326

|𝜅tex − 𝜅vis| (↓) 7.74 1.89

KL div. (↓) 15.38 12.63
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𝜅tex:73.23
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𝜅vis:65.49 𝜅tex:71.16 𝜅vis:69.87
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(a) (b)

(c)

Figure 1: A illustration of modality gaps conducted on Ima-
geNet [5] with ViT-B/32. (a) Text and image features from
CLIP lie in different cones. (b) Text and image features
aligned by SSP almost line in the same cone. (c) Compar-
isons of distribution metrics for CLIP and SSP.

photo of a [class name].”. It then assigns the class with the
highest similarity as the predicted label.

Recently, prompt tuning [52, 53] and adapter tuning [9, 41, 51]
techniques have been applied in CLIP to further explore its gen-
eralization ability in few-shot tasks. These methods add learnable
embeddings or adapter layers to either the visual encoder or textual
encoder of CLIP. While they have improved the performance, they
overlook the modality gaps existed in multi-modal models. As dis-
cussed in [24, 32, 40] and illustrated in Figure 1(a), modality gaps
refer to different modality embeddings, e.g., CLIP’s encoded text
features (pink cone) and image features (blue cone), are located in
two separated regions in a hypersphere. To better understand these
gaps, we use von Mises-Fisher (vMF) distribution [1, 6] to fit the
text and image distributions, considering both modality features
are normalized to unit length and lie on a unit hypersphere, where
the parameters 𝝁 and 𝜅 in vMF are analogous to the mean and
standard deviation of Gaussian distribution, respectively (details
of vMF formalization can be found in the Supplementary Mate-
rial). Figure 1(c) summarizes the results, where the original text
and image features show different distributions, e.g., a large angle
between 𝝁tex and 𝝁vis, and a large ℓ1-norm between 𝜅tex and 𝜅vis.
This phenomenon is unexpected, as paired text-image features are
optimized during the pre-training stage to be closely located to
each other while being separated from other paired image-text fea-
tures. To further investigate these gaps, we visualize the activation
maps by calculating the similarity maps between the text features
and local image features (feature map) in Figure 2, the second row
shows that the text features focus on the unrelated regions, not just
the foreground objects. This also demonstrates the gaps between
the text and image features. In general, several reasons can cause
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Figure 2: Comparisons of class activations maps, where the CLIP’s encoded features may concentrate on opposite or noisy
regions as discussed in [23], while our SSP-aligned features primarily foreground objects.

the modality gaps, broadly categorized as follows: (1) differences in
downstream dataset distribution from the training data distribution
[48], (2) different random model initializations cause the different
feature cones [24], (3) CLIP model does not incorporate the fine-
grained relationship between text tokens and image patches [8, 25],
while these works on analyzing the modality gaps, they do not
concentrate on CLIP’s few-shot generalization capability.

Based on the observation and analysis, we propose a training-
free method called Selective Vision-Language Subspace Projection
(SSP), that leverages the local image features as a bridge to align
image and text features. Our method aims at reducing the modality
gap so that the paired text-image features are no longer farther apart
from each other, as shown in Figure1(b) (the pink cone and blue cone
are closer). To be specific, our SSP consists of two parallel modules,
namely, a vision projector and a language projector. In the vision
projector module, we utilize the regions of local image features that
are similar to the image features to create a unified vision subspace
due to the common structural and textural elements present in
images, and then all image features are projected onto this vision
subspace to achieve alignment. The language projector module
operates in a similar manner, where we use local image features
to construct the language subspace for each class. Subsequently,
text features extracted from CLIP are aligned by projecting them
onto their respective language subspaces. During the inference
stage, all projected features are employed to classify the test image.
The effectiveness of SSP can be seen from the metric results in
Figure 1(c), by narrowing the modality gap, the text-image features
aligned by SSP exhibit a higher cosine similarity, e.g., 0.7755 vs.
0.8325, as well as the smaller difference of 𝜅, and they also obtain
a closer distribution distance by comparing the KL divergence.
Besides, the visualized activation maps in the last row of Figure 2
show that text features processed by SSP can mainly focus on the
foreground object. Overall, our SSP method only involves training-
free matrix calculations, which can enhance the CLIP’s capability in
few-shot scenarios by improving the alignment between the paired
text-image features.

The main contributions of our SSP are summarized as follows:

(1) We propose a training-free method SSP to reduce the modal-
ity gaps in CLIP’s encoded features, which improves the
CLIP’s few-shot generalization ability.

(2) We design vision and language projectors, which leverage
regions of the local image features to align the image and
text features via subspace projection.

(3) Our SSP is flexible and can be applied to various CLIP-
based methods, improving their performance across diverse
benchmarks, even in state-of-the-art methods, e.g., an av-
erage accuracy improvement of 0.63% over APE [55] in
16-shot.

2 RELATEDWORK
In this section, we first introduce the Vsion-Language Models. Then
we present CLIP with prompt tuning and adapter tuning in the
few-shot scenario and compare our SSP with related methods.

2.1 VLMs Pre-training
VLMs have gained significant advances in recent years [26, 49].
These models bridge the modalities of vision and language and
are typically pre-trained on a large dataset. With image-text pairs,
VLMs use an image encoder and a text encoder to extract image
and text features, and then learn the vision-language correlation by
using certain pre-training objectives. Moreover, a range of VLMs,
including CLIP (Contrastive Language-Image Pretraining) [23, 35],
CoCa (Contrastive Cross-modal Learning) [45], and BLIP (Bidirec-
tional Learning of Image and Text Priors) [20], can be leveraged
for various downstream tasks, such as object recognition [51, 54],
object detection [10], and image captioning [2, 30]. For instance,
CLIP is pre-trained on a vast dataset of web-based image-text pairs
and learns to align their representations through contrastive loss,
which enables it to recognize unseen data by matching the embed-
dings of any given images and texts. In this paper, we aim to use
CLIP to address few-shot classification problems.

2
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Figure 3: The overview of our approach. The training images and extended labels are sent to the frozen visual encoder and
textual encoder to extract features, respectively. Subsequently, the related local image features (features maps) are employed to
construct the vision subspace and language subspaces, which are performed to align the extracted image and text features
through subspace projection. Finally, a projected testing feature along with projected training features are inputted into the
classification framework to predict results.

2.2 Prompt Tuning of VLMs
The concept of prompt tuning is initially introduced in the natural
language processing area, which refers to utilizing a fixed part of the
text input as learnable embeddings and fine-tuning its parameters
based on the downstream task data. CoOp [53] uses learnable word
embeddings to generate context prompts automatically, eliminating
the need for manual prompt templates. CoCoOp [52] proposed a
meta network to learn image features that served as conditions
added to prompt embeddings to further enhance the model’s gen-
eralization ability. ProDA [27] aims to learn the distributions of the
prompt embedding. ProGrad [54] used zero-shot prediction results
to direct the model gradient update, preventing conflicts between
few-shot models and general knowledge while mitigating overfit-
ting issues. However, the above-mentioned methods, although they
enhance the classification performance of CLIP in few-shot scenar-
ios, involve the introduction of learnable parameters and increase
training consumption. In contrast, our SSP only involves matrix
calculation and does not introduce any learnable parameters.

2.3 Adapter Tuning of VLMs
Adapter tuning techniques are applied in VLMs [9, 41, 51, 55] to
enhance downstream generalization ability by freezing the origi-
nal model parameters and only updating the parameters of added
adapter module. CLIP-Adapter [9] utilized a fully connected layer to
adapt the features outputted from the frozen CLIP. Tip-Adapter [46]
leverages a cache model to measure the relations between image
and text features to construct a classifier based on few-shot train-
ing data. APE [55] represents an enhanced version of Tip-adapter,
selecting the most discriminative feature channels via statistical
analysis. SuS-X [41] relies on the category names from the training
set to generate image samples based on stable diffusion [37]. Cross-
Modal Adapter (CMA) [17] achieves cross-modal interaction by

sharing adapter weights between two modalities. While the afore-
mentioned methods adapt text-image features for the downstream
tasks, they do not account for their modality gaps. Our SSP method
strives to reduce the gaps to better align the paired text-image
features and can be integrated into the aforementioned methods.

3 METHODOLOGY
In this part, we provide a detailed explanation of our methodology.
Firstly, we offer a brief overview of the zero-shot inference ability of
CLIP in Section 3.1. Then, we delve into the specifics of our vision
projector, discussed in Section 3.2, and language projector discussed
in Section 3.3. Following that, we present the classification process
of SSP in Section 3.4. Lastly, we conduct a comparative analysis
between our SSP approach and related methods in Section 3.5.

3.1 Preliminaries
The pre-trained CLIPmodel can be adapted to the downstream tasks,
i.e., zero-shot classification. This process involves extending the
“[class name]” to the template “a photo of a [class name]”.
Subsequently, the image feature 𝒇 ∈ R𝑑 and the class-extended
text feature 𝒕𝑖 ∈ R𝑑 are extracted from CLIP’s visual encoder and
textual encoder, respectively. The classification is determined by
the cosine similarity ⟨𝒇 , 𝒕𝑖 ⟩:

𝑝 (𝒕𝑦 |𝒇 ) =
exp(⟨𝒇 , 𝒕𝑦⟩)∑𝑁
𝑖=1 exp(⟨𝒇 , 𝒕𝑖 ⟩)

, (1)

where 𝑁 represents the number of classes. In the few-shot setting
of CLIP, there are given 𝑁 classes, each class containing 𝐾-shot
training images. In our method, apart from the encoded image fea-
ture 𝒇 and the text feature 𝒕 , we also exploit local image features
𝒙 ∈ Rℎ𝑤×𝑑 , where ℎ and𝑤 represent the height and width of the
local image feature, respectively. The overview of our method is
depicted in Figure 3. We select local image features that exhibit

3
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strong correlations with both image and text features, respectively,
as determined by cosine similarity. Then we utilize these selected
local features to construct the vision subapace and language sub-
spaces, respectively. In the inference stage, the test image feature is
projected into the vision and language subspaces, respectively, and
then the projected training text-image features and the projected
test features are sent to the classifier to predict the result.

3.2 Vision Projector
In the vision projector module, the cosine similarity between the
image feature and the local image features is calculated for each
sample in the training set as follows:

𝒔𝑖, 𝑗 = 𝒇𝑖, 𝑗 · 𝒙T𝑖, 𝑗 , 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 𝐾] . (2)

Here, 𝒇𝑖, 𝑗 is the image feature of 𝑗-th sample from class 𝑖 , and 𝒙𝑖, 𝑗
denotes the corresponding local image features. 𝐾 indicates the
number of samples within each class. 𝒔𝑖, 𝑗 ∈ Rℎ𝑤 denotes the vector
of similarity scores, with each element indicating the correlation
between the image feature and the local region feature. Previous
studies [23, 29] have demonstrated that local image features play
a crucial role in capturing object and semantic information for vi-
sion and language, respectively. Consequently, a higher value in
𝒔𝑖, 𝑗 indicates that this local region contains more discriminative
information for correct classification. Conversely, a smaller value
suggests that the region includes less useful or irrelevant informa-
tion for the corresponding class. Based on these insights, we utilize
regions with top-𝑄 largest values to construct the vision subspace:

�̂�𝑖, 𝑗 = 𝒙𝑖, 𝑗 [𝑛, :] ∈ R𝑄×𝑑 , 𝑛 = {𝑛1, 𝑛2, · · · , 𝑛𝑄 }, (3)

where 𝑄 is a hyper-parameter validated in Section 4.2.1, and 𝑛 =

{𝑛1, 𝑛2, · · · , 𝑛𝑄 } denotes the indices set of top-𝑄 largest values in
𝒔𝑖, 𝑗 . By aggregating these local features across all training samples
and concatenating them with 𝒇𝑖, 𝑗 , we obtain:

�̂� = [𝒇1,1, �̂�1,1, · · · ,𝒇𝑖, 𝑗 , �̂�𝑖, 𝑗 , · · · ,𝒇𝑁,𝐾 , �̂�𝑁,𝐾 ]T

∈ R( (𝑁+1)𝐾×𝑄 )×𝑑 .
(4)

�̂� comprises the informative features for vision patterns, and we
decompose the �̂� by Singular Value Decomposition (SVD):

𝑼visΣvis𝑽
T
vis = SVD(�̂� ), (5)

where 𝑼vis ∈ R( (𝑁+1)𝐾×𝑄 )×( (𝑁+1)𝐾×𝑄 ) and 𝑽vis ∈ R𝑑×𝑑 is the left
singular vectors and right singular vectors, respectively, and they
are corresponded to the singular values 𝚺vis ∈ R( (𝑁+1)𝐾×𝑄 )×𝑑

sorted in the descending order. We employ the principal vectors
of 𝑽vis, denoted as �̂�vis, to span the visual subspace [38], and the
corresponding projection matrix is calculated as [11, 47]:

𝑷vis = �̂�vis�̂�
T
vis, (6)

where 𝑷vis = 𝑷Tvis ∈ R𝑑×𝑑 . Depending on the constructed vision
subspace and projection matrix, we align the image features via
subspace projection:

𝑭 = 𝑷vis𝑭 , (7)

where 𝑭 = [𝒇1,1, · · · ,𝒇𝑁,𝐾 ] ∈ R𝑑×𝑁𝐾 refers to all training image
features, and the projected image features 𝑭 are then utilized in the
classification process.

Vision
Projection

Language
Projection

𝑭𝒇test𝑻 𝑳𝑭𝒇test
tex 𝒇test

vis

𝑭𝑻 𝑿

𝒇test
SSP

Classification
Framework

Prediction

CalculationCalculation

෩𝑻
✘
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𝑿: local image features
𝑭: image features
𝑻: text features

𝑳: one-hot labels

Figure 4: The main differences between our SSP and other
adapter-based methods [32, 51, 55].

3.3 Language Projector
The language projector module has the same effects as the vision
projector, and they exhibit a similar procedure. The cosine similarity
between the text feature and local image features is calculated as:

𝒛𝑖, 𝑗 = 𝒕𝑖 · 𝒙T𝑖, 𝑗 , 𝑖 ∈ [1, 𝑁 ], 𝑗 ∈ [1, 𝐾], (8)

where 𝒕𝑖 is the text feature of 𝑖-th class, and 𝒙𝑖, 𝑗 denote the local
image features of 𝑗-th image for class 𝑖 . 𝒛𝑖, 𝑗 ∈ Rℎ𝑤 stores the simi-
larity scores between the text feature and the local image feature.
The larger values in 𝒛𝑖, 𝑗 imply that these local regions exhibit highly
semantic with 𝒕𝑖 , and we select regions with top-𝐶 largest values
to construct language subspace:

�̃�𝑖, 𝑗 = 𝒙𝑖, 𝑗 [𝑚, :], 𝑚 = {𝑚1,𝑚2, · · · ,𝑚𝐶 } ∈ R𝐶×𝑑 , (9)

where𝑚 = {𝑚1,𝑚2, · · · ,𝑚𝐶 } represents indices of top-𝐶 largest
values in 𝒛𝑖, 𝑗 . For each text feature 𝒕𝑖 , there are 𝐾 local image
features belonging to that class. Consequently, we can gather a
total of 𝐾 ×𝐶 + 1 features, denoted as �̃�𝑖 = [𝒕𝑖 , �̃�𝑖,1, · · · , �̃�𝑖,𝐾 ]T ∈
R( (𝐾×𝐶+1)×𝑑 for each class. In contrast to a unified vision subspace,
we construct a language subspace for each class based on {�̃�𝑖 }𝑁𝑖=1
via SVD, as shown below:

𝑼 𝑖tex𝚺
𝑖
tex (𝑽 𝑖tex)T = SVD(�̃�𝑖 ), 𝑖 ∈ [1, 𝑁 ], (10)

where 𝑼 𝑖tex and 𝑽 𝑖tex are the left and right singular vectors, respec-
tively, corresponding to the singular values 𝚺𝑖tex sorted in descend-
ing order. �̃� 𝑖tex denotes the primary singular vectors of 𝑽 𝑖tex, which
forms the basis for the 𝑖-th language subspace. The corresponding
projection matrix is denoted as 𝑷𝑖tex = �̃� 𝑖tex (�̃� 𝑖tex)T ∈ R𝑑×𝑑 . Sub-
sequently, the text features are projected by their corresponding
projection matrix as follows:

�̃� = [𝒕1, · · · , 𝒕𝑖 , · · · , 𝒕𝑁 ]T ∈ R𝑁×𝑑 ,

= [𝑷1tex𝒕1, · · · , 𝑷𝑖tex𝒕𝑖 , · · · , 𝑷𝑁tex𝒕𝑁 ] .
(11)

The projected text features �̃� and the projected image features 𝑭
belonging to the same class lie closely to each other, as depicted in
Figure 1 (b), Thereby, these paired text-image features are utilized
for classifying test images during the inference stage.

3.4 Classification Process
Our SSP doesn’t involve the parameters training process and can
seamlessly build on top of existing adapter-based methods, such as
LFA[32], Tip[51], and APE[55], to achieve improved classification
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results, as summarized in Table2 and Table 3. Specifically, given a
test image 𝒇test ∈ R𝑑 , it’s projected into the vision subspace and
language subspace, respectively. The vision subspace projection
process is straightforwardly calculated as:

𝒇vistest = 𝑷vis𝒇test, (12)

where 𝒇vistest denotes the projected feature. However, for the lan-
guage subspace projection, we encounter a challenge since we lack
categorical information to determine the appropriate language pro-
jection matrix to use. To address this, we rely on projection theory
[47] to choose the language projection matrix based on minimizing
the ℓ2 norm of the orthogonal projected features:

argmin
𝑖

| | (𝑰 − 𝑷𝑖tex)𝒇test | |22, 𝑖 ∈ [1, 𝑁 ]

𝒇 textest = 𝑷𝑖tex𝒇test .
(13)

If the 𝒇test lies in the 𝑖-th language subspace entirely, the projection
operation doesn’t change the norm of the test feature, i.e., 𝒇test =
𝑷𝑖tex𝒇test. After aligning the test feature via our vision and language
subspace projection. The aligned test features alongwith the aligned
image and text features are inputted into the various classification
frameworks the get the prediction. For example, if we choose the
LFA [32] as the classifier, we calculate the transformation matrix𝑾
based on aligned image features 𝑭 and text features �̃� . We then use
𝒇 textest to compute the final classification logits, given by �̃� ·𝑾 ·𝒇 textest. If
we choose the Tip [51] or APE [55] as the classification frameworks,
we utilize both 𝒇vistest and 𝒇 textest to calculate the prediction results,
which are given by 𝑭 · 𝒇vistest + �̃� · 𝒇vistest.

3.5 Analysis of SSP
Our method focuses on aligning the image and text features and can
be easily built on top of various classifiers as described above. This
sets our SSP approach apart from adapter-based methods such as
Tip[51], APE[55], and LFA[32]. Although these methods operate on
adapting the feature encoded from CLIP, they can also be viewed as
classification frameworks due to their direct calculations between
the training and testing samples. As shown in Figure4, the adapter-
based methods are depicted in the green box at the bottom. They
employ various techniques to calculate the relationship among 𝑻 ,
𝑭 , 𝑳, and the test sample 𝒇test to achieve classiffication, where 𝑳
signifies the one-hot labels for 𝑭 . In contrast, our method, illus-
trated in the gray section at the top, leverages local image features
𝑿 as a bridge to align the image features, text features, and test
features, resulting in �̃� , 𝑭 , 𝒇vistest, and 𝒇 textest. These aligned features
are substituted for the original ones in the computations to derive
the classification results.

4 EXPERIMENTS
In this section, we first describe the experimental settings, and
then we conduct ablation studies to analyze the effectiveness of
different components within our method. Additionally, we compare
the performance of our approach with other state-of-the-art (SOTA)
methods. Finally, we evaluate the robustness of our method by
testing it on out-of-distribution datasets. The experiments aim to
address the following research questions (RQ):
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Figure 5: Comparison of classification accuracy and percent-
age measurements by varying the number of selected local
image features under the 16-shot setting: (a) Classification
results using only vision subspace projection. (b) Classifi-
cation results using only language subspace projection. (c)
Relationship between text features and local image features
selected by image features. (d)Relationship between image
features and local image features selected by text features.

RQ1: What is the optimal number of selected regions for image
features and text features, respectively?
RQ2: How many principal singular vectors should be used to con-
struct the vision projection matrix and language projection matrix,
respectively?
RQ3: What is the impact of the projection operation on the classi-
fication results?
RQ4: How does the performance of our approach compare to that
of state-of-the-art methods?
RQ5:What is the generalization ability of our method?
RQ6: How does the computational efficiency of our method com-
pare to that of other methods?
By addressing these research questions systematically, we aim to
provide a comprehensive evaluation of the effectiveness and robust-
ness of our proposed methodology.

4.1 Experimental Settings
Datasets. In our experimental evaluation, we conducted experi-
ments on 11 widely-used image classification benchmarks, covering
a diverse range of object, scene, texture, and fine-grained categories.
The datasets used in our experiments comprise ImageNet [5], Cal-
tech101 [7], DTD [4], EuroSAT [13], FGVCAircraft [28], Flowers102
[31], Food101 [3], OxfordPets [33], StanfordCars [19], SUN397 [43],
and UCF101 [39]. Additionally, we adopted variants of ImageNet,
namely, ImageNetV2 [36], ImageNet-Sketch [42], ImageNet-A[15],
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Figure 6: The accuracy (%) of the classifiers and projection
errors with varying the number of singular vectors: (a) The
vision projection matrix construction for the different num-
ber of shots, (b) The language projection matrix construction
with the different number shots, (c) The vision projection
errors under 16-shot setting, (d) The language projection er-
rors under 16-shot setting.

and ImageNet-R [14], to assess the out-of-distribution generaliza-
tion ability of methods, followed by [52].
Implementation Details. Our experiments are conducted us-
ing pre-trained CLIP [35], where the visual encoder is adopted
as ResNet-50 (RN50), and the textual encoder is a Transformer. The
weights of these encoders remain frozen during both training and
inference stages. We follow the previous works [51] to set 𝐾 =

1, 2, 4, 8, and 16, respectively, and follow the data preprocessing
protocol in CLIP, including random cropping, resizing, and random
horizontal flip. To incorporate textual information, we insert the
class names into the standard templates, (e.g., “a photo of [class
name]"). In comparisons, we evaluate our method against LFA [32],
Tip [51], and APE [55]. To ensure a fair comparison, we use the
same classification approach as these methods, when comparing
with APE, we utilize the textual prompt provided in CuPL [34].
TrainingDetails.When compared with LFA [32], our approach fol-
lows the same fine-tuning stage described in [32], usingAdamW[18]
optimizer with a cosine scheduler [32], a learning rate of 5e-4 and a
weight decay of 5e-4, for 50-200 iterations, and a cosine scheduler.

4.2 Ablation Study
In this section, we use RN50 on ImageNet[5] to evaluate the contri-
butions and effectiveness of different components in our approach.

4.2.1 The selection of local image features (RQ1). The selected
regions of the local image features are crucial in our method, as
they determine which salient regions of the image contribute to the
projection subspace. These selected local features should contain

Table 1: The classification accuracy (%) with different projec-
tion operations under different shot settings.

𝑷vis 𝑷𝑖tex 𝐾=16 𝐾=8 𝐾=4 𝐾=2 𝐾=1
% % 58.83 (CLIP)
% " 61.89 61.83 61.67 61.48 61.32
" % 62.44 62.36 62.14 61.93 61.95
" " 64.34 63.65 63.09 62.53 61.95

Table 2: The results of different visual encoders on ImageNet
under a 16-shot setting. G.A. stands for GraphAdapter.

Models RN50 RN101 ViT-B/32 ViT-B/16
CoOp (CVPR22) 62.95 66.60 66.85 71.92
TaskRes (CVPR23) 64.75 67.70 68.20 73.07
G.A. (NeurIPS23) 64.94 67.87 68.47 73.40
Tip (ECCV22) 62.03 65.19 65.87 70.82
Tip + SSP 62.75(+0.72) 65.73(+0.54) 66.56(+0.69) 71.56(+0.74)
LFA (ICCV23) 63.65 67.16 67.63 72.61
LFA + SSP 64.34(+0.69) 68.03(+0.87) 68.17(+0.54) 73.04(+0.43)
APE (ICCV23) 66.02 69.48 69.31 74.27
APE + SSP 66.51(+0.49) 69.83(+0.35) 69.84(+0.53) 74.79(+0.52)

discriminative patterns relevant to the category while excluding
irrelevant areas. To identify the optimal number of regions for
vision subspace and language subspace, we vary the number of
𝑄 and 𝐶 from 15 to 49, respectively. The results are depicted in
Figure 5(a) and Figure 5(b). We observe that as 𝑄 and 𝐶 increase,
the averaged accuracy initially increases and then decreases. The
highest accuracy is achieved in the range of 35-45. Furthermore,
we analyze the disparity between the selected regions for image
and text, respectively. To achieve this, we calculate the similarity
between the text features and the selected regions based on image
features, as well as the similarity between the image features and
the selected regions based on text features. The results are shown
in Figure 5(c) and Figure 5(d). In Figure 5(c), as the regions become
more complete (blue curves), the similarity between the selected
region features and the text label feature (red curve) decreases. Simi-
larly, in Figure 5(d), as the number of selected regions increases, the
similarity between the selected region features and image features
(blue curve) also decreases. These observations and results indicate
that the responded regions for image and text features are different,
and selections should be performed separately for each of them.

4.2.2 The effects of subspace construction (RQ2). In this exper-
iment, we investigate the effects of using different numbers of
singular vectors in the construction of the vision projection matrix
(𝑷vis) and language projection matrix (𝑷𝑖tex). Considering a feature
dimension of𝑑 = 1024, we vary the number of singular vectors from
550 to 1000. The results are presented in Figure 6(a) and Figure 6(b).
Firstly, we observe that using a small number of singular vectors
in both vision and language subspace constructions leads to poor
classification performance. To be specific, for the vision subspace,
when the number exceeds 700, the results converge across all shot
settings. This indicates that using 700 singular vectors is sufficient
to span the entire vision subspace. In the case of the language sub-
space, we observe that the projection operation brings noticeable
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Table 3: The classification accuracy (%) comparison on few-shot learning, i.e., 1-/2-/4-/6-/8-/16-shot, across 11 datasets. The
results for LFA, Tip, and APE from our implementation by open public project, and the datasets include F102.(Flowers102),
Euro(EuroSAT), F101.(Food101), SUN.(SUN397), C101.(Caltech101), UCF.(UFC101), and ImgN.(ImageNet).

Method Pets F102. FGVC DTD Euro. Cars F101. SUN. C101. UCF. ImgN. Avg.
CLIP 85.77 66.14 17.28 42.32 37.56 55.61 77.31 58.52 86.29 61.46 58.18 58.77

16-shot
LFA (ICCV23) 86.75 94.56 35.86 66.35 84.13 73.58 76.32 71.32 92.68 77.00 63.65 74.75
LFA + SSP 86.40 95.13 35.10 67.85 84.83 73.08 77.79 69.95 93.35 78.11 64.34 75.08 ↑0.34
Tip (ECCV22) 88.10 89.93 29.88 60.70 70.59 66.61 77.88 66.82 90.63 70.68 62.03 70.35
Tip + SSP 88.83 90.62 30.18 62.23 73.62 67.19 77.94 67.01 91.56 70.95 62.75 71.17 ↑0.82
APE (ICCV23) 87.33 91.19 32.46 65.78 77.79 70.36 78.44 68.94 91.97 76.74 63.02 73.09
APE + SSP 88.12 91.51 32.79 67.91 78.33 70.77 78.51 69.14 92.05 78.46 63.33 73.72 ↑0.63

8-shot
LFA (ICCV23) 84.63 91.80 29.40 59.57 76.54 67.79 76.4 69.88 91.36 74.09 61.38 71.17
LFA + SSP 84.96 92.89 30.18 62.00 78.52 69.58 77.58 69.95 91.85 75.05 62.65 72.29 ↑1.12
Tip (ECCV22) 86.94 88.23 25.53 58.39 67.95 63.06 77.69 65.58 89.94 68.44 61.44 68.47
Tip + SSP 87.19 88.63 27.78 58.98 72.28 63.89 77.75 65.68 90.91 69.28 62.22 69.51 ↑1.04
APE (ICCV23) 86.97 90.78 28.38 63.65 75.04 65.86 77.71 67.90 91.60 70.34 62.63 70.99
APE + SSP 87.35 91.03 28.86 65.60 75.16 67.28 77.88 67.77 91.72 72.67 62.64 71.63 ↑0.64

4-shot
LFA (ICCV23) 83.51 89.40 24.39 55.14 70.74 63.19 77.83 67.71 89.86 69.18 57.80 68.07
LFA + SSP 84.06 89.65 26.88 57.86 72.31 63.70 77.60 68.65 90.87 71.45 59.91 69.36 ↑1.29
Tip (ECCV22) 86.48 83.80 22.11 53.90 65.54 61.23 77.52 64.23 89.09 66.19 61.00 66.46
Tip + SSP 86.81 84.13 23.67 54.79 67.21 61.47 77.64 64.27 90.14 67.80 61.98 67.26 ↑0.80
APE (ICCV23) 85.72 87.66 25.14 60.46 73.48 65.19 77.31 66.87 91.56 69.15 62.46 69.55
APE + SSP 86.24 87.86 24.92 61.35 74.35 65.38 77.58 66.95 91.65 70.10 62.53 69.90 ↑0.36

2-shot
LFA (ICCV23) 81.60 81.00 19.38 49.29 61.27 56.51 64.58 61.93 88.76 65.93 55.18 62.31
LFA + SSP 82.09 82.26 22.77 54.37 63.3 58.81 65.39 63.19 89.13 67.09 57.82 64.20 ↑1.89
Tip (ECCV22) 86.92 79.01 21.21 49.59 61.42 58.00 77.50 62.72 88.64 64.76 60.95 64.61
Tip + SSP 87.03 79.5 22.71 50.77 62.36 59.11 77.62 62.84 89.01 66.09 61.82 65.35 ↑0.74
APE (ICCV23) 85.20 83.68 23.55 54.67 71.89 61.25 77.62 65.94 89.94 66.14 62.38 67.48
APE + SSP 86.07 83.80 23.64 57.57 72.37 61.96 77.27 66.30 90.63 66.43 62.41 68.04 ↑0.61

1-shot
LFA (ICCV23) 79.61 76.00 16.26 45.09 60.10 50.81 77.29 58.55 85.19 59.00 52.46 60.03
LFA + SSP 82.45 77.18 19.68 51.65 60.94 56.09 77.30 61.87 87.87 66.59 56.11 63.43 ↑3.40
Tip (ECCV22) 86.02 73.12 18.96 46.10 54.41 57.37 77.42 61.31 87.06 62.75 60.69 62.29
Tip + SSP 86.32 76.05 19.74 46.81 59.17 57.60 77.58 61.49 88.76 63.02 61.71 63.48 ↑1.19
APE (ICCV23) 85.04 79.98 21.03 54.31 67.59 60.25 77.07 64.55 89.66 63.36 62.04 65.90
APE + SSP 85.34 79.51 20.64 54.73 68.63 60.29 77.22 64.36 90.26 63.34 62.05 66.03 ↑0.14

Table 4: The classification accuracy (%) comparison on out-of-distribution test data under 16-shot setting.

Source Target
Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Avg. OOD Avg.
CLIP 58.16 21.83 51.41 56.15 33.37 44.18 40.69

CoOp (IJCV22) 63.33 23.06 55.40 56.60 34.67 46.61 42.43
CoOpOp (CVPR22) 62.81 23.32 55.72 57.74 34.48 46.81 42.82

LFA (ICCV23) 63.88 24.31 55.79 58.13 34.37 47.29 43.15
Ours 64.34 24.53 56.04 58.96 34.58 47.69 43.53 ↑0.38

improvements, particularly in low-shot settings. When the number
of singular vectors ranges from 900 to 1000, the accuracy converges

across all settings, suggesting that using 900-1000 singular vectors
can span the entire language subspace. Additionally, we analyze the
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Table 5: A comparison of the training time and parameters
utilized by various methods and our SSP on ImageNet, using
RN50 as the visual encoder on A100 GPU, under a 16-shot
setting. The terms Vis. Proj. and Lag. Proj. denote Vision
Projector and Language Projector, respectively.

Method Time Params. Acc.
SSP(only Vis. Proj.) 4.4s - 61.84
SSP(only Lag. Proj.) 2Min1s - 62.44
LFA 3Min9s 1.05 M 63.65
+SSP 4Min5s 1.05 M 64.34(+0.69)
Tip 5Min10s - 62.03
+SSP 6Min15s - 62.75(+0.72)
APE 5Min50s - 63.02
+SSP 6Min50s - 63.33(+0.31)

projection error for image features (𝑰 − 𝑷vis)𝒇test and text features
(𝑰 − 𝑷𝑖tex)𝒇test to support our analysis. The results are shown in Fig-
ure 6(c) and Figure 6(d). We find that the vision subspace projection
error decreases significantly when the number of singular vectors
exceeds 700, while the language subspace projection error gradu-
ally decreases. However, when the number exceeds 1000 for the
language subspace, the projection error decreases to almost zero.
This is because the projection matrix (𝑷𝑖tex ≈ 𝑰 ) is nearly an identity
matrix, resulting in an invalid projection operation (𝒇test = 𝑰 · 𝒇test)
and a projection error close to zero ((𝑰 − 𝑷𝑖tex)𝒇test ≈ 0). Based on
the above analysis, we choose to employ 900 singular vectors for
both constructing the vision subspace and the language subspace.

4.2.3 The effects of vision and language projector (RQ3). In this
ablation experiment, we aim to demonstrate the impact of vision
projector and language projector individually. The performance
outcomes across different shot settings are summarized in Table 1.
The results indicate that both vision subspace projection and lan-
guage subspace projection lead to improvements in classification
performance compared to the baseline (CLIP). Specifically, under
𝐾 = 16, vision projection yields a 3.61% accuracy improvement,
while language projection achieves a 3.01% accuracy improvement.
Furthermore, it is worth noting that combining both projection
operations yields the best performance, as indicated by the last row
of Table 1. This outcome validates the effectiveness of utilizing both
vision and language subspace projections in our method.

4.3 Performance Comparisons (RQ4)
We conducted a comprehensive comparison of our method with the
latest approaches, including CoOp [53], TaskRes [46], GraphAdapter
[22], LFA [32], APE [55], and Tip [51], across 11 image classification
datasets. We first perform experiments using different visual en-
coders, including RN50, RN101, ViT-B/32, and ViT-B/16, on the Ima-
geNet with a 16-shot setting. The results, as summarized in Table 2,
indicate that our SSP method leads to performance improvements
compared to Tip, LFA, and APE. Notably, when built upon the APE
method, our SSP outperforms all other methods. Furthermore, we
extended our comparisons to evaluate our method across different
shot settings on various datasets, with the results outlined in Ta-
ble 3. While our method can not achieve the highest performance

on some individual datasets, it consistently outperforms the other
methods when considering the average accuracy across all datasets.
This demonstrates the robustness of our SSP method. Specifically,
compared to LFA, our method achieves a significant average accu-
racy improvement of 3.4% in the 1-shot setting. Furthermore, even
when compared to APE, our method consistently exhibits slightly
better performance across all shot settings. These results emphasize
the effectiveness of our approach in improving few-shot image clas-
sification performance. For further comparisons, we also evaluated
our method against Tip-F [51] and APE-T [55]. The detailed results
of these comparisons can be found in the Supplementary Material.

4.4 Domain Generalization Comparisons (RQ5)
To assess the generalization ability of our method, we conducted
an experiment using the ImageNet dataset as the source dataset,
which provides 16-shot training images for each category. We
then tested our method on four different variants of the ImageNet
dataset: ImageNetV2 [36], ImageNet-Sketch [42], ImageNet-A[15],
and ImageNet-R [14]. These test datasets share the same class labels
as ImageNet but exhibit semantic gaps. The classification results
of our method on these test datasets are summarized in Table 4.
Our method achieved a significant improvement of 0.73% over the
LFA method specifically on the ImageNet-R dataset. Furthermore,
our method demonstrated an average performance improvement
of 0.38% across all out-of-distribution (OOD) datasets. These results
demonstrate our SSP is robust in domain adaptation.

4.5 Analysis of Computation Efficiency (RQ6).
We conducted a computation efficiency analysis by comparing
the computation time and parameters between our SSP and other
approaches on the ImageNet dataset, under the 16-shot setting.
The results are summarized in Table 5. It’s worth noting that our
SSP does not introduce any learnable parameters and primarily
incurs computation time during matrix operations. To align image
features, SSP requires a single SVD operation, typically taking a
few seconds that could be ignored. As for text features alignment,
the number of SVD operations depends on the total categories in
the dataset (e.g., 1000 categories in ImageNet). When combined
with LFA, Tip, or APE, our SSP needs nearly an extra 1 minute
computation time, but it consistently improves the classification
accuracy, particularly by 0.72% over Tip.

5 CONCLUSION
In this paper, we have proposed a method named Selective Vision-
Language Subspace Projection to align the different modality fea-
tures extracted for pre-trained CLIP through subspace projection.
This alignment strengthens the generalization ability of CLIP in the
few-shot scenarios. Our SSP is seamlessly integrated into various
classification frameworks and does not introduce any additional
learnable parameters. The extensive experiments validate the ef-
fectiveness of our proposed method. However, it’s worth noting
that the performance improvements are limited on the ImageNet
dataset. In our future work, we plan to explore more general align-
ment techniques by incorporating other pre-trained models, such
as large language models, diffusion models, etc.
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