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ABSTRACT

Early stopping methods in deep learning face the challenge of balancing the vol-
ume of training and validation data, especially in the presence of label noise.
Concretely, sparing more data for validation from training data would limit the
performance of the learned model, yet insufficient validation data could result in
a sub-optimal selection of the desired model. In this paper, we propose a novel
early stopping method called Label Wave, which does not require validation data
for selecting the desired model in the presence of label noise. It works by track-
ing the changes in the model’s predictions on the training set during the training
process, aiming to halt training before the model unduly fits mislabeled data. This
method is empirically supported by our observation that minimum fluctuations in
predictions typically occur at the training epoch before the model excessively fits
mislabeled data. Through extensive experiments, we show both the effectiveness
of the Label Wave method across various settings and its capability to enhance the
performance of existing methods for learning with noisy labels.

1 INTRODUCTION

Deep Neural Networks (DNNs) are praised for their remarkable expressive power, which allows
them to uncover intricate patterns in high-dimensional data (Montufar et al., 2014; LeCun et al.,
2015) and can even fit data with random labels. However, this strength, often termed Memorization
(Zhang et al., 2017), can be a double-edged sword, especially when encountering label noise. When
label noise exists, the inherent capability of DNNs might cause the model to fit mislabeled examples
from noisy datasets, which can deteriorate its generalization performance. Specifically, when DNNs
are trained on noisy datasets containing both clean and mislabeled examples, it is often observed that
the test error initially decreases and subsequently increases. To prevent DNNs from overconfidently
learning from mislabeled examples, many existing methods for learning with noisy labels (Xia et al.,
2019; Han et al., 2020; Song et al., 2022; Huang et al., 2023) explicitly or implicitly adopted the
operation of halting training before the test error increases—a strategy termed “early stopping”.

Early stopping relies on model selection, aiming to choose a model that aligns most closely with the
true concept from a range of candidate models obtained during the training process (Mohri et al.,
2018; Bai et al., 2021). To this end, leveraging hold-out validation data to pinpoint an appropriate
early stopping point for model selection becomes a prevalent approach (Xu & Goodacre, 2018) in
deep learning. However, this approach heavily relies on additional validation data that is usually
derived by splitting the training set, thereby resulting in degraded performance due to insufficient
training data. This issue becomes even more challenging in the presence of label noise. This is
because, in this scenario, it is hard to learn a good model from unreliable training data and select the
desired model using unreliable validation data (Chen et al., 2021).

In this paper, we aim to pinpoint an appropriate early stopping point to mitigate the negative ef-
fects of label noise without relying on any hold-out validation data. Our motivation stems from the
observation that there exist qualitative differences between DNNs trained on clean examples and
mislabeled examples (Arpit et al., 2017). By tracking these differences during the training process,
we can pinpoint the moment when DNNs transition from primarily fitting clean examples to pri-
marily fitting mislabeled examples, and thus determine an appropriate early stopping point. In what
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Figure 1: We examine how the model’s fitting and generalization performance evolves during the
training process of learning with noisy labels. Utilizing the k-epoch learning metric (Yuan et al.,
2023), we measure the number of training examples that can be consistently classified according to
their provided labels. This allows us to capture fluctuations in the model’s fitting performance. We
categorize the training process into three stages according to the stability of the fitting performance
(panel d). This categorization is informed by an integrated analysis of generalization performance
derived from test error (panel a) and fitting performance derived from training error (panel b) and
8-epoch learning metrics (panel c). Thus, we design the prediction changes metric to measure the
shifts in the model’s predictions on the training set to pinpoint the early stopping point. For detailed
information regarding the experiment settings, please refer to Appendix B and Section 3.

follows, we demonstrate in Figure 1 how to determine such a point by tracking the changes in the
model’s fitting performance, instead of leveraging any validation with hold-out data.

To accurately pinpoint an appropriate early stopping point without relying on hold-out data, we
introduce a metric called prediction changes (PC), as shown in Figure 1. We use PC to measure
the number of examples whose predictions have changed between two successive epochs. In other
words, this metric quantifies the prediction stability degree of the model trained on a noisy training
set. Therefore, this metric offers a straightforward method for tracking the changes in the model’s
fitting performance throughout the training process. These changes, metaphorically likened to wind
waves, inspired the name of our method, “Label Wave”.

The effectiveness of the PC becomes evident when observing Stages 1 and 2 in Figure 1: the curve
of PC in Figure 1(b) exactly matches the curve of test error in Figure 1(a). In Stage 1, as the
model begins to fit clean examples (i.e., learns simple patterns), both the PC and the test error
steadily decrease. In Stage 2, as depicted in training error in Figure 1(b), the model begins to fit
mislabeled examples significantly, thereby leading to a rise in test error. Concurrently, the model’s
fitting performance experiences notable fluctuations or even declines. Hence there is an increase in
the model’s prediction fluctuations, leading to an increase in PC. Thus, the local minimum of PC,
marking the turning point between Stages 1 and 2, is identified as the early stopping point.

In Stage 2, the rise in both PC and test error indicates that the model’s efforts to minimize the total
loss across the training set to accurately fit mislabeled examples not only undermine its ability to
generalize to test data, but also harm its performance to fit the correct patterns in the training data.
In other words, fitting mislabeled examples impairs the overall model’s fitting performance. This
pronounced phenomenon in Stage 2 is termed learning confusion patterns, reflecting the model’s
misinterpretation of the training data distribution.
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Notably, our proposed Label Wave method can identify the early stopping point at which the model
transitions from primarily fitting clean examples to mislabeled ones. This can be achieved without
prior knowledge about which training examples are mislabeled examples or the need for separate
hold-out validation data. This method not only provides a more efficient way to determine the early
stopping point but also ensures sufficient training data to produce an effective model.

Our main contributions can be summarized as follows:
1. We present an empirical observation that, when training DNNs from a noisy dataset, fitting mis-

labeled examples impairs not only the generalization performance but also the overall model’s
fitting performance.

2. Building on the correlation between the model’s generalization and fitting performance estab-
lished in our empirical analysis, we propose the Label Wave method, which uses the changes in
the model’s predictions on the training set to identify the early stopping point.

3. Through extensive experiments, we show both the effectiveness of the Label Wave method across
various settings and its capability to enhance the performance of existing methods for learning
with noisy labels.

2 RELATED WORK

Memorization & Forgetting. In deep neural networks, generalization is not solely dictated by the
complexity of the hypothesis space (Chaudhari et al., 2019; Advani et al., 2020; Jiang et al., 2020).
They can still generalize effectively even without regularizers, a characteristic termed as Memoriza-
tion1. Building on this, recent publications (Toneva et al., 2019; Feldman & Zhang, 2020) have
studied the phenomenon known as the “forgetting event”, aiming to understand how training data
and network structures influence generalization. Based on the concept of forgetting, we observed
that when the model starts to fit mislabeled examples, it begins to significantly forget the training
data. This forgetting increases until it reaches a turning point, after which the forgetting decreases.

Model Selection. Numerous indirect methods have been proposed for selecting an appropriate
model. These methods include marginal likelihood estimator (Duvenaud et al., 2016), computed
gradients (Mahsereci et al., 2017), leveraging unlabeled data (Garg et al., 2021; Deng & Zheng,
2021; Forouzesh et al., 2023), noise stability (Arora et al., 2018; Morcos et al., 2018; Zhang et al.,
2019), estimating generalization gap (Jiang et al., 2018; Corneanu et al., 2020), modeling loss dis-
tribution (Song et al., 2019b; 2021; Lu & He, 2022), and training speed (Lyle et al., 2020; Ru et al.,
2021). In contrast to the existing methods, Label Wave focuses on the selection of an appropriate
early stopping point during training process. Notably, this is achieved without the need for additional
or hold-out data and requires no preprocessing, ensuring low computational overhead.

Learning Stages. Traditional paradigms often posit the presence of two stages during the learning
process: underfitting and overfitting (Goodfellow et al., 2016; Lin et al., 2023). Researchers explor-
ing models trained on randomly labeled examples have divided the learning process into two distinct
stages for a more nuanced perspective on deep learning: an initial stage of “learning simple patterns”
(Arpit et al., 2017), followed by a subsequent stage of “memorization” (Zhang et al., 2017). Further
findings, such as epoch-wise Deep Double Descent (Belkin et al., 2019; Nakkiran et al., 2021) and
“Grokking” (Power et al., 2022; Liu et al., 2022b; Nanda et al., 2023), have highlighted the potential
existence of additional learning stages under specific conditions. However, these studies primarily
focus on classifying learning stages based on generalization performance when models learn from
imperfect data, thereby overlooking variations in model fitting performance.

Learning Dynamics. A wealth of research endeavors have aimed to classify the “hardness” of
examples by tracking learning dynamics, which is particularly beneficial for scenarios involving
noisy labels or long-tail distributions. Methods like Late Stopping (Yuan et al., 2023), FSLT&SSFT
(Maini et al.), Self-Filtering (Wei et al., 2022b), SELFIE (Song et al., 2019a), and RoCL (Zhou et al.,
2021) exemplify this approach. However, these studies primarily focus on the dynamic changes of
individual examples for the purpose of sample selection, rather than assessing the overall dynamics
to distinguish different stages of the training process in learning with noisy labels.

1“Memorization” is not formally defined, and we denote Memorization as training DNNs to fit the assigned
label for each particular instance, in a similar spirit as Feldman & Zhang (2020) and Forouzesh et al. (2023).
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3 DETERMINING EARLY STOPPING BY TRACKING FITTING PERFORMANCE

In this section, we aim to track the fitting performance to pinpoint the turning points of a model’s
generalization performance during the training process in the presence of noisy labels. To pro-
vide a clearer view of the model’s fitting performance, we incorporate two metrics: stability and
variability metrics. With these metrics, we identify and describe the key turning points of fitting
performance, and elaborate on their correlation with generalization performance. We further intro-
duce a transitional stage termed “learning confusing patterns” between the two turning points in
fitting performance. Building on this foundation, we formally introduce our proposed Label Wave
method, which determines an early stopping point by tracking the changes in the model’s fitting
performance. All experiments presented in this section use a standard ResNet-18 backbone. For
detailed information regarding the experiment settings, please refer to Appendix B.

Prior to an in-depth discussion, we first clarify three basic concepts (Goodfellow et al., 2016): (i)
Test error, an empirical measure of “generalization performance”, indicates a model’s ability to
make accurate predictions on previously unseen data. (ii) Training error, an empirical measure
of “fitting performance”, indicates a model’s ability to fit the training data. (iii) Training process:
Given a model f(·; θ) that is being trained on a noisy training setD comprised of n labeled examples
(xi, yi) where i = 1, 2, ..., n, the model’s predicted label for each training instance xi evolves as
training progresses. After t epochs, this predicted label for xi is represented as ŷti .

3.1 METRICS FOR TRACKING FITTING PERFORMANCE

In Figure 2, we track both the test error and the training error. From our analysis of the test error,
we identify two pivotal points where there is a notable shift in generalization performance: Point
1, where the test error attains its global minimum, and Point 2, where the test error transitions to
a stable state after rising from this minimum. Notably, Point 1 is typically considered the optimal
early stopping point. As determined by the test error, Point 1 indicates the model that generalizes
best throughout the training process. Furthermore, an examination of the training error reveals that,
after Point 1, the model starts to significantly fit mislabeled training examples. This suggests that
fitting mislabeled examples impairs the model’s generalization performance.

Point 1 Point 2

Figure 2: Tracking test error and training error (mislabeled examples) in training process.

In real-world applications, however, obtaining prior knowledge about which training examples are
mislabeled examples is often impossible, thereby eliminating the possibility of relying on how well
the model fits mislabeled examples as a criterion for early stopping. Furthermore, as we aim to
eliminate the dependency on hold-out datasets, implementing early stopping based on validation
errors becomes unfeasible. To address these challenges, we focus on the following two metrics to
evaluate the model’s “fluctuations in predictions” on the training set.

Stability Metric. We employ the k-epoch learning metric (Yuan et al., 2023) to quantify the stability
of the model’s predictions for specific subsets of examples, such as the clean data subset Dc. A
higher k-epoch learning value indicates that the model’s predictions have greater stability in recent
epochs and exhibit fewer fluctuations in predictions. Let accti = 1ŷt

i=yi
be a binary variable that

indicates whether the model accurately classifies example i at epoch t. The stability of the model’s
predictions from epoch t− k + 1 to epoch t can be quantified as follows:

k-epoch learning =
∑

i∈Dc

accti ∧ acc
(t−1)
i ∧ ... ∧ acc

(t−k+2)
i ∧ acc

(t−k+1)
i . (1)

Variability Metric. In contrast to the stability metric, we use prediction changes as a variability
metric to emphasize the model’s inconsistency in classifying training set examples between the
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current epoch and the previous one. A lower value of prediction changes indicates greater stability
and fewer fluctuations in the model’s predictions for the current epoch. The variability in the model’s
predictions from epoch t− 1 to epoch t can be quantified as follows:

prediction changes =
∑

i∈D
1
ŷt
i ̸=ŷ

(t−1)
i

. (2)

3.2 FITTING MISLABELED EXAMPLES IMPAIRS THE MODEL’S FITTING PERFORMANCE

Figure 2 presents two approaches to selecting the best generalizing model using both test (validation)
error and training error on the mislabeled examples. However, these methods either require a
separate hold-out set or rely on true labels in the training set. In contrast, our method focuses
on a unique concept: fluctuations in predictions (FIPs). By quantifying these fluctuations using
the stability and variability metrics, we can observe how the model’s data-fitting strategy and its
corresponding fitting performance change in two nearby points, which we defined in Section 3.1.

Point 1 Point 2

Stability
 +

Stability -

(a) Stability metric, 8-epoch learning

Point 1 Point 2

Va
ria

bil
ity

 +

Variability -

(b) Variability metric, prediction changes

Figure 3: Using stability and variability metrics to track fluctuations in predictions.

In Figure 3, we chart these metrics throughout the training process of the model. Specifically, the
stability metric is shown in Figure 3(a) and the variability metric in Figure 3(b). Both metrics are
designed to track FIPs. Our observations highlight a clear correlation between the metrics’ turning
points and the critical points determined by the shifts in generalization performance. This allows us
to establish some key empirical findings:
• Before Point 1, FIPs gradually decrease.
• After Point 1, FIPs shift from decreasing to increasing.
• After Point 2, FIPs shift from increasing to decreasing and eventually converge to a steady state.

Our empirical observation reveals a correlation between generalization performance and changes in
the model’s fitting strategy. We observe noticeable shifts in both performance and strategy before
and after Point 1. After Point 1, the performance of models from subsequent epochs declines notice-
ably in their ability to fit the examples from the training set. Moreover, the data from our 8-epoch
learning indicates that more than half of the examples in Dc (clean training examples) cannot be
stably predicted after Point 1. This significant decline contradicts the assumption that fluctuations
following Point 1 only stem from a small subset of challenging examples within Dc. Therefore, we
term the phenomenon where the change in the model’s fitting performance at the Point 1 as fitting
mislabeled examples impairs the overall model’s fitting performance. This implies that by track-
ing fluctuations in predictions, we can identify whether the model has started to overfit mislabeled
training data just by observing changes in its fitting performance.
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Interestingly, the model’s behavior from Point 1 to Point 2 is noticeably different from its behavior
before and after these points. The stage from Point 1 to Point 2 cannot simply be considered as
either “incorporation of prior” (Bengio et al., 2009) or “overfitting the dataset”. Instead, we propose
to see this as a transitional stage in learning with noisy labels, situated between the widely accepted
stages of “learning simple patterns” (Arpit et al., 2017) and “memorization” (Zhang et al., 2017).
We have coined this transitional stage “learning confusing patterns”. A more detailed discussion on
implications of this stage and Point 2 will be explored in Appendix A.

3.3 LABEL WAVE METHOD

Based on our observations, we identified a correlation between the model’s fitting and generalization
performance when learning with noisy labels. With this understanding, we formally introduce our
proposed Label Wave method. This method utilizes the observed correlation between fluctuations
in predictions and test error. We aim to pinpoint an appropriate early stopping moment by closely
tracking the model’s predictions on the noisy training set. This moment, referred to as Point 1 in
Section 3.1, is where the model begins to significantly fit mislabeled examples. To keep our method
simple, intuitive, and computationally efficient, we directly refer to the variability metric explored
in section 3.1, which we term as prediction changes or PC.

Algorithm Flow. We use the prediction changes, represented as PCt, to track the changes in the
model’s fitting performance at the epoch t. The first turning point of PCt is identified as the early
stopping point for model selection. In practice, tracking PCt is often susceptible to uncertainties
inherent in the training process. We enhance the robustness of our Label Wave method by utilizing
the Moving Averages techniques. By averaging PCt over the recent k epochs (see Appendix E for
the sensitivity analysis of k), we derive a more stable version, denoted as PC′

t , as follows:

PC′
t = (PCt + PCt−1 + ...+ PCt−k+1)/k. (3)

As depicted in Algorithm 1, we compute PCt using the predictions of f(·;θ) on the noisy training
set D. By applying the Moving Averages and Patience, we identify the first local minimum point of
the PC′

t and designate it as the early stopping point for the model selection, as follows:

Early Stopping Point = tfirst-min, where tfirst-min is the first local minimum of PC′
t. (4)

The Label Wave method allows us to pinpoint the moment when the model’s fitting performance
stability starts to decline by observing fluctuations in predictions and computing prediction changes.
Based on our discussion in Section 3.2, stopping the training process at such a moment can prevent
the model from beginning to overfit the mislabeled training data, ensuring the selection of a model
with close-to-optimal generalization performance. This robust and intuitive method not only does
not rely on validation sets and prior knowledge of training labels but also enhances the generalization
of the selected model. To solidify our understanding and validate the efficacy of the Label Wave
method, we embark on a series of empirical experiments detailed in the upcoming section. For
scenarios where the Label Wave method does not work, see the discussion in Appendix C.3.

Algorithm 1 Label Wave
Let θo be the initial parameters and v be the local minimum of PC. Let p be the “Patience”, repre-
senting the number of times a worsening PC is observed before halting.
θ← θo, t← 0, i← 0, v←∞

1: while i < p do
2: Update θ by running the training for n steps, and t← t+ n.
3: PCt ← Compute prediction changes (PC) in step t.
4: PC′

t ← Moving Averages PC in recent k steps.
5: if PC′

t < v then
6: v← PC′

t ; i← 0, θ∗← θ, t∗ ← t // Models stored at every new local minimum.
7: else
8: i← i+ 1 // Counting Patience when PC′

t is larger than local minimum.
9: end if

10: end while=0
Best parameters are θ∗, and best number of training steps is t∗.

6



Published as a conference paper at ICLR 2024

4 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of our Label Wave method. In Section
4.1, we conduct comprehensive experiments to validate the broad applicability of our method across
different settings. Section 4.2 highlights the capability of the Label Wave method to enhance the
generalization performance of existing learning with noisy labels methods. Furthermore, in Section
4.3, we examine the Kendall τ correlation between our method and test accuracy. This analysis is
compared with empirical validation on hold-out data. The findings suggest that Label Wave amplifies
the generalization performance of learning with noisy labels methods not only by leveraging more
training data but also by improving the precision in identifying early stopping points.

4.1 EFFECTIVENESS OF LABEL WAVE

Building upon the Label Wave method experiments conducted using the ResNet-18 backbone, we
performed additional tests. These experiments demonstrate the consistent efficacy of our proposed
Label Wave method across a wide range of settings, including multiple datasets, diverse network ar-
chitectures, a range of parameters, various optimizers, and different levels and types of label noise.
As evident in Table 1, there is only a slight difference between the test accuracy of models selected
by the Label Wave method and the global maximum test accuracy during the training process. This
indicates that the Label Wave method consistently selects models, irrespective of different compo-
nents and parameters, that are at or near the global maximum in test accuracy. More experimental
results and details of experiment settings can be found in Appendix C.

Noise. We assessed the capability of Label Wave method to handle learning from various levels
and types of label noise. These include 10% to 80% of the incorrect labels with the Instance-
dependent noise (abbreviated as Ins.) (Xia et al., 2020) and Symmetric noise (abbreviated as Sym.)
(Van Rooyen et al., 2015). Notably, with CIFAR-N (using its “Random 1/2/3” and “worst” setting
in CIFAR-10N and “worst” setting in CIFAR-100N, characterized by approximately 40% real-world
noise) (Wei et al., 2021), we evaluate effectiveness of Label Wave method on real-world noise.

Architectures. We verified the effectiveness of our method in learning with noisy labels over sev-
eral commonly used deep learning models, including ResNet (He et al., 2016), VGG (Simonyan &
Zisserman, 2014), Inception-v3 (Szegedy et al., 2016), and DenseNet (Huang et al., 2017).

Datasets. Our evaluations also confirmed the effectiveness of Label Wave method across multi-
datasets. These datasets comprise seven vision-oriented sets: CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), CIFAR-N (Wei et al., 2021), Clothing1M (Xiao et al., 2015), WebVision (Li et al., 2017),
Food101 (Bossard et al., 2014), and Tiny-ImageNet (Le & Yang, 2015), along with a text-oriented
dataset: NEWS (Kiryo et al., 2017; Yu et al., 2019). We tested our method on class imbalanced
datasets CID-CE and with using class imbalanced method CID-LDAM (Cao et al., 2019).

Parameters & Optimizers. The robustness of the Label Wave method is validated by testing it with
different learning rates, batch sizes, random seeds, and optimizers. By adjusting the batch sizes to
64, 128, 256, learning rates to 0.01, 0.005, 0.001, random seeds to 1, 2, 3, 4, 5, and employing
different optimizers such as SGD with momentum (Robbins & Monro, 1951; Polyak, 1964), RM-
Sprop (Tieleman et al., 2012), and Adam (Kingma & Ba, 2014), we demonstrate that the Label Wave
method remains resilient to reasonable variations in both parameters and optimizers.

Table 1: Differences (mean±std) among the model selection methods. Lower is better.

Noise (Sym.) 20% 30% 40% 50% 60% 70% 80%

Global Maximum (%) 84.08±0.10 81.73±0.37 80.45±0.68 75.48±0.46 68.57±0.70 57.57±0.98 37.46±0.92
Label Wave (%) 83.43±0.32 81.48±0.36 80.15±0.67 75.20±0.73 68.21±1.02 56.64±1.57 37.08±0.95

Difference 0.65% 0.25% 0.30% 0.28% 0.36% 0.93% 0.38%

Noise (Ins.) 20% 30% 40% 50% 60% 70% 80%

Global Maximum (%) 84.28±0.45 82.83±0.65 77.69±0.71 64.74±0.78 46.80±1.52 29.48±1.02 20.59±0.69
Label Wave (%) 83.99±0.72 82.68±0.45 76.81±0.76 63.87±0.68 45.92±2.00 28.87±0.69 20.08±1.06

Difference 0.30% 0.15% 0.88% 0.87% 0.88% 0.61% 0.50%
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Noise & Datasets Random 1 Random 2 Random 3 Ins. 10% Sym. 10% CID-CE CID-LDAM

Global Maximum (%) 83.21±0.23 82.86±0.24 83.10±0.25 85.91±0.23 85.46±0.12 56.03±0.55 61.80±0.93
Label Wave (%) 83.03±0.35 82.53±0.23 82.92±0.50 85.56±0.72 84.92±0.06 55.31±0.86 61.07±0.88

Difference 0.18% 0.13% 0.18% 0.35% 0.54% 0.72% 0.73%

Datasets CIFAR-10 CIFAR-100 CIFAR-10N CIFAR-100N NEWS Tiny-ImageNet Adam

Global Maximum (%) 79.99±0.57 49.92±0.81 76.23±0.17 47.48±0.49 42.58±0.79 34.88±0.15 79.12±0.57
Label Wave (%) 79.54±0.91 49.39±0.69 75.98±0.49 47.04±0.38 42.06±1.15 34.20±0.42 78.92±0.66

Difference 0.45% 0.52% 0.25% 0.45% 0.51% 0.68% 0.21%

Architectures ResNet-18 ResNet-34 ResNet-50 ResNet-101 VGG-16 Inception-v3 Dense-121

Global Maximum (%) 79.86±0.52 79.81±0.48 79.44±1.33 77.35±0.40 78.00±0.53 57.23±0.52 66.09±0.22
Label Wave (%) 79.36±0.77 79.50±0.42 78.94±1.21 76.99±0.75 77.77±0.43 56.80±0.73 65.87±0.38

Difference 0.50% 0.31% 0.49% 0.36% 0.23% 0.43% 0.22%

Parameters LR. 0.01 LR. 0.005 LR. 0.001 BS. 64 BS. 128 BS. 256 RMSprop

Global Maximum (%) 80.08±0.62 76.98±0.79 72.55±0.57 80.23±0.57 80.11±1.02 76.88±0.66 76.79±0.61
Label Wave (%) 80.38±0.57 76.67±0.95 72.14±0.55 80.59±0.41 79.69±0.68 76.24±0.49 76.22±0.95

Difference 0.30% 0.31% 0.40% 0.36% 0.43% 0.64% 0.57%

4.2 ENHANCING EXISTING LEARNING WITH NOISY LABEL METHODS

To verify the effectiveness of our method in practical applications, we apply our proposed Label
Wave method within a range of state-of-the-art learning with noisy labels methods. Among the
methods we have explored are robust loss functions (Feng et al., 2020), robust regularization (Xia
et al., 2021; Wei et al., 2022a), label noise correction (Liu et al., 2020; Cheng et al., 2021), sparsity
over-parameterization (Liu et al., 2022a), and the baseline Cross-Entropy (Rubinstein, 1999).

As shown in Tables 2 and 3, we conducted evaluations using ResNet-18 on CIFAR-10 and ResNet-
34 on CIFAR-100 (Krizhevsky et al., 2009; He et al., 2016), both tainted with 40% Symmetric
noise (abbreviated as Sym.) (Van Rooyen et al., 2015). Our primary assessment metric was the
test accuracy of the selected model, determined by the average and standard deviation over five
runs. Notably, the Label Wave method consistently outperformed conventional validation methods
employing 5% to 30% hold-out data. This indicates that the Label Wave method works as a more
effective early stopping method than conventional hold-out data validation, thus augmenting the
generalization performance of models trained by existing learning with noisy label methods. Results
under more experimental settings can be found in the appendix D.

Table 2: Test accuracy (mean±std) of each method on CIFAR-10 (with 40% Sym. label noise).
Method Val. 5% Val. 10% Val. 20% Val. 30% Label Wave

CE (Rubinstein, 1999) 80.29±0.66% 79.93±0.52% 78.94±0.52% 77.38±0.59% 81.61±0.44%
Taylor-CE (Feng et al., 2020) 83.85±0.61% 83.28±0.34% 82.33±0.43% 81.66±0.12% 85.06±0.30%

ELR (Liu et al., 2020) 90.23±0.47% 88.99±0.41% 88.43±0.38% 87.24±0.41% 90.45±0.52%
CDR (Xia et al., 2021) 86.45±0.36% 85.98±0.43% 85.60±0.50% 83.71±0.23% 87.69±0.10%

CORES (Cheng et al., 2021) 87.26±0.32% 86.9±0.25% 85.78±0.69% 85.17±0.57% 87.74±0.13%
NLS (Wei et al., 2022a) 82.62±0.59% 81.89±0.18% 81.12±0.53% 79.23±0.32% 83.45±0.19%
SOP (Liu et al., 2022a) 86.40±1.04% 86.80±0.77% 87.12±0.19% 86.37±0.66% 88.42±0.38%

Table 3: Test accuracy (mean±std) of each method on CIFAR-100 (with 40% Sym. label noise).
Method Val. 5% Val. 10% Val. 20% Val. 30% Label Wave

CE (Rubinstein, 1999) 49.69±0.89% 48.42±0.80% 45.96±1.17% 43.65±0.53% 50.96±0.30%
Taylor-CE (Feng et al., 2020) 56.67±0.35% 56.48±0.18% 55.23±0.50% 54.38±0.29% 57.64±0.28%

ELR (Liu et al., 2020) 64.53±0.36% 62.05±0.50% 60.09±0.74% 57.49±0.42% 65.36±0.39%
CDR (Xia et al., 2021) 61.93±0.38% 60.82±0.38% 58.27±0.50% 54.90±1.03% 63.34±0.15%

CORES (Cheng et al., 2021) 44.32±0.82% 44.48±0.35% 43.32±0.57% 41.28±0.47% 45.03±0.38%
NLS (Wei et al., 2022a) 57.08±0.62% 55.89±0.26% 54.09±0.57% 52.82±0.28% 58.05±0.15%
SOP (Liu et al., 2022a) 67.27±0.45% 66.28±0.61% 64.46±0.48% 63.02±0.48% 68.53±0.30%
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4.3 CORRELATION WITH TEST ACCURACY

In this subsection, we provide evidence that our proposed method exhibits superior performance
compared to hold-out validation across a diverse range of validation set sizes and noise rates. We
employ the same experimental settings as in Section 3.

Hold-out Set Sizes. We utilized the same subset of training data to calculate both prediction changes
(PC) and hold-out validation. This implies that we only use a limited-size subset from the training
data to compute PC. In the lower subfigure of Figure 4(a), the Kendall τ correlation (Kendall, 1938)
is illustrated, showcasing the association between the ranking of model selection and actual test
accuracy for both methods. In the upper subfigure of Figure 4(a), we focus on the test accuracy
of models selected by both the Label Wave and hold-out validation methods. Our experiments
emphasize that increasing the size of the hold-out set improves its precision in model selection.
However, as the size of the hold-out set increases, the data available for training decreases, leading
to a reduction in test accuracy for candidate models obtained during the training process. These
findings suggest that our proposed Label Wave method can select models more precisely and yield
better test accuracy, even when computed on a smaller set.

Noise Rates. We further compare the test accuracy of models selected by our proposed Label Wave
method and the test accuracy of models selected by hold-out validation in various set sizes with
varying noise rates. As shown in Figure 4(b), we demonstrate the gain in model test accuracy
selected by the Label Wave method. This underscores the robustness and superior efficacy of the
Label Wave method, especially in high levels of noise and large set sizes scenarios.

Avg. Ground-Truth Acc.

(a) Test accuracy and τ of compared methods (b) Test accuracy gain of Label Wave

Figure 4: We aim to compare the test accuracy of models selected at the early stopping point by the
Label Wave method and those selected by the hold-out validation method. (a) We selected a subset
of the training data, with set sizes ranging from 250 to 16,000. This subset was used for both to
compute the prediction change in the Label Wave method and serving as the hold-out set in hold-out
validation, respectively. We computed the Kendall τ correlation and the test accuracy of the models
selected by these two methods. (b) Further analysis was conducted to evaluate the difference in test
accuracy between models selected by our proposed Label Wave method and those selected by the
hold-out validation method with noise rates ranging from 20% to 60%.

5 CONCLUSION

In this paper, we introduced the Label Wave method for early stopping in the presence of label
noise. Our proposed method uses the prediction changes metric to track changes in a model’s
fitting performance to pinpoint the early stopping point, eliminating the need for separate hold-out
data. Extensive experiments showcased the effectiveness of the Label Wave method across various
settings, leading to improved generalization performance in methods for learning with noisy labels.
Furthermore, we introduced a transitional stage in learning with noisy labels, denoted as learning
confusing patterns. Looking forward, there is potential to devise an advanced early stopping metric
that could surpass the capabilities of the prediction changes metric, thereby enhancing the Label
Wave method. A deeper dive into the transitional stage may offer pivotal insights into how deep
neural networks behave when learning with noisy labels.
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A DISCUSSION ON learning confusing patterns

In this section, we delve into Point 2, where the model’s test error transitions from increasing to sta-
bilizing, by utilizing the metrics introduced in Section 3. Moreover, we introduce a novel transitional
stage in learning with noisy labels, termed learning confusing patterns.

(a) Tracking model’s behavior between two points

. . . 

DNNs do not just 
memorize real data

Arpit et al. 

DNNs do not just memorize 
randomly labeled data

Ours

Stages of Training

. . . 

. . . 
. . . 

DNNs can memorize 
randomly labeled data

Zhang et al. 

Learn Confusing Patterns

Memorization 

Learn Simple Patterns
Learn Simple Patterns

Memorization 
Memorization 

——— Early Stopping ——— 

(b) Our proposed new transitional stage

Figure 5: Based on the multi-metrics we are tracking for the model’s generalization and fitting
performance between Point 1 and Point 2 (as shown in panel a), we propose a new transitional stage
of learning with noisy labels, termed ”learning confusing patterns” (shown in panel b).

As shown in Figure 5(a), when tracking fluctuations in predictions using stability (8-epoch learn-
ing) and variability (prediction changes) metrics, we noticed Point 2 is a turning point in the model’s
fitting performance, similar to the early stopping point, Point 1. Specifically, in Point 2, the fluc-
tuations in predictions transitioned from increasing to decreasing trends, eventually stabilizing at a
specific value. Here, we empirically explain the evolution of fluctuations in predictions during the
training process. Before reaching Point 1, as training progressed, the model’s generalization perfor-
mance improved. The reduction in fluctuations in predictions suggests that a model with superior
generalization is more noise-resistant (Arora et al., 2018; Morcos et al., 2018; Zhang et al., 2019;
Forouzesh et al., 2023), resulting in more stable fits. After Point 2, the model began its shift towards
memorization. This decrease in fluctuations in predictions reflects the beginning of the model fitting
to the assigned label for each specific example (Arpit et al., 2017; Toneva et al., 2019; Feldman &
Zhang, 2020; Xia et al., 2023), showing more consistent fits.

Nevertheless, the increase in fluctuations in predictions between Point 1 and Point 2 suggests the
model is neither purely overfitting nor excellent in generalization during this stage. As shown in
Figure 5(b), we describe this stage as the “learning confusing patterns”, during which the stability
of the model’s predictions persistently decrease. Between these two points, the model’s effort to
minimize losses across the noisy training set causes it to adapt to mislabeled examples. This inte-
gration of incorrect information into generalization compromises the model’s overall representation
of the noisy training set, leading to an increase in fluctuations in predictions and a concurrent decline
in both generalization and fitting performance. In contrasting the earlier stage before Point 1 where
the model “learn from simple patterns”, the learning paradigm during learning confusing patterns
can be termed “learn from misled patterns”, indicating that, during this stage, while the model still
generalizes by learning patterns from the data, the patterns it learns are overly complex and incorrect
due to the model try to generalize to mislabeled samples.

Building upon this, we identify Point 2 as the critical point where either generalization or memo-
rization takes precedence. Beyond Point 2, the fluctuations in predictions begin to notably decline,
indicating the model’s shift towards fitting individual example labels and achieving stable fitting
across the entire noisy training set. However, the marked transition at Point 2, from misguided
generalization to overfitting, cannot be satisfactorily explained by solely relying on our predefined
stability and variability metrics. This presents an intriguing open question for further investigation.
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B DETAILED OVERVIEW OF BASIC MODEL IN OUR EXPERIMENTS

Architecture

• Framework: PyTorch, Version 1.11.0.
• Model Type: Standard ResNet-18, sourced from the PyTorch torchvision library.
• Dropout: Aligned with the standard ResNet-18, we do not incorporate dropout.

Parameters

• Seed: 1
• Batch Size: 128
• Learning Rate: Fixed at 0.01.
• Optimizer: Employs optim.SGD with momentum = 0.9.
• Loss Function: Utilizes the CrossEntropyLoss from the nn module.

Dataset & Pre-processing

• Dataset: The CIFAR-10 dataset, which is accessible via the torchvision.datasets
module. 20% of the training data is held out for validation during the training process.

• Normalization: Leveraging the torchvision.transforms module, we normalize
all pixel values to fit within the [0,1] range.

• Cropping: Images undergo random cropping procedures. For any 32x32 image, potential
padding might be added, from which random 32x32 crops are then extracted.

• Rotation: Images are subjected to random rotations, limited to a range of ±15 degrees.
This step ensures the model’s robustness against various image orientations.

Label Noise

• Symmetric Noise: We infused 40% symmetric noise into 80% of the CIFAR-10 training
set, affecting 40,000 examples.
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C EFFECTIVENESS OF LABEL WAVE

In this appendix, we delve into the comprehensive details of experiments validating the effective-
ness of the Label Wave method within various noisy label learning scenarios. We have presented
specific results from each setting in the main content (see Table 1 in Section 4.1). However, here,
we will discuss in-depth the experimental setups. Our experiments spanned a wide array of settings
commonly employed in existing methods for learning with noisy labels. This encompassed varied
architectures, datasets, noise types and levels, parameters, and optimizers. The overarching aim of
these diverse setups was to gauge the effectiveness of the Label Wave method across different envi-
ronments. Unless otherwise noted, the parameters and components remain consistent with the basic
model in Appendix B outside of the each declared setting.

C.1 NETWORK ARCHITECTURES

In our exploration, we employed a selection of prominent deep learning architectures to validate the
versatility and effectiveness of the Label Wave method:

• ResNet (He et al., 2016): Renowned for its profound success in deep learning endeavors,
especially in the realm of image classification, we engaged with multiple variants based on
the original paper: ResNet-18, ResNet-34, ResNet-50, and ResNet-101 .

• VGG (Simonyan & Zisserman, 2014): Known for its straightforward and effective archi-
tecture, we employed the VGG-16. The architecture’s clarity and consistency enabled us to
assess the Label Wave method’s effectiveness with a well-established feature hierarchy.

• Inception-v3 (Szegedy et al., 2016): With its unique design, Inception-v3 offers diverse
receptive fields without taxing computational resources. Using this architecture, we evalu-
ated our Label Wave method in networks optimized for multi-scale feature extraction.

• DenseNet (Huang et al., 2017): By employing the densely connected convolutional archi-
tecture of DenseNet-121, we aimed to assess how the Label Wave method performs in a
network characterized by robust gradient flow due to its dense connections.

C.2 DATASETS EMPLOYED

To assess the Label Wave method’s versatility, we employed several datasets, widely recognized in
the learning with noisy labels domain:

• Vision-oriented Datasets:

– CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009): Established benchmarks for im-
age classification; CIFAR-10 contains 10 classes and CIFAR-100 contains 100 classes,
respectively, and have 50,000 training examples and 10,000 test examples.

– CIFAR-N (Wei et al., 2021): An augmented version of the CIFAR dataset, we use it
“worst” setting, which is marked by approximately 40% real-world label noise, and
presented an opportunity to test the resilience of the Label Wave method.

– Tiny-ImageNet (Le & Yang, 2015): With 200 classes, each class contains 500 training
images, making it a comprehensive dataset for evaluating performance.

• Text-oriented Dataset:
– NEWS (Kiryo et al., 2017; Yu et al., 2019): We leveraged the NEWS dataset to ex-

amine the Label Wave method’s applicability beyond images. The dataset consists
of news articles categorized into various themes. For NEWS, we borrowed the pre-
trained word embeddings from Pennington et al. (2014), and a 3-layer MLP is used
with Softsign active function.

• Real-world Scenarios Dataset:
– CIFAR-N (Wei et al., 2021): An augmented version of the CIFAR dataset, we use it

“Random 1, 2, 3” setting, which is marked by approximately 20% real-world label
noise, and presented an opportunity to test the resilience of the Label Wave method.

16



Published as a conference paper at ICLR 2024

– Clothing1M (Xiao et al., 2015): A large-scale dataset that focuses on clothing clas-
sification. It contains over 1 million images of clothing items, categorized into 14
classes.

– WebVision (Li et al., 2017): Designed to mirror the real-world challenges of web-
based image recognition, this dataset contains images collected from the internet. It
comprises 2.4 million images from 1,000 different classes, mimicking the class distri-
bution of ImageNet.

– Food101 (Bossard et al., 2014): This dataset is focused on food recognition, consisting
of 101 food categories, with 101,000 images. Each category contains 750 training
images and 250 test images. The images are not artificially labelled and thus contain
some level of real-world noise.

• Class imbalanced dataset: We tested our method on class imbalanced datasets, by setting
the Imbalance Factor to 0.1 and the Noise Ratio (Sym.) to 0.4. Our experiments were
conducted using our method in Cross-Entropy (Rubinstein, 1999) (CID-CE) and class im-
balanced method LDAM (Cao et al., 2019) (CID-LDAM).

Table 4: Differences (mean±std) among the model selection methods. Lower is better.

Datasets Clothing1M WebVision Food101

Global Maximum (%) 70.56±0.11 57.58±0.14 80.73±1.46
Label Wave (%) 70.12±0.34 57.24±0.34 80.12±1.01

Difference 0.44% 0.34% 0.61%

C.3 LABEL NOISE

We examined the Label Wave method’s effectiveness across various label noise conditions:

• Symmetric Noise (Sym.) (Van Rooyen et al., 2015): Symmetric noise levels were var-
ied between 20% to 80%, which provided environments to examine how the Label Wave
method works with data that has uniformly distributed noise across different labels.

• Instance-dependent Noise (Ins.) (Xia et al., 2020): By introducing 20% to 80% instance-
dependent noise, we aimed to examine how Label Wave method works with data that has
noise correlated with the instance characteristics.

• Real-world Noise (Wei et al., 2021): We have detailed the CIFAR-N dataset that is char-
acterized by real-world noise. Building on that foundation, we have evaluated how Label
Wave method performs when confronted with noise in real-world scenarios.

• Low noise rate: We augmented the CIFAR-10 dataset with 10% symmetric noise (Sym.
10%) and 10% instance-dependent noise (Ins. 10%), presenting an opportunity to test the
resilience of the Label Wave method.

Label Wave method is not applicable in very low or no label noise. There are many situations
where validation and test errors consistently decrease even with (low level) noisy labels in the train-
ing data. Modern deep neural networks often exhibit benign overfitting (Bartlett et al., 2020), a
phenomenon also describable as a memorization effect (Zhang et al., 2017; Arpit et al., 2017).

The effectiveness of the Label Wave method in identifying an appropriate early stopping point is
attributed to our design of a practical metric that tracks the significant onset of learning confusion
patterns, namely prediction changes (PC). Therefore, if the training process lacks a stage of learn-
ing confusion patterns, such as when training with perfect data or employing robust regularization
approaches, the original Label Wave method may not identify an appropriate stopping point.

However, it is important to note that in these scenarios, applying early stopping to improve the
model’s generalization performance might not be necessary.
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C.4 PARAMETERS AND OPTIMIZATION

Our experiments encompassed an array of parameters and optimizers:

• Batch Sizes (BS.): 64, 128, 256.
• Learning Rates (LR.): 0.01, 0.05, 0.001.
• Optimizers:

– SGD with momentum (Robbins & Monro, 1951; Polyak, 1964): A widely-used opti-
mizer, we gauged how its momentum-based optimization worked in tandem with the
Label Wave method.

– RMSProp (Tieleman et al., 2012): Known for its robustness and flexibility in non-
stationary settings, we examined its synergy with the Label Wave method.

– Adam (Kingma & Ba, 2014): Recognized for its adaptability in adjusting learning
rates during training, we determine its synergy with the Label Wave method.

• Seeds: Each experiment is run five times, with the seed set to: 1, 2, 3, 4, 5, respectively.

C.5 REGULARIZATION TECHNIQUES

We examined the Label Wave method’s effectiveness across various regularization techniques:

• Mixup (Zhang et al., 2018): Mixup is an innovative data augmentation technique that
operates by creating virtual training examples. It linearly interpolates between pairs of
examples and their labels, effectively encouraging the model to favor simple linear behavior
in-between training examples.

• Batch Normalization (BN) (Ioffe & Szegedy, 2015): Batch Normalization is a widely
adopted technique in deep learning, designed to stabilize and accelerate the training pro-
cess. By normalizing the inputs of each layer across the mini-batch, it addresses the issue
of internal covariate shift.

• Dropout (Srivastava et al., 2014): Dropout is a regularization technique that prevents over-
fitting by randomly deactivating a subset of neurons during training. By doing this, it
effectively creates a network of varying architecture each time a batch is passed through,
which discourages the network from relying too much on any single neuron and promotes
better feature learning.

• Data Augmentation (DA):
– Cropping: Images undergo random cropping procedures. For any 32x32 image, po-

tential padding might be added, from which random 32x32 crops are then extracted.
– Rotation: Images are subjected to random rotations, limited to a range of ±15 degrees.

This step ensures the model’s robustness against various image orientations.

Table 5: Test accuracy (mean±std) of each techniques on CIFAR-10 (with 40% Sym. label noise).

Regularization Techniques Val. 20% Label Wave Global Maximum

Label Wave 63.00±0.86% 66.79±0.39% 67.15±0.49%
Label Wave + BN + DA 78.94±0.52% 81.61±0.44% 81.76±0.30%

Label Wave + BN + DA + Dropout 81.30±1.07% 83.57±0.24% 83.77±0.32%
Label Wave + BN + DA + Mixup 81.06±0.49% 82.38±0.56% 83.09±0.22%

Label Wave + BN + DA + Dropout + Mixup 81.66±0.07% 83.67±0.45% 84.05±0.35%
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C.6 QUANTITATIVE COMPARISON BETWEEN LABEL WAVE AND GLOBAL MAXIMUM TEST
ACCURACY

In Table 1, we use “Difference” to indicate the disparity in test accuracy between the model that
achieved the Global Maximum test accuracy throughout the training process and the model selected
by the Label Wave method. This measure directly contrasts the performance of the Label Wave
method with that of the ground-true best model (Global Maximum) across various settings. The
Difference is determined by the following formula:

Difference = AGM −ALW

Where:

- AGM represents the average test accuracy of the model which have maximum test accuracy in the
training process.

- ALW represents the average test accuracy of the model selected by the Label Wave method.

This formula provides a quantitative measure to determine how closely the model selected by the
Label Wave method aligns with the optimal model (i.e., the model with Global Maximum test accu-
racy) for each setting. A smaller Difference indicates that the performance of the Label Wave method
is near optimal, while a larger Difference suggests a divergence from the optimal performance.

Using the Difference metric, we objectively evaluate the performance of the Label Wave method
across various settings. As shown in Table 1, the consistent and slight disparities between the mod-
els chosen by the Label Wave method and the optimal models (Global Maximum) underscore the
effectiveness of the Label Wave method across diverse settings. This showcases the Label Wave
method’s aptitude in pinpointing an appropriate early stopping point for model selection, which
aligns closely with or even matches the optimal models.
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D ENHANCING EXISTING LEARNING WITH NOISY LABEL METHODS

As shown in Tables 6 and 7, we conducted evaluations using ResNet-18 on CIFAR-10 and ResNet-
34 on CIFAR-100 (Krizhevsky et al., 2009; He et al., 2016), both trained with 40% Instance-
Dependent noise (abbreviated as Ins.) (Xia et al., 2020). Further, as shown in Table 8, we added
the different between the test accuracy of the model selected using the Label Wave method and the
global maximum test accuracy during the training process when using various learning with noisy
label methods with 40% Symmetric noise (abbreviated as Sym.) (Van Rooyen et al., 2015).

Table 6: Test accuracy (mean±std) of each method on CIFAR-10 (with 40% Ins. label noise).
Method Val. 10% Val. 20% Label Wave Global Maximum

CE (Rubinstein, 1999) 78.04±0.62% 77.35±0.23% 80.49±0.33% 80.86±0.77%
Taylor-CE (Feng et al., 2020) 81.30±0.14% 81.09±0.43% 83.24±0.49% 83.63±0.60%

ELR (Liu et al., 2020) 87.68±0.32% 86.98±0.22% 89.59±0.16% 90.41±0.25%
CDR (Xia et al., 2021) 85.66±0.43% 84.86±0.25% 87.42±0.51% 87.63±0.22%

CORES (Cheng et al., 2021) 79.45±0.38% 78.77±0.35% 81.22±0.64% 81.64±0.65%
NLS (Wei et al., 2022a) 80.61±0.80% 80.25±0.25% 82.36±0.86% 82.63±1.24%
SOP (Liu et al., 2022a) 84.08±0.25% 83.51±0.30% 85.57±0.35% 85.92±0.15%

Table 7: Test accuracy (mean±std) of each method on CIFAR-100 (with 40% Ins. label noise).
Method Val. 10% Val. 20% Label Wave Global Maximum

CE (Rubinstein, 1999) 42.59±0.21% 41.82±0.64% 44.86±0.62% 45.23±0.11%
Taylor-CE (Feng et al., 2020) 52.42±0.59% 52.53±0.56% 55.52±0.54% 55.74±0.23%

ELR (Liu et al., 2020) 64.90±0.33% 64.61±0.03% 66.85±0.11% 67.33±0.57%
CDR (Xia et al., 2021) 59.82±0.10% 59.21±0.87% 62.64±0.40% 63.25±0.47%

CORES (Cheng et al., 2021) 43.26±0.71% 41.96±0.11% 45.38±0.13% 46.24±0.09%
NLS (Wei et al., 2022a) 52.22±0.88% 53.26±0.08% 55.56±0.39% 56.00±0.25%
SOP (Liu et al., 2022a) 67.83±0.15% 66.33±0.23% 69.35±0.71% 70.23±0.53%

Table 8: Test accuracy (mean±std) of each method on CIFAR (with 40% Sym. label noise).
CIFAR10 - Method Label Wave Global Maximum

CE (Rubinstein, 1999) 81.61±0.44% 81.76±0.30%
Taylor-CE (Feng et al., 2020) 85.06±0.30% 85.43±0.37%

ELR (Liu et al., 2020) 90.45±0.52% 90.76±0.70%
CDR (Xia et al., 2021) 87.69±0.10% 87.80±0.24%

CORES (Cheng et al., 2021) 87.74±0.13% 87.95±0.21%
NLS (Wei et al., 2022a) 83.45±0.19% 83.62±0.37%
SOP (Liu et al., 2022a) 88.42±0.38% 88.82±0.46%

CIFAR100 - Method Label Wave Global Maximum

CE (Rubinstein, 1999) 50.96±0.30% 51.05±0.33%
Taylor-CE (Feng et al., 2020) 57.64±0.28% 57.99±0.30%

ELR (Liu et al., 2020) 65.36±0.39% 66.33±0.93%
CDR (Xia et al., 2021) 63.34±0.15% 63.54±0.28%

CORES (Cheng et al., 2021) 45.03±0.38% 45.75±0.27%
NLS (Wei et al., 2022a) 58.05±0.15% 58.32±0.35%
SOP (Liu et al., 2022a) 68.53±0.30% 68.78±0.27%

20



Published as a conference paper at ICLR 2024

E SENSITIVITY ANALYSIS OF k VALUE IN MOVING AVERAGES

In this appendix, we present a sensitivity analysis of the k value used in computing moving averages
within the framework of the Label Wave method. This method, as detailed in the paper, employs
moving averages of Prediction Changes (PC) for early stopping in training models with noisy labels.

This analysis varied the k value, which represents the number of epochs over which the moving
average is calculated for the PC metric. We computed the Pearson Correlation Coefficient between
the moving average of PC values (denoted as PC′

t) and test accuracy for each k value. The goal was
to determine the impact of different k settings on the relationship between the averaged PC values
and the test accuracy. The table below summarizes the Pearson Correlation Coefficients for different
k values:

k Value Pearson Correlation Coefficient

1 -0.8565
2 -0.9435
3 -0.9637
5 -0.9367

10 -0.9406

E.1 OBSERVATIONS

• Strong Negative Correlation: A strong negative correlation was consistently observed
across all k values. This signifies a robust inverse relationship between the moving average
of PC values and test accuracy.

• Variation in Correlation Strength: The correlation’s strength varied with different k val-
ues. The strongest negative correlation occurred at k = 3, while k = 5 and k = 10
exhibited a slight decrease in correlation strength.

E.2 CONCLUSION

The sensitivity analysis reveals that the selection of k value influences the strength of the correlation
but does not significantly alter the overall negative relationship between the moving average of PC
values and test accuracy.
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