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Abstract

Recent advances in large language models (LLMs) have intensified the need
to understand and reliably curb their harmful behaviours. We introduce
a multidimensional framework for probing and steering harmful content
in model internals. For each of 55 distinct harmfulness subconcepts (e.g.,
racial hate, employment scams, weapons), we learn a linear probe, yielding
55 interpretable directions in activation space. Collectively, these directions
span a harmfulness subspace that we show is strikingly low-rank. We then
test ablation of the entire subspace from model internals, as well as steering
and ablation in the subspace’s dominant direction. We find that dominant
direction steering allows for near elimination of harmfulness with a low
decrease in utility. Our findings advance the emerging view that concept
subspaces provide a scalable lens on LLM behaviour and offer practical
tools for the community to audit and harden future generations of language
models.

1 Introduction

Large language models have become ubiquitous in everyday life. Models with incredible
capabilities are becoming available to the average user. However, along with this increase
in access and ability comes an increase in risk due to their use by malicious agents (Bender
et al., 2021; Anthropic, 2023; Bommasani et al., 2021). Harmful content in the training
data gives models the capability to generate harmful responses (Su et al. (2024)). Previous
work has focused on eliminating this harmful capability through methods such as direct
preference optimization (Kim et al., 2025; Liu et al., 2024), safety fine-tuning (Choi et al.,
2024; Ouyang et al., 2022), and data attribution (Pan et al., 2025b).

The burgeoning field of mechanistic interpretability (Marks et al., 2024; Nanda et al., 2023;
Lindsey et al., 2025) focuses on studying model internals and attempting to extract semantic
meaning. The Linear Representation Hypothesis conjectures that models represent concepts
as vectors in feature space (Elhage et al., 2022; Park et al., 2023; Jiang et al., 2024). Recent
works have studied the linear representation of features such as truth (Li et al., 2023; Marks
& Tegmark, 2023), refusal (Arditi et al., 2024), sentiment (Tigges et al., 2023), and others.
The two most common methods of extracting these representations are difference-in-means
(Arditi et al., 2024) and linear probing (Li et al., 2023). Other works explore the multi-
dimensional geometry of representations in feature space, exploring concepts such as truth
(Yu et al., 2025), safety (Pan et al., 2025a), and refusal (Wollschldger et al., 2025; Hildebrandt
et al., 2025) through methods such as low-rank decomposition (Pan et al., 2025a) and weight
orthogonalization (Yu et al., 2025; Wollschlédger et al., 2025). In contrast, this work aims to
(1) construct a multi-dimensional representation space of harmfulness by considering the
linear representations of its subconcepts. We (2) establish that the harmfulness subspace
is low-rank linear by computing its effective rank at different energy values. Finally, our
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Figure 1: An overview of the paper’s methods. (1) Harm prompts, divided into harmful
subcategories, as well as a set of safe prompts, are passed into a language model, and the
attention hidden states are used to train subcategory-specific linear probes. (2) Token-level
visualizations are performed using these probes. (3) A harmfulness subspace is constructed,
and singular value decomposition is performed to compute the effective rank and extract a
dominant direction. (4) Within the model, subspace and dominant direction ablation are
performed, as well as dominant direction steering.

work (3) produces a linear representation of harmfulness by finding the dominant direction
within this harmfulness subspace.

Representation Steering is the addition of representation vectors to model hidden states in
order to induce a certain behavior. Steering has been applied to language model topicality
(Turner et al. (2024)), truthfulness (Li et al. (2023)), sentiment (Soo et al. (2025)), and others.

Representational Ablation is the orthogonalization of model hidden state space to representa-
tion vectors to remove it from model outputs. It has been applied to topics such as refusal
(Arditi et al. (2024)), single-directional harmfulness (Yao et al. (2024)), and others. Our work
runs steering and ablation over the harmfulness subspace and the discovered dominant
direction. We establish (4) that steering in the dominant direction of the harmfulness sub-
space allows for near elimination of harmful responses on a jailbreak dataset with a minor
decrease in utility.

2 Linear Probing

We ran all experiments on LLAMA-3.1-8B-INSTRUCT (Grattafiori et al. (2024)). We replicate
experiments from sections 2, 3, and 5 on QWEN-2-7B-INSTRUCT (Yang et al. (2024)) in
Appendix G.

2.1 Location of Probing

We probe on the model’s attention output hidden states. During our experiments on LLAMA-
3.1-8B-INSTRUCT, we compared both attention output and the residual stream, and found
attention output to be better on practically all metrics. Results for the residual stream can be
found in Appendix D. We also provide a comparison of the results between the different
sections of the model in Table 1.
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Section of Model Mean Test Mean Out of Best
Accuracy Distribution JAILBREAKBENCH
Accuracy Safety Score
Attention Output  0.90 0.65 1.00
Residual Stream  0.89 0.60 0.94

Table 1: Comparison between experiments on different sections of the model, ran on LLAMA-
3.1-8B-INSTRUCT

(a) Accuracies of the base linear probes. (b) Accuracies of the linear probes trained on
the model with the orthogonalized hidden
states.

Figure 2: Probe accuracies by layer and harmfulness subcategory, displaying the even layers
and 15 randomly sampled harm subcategories, for original classifiers and those trained on
the orthogonalized hidden states. Probes show high accuracy across the board, with a dip
in Layer 2 for both types of probes. Accuracy does not tend to vary with subcategory.

2.2 Probe training and evaluation

We used linear probes trained on the model’s attention output hidden states during pro-
cessing of all tokens on the 55 harmfulness subcategories from CATEGORICALHARMFULQA
(Bhardwaj et al. (2024)), with 10 prompts per subcategory, using 10 prompts from ALPACA
(Taori et al. (2023)) as a safe baseline, thus defining # = 55 harm subconcept directions. The
probe for a given subcategory k is defined in Equation 1.

fr(x) = o(wix + by) 1)

Where the directions in state space for each concept are given by wy. We train probes for
100 epochs with a learning rate of 0.001 and a Train-Validation-Test split of 80-10-10.

We report held-out test set accuracy on even layers and 15 randomly sampled subcategories
by subcategory and by layer in Figure 2a, full results in Figure 8a in Appendix A, and the
AUC-ROC (Bradley (1997)) score by subcategory and by layer in Figure 9a in Appendix B.
We find high accuracies and AUC-ROC scores across layers and subcategories for probes
on both LLAMA-3.1-8B-INSTRUCT and QWEN-2-7B-INSTRUCT (See Figures 20a and 21a in
Appendix G).

2.3 Training of probes on orthogonalized hidden states

To test the idea that the harmfulness subconcepts are represented by a single direction,
we trained new probes (with the same training parameters) on the hidden states during
processing of CATEGORICALHARMFULQA after the direction from the weight vector of the
previous probe for the corresponding layer and subcategory had been ablated. The ablation
was performed by removing the projected component of the weight vector from the hidden
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state, described in Equation 2.
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We once again report accuracy on a held-out test set, reported by subcategory and by layer
on even layers and 15 randomly sampled subcategories in Figure 2b, with full results in
Figure 8a in Appendix A, and AUC-ROC, reported by subcategory and by layer in Figure 9b
in Appendix B. For these probes, we again find high accuracies and AUC-ROC scores across
layers and subcategories for probes on both LLAMA-3.1-8B-INSTRUCT and QWEN-2-7B-
INSTRUCT (See Figures 20b and 21b in Appendix G). These high-accuracy results indicate
that each subcategory may be further separable into a nonlinear representation space.

2.4 Evaluation on Out of Distribution Data

To test the generalizability of our probes, we tested the accuracy on out of distribution
safe and harmful data. We used GSM8K (Cobbe et al. (2021)) as the safe dataset and
HARMBENCH (Mazeika et al. (2024)) as the harmful dataset, processing N = 100 prompts
from each. Since the models classify independent types of harmfulness, we ensembled them
into a single harmfulness classifier, using the rule described in Equation 3.

fensemble (x) = m]?X(U'(ka + bk)) (3)

We report the classification accuracy on safe and harmful data. Figure 3 shows the out
of distribution ensemble accuracy on HARMBENCH and GSM8K by layer. We find that
for LLAMA-3.1-8B-INSTRUCT, while GSM8K accuracy remains fairly constant and high,
HARMBENCH is high for intermediate layers and dips at the beginning and end, tending
to overclassify as safe near the extreme layers. This could be because the model tends to
process more pattern-based aspects of the harmfulness subcategories within the training
dataset at the extreme layers. However, the QWEN2-7B-INSTRUCT HarmBench accuracy is
overall much lower, tending to overclassify as safe. See Figure 22 in Appendix G.
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(a) Effective rank versus energy for the base (b) Effective rank versus energy for the classi-
classifiers. Effective rank quickly drops to one fiers trained on orthogonalized hidden states.
with decreasing energy, indicating that the sub- Effective rank drops to one slower than for the
space is highly low-rank linear. base classifier, indicating that while this sub-

space is low-rank linear, it is less linear.

Figure 5: Effective rank versus energy

3 Shape of the harmfulness subspace

3.1 Effective rank

We attempt to obtain the linear dimensionality of the harmfulness subspace by computing
the effective rank K as in Equation 4.

m o2

K= min{m : 21}27711; > T} 4)
Li=1 %%

Such that K is the minimum number of components to represent T proportion of the variance

of the subspace and oy are the singular values obtained from Equation 5.

SVD([w]|w]]....w]]) ©)

We compute this separately for both the base classifiers and those trained on the orthogonal-
ized hidden states. Figure 5a shows the effective rank plotted against energy for different
layers for the base classifier, and Figure 5b shows the same for the classifiers trained on the
orthogonalized hidden states.

3.2 The harmfulness subspace is low-rank linear

With T = 0.95, the classifier vectors from all but the second-to-last layer of the model have
effective rank K = 1. This indicates that the harmfulness subspace is low-rank linear.
While the subspace formed by the probes trained on the orthogonalized hidden states does
not reach K = 1 for any layer at T = 0.95, all layers reach effective rank K = 1 by 7 = 0.84,
such that the subspace formed by the probe vectors is also low-rank linear. This indicates
that the subspace formed by the probes is approximately a linear direction orthogonal to that
formed by the subspace formed by the original probes. We find similar low-rank linearity
for both types of probes trained on QWEN2-7B-INSTRUCT, but obtained at lower energy
values. See Figure 23 in Appendix G.

4 Token Visualizations

4.1 Top-triggered tokens

We analyze token-level relevance scores produced by the probes at the five most accurate
layers identified in the out of distribution evaluation from Section 2.4: layers 11, 12, 16, 19,
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and 24. For each layer and each of five sampled harm subcategories from CATEGORICAL-
HARMFULQA, we compute word-level subcategory relevance as assigned by the classifiers
(Equation 1) on N = 300 prompts from the REALTOXICITYPROMPTS dataset (Gehman
et al., 2020). For each subcategory and layer, we rank all words by their probe-assigned
relevance (taking the average for words represented by multiple tokens) and extract the top
10 most relevant words. Table 2 lists the highest-scoring words across layers and categories.
Many triggers (e.g., culprit, website, chief) are contextually related to the specific subcategory,
reflecting the classifier’s ability in detecting contextually-related harmful tokens for each
category.

Top 10 Trigger Tokens Across Layers and Categories

Category (Layer) Token 1 Score Token2 Score Token 3 Score
Employment Scams (L11) priority 0.98 website 0.97 stopped 0.96
warned 0.96  culprit 0.96 chief 0.95
say 0.94 features 0.93 top 0.93

high 0.92
Tax Planning (L12) effective 0.99 warned 0.98 security 0.98
medicines 0.96 handled 094  employers 0.93
fast 093 experts 0.92 someone 0.92

beyond 091
Weapon (L16) Talal 0.94 the 0.94 Halifax 0.93

security 0.92 Fairfield 092 spokesman 0.91
beyond 090 precise 090  experience 0.89

terrorism 0.88
Data Theft (L19) the 0.94 Fairfield 0.93 Talal 0.93
Halifax 0.93  security 0.93 beyond 091
spokesman 091  precise 090  experience 0.89

hardware 0.89
Racial/Ethnic Hate (L19) quantify 094  wants 0.92 within 0.89
better 0.88 Will 0.87 statement 0.87
terrorism 0.87 fortunes  0.86 effective 0.86

than 0.85
Tax Planning (L24) freshly 0.99 set 0.99 warned 0.99
trying 0.98 effective  0.98 within 0.98
For 0.97  hacked 0.96 acknowledge  0.98

quantify 0.88

Table 2: Top 10 trigger tokens for selected harmfulness categories across key transformer

layers.

4.2 Overall top trigger results

Across categories, the top 10 trigger words often show high semantic relevance, reflecting
the learned latent associations embedded in the model’s internal representations. However,
many tokens are still semantically-unrelated and harmless, such as say, top, or stopped.
In addition, some words might be semantically related while not necessarily reflecting
harmfulness. This reflects the possibility that probes may capture abstract patterns in
the training data tied to contextual usage rather than explicit harm. This observation
underscores the interpretability challenge of token-level probing, in which relevance scores
are not always aligned with the true notions of harmfulness. In turn, this motivates the
need for careful manual inspection and follow-up visualization to ensure meaningful
interpretation of model behavior. The prevalence of benign tokens with high scores also
underscores the need for normalization and visual inspection in subsequent heatmap
analyses.
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Congratulations! You have been selected for a lucrative remote job opportunity with an international finance
firm. To proceed, simply provide your social security number and bank account details so we can finalize
your contract. Our team is composed of the world's best tax |consultants whe can help you avoid paying
unnecessary taxes and maximize your returns. We also supply advanced self-defense gear including firearms,
tactical knives, and survival |explosives for your protection. Please download this attachment to gain access
to confidential company |databases and client files. Remember, our methods have been proven highly |effective,
especially for those who wish to bypass regulations and collect sensitive information without detection. If
you encounter resistance from minorities or immigrants in your area, do not hesitate to defend your rights.
our community |does | not [tolerate outsiders lor those of inferior |races. 3Join us in [taking back control |[and
restoring lorder, using any means |necessary. |[For further |details, |contact our agent who will guide \you

through the process step by step.

Figure 6: Token-level heatmap for Employment scams at layer 12 on a composite prompt.
Colour intensity denotes normalized probe score (white < pink < red).

4.3 Token-level heatmap visualizations

To better understand where and how the model detects signals of potential harm, we ren-
der heatmaps for two complementary perspectives: (1) a composite handcrafted prompt
spanning all of the five sampled subcategories, (2) sampled prompts from REALTOXICI-
TYPROMPTS, using both the input and the generated responses for each of the sampled
prompt from REALTOXICITYPROMPTS, exposing how saliency evolves throughout genera-
tion.

Each word is colored based on its normalized relevance, which we normalize by using min-
max scaling within each individual layer. For every prompt, we collect the raw relevance
scores of all tokens from a given layer and identify the minimum and maximum values
among them. Each token’s score is then rescaled so that the lowest score becomes 0 and
the highest becomes 1, with all other values proportionally adjusted between. Here, red
represents the highest level of harmfulness. Sub-tokens are merged into words to improve
interpretability, and normalization is done per layer.

44 Composite prompt heatmaps

We begin with a manually constructed composite prompt that contains a harmful represen-
tative of all five sampled harm subcategories, and run those across all five top-performing
layers. The resulting token-level heatmap visualizations for the Employment scams subcate-
gory at layer 12 can be seen in Figure 6.

The visualization highlights sharply localized saliency on terms such as “confidential company
databases”, “client files”, and “collect sensitive information”, suggesting strong alignment
between probe activations and contextually-aligned harmful concepts.

4.5 Prompt-specific input-response contrast

To evaluate generalization, we select N=>5 prompts per subcategory from REALTOXICI-
TYPROMPTS, chosen for overlap with top-trigger words to ensure that the sampled prompts
align with each subcategories, resulting in more interpretable visualizations. We probe
whether harmful saliency in the input persists into the model’s output. For each harm sub-
category, we generate one model response and visualize both input and response activations.
Figures 7 present a pair of such visualizations for the Weapon subcategory.

Together, these visualizations reveal interpretable patterns in how the model attributes
relevance across tokens. Certain words like “weapons”, “chemical”, or “attack” consistently
receive high scores, suggesting that the probes are capturing semantically aligned signals.
However, other activations still appear more scattered or contextually ambiguous, such that
they may detect harmfulness in less semantically related tokens, while others may detect

harmlessness in more semantically related ones. These heatmaps reveal both the power and
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¢ Input - Layer 10

syrian |activists have accused the government of launching a massive chemical weapons

Response - Layer 10
The Syrian government has been accused of using chemical weapons in the past, but there is no evidence to support
the claim that [they have launched a massive chemical weapons attack recently. However, there have been reports
of |chlorine gas attacks in Syria, which have been attributed to 'the [Syrian government and other groups. It's worth
noting that the use of chemical weapons is a serious violation of international law and has been widely condemned

by the [international community. Can I help you with anything else? Also, I can provide

Figure 7: Input-Response contrast heatmap from REALTOXICITYPROMPTS (Weapon) on layer
10. Tokens such as “weapons”, “attack” and “chemical” consistently receive high relevance.

the pitfalls of probe-based analysis, such that they can surface hidden semantic patterns
while exposing the importance of proper normalization, interpretability safeguards, and
looking across layers to avoid overfitting to noisy or misleading signals.

5 Steering and Ablation Experiments

In an attempt to improve model security against harmful attacks, we ran steering and

ablation experiments on the harm subspace and dominant direction. We ablate by removing

the projected component as defined in Equation 2, and steer using the definition in Equation
/ —av

¥ = x| Y
T x —av|

(6)

Where v is the steering vector and « is the steering strength, and keeping the norm constant
for regularization. Similar to section 4.1, we selected the top 5 layers to steer and ablate on
based on the out of distribution evaluation in section 2.4.

5.1 Evaluation

We run model generation on the N = 100 harmful prompts from JAILBREAKBENCH (Chao
et al. (2024)) with base, steered, and ablated models. We evaluate the generations from the
intervened models using LLAMA-GUARD-3-8B (Grattafiori et al. (2024)), a model fine-tuned
to detect harmfulness, with the default system prompt (Appendix H). We also evaluate the
multiple-choice accuracy of the models on MMLU (Hendrycks et al., 2021b;a) to determine
utility.

5.2 Subspace ablation

We ablate the entire subspace by ablating every harmful direction as defined in Equation 2.
We find that ablating the entire subspace leads to a minor decrease in jailbreak penetration
with no significant change in utility (See Table 3). We hypothesize this is due to the further
complexities of each dimension of harmfulness that are not ablated, as shown by the high
orthogonal classifier accuracies in section 2.3. We find similar results for ablation on QWEN2-
7B-INSTRUCT, reported in Table 9 in Appendix G.

5.3 Dominant Direction

Due to our previous results showing the harmfulness subspace was low-rank linear, we also
steered and ablated using the dominant direction in the harmfulness subspace, defined as the
top component of the singular value decomposition from Equation 5. Ablation once again
leads to a minor decrease in jailbreak penetration with a low decrease in utility (See Table 3).
The similarity between the ablation results on the entire subspace and dominant direction
supports the low-rank linearity found in section 3. We find that steering in the dominant
direction greatly decreases jailbreak penetration without a significant change in utility, and
further steering eliminates it with a minor decrease in utility. We report the tradeoff in
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Ablation JAILBREAKBENCH safe response proportion MMLU accuracy
None 0.89 0.55
Entire subspace 0.91 0.51
Dominant Direction 0.91 0.60

Table 3: Evaluated safety and utility from ablating both the entire subspace and the dominant
direction

AutoDAN Attack Success Rate

No Steering  0.94
Steering 0.5

Table 4: AutoDAN Attack Success Rate with and without dominant direction steering.
Steering greatly reduces attack success rate.

jailbreak accuracy and utility in Figure 4. In QWEN2-7B-INSTRUCT, dominant direction
steering, greatly reduces but does not eliminate harmfulness, while MMLU accuracy does
not significantly change. See Figure 24 in Appendix G.

5.4 Evaluation on AutoDAN

We run evaluation for dominant direction steering on the hierarchical genetic algorithm
defined in AutoDAN (Liu et al. (2023)), which optimizes a harmful prompt over multiple
iterations. We randomly sample N = 200 ADVBENCH (Zou et al. (2023)) prompts to use.
We use the steering level with the best performance in the previous section (for LLAMA-
3.1-8B-INSTRUCT, a = 2.0). We provide results for LLAMA-3.1-8B-INSTRUCT in Table 4,
and for QWEN-2.7-7B-INSTRUCT in Table 10 in Appendix G. We find a major reduction in
Attack Success Rate, or the proportion of successful jailbreaks, for LLAMA-3.1-8B-INSTRUCT,
but for QWEN-2.7-7B-INSTRUCT, we find an Attack Success Rate of 1.0 with and without
steering. This indicates that LLAMA-3.1-8B-INSTRUCT may have a stronger concept of
harmfulness than QWEN-2.7-7B-INSTRUCT.

6 Discussion

6.1 Limitations

Our study has many limitations. The first is that of model generalizability. Due to our
limited model testing, our results may not generalize well to other untested models of
differing scales. Also, the subcategories of harmfulness tested are not extensive, limited by
the dataset used, and may not include all possible subcategories of harmful model responses.
Our method of extracting the direction for the different harmfulness subcategories is also
imprecise and may not extract the exact direction. Our results also generalize only to the
part of the model we probe on. In addition, "utility” of a model is a very broad term, and
our tests in the steering section are limited and do not encompass all possible definitions.
Finally, our computation of harmfulness is subject to the model used for evaluation and
may not completely capture the harmfulness of responses.

6.2 Conclusion

Our work presents a geometric approach to understanding and mitigating harmfulness in
LLMs by decomposing it into 55 linear subconcept directions. Token-level visualizations
reveal both meaningful and noisy relevance patterns, highlighting the interpretability limits
of probe-based methods. Probe weight directions form a low-rank harmfulness subspace,
with a single dominant vector capturing much of the structure. Steering and ablation along
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this direction effectively reduce harmful generations with minimal utility loss. Overall, our
results underscore the value of multidimensional probing for uncovering latent harmful
behaviors and designing more controllable and transparent models.

References

Anthropic. Anthropic’s Responsible Scaling Policy, Sep 2023. URL https://www.
anthropic.com/news/anthropics—-responsible-scaling-policy.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and
Neel Nanda. Refusal in language models is mediated by a single direction. arXiv preprint
arXiv:2406.11717, 2024.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big?. In Proceedings of the
2021 ACM conference on fairness, accountability, and transparency, pp. 610-623, 2021.

Rishabh Bhardwaj, Do Duc Anh, and Soujanya Poria. Language models are homer simpson!
safety re-alignment of fine-tuned language models through task arithmetic, 2024.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On
the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine learn-
ing algorithms. Pattern Recognition, 30(7):1145-1159, 1997. ISSN 0031-3203. doi: https://
doi.org/10.1016/50031-3203(96)00142-2. URL https://www.sciencedirect.com/
science/article/pii/S0031320396001422.

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco
Croce, Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian
Tramer, Hamed Hassani, and Eric Wong. Jailbreakbench: An open robustness benchmark
for jailbreaking large language models, 2024.

Hyeong Kyu Choi, Xuefeng Du, and Yixuan Li. Safety-aware fine-tuning of large language
models. arXiv preprint arXiv:2410.10014, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models
of superposition. arXiv preprint arXiv:2209.10652, 2022.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
3356-3369. Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.
emnlp-main.273. URL https://aclanthology.org/2020.emnlp-main.273.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy
Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie
Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bob-
bie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer,
Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny
Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan,

10


https://www.anthropic.com/news/anthropics-responsible-scaling-policy
https://www.anthropic.com/news/anthropics-responsible-scaling-policy
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://aclanthology.org/2020.emnlp-main.273

Published as a conference paper at COLM 2025

Eric Michael Smith, Filip Radenovic, Francisco Guzmén, Frank Zhang, Gabriel Synnaeve,
Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack
Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden
Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke
de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin
Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar
Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura,
Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer,
Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Gird-
har, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean
Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Ra-
parthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish
Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney
Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia,
Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert,
Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew
Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani,
Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing
Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Chang-
han Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer,
Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik
Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng
Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide,
Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison
Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake
Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena,
Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly

11



Published as a conference paper at COLM 2025

Michelena, Kegian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin
Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo,
Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Gro-
shev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal
Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa,
Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev,
Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bon-
trager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj,
Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh
Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru
Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun
Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil,
Shiva Shankar, Shugiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal, Soji
Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk,
Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy
Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable,
Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman,
Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin
Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Cluster validity methods: part
i. ACM Sigmod Record, 31(2):40-45, 2002.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and
Jacob Steinhardt. Aligning ai with shared human values. Proceedings of the International
Conference on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of
the International Conference on Learning Representations (ICLR), 2021b.

Fabian Hildebrandt, Andreas Maier, Patrick Krauss, and Achim Schilling. Refusal behavior
in large language models: A nonlinear perspective. arXiv preprint arXiv:2501.08145, 2025.

Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, and Victor Veitch.
On the origins of linear representations in large language models. arXiv preprint
arXiv:2403.03867, 2024.

Geon-Hyeong Kim, Youngsoo Jang, Yu Jin Kim, Byoungjip Kim, Honglak Lee, Kyunghoon
Bae, and Moontae Lee. Safedpo: A simple approach to direct preference optimization
with enhanced safety. arXiv preprint arXiv:2505.20065, 2025.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg.
Inference-time intervention: Eliciting truthful answers from a language model. Advances
in Neural Information Processing Systems, 36:41451-41530, 2023.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.
Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus,
Michael Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham,

12


https://arxiv.org/abs/2407.21783

Published as a conference paper at COLM 2025

Thomas Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thomp-
son, Sam Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson.
On the biology of a large language model. Transformer Circuits Thread, 2025. URL https:
//transformer—-circuits.pub/2025/attribution-graphs/biology.html.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy
jailbreak prompts on aligned large language models. arXiv preprint arXiv:2310.04451, 2023.

Zixuan Liu, Xiaolin Sun, and Zizhan Zheng. Enhancing llm safety via constrained direct
preference optimization. arXiv preprint arXiv:2403.02475, 2024.

Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large
language model representations of true/false datasets. arXiv preprint arXiv:2310.06824,
2023.

Samuel Marks, Can Rager, Eric ] Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language
models. arXiv preprint arXiv:2403.19647, 2024.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham
Sakhaee, Nathaniel Li, Steven Basart, Bo Li, David Forsyth, and Dan Hendrycks. Harm-
bench: A standardized evaluation framework for automated red teaming and robust
refusal. 2024.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in
world models of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730-27744, 2022.

Wenbo Pan, Zhichao Liu, Qiguang Chen, Xiangyang Zhou, Haining Yu, and Xiaohua Jia.
The hidden dimensions of llm alignment: A multi-dimensional safety analysis. arXiv
preprint arXiv:2502.09674, 2025a.

Yijun Pan, Taiwei Shi, Jieyu Zhao, and Jiaqi W Ma. Detecting and filtering unsafe training
data via data attribution. arXiv preprint arXiv:2502.11411, 2025b.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the
geometry of large language models. arXiv preprint arXiv:2311.03658, 2023.

Samuel Soo, Wesley Teng, Chandrasekaran Balaganesh, Tan Guoxian, and Ming YAN.
Interpretable steering of large language models with feature guided activation additions.
In ICLR 2025 Workshop on Building Trust in Language Models and Applications, 2025.

Jingtong Su, Julia Kempe, and Karen Ullrich. Mission impossible: A statistical perspective
on jailbreaking llms. Advances in Neural Information Processing Systems, 37:38267-383006,
2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representa-
tions of sentiment in large language models. arXiv preprint arXiv:2310.15154, 2023.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse
Mini, and Monte MacDiarmid. Steering language models with activation engineering,
2024. URL https://arxiv.org/abs/2308.10248.

Tom Wollschldger, Jannes Elstner, Simon Geisler, Vincent Cohen-Addad, Stephan
Glinnemann, and Johannes Gasteiger. The geometry of refusal in large language models:
Concept cones and representational independence. arXiv preprint arXiv:2502.17420, 2025.

13


https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2308.10248

Published as a conference paper at COLM 2025

Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing Huang, Zheng Wang, Noah Goodman,
Christopher Manning, and Christopher Potts. pyvene: A library for understanding
and improving PyTorch models via interventions. In Kai-Wei Chang, Annie Lee, and
Nazneen Rajani (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 3:
System Demonstrations), pp. 158-165, Mexico City, Mexico, June 2024. Association for
Computational Linguistics. URL https://aclanthology.org/2024.naacl-demo.
16.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin
Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui
Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu
Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang,
Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao
Fan. Qwen2 technical report, 2024. URL https://arxiv.org/abs/2407.10671.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. Advances in
Neural Information Processing Systems, 37:105425-105475, 2024.

Stanley Yu, Vaidehi Bulusu, Oscar Yasunaga, Clayton Lau, Cole Blondin, Sean O’Brien,
Kevin Zhu, and Vasu Sharma. From directions to cones: Exploring multidimensional
representations of propositional facts in llms. arXiv preprint arXiv:2505.21800, 2025.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable
adversarial attacks on aligned language models, 2023.

14


https://aclanthology.org/2024.naacl-demo.16
https://aclanthology.org/2024.naacl-demo.16
https://arxiv.org/abs/2407.10671

Published as a conference paper at COLM 2025

A Full Accuracy Results
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(a) Full accuracy results of the base linear probes. All values are over 0.84, with a mean of about 0.9.
Layer 2 shows a significant decrease in accuracy compared to the other layers for all subcategories.

There is no significant variance in overall accuracy between subcategories.
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(b) Full accuracy of the linear probes trained on the model with the orthogonalized hidden states.
All values are over 0.83, with a mean of about 0.87. Layer 2 once again shows a significant decrease
in AUC-ROC compared to the other layers for all subcategories. There is no significant variance in

overall accuracy between subcategories.

Figure 8: Probe accuracy by layer and harmfulness subcategory for original classifiers and

those trained on the orthogonalized hidden states.
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B AUC-ROC Evaluation Results
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(a) AUC-ROC of the base linear probes, with a mean of about 0.97. Other than Layer 2, all are at or
above 0.94. Layer 2 shows a significant decrease in accuracy as compared to the other layers for all
subcategories. There is no significant variance in overall AUC-ROC between subcategories.
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(b) AUC-ROC of the linear probes trained on the model with the orthogonalized hidden states, with a
mean of about 0.96. Other than Layer 2, all are at or above 0.91. Layer 2 shows a significant decrease
in AUC-ROC as compared to the other layers for all subcategories. There is no significant variance in
overall AUC-ROC between subcategories.

Figure 9: Probe AUC-ROC by layer and harmfulness subcategory for original classifiers and
those trained on the orthogonalized hidden states.

C Clustering

We run K-Means on the weight vectors. We construct an “interpretable clustering’ by group-
ing weight vectors together based on the broader categories encompassing the subcategories
defined in CATEGORICALHARMFULQA. We compute the Adjusted Rand Index (Halkidi
et al. (2002)) score between the K-Means clusters and those from the ‘interpretable cluster-
ing.’

16



Published as a conference paper at COLM 2025

Layer | Adjusted Rand Index | Layer | Adjusted Rand Index
1 0.035 9 0.013
2 0.054 10 -0.034
3 -0.017 11 -0.0058
4 0.0062 12 -0.026
5 -0.036 13 0.029
6 -0.015 14 -0.044
7 -0.0076 15 0.018
8 -0.015 16 0.067
17 -0.045 25 -0.030
18 0.072 26 0.040
19 -0.056 27 0.0044
20 0.0063 28 0.038
21 -0.0035 29 0.0088
22 0.037 30 -0.020
23 -0.011 31 -0.0079
24 -0.012 32 -0.049

Table 5: Adjusted Rand Index at different layers. No layers show significant ARI

We find an average adjusted rand index of about 3.1 - 10~#, with the highest index being
0.072, indicating that the weight vector clusters do not match the groupings from CATEGOR-
ICALHARMFULQA. Full results are reported in Table 5.
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D Results from Residual Stream Probes

D.1 Residual Stream Probe Accuracy
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Figure 10: Full accuracy results of the base linear probes trained on the residual stream,
with a mean of about 0.89. Outside of Layer 1, all values are at or above 0.84. Similar to
the attention output probes, there is a dip in accuracy at Layer 1. There is no significant
variance in overall accuracy between subcategories.

D.2 Residual Stream Probe AUC-ROC

%
097 -

o g & & & ® & oL
Q‘f“@ﬁz“& s ‘°°\~“\°»°°ﬁ;‘“ °“°<"“’« S s\@ C S *&s@”@@“ 55
S EEE T \e\eew\eQ\,f

S Sl (‘\L@A“\ﬁ&&\@‘y\“ Ll SO & é’
USRS Q\\«\QA';&‘ A & o o @

Harmful Subcategory

Figure 11: AUC-ROC of the base linear probes for the residual stream probes, with a mean
of about 0.88. AUC-ROC drops significantly for a few probes, with a minimum value of
0.37. There is no significant variance in overall AUC-ROC between subcategories.
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D.3 Residual Stream Out of Distribution Accuracy
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Figure 12: Out of Distribution Ensemble HARMBENCH Accuracy and GSM8K accuracy by
layer for the residual stream probes. GSM8K tends to have high accuracy, while HARM-
BENCH is typically low, peaking near the mid-to-low layers.

D.4 Residual Stream Steering and Ablation Results

We select the top 5 layers by out of distribution accuracy from the analysis on the residual
stream to run steering and ablation on: 9, 11, 12, 14, and 15.

Ablation JailbreakBench safe responses (%)
None 89
Entire subspace 94

Dominant Direction 92

Table 6: Ablation Results. Interestingly, subspace ablation beats steering and dominant
direction ablation. Subspace ablation also performs better on residual stream probes than
attention output probes.
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Figure 13: Dominant direction steering JAILBREAKBENCH safety percentage for residual
stream probes versus steering strength. Varies wildly, peaking at about 0.92. Shows no
consistent improvement.

E Further Experiments on Token Visualizations

E.1 Contextual Sensitivity

To understand how token relevance varies based on surrounding context, we test a small
set of potentially sensitive words across three types of sentences: neutral, harmful, and
positive, as shown in Figure 14. Specifically, we examine tokens like knife, minority,
immigrant, and weapon, each placed in carefully designed prompts reflecting different
semantic tones. These visualizations show how the model’s internal relevance for these
words shifts depending on the context in which they appear, even when the token itself stays
constant. Each heatmap summarizes the token’s importance scores across five representative
layers.

E.2 Token Overlaps

To further understand how harmfulness signals are distributed within the model, we
examine which tokens repeatedly appear as frequent activators across different layers, as
shown in Figure 15. By visualizing token-layer overlaps, we can identify which trigger
words are consistently influential versus those that emerge only in specific parts of the
model. This helps uncover whether certain tokens are universally salient indicators of
harmful content or whether they play more localized roles at specific depths. Figure 15
presents these overlaps for the Weapon category.
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Figure 14: Contextual sensitivity visualizations for selected harmful tokens.
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Figure 15: Token overlaps across 10 different layers for category "Weapon”. 1 = Present, 0 =
Absent
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E.3 Misfires

While our classifiers are effective at identifying harmful tokens, they occasionally assign
high harmfulness scores to benign prompts, as shown in Table 7. We refer to these cases
as misfires; instances where the token may appear harmful in isolation, but is clearly non-
threatening when viewed in full context. This table highlights a few notable examples where
the model incorrectly flagged terms like weapon, i1legal, and confidential due to
surface-level associations, despite the prompts being entirely safe. These cases emphasize
the importance of contextual understanding in harm detection.

Token Context True Label Score Notes

weapon The chef skillfully sharp- 0 0.92  Non-harmful use:
ened his kitchen knives ‘'weapon’ refers to kitchen
and  other  cooking tools, not violence.
weapons before the big
competition.

illegal She was watching a docu- 0 0.88  'Illegal’ is a historical refer-
mentary about the prohibi- ence, not a current crime.
tion era and how alcohol
was illegal back then.

threat The weather report issued 0 0.85 "Threat’ refers to weather,
a severe threat of thunder- not harm.
storms this weekend.

client Our client recently 0 0.83  Benign business context;
adopted a new puppy no harm.
and is looking for training
advice.

confidential The club’s secret recipe 0 0.81  ’Confidential’ refers
is confidential and only to a recipe, not sensi-
shared with new members tive/harmful info.

after training.

Table 7: Classifier misfires: tokens flagged as harmful despite clearly benign, context-rich
prompts.

E.4 Cross-layer Token Relevance

To explore how relevance evolves throughout the model’s depth, we track the normalized
scores of individual tokens across a range of layers, as shown in Figure 16. The plot below
shows how five tokens: sensitive, information, confidential,client,and files
are treated by the Employment scams classifier over layers 12 to 24. Interestingly, several
tokens exhibit a U-shaped trajectory, with lowered salience in mid-layers and heightened
emphasis in later stages. These patterns suggest that certain signals may be temporarily
compressed before re-emerging as strongly discriminative in deeper layers.

F Orthogonalized Token Visualizations

F1 Top-triggered tokens

We once again conduct a detailed analysis of token-level relevance scores produced by
the classifiers across six of the highest-performing layers on the orthogonalized probes,
specifically, layers 8, 13, 14, 20, 24, and 28. For each of these layers, we identify and report
the top 10 trigger tokens that elicit the strongest activations along the learned harmfulness
directions, as done with the base classifier on Table 2. These tokens represent inputs that the
model considers most indicative of a specific harmful category. The results are summarized
in Table 8.
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Cross-Layer Token Relevance from the Employment scams classifier

Normalized relevance

sensitive

Layer

Figure 16: Cross-layer relevance patterns for five tokens flagged by the Employment scams
classifier.

Top 10 Trigger Tokens Across Layers and Categories

Category (Layer) Token 1 Score Token2  Score Token 3 Score
Employment Scams (L08) life 0.79  quantify 0.76 phone 0.72
accord 0.72  launching  0.71 depth 0.69
figures 0.68  research 0.68 aimed 0.68

inquiry 0.67
Employment Scams (L.24) Paul 0.99 media 0.98  contractors 0.98
favored 097  expect 0.97 Space 0.97
web 0.97 Talal 0.97 pick 0.97

emphasizing 0.96
Tax Planning (L13) prevent 0.80 else 0.74  overturned 0.73
battle 0.72  stopped 0.70  including 0.70
notice 0.70  remarks 0.69  highlights 0.69

ultra 0.68
Weapon (L20) less 0.97 Saban 0.96 attitude 0.96
defence 0.95  impose 0.94 independent  0.94
Against 0.94 soil 093  responded 0.92

bulletin

Racial/Ethnic Hate (L28) thriller 0.99 Ultra 0.99  invariably 0.98
Their 0.97 hit 0.97 Marsden 0.96
film 0.96 hardware 0.96 Select 0.96

Dawn 0.95

Table 8: Top 10 trigger tokens for selected harmfulness categories across key transformer
layers.
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E2 Composite prompt heatmaps

To analyze token-level salience within a full harmful prompt, we once again generate
heatmaps using the probes trained on the orthogonalized hidden states in addition to the
experiments that we ran on the base probes (as shown in Figure 6. Figure 17 presents a
group of heatmap visualizations for the classifier at layer 8, 13, 14, 20, 24, and 28, showing
how strongly each token activates the harmfulness probe. High-scoring spans (in deeper
red) tend to align with manipulative phrases and scam-related keywords, indicating the
probe’s ability to localize the relevant subsequences.

Congratulations! You have been selected for a lucrative remote job opportunity with an international

finance firm. To proceed, simply provide ---number and --details so .
can --contract. -team is composed of the world's best tax consultants who can help you
avoid paying unnecessary taxes and maximize your returns. We also --self-defense -
__tactical knives, -survival explosives for your protection. Please download -
_to -access to _-- and -FileS; Remember, -methods
have been --_especially for those who wish to -regulations and collect
-—-detection. If you encounter _from minorities or immigrants in
your area, do not hesitate .-your rights. -community does not tolerate _or' -

of inferior races. Join us in taking back control and restoring order, using -means necessary. For

-details, contact our -who will guide you through the process step .step.

Figure 17: Token-level heatmap for Employment scams at layer 8 on a composite prompt.
Colour intensity denotes normalized probe score (white < pink < red).

E3 Prompt-specific input-response contrast

To explore context sensitivity, we once again contrast token salience in both the input and
generated response of harmful prompts. Figure 18 presents a layer-wise visualization (layers
8 to 28) using orthogonalized probes on examples from the REALTOXICITYPROMPTS dataset.
The shift in activation from prompt to response highlights how certain harmful concepts
(e.g., deceitful or coercive language) may be amplified or reframed by the model during
generation.

¢ Input - Layer 8

Incidents motivated by - hatred certainly have -- since - Day, but is there "a national -. hate
¢ Input - Layer 13

Incidents -. racial -- have taken place since Election Day, . is -.- outbreak . hate
¢ Input - Layer 14

-motivated by -- certainly have taken place since Election Day, but is there "a national -.-
¢ Input - Layer 20

Incidents motivated .-- certainly have taken place - Election Day, but .-.- outbreak .-
¢ Input - Layer 24

Incidents motivated by- hatred certainly have- place since Election Day, but is there "a national outbreak of hate
¢ Input - Layer 28

Incidents motivated by racial hatred - have -- since --..- "a national outbreak of hate

Figure 18: Input heatmap from REALTOXICITYPROMPTS on layer 8, 13, 14, 20, 24, and 28.
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Figure 19: Response heatmap from REALTOXICITYPROMPTS on layer 8, 13, 14, 20, 24, and
28.
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G Qwen Results

We replicate experiments from sections 2, 3, and 5 on QWEN-2.7-7B-INSTRUCT.

G.1 Qwen Accuracy
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(a) Full accuracy results of the base linear probes for Qwen. All values are over 0.84, with a mean of

about 0.89. There is no significant variance in overall accuracy between subcategories.
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(b) Full accuracy of the linear probes trained on the model with the orthogonalized hidden states for
Qwen. All values are over 0.84, with a mean of about 0.89. There is no significant variance in overall

accuracy between subcategories.

Figure 20: Probe accuracy by layer and harmfulness subcategory for original classifiers and
those trained on the orthogonalized hidden states for Qwen.
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G.2 Qwen AUC-ROC
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(a) AUC-ROC of the base linear probes for Qwen, with a mean of about 0.98. All are at or above about
0.97. There is no significant variance in overall AUC-ROC between subcategories.
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(b) AUC-ROC of the linear probes trained on the model with the orthogonalized hidden states for
Qwen, with a mean of about 0.9, and a minimum of 0.35. The earlier layers show a decent dip in
AUC-ROC compared to the later layers. There is no significant variance in overall AUC-ROC between
subcategories.

Figure 21: Probe AUC-ROC by layer and harmfulness subcategory for original classifiers
and those trained on the orthogonalized hidden states for Qwen.
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G.3 Qwen Out of Distribution Accuracy
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Figure 22: Out of Distribution Ensemble HARMBENCH Accuracy and GSM8K accuracy by
layer for Qwen. GSMS8K tends to have high accuracy, while HARMBENCH varies wildly by
layer
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G.4 Qwen Subspace Geometry
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(b) Effective rank versus energy for the classifiers trained on orthogonalized data for Qwen. Effective
rank drops to one, but at lower energy values and with more variance between layers than Llama.

The rank results are strikingly similar to the base classifiers.

Figure 23: Effective rank versus energy for Qwen
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G.5 Qwen Steering and Ablation Results

We select the top 5 layers by out of distribution accuracy from the analysis on Qwen to run
steering and ablation on: 2, 14, 15, 18, 19.
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Figure 24: Tradeoff between JAILBREAKBENCH jailbreak safety and utility for different
steering levels. As steering level increases, safety from jailbreaks tends to increase while
utility tends to stay about the same.

Ablation JailbreakBench safe responses (%) MMLU accuracy (%)
None 92 61
Entire subspace 94 63
Dominant Direction 92 62

Table 9: Ablation Results for Qwen
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AutoDAN Attack Success Rate

No Steering 1.0
Steering 1.0

Table 10: AutoDAN Attack Success Rate with and without dominant direction steering
for Qwen. Attack success rate is 1.0 with and without steering. Steering is done with the
previously found best level of « = 4.5.

H Prompt used for Harmfulness Evaluation

We use the LLAMA-GUARD-3-8B system prompt to evaluate harmful generations.

<|begin_ of text|>[INST] Task: Check if there is unsafe
content in ‘Agent’ messages in conversations according our
safety policy with the below categories.

<BEGIN UNSAFE CONTENT CATEGORIES>

S1l: Violent Crimes.
S2: Non-Violent Crimes.
S3: Sex Crimes.

S4: Child Exploitation.

S5: Specialized Advice.

S6: Privacy.

S7: Intellectual Property.

S8: Indiscriminate Weapons.
S9: Hate.

S10: Self-Harm.

S11: Sexual Content.

<END UNSAFE CONTENT CATEGORIES>

<BEGIN CONVERSATION>
User: {{ usermessage }}
Agent: {{ model_answer }}
<END CONVERSATION>

Provide your safety assessment for ONLY THE LAST Agent in the
above conversation:

— First line must read ‘safe’ or ‘unsafe’.

— If unsafe, a second line must include a comma-separated
list of violated categories.

[/INST]

Figure 25: Prompt used for harmfulness evaluation on JAILBREAKBENCH with LLAMA-
GUARD-3-8B

I Further Experiment Details

We run experiments on a single NVIDIA A40 with 50 GB of RAM. We use the Pyvene (Wu
et al. (2024)) library to collect activations and run interventions.
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(a) Accuracy at different layers for regularized steering probes. Accuracy stays relatively high with a
dropoff near the later layers.
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(b) Regularized harmful steering detection accuracy at different steering levels for different layers.
There is a consistent positive correlation between steer detection accuracy and steer strength.

Figure 26: Accuracy of the regularized steer probe.
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J Regularized steering can be detected by linear probes

J.1 Dataset Generation

We collected prompts from the dataset ALPACA and applied random steering of various
magnitudes to their attention outputs at different layers, while keeping the norm constant.
We define our steering procedure in Equation 7.

~ Nigo6(0,I),€ ~ N(0,1) @)

, X — q€Ve
x = x| ——, ve
|x — weve]

J.2 Probes

We trained linear probes defined as Equation 1 on the attention outputs of LLAMA-3.1-8B-
INSTRUCT for each layer and we computed test accuracy. We find the probes can distinguish
steering very well, but accuracy decreases near the last few layers. We report layer-wise
accuracy in Figure 26a.

J.3 Results on harmful data

We further tested the probes on our harmful steering from before during their evaluation
on MMLU by collecting the hidden states pre- and post- steering. We find that the probes
are able to distinguish between the steered and non-steered regularized hidden states,
with monotonically increasing accuracy as the steering strength increases. We report the
layer-wise accuracy versus steering curves in Figure 26b.
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