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ABSTRACT

Pretrained language models (LMs) have shown compelling performance on var-
ious downstream tasks, but unfortunately they require a tremendous amount of
inference compute. Knowledge distillation finds a path to compress LMs to small
ones with a teacher-student paradigm. However, when the capacity gap between
the teacher and the student is large, a curse of capacity gap appears, invoking a
deficiency in distilling LMs. While a few studies have been carried out to fill the
gap, the curse is not yet well tackled. In this paper, we aim at lifting the curse of
capacity gap via enlarging the capacity of the student without notably increasing
the inference compute. Largely motivated by sparse activation regime of mixture
of experts (MOE), we propose a mixture of minimal experts (MINIMOE), which
imposes extra parameters to the student but introduces almost no additional in-
ference compute. Experimental results on GLUE and CoNLL demonstrate the
curse of capacity gap is lifted by the magic of MINIMOE to a large extent. MIN-
IMOE also achieves the state-of-the-art performance at small FLOPs compared
with a range of competitive baselines. With a compression rate as much as ∼50×,
MINIMOE preserves ∼95% GLUE score of the teacher.

1 INTRODUCTION

Pretrained language models (LMs) have become a popular choice for various downstream tasks, e.g.,
text classification, token classification, and question answering (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020). Unfortunately, appealing performance comes with a huge cost of inference
compute due to the scale of LMs. Knowledge distillation (Hinton et al., 2015; Sun et al., 2019), as
an alternative to model pruning (Han et al., 2015) and quantization (Sung et al., 2015), discovers a
way to compress (Bucila et al., 2006) LMs with a teacher-student paradigm.

However, in LM distillation, we recognize a curse of capacity gap as:

“Large teachers, poor students.”

The curse of capacity gap refers to a deficiency that a larger teacher might unexpectedly re-
sult in a poorer student especially when the capacity gap between the teacher and the student is
large (Mirzadeh et al., 2020; Cho & Hariharan, 2019), as illustrated in Table 1. Although a few
studies (Wang et al., 2020; Zhang et al., 2022a; Park et al., 2021a) have investigated to fill the gap,
the curse is still not yet tackled.

To the demand, we aim at lifting the curse of capacity gap via enlarging the capacity of the stu-
dent without notably increasing the inference compute. We propose a mixture of minimal experts
(MINIMOE), inspired by the intuition of sparse activation of mixture of experts (MOE) (Shazeer
et al., 2017). Thanks to that the activation process can be parallel on either single or multiple
devices (He et al., 2021; Rajbhandari et al., 2022), MINIMOE on the one hand imposes extra pa-
rameters to the student, but on the other hand introduces negligibly additional inference compute
brought by routing algorithm.

Experiments are conducted on GLUE (Wang et al., 2019) and CoNLL (Sang & Meulder, 2003).
The results exhibit that MINIMOE largely lifts the curse of the gap as in Table 1. MINIMOE also
achieves state-of-the-art performance compared with a range of competitive baselines, as shown in
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Table 1: The curse of the capacity gap in terms
of GLUE (Wang et al., 2019). The △ denotes
the performance difference of preceding two
numbers.

Method BERTbase BERTlarge △
Teacher 86.7 88.3 +1.6

KD10%/5% 81.3 80.8 −0.5
AutoDisc10%/5% 82.4 82.1 −0.3
DynaBERT15%/5% 81.1 79.2 −1.9
TinyBERT4L;312H 80.7 80.5 −0.2
MiniLM4L;384H 83.4 83.2 −0.2
MiniMoE3L;384H 82.6 83.1 +0.5

0 2 4 6 8 10
GFLOPs

78

80

82

84

86

GL
UE

BERT
KD
AutoDisc
DynaBERT
TinyBERT
MoEBERT
MiniLM
MiniMoE

Figure 1: GLUE v.s. GFLOPs.

Figure 1. With compression as much as ∼50×, MINIMOE preserves ×95% GLUE score of the
teacher.

Our contributions can be summarized as follows:

• We recognize that LM distillation is faced a curse of capacity gap, invoking a deficiency
when the capacity gap between the teacher and the student is large. This is the first verifi-
cation in LM distillation since previous studies recognize the curse in vision model distil-
lation.

• We propose a MINIMOE to lift the curse of capacity gap. As MINIMOE enjoys a sparse
activation, it enlarges the capacity of the student without notably increasing the inference
compute. To our best knowledge, this is the first work aiming at lifting the curse completely.

• We examine our method on GLUE and CoNLL. Experimental results show that our method
lifts the curse of capacity gap, and realizes new state of the arts at almost all small FLOPs.
Thereby, we state that MINIMOE is a small yet nontrivial magic, making a great difference
in circumventing the curse.

2 CURSE OF CAPACITY GAP

The curse of capacity gap is not new but is already recognized in studies on vision model distilla-
tion (Mirzadeh et al., 2020; Cho & Hariharan, 2019). While a hit-the-mind drawback of the curse is
that the performance of distilling to a small student can be dramatically worse than that of distilling
to a slightly larger one, a rather counter-intuitive deficiency is invoked as that the performance of
distilling from a large teacher can be unexpectedly worse than that of distilling from a smaller one
(i.e., large teacher, poor student). We here give a minor theoretical justification on the curse, as a
plus to the empirical justification.

Proposition 1 (VC dimension theory, Vapnik, 1998). Assuming that the teacher function is fT ∈
FT , the labeling function is f ∈ F , and the data is D, we have:

r(fT )− r(f) ≤ ϵT + o(
|FT |c
|D|

),

where r(·) is the risk function, | · |c is the function class capacity measure, and | · | is the data
scale measure. It should be highlighted that the approximation error ϵT is negatively correlated
with the capacity of the teacher model while the estimation error o(·) is correlated with the learning
optimization.

Proposition 2 (Generalized distillation theory, Lopez-Paz et al., 2016). Additionally providing that
the student function is fS ∈ FS , we have:

r(fS)− r(fT ) ≤ ϵG + o(
|FS |c
|D|α

),
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where the approximation error ϵG is positively correlated with the capacity gap between the teacher
and the student models, and 1/2 ≤ α ≤ 1 is a factor correlated to the learning rate.
Theorem 1. The bound for the student function at a learning rate can be written as:

r(fS)− r(f) ≤ ϵT + ϵG + o(
|FT |c
|D|

) + o(
|FS |c
|D|α

) ≤ ϵT + ϵG + o(
|FT |c + |FS |c

|D|α
),

Proof. The proof is rather straightforward by combining Proposition 1 and 2.

Remark 1. Under the same distillation setting, we can ignore the estimation error. When we com-
pare two students of different capacities distilled from a teacher of the same capacity, the student of
a smaller capacity has a larger ϵG thus lower performance. When we compare two students of the
same capacities distilled from teachers of different capacities, the student distilled from the teacher
of a larger capacity has a smaller ϵT yet a larger ϵG thus a tradeoff.

Remark 1 basically tells that a tradeoff is associated with the increase of teacher capacity, implying
that increasing teacher capacity would first lead to improved but then degraded student performance.
This tradeoff naturally corresponds with the curse.

On the other hand, it is accepted that large capacity gap is a pain and is processed in literature of
LM distillation (Wang et al., 2020; Zhang et al., 2022a; Zhou et al., 2022). Being unaware of the
curse of capacity gap, these studies attempt to offer student-friendly teachers by either interpolating
teacher assistants (Wang et al., 2020; Zhang et al., 2022a) or adapting teacher knowledge (Zhou
et al., 2022). The unawareness is largely due to a fun fact that they only distil LMs like BERTbase,
but neglect the scalability to LMs like BERTlarge especially when the student is small. Though the
performance of student can be boosted in this way, the curse still remains in LM distillation as in
Figure 2.
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Figure 2: The performance of MiniLM and MiniLM w/ TA across different student scales upon
distilling BERTbase. We are glad to share checkpoints of an array of scales, together with those of
MINIMOE, to facilitate the development of related research. It should be noted the unit of a vertical
grid is comparably large.

Embarrassingly, while the curse is claimed to be tackled in vision model distillation (Zhu & Wang,
2021; Park et al., 2021a; Zhao et al., 2022), our preliminary study (cf. Table 6) indicates they
are either expensive or not capable of LMs. The potential differences are as follows: tasks (e.g.,
ImageNet v.s. GLUE), backbones (e.g., ResNets v.s. transformers), and paradigms (e.g., from
scratch v.s. pretraining).

3 MINIMOE

3.1 MOTIVATION

Enlarging the capacity of the student is an intuitive solution to lift the curse of capacity gap. How-
ever, regarding the inference compute efficiency, the increase of capacity should not introduce much
inference compute.

An initial proposal can be using quantized backbones (Zafrir et al., 2019; Bai et al., 2021). Quantized
backbones may decrease the compute precision, therefore maintaining inference compute constant,
along the course of enlarging the capacity. But a vital portion of hardware-specific modifications are
needed to do so. We hence move on to next possibility.
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Another alternative is using dynamic networks (Han et al., 2021) based on the idea of conditional
computation (Bengio et al., 2015). The other commonly used one is depth-adaptive computa-
tion (Xin et al., 2020; Zhou et al., 2020; Goyal et al., 2020; Kim & Cho, 2021) which involves
layers into computation adaptively on either example (alias early exiting, Xin et al., 2020; Zhou
et al., 2020) or token (alias token reduction, Goyal et al., 2020; Kim & Cho, 2021) level. A critical
distinction between MoE and depth-adaptive models is that the compute of an MoE model is accu-
rately under control while that of a depth-adaptive model is not. We are impelled by the merits of
MoE, and propose a MINIMOE so that the capacity of the student can be enlarged without much
inference overhead increment.

Additionally, we argue that MINIMOE is orthogonal to alternatives mentioned above, and MINI-
MOE can be incorporated to these alternatives and makes it possible to serve more extreme scenar-
ios. It is noteworthy that a certain stream of work (Zhang et al., 2022b; Zuo et al., 2022) actually
accelerates LMs via precisely converting them into MoE models. Nonetheless, the moefication pro-
cess is directly exerted to LMs with limited inference compute improvements (cf. MoEBERT in
Figure 1). Contrarily, MINIMOE is comprised of minimal experts, each of which can be extremely
small. A comparison between mentioned possibilities and MINIMOE is listed in Table 2.

Table 2: A comparison between MINIMOE and other
possible alternatives.

Method Hardware
Flexibility

Controllable
Compute

Large
Compression

Quantization ✗ ✓ ✓
Depth-adaptation ✓ ✗ ✓

MoEfication ✓ ✓ ✗
MINIMOE ✓ ✓ ✓
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Figure 3: Implementation of MINI-
MOE.

Note that there are emergent work exploring compressing MoE LMs (Xue et al., 2022) to dense
students, which is walking down the same street in the opposite side since we instead focus on
compressing dense LMs to MoE students.

3.2 IMPLEMENTATION

Minimal Language Models Typical language models are comprised of a stack of transformers
layers (Vaswani et al., 2017), and are pretrained with language modeling tasks such as masked
language modeling (Devlin et al., 2019). A transformer layer can be decomposed to a multi-head
self-attention (MHA) block and a feed-forward network (FFN) block. Concretely, given an n-length
sequence of d-dimension input vectors X ∈ Rn×d with the i-th vector being xi, the output of the
MHA block with A independent heads can be represented as:

MHA(X) =

A∑
j=1

Attn(X;WQ
j ,W

K
j )XWV

j W
O
j ,

Attn(X;WQ
j ,W

K
j ) = softmax(XWQ

j W
K⊤
j X⊤/dA),

where the j-th head is parameterized by WQ
j , WK

j , WV
j ∈ Rd×dA

, and WO
j ∈ RdA×d. On the other

hand, the output of the FFN block is shown as:

FFN(X) = GELU(XWI)WO,

where two fully-connected layers are parameterized by WI ∈ Rd×dI

and WO ∈ RdI×d respectively.
Details like biases, normalizations of a transformer layer are omitted for brevity.

To reach an acceptable compute budget, pioneering studies either pretrain language models or distil
ones of small scales from LMs as in Figure 3. There are three lines of work in LM distillation: firstly,
task-specific distillation (Sun et al., 2019; Li et al., 2020; Sun et al., 2020a; Park et al., 2021b; Hou
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et al., 2020; Xia et al., 2022) that conducts distillation on a specific task at finetuning stage; secondly,
task-agnostic distillation (Turc et al., 2019; Sanh et al., 2019; Sun et al., 2020b; Wang et al., 2021b)
that conducts distillation at pretraining stage; and thirdly, two-stage distillation (Jiao et al., 2020)
that combines the power of both task-agnostic and -specific distillation. Here, the distilled language
models only refer to language models distilled with task-agnostic distillation regarding better task-
scalability as the number of concerned tasks explodes.

We formally define the distilled language models as minimal language models (MiniLMs, somehow
abuse of notation with Wang et al., 2020) notated with S. In contrast, LMs are notated with T . The
learning objective of MiniLMs can be abstracted as L(S; T ,D), where D denotes the data. The
specific form of L can be adapted to arbitrary alignment strategies. We adopt a relation alignment
strategy (Wang et al., 2021b) as follows:

L(S; T ,D) = EX∼D[

R∑
j=1

KL(Reln(X; T WQ
j ),Reln(X; SWQ

j ))

+ KL(Reln(X; T WK
j ),Reln(X; SWK

j )) + KL(Reln(X; T WV
j ),Reln(X; SWV

j ))],

Reln(X; T WQ
j ) = softmax(XT WQ

j
T WQ⊤

j X⊤/dR),
where KL stands for kullback-leibler divergence. Essentially, relation heads are derived by merging
the original A attention heads and then splitting them to R heads. T WQ

j is the redistributed query
parameter of the j-th relation head within totally R heads from the last layer of the LM, likewise
T WK

j and T WV
j are the key and value parameters. An auxiliary MHA block is employed as the last

layer of the MiniLM for better alignment following Wang et al. (2021a). The MiniLM can be then
finetuned on any tasks.

Mixture of Minimal Experts Naturally, in order to enlarge the learning capacity gap of the stu-
dent, we should add more parameters to the student. However, trivially adding parameters usually
leads to a loss of inference compute efficiency.

To remedy this, a mixture of minimal experts is proposed as in Figure 3. Following prior litera-
ture (Shazeer et al., 2017; 2018), if we consider a FFN block in a MiniLM as a minimal expert, then
extra parameters are exactly imposed as minimal experts to be added to the FFN block. The FFN
block is enabled as a mixture of m minimal experts FFNMoE in an expert gating tactic as:

FFNMoE(xi) = pk(xi) · FFNk(xi),

pk(xi) =
exp(xiw

G
k )∑m

j=1 exp(xiwG
j )

, k = argmax p(xi),

where the j-th gate is parameterized by wG
j ∈ Rd, and correspondingly the j-th minimal expert is

denoted as FFNj . We further follow Fedus et al. (2021) to only allow top-one gating (i.e., only the
expert with highest gating probability is reserved) because we want to keep the inference compute
untouched. There are also diverse designs to achieve the sparse routing, such as hashing (Roller
et al., 2021) which we find performs worse (cf. Figure 5).

Since only one minimal expert is activated during the inference, the compute is only negligibly
increased by expert routing. As a complement, we can also achieve, if necessary, a mixture of
experts in an MHA block similarly.

To encourage a balanced load across minimal experts, a differentiable load balancing objective
B(S;D) is added from Lepikhin et al. (2021) as:

B(S;D) = α ·m
m∑
j=1

fj · Pj ,

fj = Exi∼D[I{argmax p(xi), j}], Pj = Exi∼D[pj(xi)],
where α is a coefficient that should be manually tune and is kept as 0.01 throughout this work fol-
lowing (Fedus et al., 2021). While fj depicts the fraction of tokens dispatched to the j-th minimal
expert, Pj describes the fraction of the routing probability to the j-th minimal expert. And a multi-
plier m is used to make the magnitude of the objective invariant to the number of minimal experts.
The load balancing objective basically desires a uniform routing so that the loss can be minimized.
The objective is added to the MiniLM not only at task-agnostic distillation stage but also but also at
finetuning stage for practical concerns (cf. Figure 5).
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4 EXPERIMENTS

4.1 DATA AND METRICS

We conduct experiments on GLUE (Wang et al., 2019) and CoNLL (Sang & Meulder, 2003). The
GLUE originally consists of two sequence classification tasks, SST-2 (Socher et al., 2013) and
CoLA (Warstadt et al., 2019), with seven sequence-pair classification tasks, i.e., MRPC (Dolan
& Brockett, 2005), STS-B (Cer et al., 2017), QQP, MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), RTE (Bentivogli et al., 2011) and WNLI (Levesque et al., 2012). We exclude WNLI
and CoLA due to the evaluation inconsistency (in other words, MiniLMs get dramatically worse
results while LMs get much better ones as found out in Xia et al., 2022) and use the left tasks. The
CoNLL is a token classification task. Following BERT (Devlin et al., 2019), we report Accuracy
(Acc) on SST-2, MNLI, QNLI, RTE, Spearman Correlation scores (SpCorr) on STS-B, and F1 on
MRPC, QQP, CoNLL. Average score over tasks from GLUE (GLUE Score) is additionally com-
puted. Results on development sets are reported. GFLOPs are also attached as theoretical speedup
references. We adopt Wikipedia data for task-agnostic disitllation. The detailed statistics, maximum
sequence lengths, and metrics of GLUE, CoNLL, and Wikipedia are supplied in Appendix A.

4.2 HANDS-ON DETAILS

Experiments are conducted upon distilling BERTbase and BERTlarge (Devlin et al., 2019). The
distillation carried out on eight Nvidia A100s. The number of relation heads is set to 32. After
the distillation, finetuning is carried out on one Nvidia A100. The number of minimal experts m
is default to 4 otherwise specified. Other details are supplied in Appendix B. All experiments are
task-agnostic ones, except those in Table 6.

4.3 BASELINES

We compare MINIMOE with several state-of-the-art baselines.

Conventional Distillation FT indicates direct finetuning the student. KD (Hinton et al., 2015),
PKD (Sun et al., 2019), and CKD (Park et al., 2021b) are methods with different distillation objec-
tives, i.e., KD directly distills logits, PKD distills both logits and hidden states, and CKD distills
high-order relations. While above four methods originally initialize student structures by dropping
layers, we enable them with a global pruning so that they can adapt to students of small scales. Dyn-
aBERT (Hou et al., 2020) uses a two-step pruning to regulate student structures and a distillation
objective akin to PKD. MoEBERT (Zuo et al., 2022) moefies LMs by decomposing FFN blocks to
MoE layers. For these task-specific distillation methods, student structures are denoted either with
*L for preserved number of layers in layer-dropping or with *% for preserved portion of parameters
in pruning.

As aforementioned methods are task-specific distillation ones, we then introduce task-agnostic ones.
TinyBERT (Jiao et al., 2020) exploits a distillation objective distilled with a combination of various
feature alignments. MiniLM (Wang et al., 2021b) straightforwardly utilizes a distillation objective
with a deep relation alignment exactly the same with ours. Since task-agnostic distillation allows
both dropping layers and hidden dimensions, student structures are denoted with *L;*H accordingly.

Capacity-aware Distillation MiniLM w/ TA (Wang et al., 2020) specifically incorporates a
teacher assistant to MiniLM. AutoDisc (Zhang et al., 2022a) argues that the scale of the teacher
assistant is crucial for student performance and proposes an automatic teacher assistant scheduler
based on properties of pruning. While MiniLM w/ TA is only inspected under a task-agnostic set-
ting, AutoDisc offers results under both task-specific and task-agnostic settings. Nevertheless, only
task-specific AutoDisc is selected since pruned MiniLMs can be unfair to compare with. There is
scarce work in this direction in which we find these two are the most comparable ones.

4.4 MAIN RESULTS

From results in Table 3, we observe that MINIMOE generally outperforms both conventional and
capacity-aware baselines and achieves new state-of-the-art performance at all concerned times of
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compression. For example, MINIMOE4L;192H has an absolute 0.8 performance improvement over
MiniLM4L;192H on GLUE. Another observation is that the larger times of compression, the larger the
performance improvements are. For example, MINIMOE4L;384H yields an absolute 0.5 performance
improvement over MiniLM4L;384H in contrast to that MINIMOE6L;384H only has an absolute 0.2 per-
formance improvement over MiniLM6L;384H on GLUE. Two more notes are that, MoEBERT nearly
reaches the compression upper bound, and TinyBERT is reproduced without data augmentation for
a fair comparison while the results with data augmentation are supplied in Appendix C.

From results in Table 4, we find that MINIMOE also lifts the curse of capacity gap at all concerned
times of compression. For example, MINIMOE3L;384H disitlled from BERTlarge has an absolute 0.5
performance gain over that distilled from BERTbase on GLUE, and the value on CoNLL is 0.9. On
another note, MiniLM is free of the curse only at small times of compression, and MiniLM w/ TA can
somewhat saves MiniLM from the curse at intermediate times of compression. For example, both
MiniLM3L;384H and MiniLM3L;384H w/ TA fail to improve the performance via replacing BERTbase
with BERTlarge. Results on larger LMs like BERTxlarge are supplied in Appendix F for scalability
check.

Table 3: The results of comparison between MINIMOE and baselines upon distilling BERTbase.
The best results are boldfaced.

Method GFLOPs SST-2
Acc

MRPC
F1

STS-B
SpCorr

QQP
F1

MNLI-m/mm
Acc

QNLI
Acc

RTE
Acc

GLUE
Score

CoNLL
F1

BERTbase 10.9 93.8 91.5 87.1 88.4 84.9/84.9 91.9 71.5 86.7 94.8

KD15% 1.64 89.9 88.6 85.1 86.2 79.8/80.2 85.6 63.9 82.4 92.8
PKD15% 1.64 90.0 88.2 85.5 86.4 80.4/79.6 85.9 63.9 82.5 92.9
MoEBERT17%

1 1.86 89.6 88.4 85.1 86.8 80.4/80.5 86.6 65.0 82.8 92.7
DynaBERT15%

2 1.64 89.1 85.1 84.7 84.3 78.3/79.0 86.6 61.4 81.1 -
AutoDisc15%

3 1.64 89.8 88.2 85.8 86.6 80.3/79.9 87.3 68.2 83.3 93.0
MiniLM6L;384H 1.36 91.1 90.1 88.1 86.7 81.5/81.8 89.2 67.9 84.5 93.2

w/ TA 1.36 91.3 90.3 88.2 86.8 81.4/81.6 89.7 66.8 84.5 93.2
MINIMOE6L;384H 1.36

6∼
8×

91.3 90.2 88.6 86.5 81.6/81.5 89.5 68.6 84.7 93.3
KD10% 1.08 88.2 87.6 84.0 84.4 77.6/77.4 84.3 67.2 81.3 91.2
AutoDisc10% 1.08 89.1 88.4 85.4 84.9 78.2/78.6 86.3 68.2 82.4 91.9
MiniLM4L;384H 0.91 90.0 88.6 87.2 86.1 80.0/80.3 87.9 67.2 83.4 91.5

w/ TA 0.91 90.0 88.5 87.3 86.3 80.1/80.7 88.0 66.4 83.4 91.8
MINIMOE4L;384H 0.91

10
∼

12
×

90.8 88.1 88.2 85.9 79.8/80.4 88.6 69.3 83.9 92.3
KD5% 0.54 85.6 84.0 83.8 82.5 72.6/73.2 81.6 63.2 78.3 83.1
AutoDisc5% 0.54 86.9 87.6 84.8 83.5 72.7/74.5 84.0 66.8 80.1 85.6
TinyBERT4L;312H

4 0.60 88.3 88.5 84.3 84.0 77.0/77.4 82.5 63.5 80.7 -
MiniLM3L;384H 0.68 89.1 89.1 86.6 85.4 77.8/78.4 87.2 66.1 82.5 90.1

w/ TA 0.68 89.8 87.8 86.0 85.5 77.6/78.5 86.8 66.1 82.3 90.4
MINIMOE3L;384H 0.68

16
∼

20
×

89.3 87.4 87.8 85.6 78.2/78.7 87.2 67.0 82.6 90.7
KD3% 0.32 85.2 83.6 81.9 82.1 71.9/72.7 81.9 57.4 77.1 74.3
AutoDisc3% 0.32 85.9 85.7 83.6 83.1 72.9/73.6 81.9 58.1 78.1 80.5
MiniLM4L;192H 0.23 86.9 86.4 85.4 84.3 77.5/77.5 85.9 65.3 81.2 90.0

w/ TA 0.23 87.2 85.6 86.2 84.6 77.3/78.0 86.6 64.6 81.3 89.9
MINIMOE4L;192H 0.23

34
∼

47
×

88.1 86.1 86.2 84.8 77.7/77.8 86.6 68.6 82.0 91.3
1 Each FFN is split to 8 experts and each MHA to 4 to reach the sparsity.
2 The results are produced from the released code.
3 The results are mainly taken from the original papers.
4 The results are produced without data augmentation.

4.5 ANALYSES

Practical Inference Compute Since GFLOPs can only measure the theoretical inference com-
pute, we further provide throughput (i.e., tokens per micro second) as a practical inference com-
pute measure. As in Table 5, 20× compression can realize a significant inference compute gain
in comparing KD5% to BERTbase. The practical speedup is approximately 6.7×. Moreover, MINI-
MOE3L;384H can retain most inference compute gain even if the routing algorithm can slightly reduce
the gain when compared to MiniLM3L;384H.

Student Scale Following the behavior of Figure 2, we would like to showcase whether MINIMOE
can lift the curse across difference student scales. From Figure 4, the curse is lifted to a large
extent by MINIMOE in comparison with MiniLM and MiniLM w/ TA. However, MINIMOE meets

7



Under review as a conference paper at ICLR 2023

Table 4: The results of comparison between distilling BERTbase and BERTlarge.

Method Teacher SST-2
Acc

MRPC
F1

STS-B
SpCorr

QQP
F1

MNLI-m/mm
Acc

QNLI
Acc

RTE
Acc

GLUE
Score

CoNLL
F1

MiniLM6L;384H
BERTbase 91.1 90.1 88.1 86.7 81.5/81.8 89.2 67.9 84.5 93.2
BERTlarge⇑ 90.9 90.6 89.0 86.9 81.8/82.4 88.8 70.0 85.1 93.2

w/ TA BERTbase 91.3 90.3 88.2 86.8 81.4/81.6 89.7 66.8 84.5 93.2
BERTlarge⇑ 91.4 89.8 88.5 87.0 81.9/81.6 89.5 71.5 85.2 93.2

BERTbase 91.3 90.2 88.6 86.5 81.6/81.5 89.5 68.6 84.7 93.3
MINIMOE6L;384H BERTlarge⇑1 90.5 90.0 88.8 86.8 81.8/82.2 90.8 70.4 85.2 93.3

MiniLM4L;384H
BERTbase 90.0 88.6 87.2 86.1 80.0/80.3 87.9 67.2 83.4 91.5
BERTlarge⇓ 89.3 87.5 88.1 85.9 79.9/80.2 87.6 67.2 83.2 91.2

w/ TA BERTbase 90.0 88.5 87.3 86.3 80.1/80.7 88.0 66.4 83.4 91.8
BERTlarge⇑ 90.6 88.7 88.1 86.3 80.5/80.7 87.9 69.0 84.0 92.2

BERTbase 90.8 88.1 88.2 85.9 79.8/80.4 88.6 69.3 83.9 92.3MINIMOE4L;384H BERTlarge⇑ 90.5 88.0 88.7 86.7 80.9/80.9 89.2 69.0 84.2 92.4

MiniLM3L;384H
BERTbase 89.1 89.1 86.6 85.4 77.8/78.4 87.2 66.1 82.5 90.1
BERTlarge⇓ 89.1 86.1 87.1 85.1 78.6/78.5 86.0 65.7 82.0 87.3

w/ TA BERTbase 89.8 87.8 86.0 85.5 77.6/78.5 86.8 66.1 82.3 90.4
BERTlarge⇓ 89.7 84.9 87.2 85.2 78.5/79.1 86.6 66.4 82.2 90.2

BERTbase 89.3 87.4 87.8 85.6 78.2/78.7 87.2 67.0 82.6 90.7MINIMOE3L;384H BERTlarge⇑ 89.1 88.4 87.6 86.2 78.8/79.5 87.5 67.9 83.1 91.6
1 ⇑ is used to indicate the deficiency is tackled on both GLUE and CoNLL, otherwise ⇓ is used.

Table 5: Practical inference compute with refer-
ence to BERTbase.

Method GFLOPs Throughput Params
BERTbase 10.9 80.8 tokens/ms 109.5 M
KD5% 0.54 544.7 tokens/ms 28.7 M
MiniLM3L;384H 0.68 485.3 tokens/ms 17.2 M
MINIMOE3L;384H 0.68 433.1 tokens/ms 28.3 M

Table 6: The results of applying
vision distillation methods upon
BERTbase.

Method GLUE Method GLUE
KD2L 72.9 KD4L 81.8

w/ TA 73.4 w/ TA 82.1
DeKD2L 72.7 DeKD4L 81.6

a bottleneck that distilling BERTlarge makes no difference from distilling BERTbase when the FLOPs
is at an extreme value 0.04G (∼273× compression from BERTbase, ∼968× compression from
BERTlarge). We explore the extreme case by plugging a TA to MINIMOE as supplied in Appendix D.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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BERTbase MiniMoE
BERTlarge MiniMoE

Figure 4: The performance of MINIMOE
across different student scales upon distilling
BERTbase.
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Routing
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84.5

85.0
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Figure 5: The performance of different rout-
ing choices with MiniMoE4L;384H upon distill-
ing BERTbase.

Routing Algorithm Routing algorithm is also a crucial part benefiting from a nice design choice.
We compare our used gating with another fancy choice hashing. We at the same time show the effect
of using load balance at finetuning stage as well. From the results in Figure 5, we see that gating
outperforms hashing, and load balancing at both distillation and finetuning stages is superior to that
at only distillation stage.

Expert Number Regarding the expert number m is a parameter of great importance for MINI-
MOE, we here study its impact on the performance. The results in Figure 6 reveal a first ascending
then descending phenomenon while adding experts at a time. The phenomenon suggests there is
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a tradeoff when increasing the number of experts, and we conjecture the tradeoff accords with the
famous bias-variance tradeoff (Hastie et al., 2001, Chapter 7). That is, adding experts grows the pa-
rameter scale, thus decreasing bias yet increasing variance. Another interesting notice is that smaller
students favor fewer experts. Based on the tradeoff conjecture, we hypothesize that smaller students
are more sensitive to variance increment, as the biases of smaller students can arrive at a minimum
more quickly than those of larger ones.

80.6

80.8

81.0

MiniMoE12L; 96H

79.5

80.0
MiniMoE6L; 96H

77.5

78.0

78.5

GL
UE

MiniMoE4L; 96H

77.0

77.5

MiniMoE3L; 96H

1,1E 1,4E 2,4E 1,6E 1,8E
#Experts

74

76

MiniMoE2L; 96H

Figure 6: The impact of expert number on the performance upon distilling BERTbase, where x,yE
denotes x experts in each MHA and y experts in each FFN. For example, 1,1E is the original dense
model, and 1,4E is the MoE model used in Table 3.

Failure of Vision Method We examine in a preliminary study the effectiveness of one of the
vision model distillation methods (DeKD, Zhao et al., 2022) which can lift the curse of capacity
gap. From the results in Table 6, we unfortunately discover that DeKD can only give comparable
performance in distilling BERTbase, which even lags behind KD w/ TA. It hints that vision model
distillation methods are not that capable of LMs.

5 CONCLUSIONS

In this work, we uncover a curse of capacity gap in LM distillation, which is well discussed in
previous studies on vision model distillation but not recognized in distilling LMs. While there are
some studies investigating to fill the gap, we find they can hardly tackle the curse. Interestingly,
existing solutions in large vision language model distillation which are stated to be able to lift the
curse fail to achieve so for LMs. So we aim at lifting the curse by proposing a well-motivated
MINIMOE. The MINIMOE can essentially enlarge the capacity of the student but leave the inference
compute nearly untouched. Our experimental results indicate that MINIMOE can not only lift the
curse but also realize new state of the arts.
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A DATA SUMMARY

The detailed statistics, maximum sequence lengths, and metrics for datasets we use are shown in
Table 7, where the Wikipedia corpus used for distillation is also attached.

Table 7: The statistics, maximum sequence lengths, and metrics.
Dataset #Train exam. #Dev exam. Max. length Metric
SST-2 67K 0.9K 64 Accuracy
MRPC 3.7K 0.4K 128 F1
STS-B 7K 1.5K 128 Spearman Correlation
QQP 364K 40K 128 F1
MNLI-m/mm 393K 20K 128 Accuracy
QNLI 105K 5.5K 128 Accuracy
RTE 2.5K 0.3K 128 Accuracy
CoNLL 14k 3.3k 128 F1

Wikipedia 35M - 128 -

B MORE HANDS-ON DETAILS

General Guidelines The details of hyperparameters for distillation and finetuning are shown in
Table 8. We will be releasing our code and scripts in the final version for exact reproducibility. For
all cases, students are always randomly initialized following MiniLM.
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Table 8: The hyperparameters for both distillation and finetuning. The search grids for GLUE and
CoNLL are indicated differently.

Hyperparameter Distillation Finetuning
Batch size 8×128=1024 {16,32}
Optimizer AdamW AdamW
Learning rate 3e-4 {1e-5, 2e-5, 3e-5}/{1e-4, 2e-4, 3e-4}
Training epochs 5 10
Earlystop epochs - 5
Warmup proportion 0.01 0.1
Weight decay 0.01 0.01

Implementation of MiniMoE We strictly follow the design of SwitchTransformer (Fedus et al.,
2021) and extend it to the design of our MINIMOE. We also follow their associated appendices
to implement an MoE for multihead attention. In detail, based on the original design, we treat an
FFN/MHA as an minimal expert, adopt top-one gating with load balancing, and employ a capacity
factor of 1.25 for a good tradeoff (where overflowed tokens are dropped). For the parameter effect of
adding an expert, we take expanding MiniLM4L;192H (11.3M) to MiniMoE4L;192H-1,2E (14.9M) as
an example. The number of parameters for embeddings is not changed (6.0M→6.0M), but adding an
expert (1,1E→1,2E) results in an increased number of parameters for transformers (5.4M→9.0M).

Further, our design for HashLayer (Roller et al., 2021) also strictly follows the original random hash
design, i.e., per-token hash is used. We strictly follow the best configuration of DeKD as reported in
their paper (Zhao et al., 2022), where α is 1.0 and β is 8.0.

C RESULTS W/ DATA AUGMENTATION

The results with data augmentation are produced from released checkpoints. The results in Table 9
demonstrate that TinyBERT is largely supported with data augmentation for great performance.
Another intriguing observation is that data augmentation only works for distillation but not for fine-
tuning potentially due to the noise-resilience of distillation, so we preferably replace the finetuning
stage with a task-specific distillation stage in experimenting with MiniLM.

Table 9: The results with and without data augmentation upon distilling BERTbase.

Method GFLOPs SST-2
Acc

MRPC
F1

STS-B
SpCorr

QQP
F1

MNLI-m/mm
Acc

QNLI
Acc

RTE
Acc

GLUE
Score

TinyBERT4L;312H 0.60 88.3 88.5 84.3 84.0 77.0/77.4 82.5 63.5 80.7
w/ aug. 0.60 91.6 90.2 86.3 87.1 81.2/82.8 87.6 64.3 83.9

AutoDisc5% 0.54 86.9 87.6 84.8 83.5 72.7/74.5 84.0 66.8 80.1
w/ aug. 0.54 91.2 90.0 87.5 85.4 79.0/79.8 84.5 67.5 83.1

MiniLM3L;384H 0.68 89.1 89.1 86.6 85.4 77.8/78.4 87.2 66.1 82.5
w/ aug. 0.68 88.7 85.9 83.1 82.8 76.2/76.0 86.6 62.5 80.2
w/ aug.* 0.68 91.2 91.1 88.2 86.6 79.9/80.4 87.8 66.1 83.9

* Using task-specific distillation (KD) instead of finetuning.

D MINIMOE AT EXTREME

The results in Table D witness that, MINIMOE sometimes struggles with extreme cases but can be
enhanced with the help of TA.

E RELATED WORK

Knowledge Distillation Distillation (Hinton et al., 2015) is a de facto way to compression (Bu-
cila et al., 2006) LMs by transferring the knowledge of LMs to small language models. During
the distillation, a small language model serves as a student and treats a LM as a teacher to learn
from. There are three lines of work in LM distillation: firstly, task-specific distillation (Sun et al.,
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Table 10: The results of MINIMOE at extreme upon distilling BERTbase and BERTlarge respectively.

Method GFLOPs SST-2
Acc

MRPC
F1

STS-B
SpCorr

QQP
F1

MNLI-m/mm
Acc

QNLI
Acc

RTE
Acc

GLUE
Score

BERTbase 10.9 93.8 91.5 87.1 88.4 84.9/84.9 91.9 71.5 86.7

MiniLM4L;96H 0.06 83.4 84.6 81.9 80.7 71.2/72.5 82.0 63.7 77.5
w/ TA 0.06 84.5 83.9 82.2 80.5 70.8/72.4 81.6 63.7 77.5

MINIMOE4L;96H 0.06 84.8 84.0 83.1 81.2 72.2/73.5 82.2 65.7 78.3
w/ TA 0.06 ∼

18
2×

84.2 85.3 83.7 82.2 72.6/73.7 83.6 65.3 78.8

MiniLM3L;96H 0.04 83.7 83.8 81.2 80.6 70.3/71.5 80.5 61.4 76.6
w/ TA 0.04 82.6 83.3 81.2 80.3 70.3/71.9 80.7 61.4 76.5

MINIMOE3L;96H 0.04 84.8 84.5 82.8 80.8 70.3/71.9 81.9 65.0 77.7
w/ TA 0.04 ∼

27
3×

83.5 85.1 83.1 81.4 71.4/73.0 83.3 61.7 77.8

BERTlarge 38.7 94.2 92.5 90.1 89.0 86.6/86.3 92.5 75.5 88.3

MiniLM4L;96H 0.06 83.3 83.9 82.5 81.0 71.4/72.4 81.8 63.2 77.4
w/ TA 0.06 84.1 85.8 82.4 81.3 71.9/73.4 82.3 64.3 78.2

MINIMOE4L;96H 0.06 84.9 85.4 82.9 81.6 74.0/74.8 83.6 64.6 79.0
w/ TA 0.06 ∼

64
5×

84.2 85.3 83.2 81.2 72.5/74.0 83.4 66.1 78.7

MiniLM3L;96H 0.04 83.1 84.1 81.8 79.7 69.7/70.8 79.2 63.2 76.5
w/ TA 0.04 83.0 83.2 81.2 80.3 69.3/70.7 81.8 60.7 76.3

MINIMOE3L;96H 0.04 83.0 84.5 82.7 81.1 71.7/72.8 82.1 63.9 77.7
w/ TA 0.04 ∼

96
8×

83.8 84.4 83.0 81.2 71.8/72.8 82.4 63.9 77.9

2019; Li et al., 2020; Sun et al., 2020a; Park et al., 2021b; Hou et al., 2020; Xia et al., 2022) that
conducts distillation on a specific task at finetuning stage; secondly, task-agnostic distillation (Turc
et al., 2019; Sanh et al., 2019; Sun et al., 2020b; Wang et al., 2021b) that conducts distillation at
pretraining stage; and thirdly, two-stage distillation (Jiao et al., 2020) that combines the power of
both task-agnostic and -specific distillation. Though these methods realize promising performance
when distilling LMs like BERTbase, they can come short of scalability to LMs like BERTlarge espe-
cially when the student is of a small scale. In fact, driven by recent observations (Wang et al., 2020;
Zhang et al., 2022a; Mirzadeh et al., 2020; Cho & Hariharan, 2019), distillation with a small student
can be faced with two deficiencies due to the large capacity gap. A few studies including teacher
assistant-based (Mirzadeh et al., 2020; Zhang et al., 2022a) and student-friendly (Park et al., 2021a;
Zhou et al., 2022) distillation can alleviate the first but fail to resolve the second. It is noteworthy
that some work states they can tackle both deficiencies for vision models (Zhu & Wang, 2021; Zhao
et al., 2022), but preliminary studies have found that they are either expensive or not capable of
LMs. In our work, we follow the line of task-agnostic distillation of LMs and aims at lifting both
efficiencies for the first time.

Mixture of Experts Based on the idea of conditional computation (Bengio et al., 2015), MoE layer
is proposed to scale-up LMs in a sparsely activated fashion (Shazeer et al., 2017). There are diverse
designs to achieve the sparse routing, such as gating (Shazeer et al., 2018) and hashing (Roller et al.,
2021), with necessary balance constraints (Lepikhin et al., 2021). MoE layers are then joined to
LMs in the past one or two years (Fedus et al., 2021; Du et al., 2022). Owing to the sparse activation
property, the scales of LMs are significantly increased with only minor losses in compute efficiency
on modern GPU devices so that the underneath scaling laws can be uncovered in a comparably cheap
manner (He et al., 2021; Rajbhandari et al., 2022). In our work, we are impelled by the merits of
MoE, and propose a MINIMOE so that the capacity of the student can be enlarged without much in-
ference overhead increment. MINIMOE can be similar to a certain stream of methods (Zhang et al.,
2022b; Zuo et al., 2022) that pursue accelerating LMs via precisely moefying them. Nonetheless,
the moefication process is exerted to LMs with limited inference compute improvements compared
to those advanced by MINIMOE. Note that there are emergent work exploring compressing MoE
LMs (Xue et al., 2022) to dense students, which is walking down the same street in the opposite side
since we instead focus on compressing dense LMs to MoE students.
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F RESULTS ON BERTxlarge

LM distillation, under either the task-agnostic setting as in our paper or the task-specific setting, has
seldom been investigated to distil LMs larger than BERTlarge. Even worse, there is only little work
has been investigated to distil BERTlarge under the task-agnostic setting.

In the main results, we just follow the paces of the task-agnostic setting, not only due to the huge
scales of larger LMs like T5 and GPT3 but also due to that task-agnostic LM distillation requires the
access to the original pretraining data of usually vast volume. What’s more, larger LMs like T5 can
be incomparable to BERT owing to the architectural difference, and existing task-agnostic methods
including ours may easily fail.

Regarding all the considerations mentioned above, however, we try to check the existence of the
curse of capacity gap and examine MINIMOE under a comparably larger-scale setting, i.e., Chinese
BERTbase v.s. BERTxlarge on some datasets from CLUE (Xu et al., 2020) (which can be viewed as
the Chinese GLUE). These datasets include a topic classification dataset TNews, a similar question
matching dataset AFQMC, and a natural language inference dataset OCNLI. The preliminary results
are shown in Table 11. As far as we know, while English BERTxlarge with more than one billion
parameters trained by Nvidia Megatron (Shoeybi et al., 2019) is not publicly available, Chinese
BERTxlarge can be easily downloaded through huggingface.1 It is noteworthy that Chinese BERTbase
is trained on Chinese Wikipedia (∼15G) while Chinese BERTxlarge is trained on Wudao Corpus
(∼300G) (Yuan et al., 2021). We use Wikipedia data as the default choice for distillation, but Wudao
data seems to be a more suitable (though not that fair) one for distilling Chinese BERTxlarge as we
have found that Wikipedia could not make the distillation converge properly. Painfully, it consumes
around one week to achieve one epoch of distilling Chinese BERTxlarge using Wudao in contrast to
five epochs of distilling Chinese BERTbase on Wikipedia in one day. The results show that Chinese
BERTxlarge is cursed to realize better students than Chinese BERTbase does, and MINIMOE has the
potential to lift the curse under the larger-scale setting.

Table 11: The results of comparison between distilling Chinese BERTbase and BERTxlarge.

Method Teacher TNews
Acc

AFQMC
Acc

OCNLI
Acc

CLUE
Score

Teacher BERTbase 57.0 74.8 75.4 69.1
BERTxlarge⇑ 60.0 76.1 79.2 71.7

MiniLM6L;384H
BERTbase 55.5 72.0 71.0 66.2
BERTxlarge⇓ 54.9 70.7 69.9 65.2

BERTbase 55.9 72.9 70.8 66.5
MINIMOE6L;384H BERTlarge⇑1 TBD TBD TBD TBD
1 ⇑ is used to indicate the deficiency is tackled on CLUE, otherwise ⇓ is used.

G POTENTIAL OF MEMORY-EFFICIENT MINIMOE

One may argue that MINIMOE introduces much more memory consumption than MiniLM does,
largely limiting the application scenarios for memory-sensitive devices (e.g., mobile devices).

However, there is no free lunch to enlarge the capacity of the student. We should claim that, in order
to increase the capacity, memory/space consumption is a cheaper choice (e.g., more experts) than
latency/time consumption (e.g., more operations), and this is potentially the reason why large LMs
like PaLM (Chowdhery et al., 2022) and FLAN (Chung et al., 2022) could become so popular. We
should also highlight that scenarios that require rather limited memory consumption (e.g., mobile
scenarios) is currently not (though can be in the near future) the main concern of LMs. In contrast,
LMs are usually served in GPU scenarios, where memory/space is easy to access.

Luckily, we find a potential path to address the memory efficiency concern based on the idea of
parameter decomposition (e.g., SVD). While embedding parameter decomposition is a general way
to reduce the number of parameters for embeddings and could not make MINIMOE as memory-
efficient as MiniLM. We uncover that, without much performance sacrifice, transformer parameter

1https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B.
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decomposition in MINIMOE can be easier in comparison with that in MiniLM owing to the sparse
activation property of MoE. That is, transformer parameters in MINIMOE have lower ranks than
those in MiniLM, and this can be shown by analyzing the magnitudes of the normalized singular
values using SVD. The preliminary results of the output matrices of the last FFN layers separately
from MiniLM3L;384H and MINIMOE3L;384H are shown in Table 12.

Method %Value>0.2 %Value>0.1 %Value>0.05 Trm Params (Value>0.1)
MiniLM3L;384H dense 315/384=82% 356/384=93% 373/384=97% 5.3M→5.1M

MiniMoE3L;384H expert #1 6/384=2% 82/384=21% 275/384=72% -
MiniMoE3L;384H expert #2 34/384=9% 220/384=57% 361/384=94% -
MiniMoE3L;384H expert #3 15/384=4% 175/384=46% 338/384=88% -
MiniMoE3L;384H expert #4 24/384=6% 200/384=52% 357/384=93% -

MiniMoE3L;384H all experts 79/384/4=5% 677/384/4=44% 1331/384/4=87% 16.4M→8.2M

Table 12: The SVD analysis to show the potential of memory-efficient MINIMOE.

With this finding, MINIMOE can compress more parameters than MiniLM does using parameter
decomposition and finally yield a similar memory efficiency to that of MiniLM.
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