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Abstract

The burgeoning generative capabilities of large001
language models (LLMs) have raised grow-002
ing concerns about abuse, demanding auto-003
matic machine-generated text detectors. De-004
tectGPT (Mitchell et al., 2023), a zero-shot005
metric-based detector, first introduces perturba-006
tion and shows great performance improvement.007
However, in DetectGPT, random perturbation008
strategy could introduce noise, and logit regres-009
sion depends on threshold, harming the gen-010
eralizability and applicability of individual or011
small-batch inputs. Hence, we propose a novel012
fine-tuned detector, PECOLA, bridging metric-013
based and fine-tuned detectors by contrastive014
learning on selective perturbation. Selective015
strategy retains important tokens during pertur-016
bation and weights for multi-pair contrastive017
learning. The experiments show that PECOLA018
outperforms the state-of-the-art by 1.20% in ac-019
curacy on average on four public datasets. And020
we further analyze the effectiveness, robustness,021
and generalization of the method.022

1 Introduction023

Machine-generated text (MGT) detection is to dis-024

criminate MGT from human-written texts (HWT),025

preventing abuse of large language models (LLMs),026

including academic misconduct (Vasilatos et al.,027

2023), spam synthesis (Dou et al., 2020), untrust-028

worthy news (Zellers et al., 2019), etc. Currently,029

existing MGT detection methods can be mainly030

classified into two genres (Wu et al., 2023), i.e.,031

fine-tuned methods (Liu et al., 2023; Hu et al.,032

2023; Verma et al., 2023; OpenAI, 2023) and zero-033

shot metric-based methods (Gehrmann et al., 2019;034

Mitchell et al., 2023; Yang et al., 2023; Bao et al.,035

2024). In general terms, fine-tuned detector meth-036

ods can achieve better accuracy than zero-shot037

metric-based methods, especially generalizable to038

black-box generators, but are more costly during039

data collection, fine-tuning, and running. On the040
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Figure 1: Example of the selective strategy perturbation
of PECOLA, which prevent modifying important tokens
(in green). Orange tokens are the perturbed texts.

other hand, zero-shot metric-based methods show 041

better interpretability than fine-tuned ones. 042

DetectGPT (Mitchell et al., 2023), as an unsu- 043

pervised zero-shot metric-based method, first intro- 044

duces perturbation in MGT detection. Specifically, 045

it applies random masking to the original input 046

sample and uses T5 (Raffel et al., 2020) to fill in. 047

It posits that minor perturbations of MGT tend to 048

have lower log probability under the base model 049

than the original sample. The introduction of per- 050

turbation in DetectGPT surpasses the vanilla log- 051

probability-based method (Gehrmann et al., 2019) 052

in white-box settings. 053

However, DetectGPT still has three significant 054

defects: (i) DetectGPT’s reliance on the logit re- 055

gression module’s threshold compromises its gen- 056

eralization in zero-shot settings and limited to large 057

batch input, fails on individual inputs. (ii) Detect- 058

GPT does not fully utilize the perturbation. As a 059

metrics-based method, it only considers the prob- 060

ability difference caused by perturbation, which 061

is overly simplified and slightly indistinguishable. 062

Perturbation should indeed be a stronger augment 063

that carries implicit language pattern information. 064

(iii) DetectGPT perturbs the original sample ran- 065

domly and unrestricted, which could introduce 066

more noise and negatively impact the performance 067
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(Kim et al., 2022). For example, Liu et al. (2023)068

find entity-relationship plays a role in the detection,069

which might be destroyed in random perturbation070

of DetectGPT.071

In this paper, we thus propose a Perturbation-072

based Contrastive Learning model, PECOLA, for073

MGT detection, toward the defects with two stages,074

i.e., Selective Strategy Perturbation (Sec. 3.1) and075

Token-Level Weighted Multi-Pairwise Contrastive076

Learning (Sec. 3.2). Firstly, Selective Strategy Per-077

turbation is a token-level rewriting method with078

restrictions on modifying important texts (Campos079

et al., 2020) to reduce noise. The motivation is080

to simulate the human behavior of modification081

(Verma and Lee, 2017; Fetaya et al., 2020; Wang082

et al., 2019). The perturbation strategy consists083

of tokens removing and substitution, as shown in084

Fig. 1. The experiments show that our Selective085

Strategy Perturbation method can improve the per-086

formance of both metrics-based (i.e., DetectGPT)087

and model-based methods. Secondly, we use a088

Multi-Pairwise Contrastive Learning model to pro-089

cess the perturbed texts. Different from the logit090

regression module in DetectGPT, the trained model091

is generalizable without any threshold setting, and092

it can deal with individual inputs. Moreover, by093

utilizing multi-pairwise contrastive learning, the094

model could better utilize perturbation to focus on095

the language pattern gap between HWT and MGT.096

The importance weight from the perturbation stage097

is also reused as contrastive learning weight. No-098

tably, by using contrastive learning, PECOLA is099

a strong few-shot fine-tuning method, which ef-100

fectively bridges and integrates metric-based and101

fine-tuned detector genres. Finally, extensive ex-102

periments show PECOLA is significantly superior103

to baseline and SOTA methods on four datasets,104

PECOLA improves by 1.20% to SOTA on average105

under few-shot settings, surpassing the latest meth-106

ods by 3.84% among metric-based detectors and107

by 1.62% among fine-tuned detectors. Further ex-108

periments show that PECOLA is as well better at109

generalization, robustness, and effectiveness.110

Our contributions are summarized as follows:111

• Selective Perturbation: Based on our analy-112

sis of various selective perturbation strategies,113

we propose a novel method considering to-114

ken importance, which reduces the noise and115

benefits to both supervised and unsupervised116

approaches.117

• Bridge Metric and Model-based Detectors:118

We utilize a novel fine-tuned contrastive learn- 119

ing module to replace the logit regression of 120

DetectGPT (metric-based), which frees the de- 121

tector from setting the threshold, enables it to 122

deal with individual input, and can be general- 123

izable and effective on the few-shot setting by 124

contrasting perturbed texts with origin ones. 125

• Outperformance: Our detector PECOLA out- 126

performs all eight compared models on four 127

public datasets. And PECOLA is more robust 128

to the choice of base model and filling model. 129

Furthermore, we prove its generalization abil- 130

ity across domains and genres of data. 131

2 Related Work 132

Machine-generated Text Detection. While fine- 133

tuned detectors have proven effective for MGT de- 134

tection (Wahle et al., 2022; Hu et al., 2023), the re- 135

quirement for annotated datasets poses a significant 136

challenge due to the proliferation of unchecked, 137

high-quality generated texts. To address this chal- 138

lenge, DetectGPT (Mitchell et al., 2023) and Fast- 139

DetectGPT (Bao et al., 2024) have demonstrated 140

strong performance in white-box zero-shot settings. 141

Similarly, CoCo (Liu et al., 2023) is designed to 142

detect MGT with low resource annotations, utiliz- 143

ing a coherence-based contrastive learning model. 144

Recently, the Watermark method (Kirchenbauer 145

et al., 2023) has been introduced to mitigate the 146

risk associated with unchecked MGTs by embed- 147

ding imperceptible signals within text outputs. In 148

contrast to previous methods, our approach inte- 149

grates data perturbation with contrastive learning, 150

with a particular emphasis on reducing reliance on 151

mask-filling models and enhancing performance in 152

few-shot scenarios. 153

Perturbation. Data perturbation methods find fre- 154

quent application in text classification tasks (Gao 155

et al., 2022; Shum et al., 2023), which is commonly 156

employed through the technique of consistency reg- 157

ularization (Xie et al., 2020; Chen et al., 2020). 158

Nevertheless, in MGT detection, previous perturba- 159

tion methods have exhibited certain limitations. For 160

instance, they often resort to randomly selecting tar- 161

get tokens for synonym replacement (Wang et al., 162

2018), deletion, or insertion (Wei and Zou, 2019), 163

and fine-tuning pre-trained models to fill text spans 164

of variable lengths (Gao et al., 2022). While these 165

methods do enhance text diversity, the indiscrim- 166

inate replacement of tokens without guided rules 167

can lead to the generation of less reliable texts. 168
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Figure 2: Overview of PECOLA. In the Selective Strategy Perturbation stage (Sec. 3.1), we use the YAKE algorithm
to score token importance and then selective masking based on probability. Then, we fill in the masks with a
mark-filling language model. In the Contrastive Learning stage (Sec. 3.2), we design a multi-pairwise method
with token-level weights also from tokens importance. Yellow arrows represent attraction and green ones represent
repulsion. The model is optimized by combining cross-entropy (CE) loss Lce and contrastive loss LMarginw . * Our
method, different from DetectGPT, is generalizable on any mask-filling language model.

These limitations motivate us to devise data pertur-169

bation methods tailored for MGT detection. Our170

approach, guided selectively, aims to better repre-171

sent meaningful recombination spaces while pre-172

serving the inherent semantic features of the text,173

ultimately enhancing the diversity of samples.174

Constrastive Learning. Contrastive learning is175

an effective solution method to the issues of re-176

lying solely on cross-entropy classification loss177

leading to a lack of robustness and suboptimal gen-178

eralization (Tack et al., 2020; Hu et al., 2023). In179

limited labeled data task (Gunel et al., 2021), in-180

troduce a robust contrastive learning method to181

capture the similarities between the same instances182

in the representation space, while separating those183

of different classes. Similarly, out-of-distribution184

(OOD) usually leads to severe semantic shift is-185

sues during inference, prompting another approach186

based on margin contrastive learning (Zhou et al.,187

2021). Differently, our method focuses more on the188

changes of the rephrase space in data distribution189

after perturbation, and strives to reduce reliance on190

the mask-filling models in few-shot learning.191

3 Methodology192

As shown in Fig. 2, the workflow of PECOLA193

mainly consists of two stages: Selective Strategy194

Perturbation and Supervised Contrastive Learning195

for fine-tuning PLM, which enjoy the advantage196

of metric-based and model-based detectors, respec-197

tively. 198

3.1 Selective Strategy Perturbation 199

In this work, we present a token-level selective 200

strategy perturbation method to relieve the informa- 201

tion loss caused by the random masking used in De- 202

tectGPT. Our approach involves adapting the mask- 203

selection probability for each text token based on 204

its importance, thus generating perturbed inputs 205

with strategically placed masks. Additionally, we 206

harness LLMs to populate the masks, creating filled 207

perturbation inputs. This step effectively intro- 208

duces a diverse range of perturbation information 209

into our detection model. 210

Token Importance Assessment. To accurately as- 211

sess the significance of tokens within the text and 212

mitigate information loss stemming from random 213

masking, we expand upon the YAKE algorithm 214

(Campos et al., 2020) to operate at the token level. 215

The YAKE algorithm builds upon certain assump- 216

tions (Machado et al., 2009), which posit that the 217

importance of a candidate word decreases as the 218

richness of the vocabulary surrounding it on both 219

sides increases. This fundamental assumption re- 220

mains applicable when processing text at the token 221

level, i.e., token importance assessment. 222

Specifically, considering a training set S com- 223

prising i inputs, for each text input si ∈ S con- 224

taining n tokens (i.e., si = {e1i , e2i , . . . , eni }), we 225

employ the YAKE algorithm to compute a score 226
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for each token e. Tokens with scores falling below227

the specified threshold α are then incorporated into228

the set of important tokens Ki:229

Ki =

{
Ki ∩ {eni } , if Score(eni ) < α

Ki, otherwise
(1)230

where Score(eni ) represents the YAKE score calcu-231

lated by token eni . The higher the score, the lower232

the importance of the token eni in si.233

Mask Position Selection. After getting the im-234

portant tokens set Ki of each text input si, we use235

special token [MASK] to replace some of the tokens236

in the text input to construct masked perturbation237

input smask
i . In order to relieve the information loss238

caused by masking perturbation, we add regular-239

ization to the traditional random masking method240

and use a selective masking strategy to prevent241

important tokens from being masked.242

Given an input text si =
{
e1i , e

2
i , . . . , e

n
i

}
, we243

use the selective masking strategy to traverse each244

token and determine whether to mask it based on245

the token’s importance. The probability of token246

eni being masked is specifically defined as:247

Pn
i = 1[eni ∈Ki]P (2)248

where P is the mask ratio, and 1[eni ∈Ki] represents249

an indicator function with a value of 1 if and only250

if the condition eni ∈ Ki is satisfied, otherwise,251

it is 0. Then we gather all masked perturbation252

inputs {smask
1 , ..., smask

i } and include them in the253

training set to give the model masked perturbation254

improving model robustness.255

Mask-Filling. Additionally, we utilize the current256

PLMs, e.g., T5 (Raffel et al., 2020) or RoBERTa257

(Liu et al., 2019) etc., to fill the masked pertur-258

bation inputs and create the filled perturbation in-259

puts {sfill1 , . . . , sfilli }. Similar to before, we in-260

clude all filled perturbation inputs in the train-261

ing set and obtain the final training set S =262

{s1, . . . , si, smask
1 , . . . , smask

i , sfill1 . . . , sfilli }.263

3.2 Token-Level Weighted Multi-Pairwise264

Contrastive Learning265

Importance-based Feature Reconstruction. Ex-266

isting MGT methods (Liu et al., 2023) often uni-267

formly extract all token information in the text,268

ignoring the huge impact of a few important to-269

kens on the detection model. In this work, we270

reconstruct the token feature extracted by PLM ac-271

cording to the importance of the token in the input272

text, allowing the detection model to focus more on 273

important token information. We assign adaptive 274

weights to all tokens in the input: 275

wn
i =

{
1− Score(eni ), if eni ∈ Ki

0, otherwise
(3) 276

where wn
i represents the assign adaptive weight of 277

the n-th token of the i-th input in the training set. 278

After that, we use the last hidden layer embedding 279

of the outputs in the base PLMs to extract input 280

features: 281

Hi = PLM(si) (4) 282

where Hi contains the features of all tokens in the 283

input si, i.e., Hi = {h1i , h2i , . . . , hni }. We use the 284

weight of the corresponding token to reconstruct 285

its features: 286

hni = hni (1 + wn
i ) (5) 287

By using feature reconstruction, we assign more 288

weight to important tokens. This allows our de- 289

tection model to concentrate on the characteristic 290

information of these important tokens. 291

Multi-Pairwise Contrastive Learning. Consider- 292

ing that existing works (Gunel et al., 2021; Zhou 293

et al., 2021; Liu et al., 2023) mainly concentrate on 294

single-input feature learning while overlooking in- 295

put correlations, we introduce contrastive learning 296

into MGT. It enables PECOLA to discern the dis- 297

tinct featurinputes of variously labeled data, more 298

accurately capture input features, and significantly 299

enhance performance in few-shot setting. 300

Given a batch training data {si}Mi=1, where M 301

is the batch size, we calculate the positive class 302

contrastive loss and negative class contrastive loss 303

on the last hidden layer embedding of the first token 304

output h1i from the base PLM: 305

Lpos =

M∑
i=1

1

|Pt(i)|
∑

p∈Pt(i)

∥(h1
i − h1

p)∥2 (6) 306

Lneg =

M∑
i=1

1

|Nt(i)|
∑

n∈Nt(i)

max
(
0, ξ − ∥(h1

i − h1
n)∥2

)
(7) 307

where Pt(i) represents the samples with the same 308

label as the i-th sample in the batch, and Nt(i) 309

represents the ones with different labels as the i- 310

th sample. And ξ is the maximum L2 distance 311

between pairs of inputs from the same class in the 312

batch of training data: 313

ξ =
M

max
i=1

max
p∈Pt(i)

∥h1i − h1p∥2 (8) 314
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This adaptive margin ensures that despite data Per-315

turbation during training, the model is steered to316

maintain discriminative embeddings. Then we get317

the following contrastive loss as:318

Lcon =
1

M
(Lpos + Lneg) (9)319

For supervised learning tasks, we utilize the cross-320

entropy classification loss Lce to train our detection321

model. By adjusting the weight λ to balance the322

impact of various losses on the model, our total323

loss is given by the following:324

L = Lce + λLcon (10)325

4 Experiments326

4.1 Experiment Settings327

To demonstrate the effectiveness of PECOLA, we328

conduct extensive experiments on four open-source329

datasets under few-shot learning settings.330

Datasets. Grover (Zellers et al., 2019), generated331

by the transformer-based news generator Grover-332

Mega (1.5B); GPT-2, a webtext dataset provided333

by OpenAI (2019) based on GPT-2 XL (1.5B);334

GPT-3.5, a news-style dataset constructed by CoCo335

(Liu et al., 2023) using the text-DaVinci-003 model336

(175B); HC3 (Guo et al., 2023), involving open337

domains, finance, healthcare, law, and psychology338

texts, composed of comparative responses from339

human experts and ChatGPT.340

Few-shot Learning Settings. We randomly sam-341

ple 32, 64, 128 and 512 samples from the original342

training set, while keeping the balance of machine343

and human categories. More details are provided344

in Appendix A.1.345

4.2 Comparison Models346

we compare PECOLA with both unsupervised and347

supervised MGT detection methods:348

RoBERTa (Liu et al., 2019), supervised methods349

via standard fine-tuning pre-trained language mod-350

els as classifiers. We use RoBERTa-base (135M).351

GLTR (Gehrmann et al., 2019), a metric-based de-352

tector and based on next-token probability. We353

follow the setting of Guo et al. (2023), utilizing354

the Test-2 feature. For a fair comparison with fine-355

tuning methods, we first use the few-shot training356

samples to settle the threshold and adapt the fixed357

threshold in the test set.1358
1The base model of GLTR is chosen based on the generator

of the dataset: for GPT-2 and Grover datasets, we use GPT-2
Small (124M); and for GPT-3.5 and HC3 datasets, we use GPT-
J (6B) (Wang, 2021), which is the best open-source model to
simulate ChatGPT and GPT-3.5 empirically.

CE+SCL (Gunel et al., 2021), a fine-tuned detec- 359

tor, used in conjunction with the Cross-Entropy 360

(CE) loss, exhibiting impressive performance in 361

few-shot learning settings. 362

CE+Margin (Zhou et al., 2021), a contrastive learn- 363

ing approach focuses on separating OOD instances 364

from In-Distribution (ID) instances, aiming to mini- 365

mize the L2 distance between instances of the same 366

label. We train the detector by combining CE loss. 367

IT:Clust (Shnarch et al., 2022), a general text clas- 368

sification method that employs unsupervised clus- 369

tering as an intermediate for fine-tuning pre-trained 370

models, utilizing RoBERTa-base (110M). 371

CoCo (Liu et al., 2023) utilizes coherence graph 372

representation and contrastive learning to improve 373

supervised fine-tuning methods in both inadequate 374

and adequate data resource scenarios. 375

DetectGPT (Mitchell et al., 2023), a zero-shot 376

metric-based MGT detector, using T5-large (Raffel 377

et al., 2020) to perturb texts. Same as GLTR, we 378

fix the threshold.2 379

Fast-DetectGPT (Bao et al., 2024), an optimized 380

zero-shot detector, building upon the foundation 381

of DetectGPT, and utilizes a surrogate GPT-Neo 382

(2.7B) (Black et al., 2022) model for scoring. 383

4.3 Performance Comparison 384

As shown in Table 1, PECOLA surpasses the com- 385

petitors on all datasets in the few-shot MGT de- 386

tection task. Specifically, compared with the best 387

competitor, PECOLA achieves accuracy and F1- 388

score improvement of 2.04% and 1.42%, 1.71% 389

and 2.55% on Grover and GPT2 datasets. On 390

GPT3.5 and HC3 datasets, PECOLA still ensures 391

0.86% and 0.68%, 0.21% and 0.22% performance 392

improvement with greater stability. The results 393

prove the effectiveness of PECOLA, which inte- 394

grates the advantage of unsupervised (perturbation 395

for metric-based) and supervised (contrastive learn- 396

ing for model-based) MGT detection methods. 397

Moreover, the unsupervised learning methods 398

tend to show better performance in extremely few 399

shot scenarios. Unsurprisingly, unsupervised meth- 400

ods do not see a notable performance improvement 401

with the increase in the number of training samples, 402

which causes them to outperform on the fewest shot 403

settings initially but soon be surpassed. As for the 404

2For all four datasets (including HC3 and GPT-3.5
datasets), we use GPT-2 Small (124M) as the base model
to calculate the likelihood. The reason is Mireshghallah et al.
(2023) find that small model is better black-box detector for
DetectGPT.
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Dataset Metric Shot RoBERTa GLTR† CE+SCL CE+Margin IT:Clust CoCo* DetectGPT†
* Fast-Detect.†* PECOLA

G
ro

ve
r

Acc

32 48.8310.31 56.61 55.864.43 56.793.31 41.573.58 51.608.42 55.02 56.06 59.031.63

64 56.883.03 56.61 57.572.63 58.922.17 46.452.20 58.2710.21 54.61 60.33 60.941.56

128 59.281.91 58.48 60.333.41 60.443.85 50.723.70 58.975.53 55.78 60.33 63.601.71

512 70.391.21 62.26 72.381.73 72.151.16 56.080.87 70.075.54 55.56 62.50 73.120.84

F1

32 44.138.82 52.77 51.563.03 53.212.24 40.793.66 47.332.63 51.09 56.67 53.950.94

64 52.881.52 52.77 53.391.16 54.991.75 46.101.25 44.703.53 48.07 57.92 55.481.35

128 54.691.18 54.47 55.742.21 55.542.40 51.374.80 51.442.13 53.78 54.89 58.981.58

512 64.493.17 57.11 67.022.12 66.251.65 51.800.49 65.153.76 53.32 61.29 68.241.64

G
PT

-2

Acc

32 70.534.10 75.99 69.325.19 70.002.33 51.021.66 71.697.07 68.59 71.88 75.421.80

64 74.412.47 75.76 73.773.54 74.041.42 54.322.73 73.201.42 71.12 71.88 78.921.14

128 79.772.04 75.77 80.181.25 80.931.26 59.662.83 79.444.80 71.74 71.88 82.580.49

512 84.071.46 75.86 84.761.19 84.891.17 71.593.23 84.300.58 71.74 74.06 85.750.69

F1

32 66.575.09 72.45 64.898.13 69.892.38 48.453.72 71.1911.05 65.50 70.00 75.101.99

64 73.912.69 70.87 72.324.31 73.941.40 53.873.00 69.792.03 66.58 70.97 78.881.17

128 79.492.26 71.16 80.001.35 80.791.34 59.482.79 76.107.37 66.13 71.88 82.540.51

512 84.011.52 75.56 84.721.25 84.861.24 70.424.26 83.880.79 66.13 74.64 85.720.70

G
PT

-3
.5

Acc

32 90.547.26 92.55 92.443.19 92.852.44 61.824.30 93.271.44 84.42 89.10 95.800.68

64 96.850.84 91.00 96.861.67 97.320.58 77.706.92 95.761.52 82.58 89.65 98.010.31

128 97.501.24 91.60 98.000.46 98.000.18 92.544.01 96.260.89 85.33 89.85 98.060.12

512 98.970.18 92.60 98.990.80 98.920.28 98.131.20 98.050.47 85.57 90.62 99.140.15

F1

32 90.277.77 92.71 92.423.20 92.812.49 60.954.67 92.721.54 84.43 89.76 95.800.68

64 96.840.84 91.49 96.861.67 97.470.30 77.337.31 95.451.54 86.16 89.92 98.010.31

128 97.501.24 91.96 98.000.46 98.000.18 92.504.07 97.570.92 86.13 89.77 98.060.12

512 98.850.40 92.71 98.930.21 98.920.28 98.131.20 97.880.50 86.20 90.62 99.140.15

H
C

3

Acc

32 93.361.50 97.30 95.331.81 95.461.71 77.008.05 92.111.71 94.54 87.70 97.190.16

64 96.970.74 98.13 97.810.41 97.810.31 91.692.34 95.501.27 95.03 88.87 98.590.14

128 97.560.38 98.29 98.170.30 98.140.36 95.431.15 97.571.09 95.10 88.87 98.630.32

512 98.850.40 98.31 98.930.21 98.990.20 97.980.47 98.581.18 95.13 90.62 99.150.11

F1

32 93.341.52 97.30 95.321.82 95.451.72 76.478.77 92.071.56 94.29 88.39 97.190.16

64 96.970.74 98.12 97.810.41 97.810.32 91.672.34 95.501.19 94.95 89.92 98.590.14

128 97.560.38 98.29 98.170.30 98.140.36 95.431.15 97.591.05 95.01 89.92 98.630.32

512 98.850.40 98.31 98.930.21 98.990.20 97.980.47 98.591.16 95.05 91.06 99.150.11

Table 1: Comparison of PECOLA to baseline methods in few-shot MGT detection. The results are average values of
10 runs with different random seeds. The subscript means the standard deviation (e.g., 99.150.11 means 99.15 ±
0.11). † Zero-shot model-based methods’ results are deterministic, so we do not report standard deviation. Also,
these methods must have the white-box generator as the base model, which is different from the black-box settings
of other model-based methods. Asterisk (*) denotes the latest SOTA method.

deception of generators, Grover appears to be the405

hardest to detect while other models are relatively406

"honest" to detectors. It might have originated from407

the adversarial training strategy of Grover, while408

the bulit-in detector module adversarially shifts the409

LLM’s detectable features. More interestingly, ad-410

vanced language models show a weaker ability to411

cheat detectors. Most detectors achieve around412

98% in accuracy on the GPT-3.5 and HC3 datasets,413

which is consistent with the conclusion from Liu414

et al. (2023); Chen et al. (2023). We hypothesize415

that the easy-to-detect nature may originate from416

the lack of semantics diversity in GPT-3.5 and Chat-417

GPT as they are using RLHF (Kirk et al., 2023).418

4.4 Ablation Study419

To illustrate the effectiveness of the PECOLA com-420

ponents, we study the ablation experiments on the421

Selective Strategy Perturbation stage and the Con-422

trastive Learning stage on the 64-example GPT-2 423

dataset. We also demonstrate the Scalability of 424

PECOLA in Appendix C.

Method Acc F1

w/o. mask 78.001.40 77.931.43
w/o. mask-fill 77.781.82 77.721.83
w/o. mask.CLw 75.802.22 75.232.46
w/o. mask-fill. CLw 75.561.47 75.101.73
w/o. CLw 76.601.69 76.221.65
w/o. w 78.021.56 77.931.57

PECOLA 78.921.14 78.881.17

Table 2: Ablation study result of PECOLA.
425

Ablation on Selective Strategy Perturbation. In 426

PECOLA, the data used for training primarily in- 427

cludes original texts, selected mask texts, and mask- 428

filled texts. We remove each part of the data in 429

training, i.e., (i) w/o. mask, refers to not using 430

selected mask texts for training; (ii) w/o. mask-fill, 431
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Model RoBERTa PECOLA

Metric Acc F1 Acc F1

Original 74.412.47 73.912.69 78.921.14 78.881.17

Delete 71.775.88(-2.640) 70.428.05(-3.490) 77.281.79(-1.640) 77.062.03(-1.820)

Repeat 64.696.63(-9.720) 61.749.20(-12.17) 69.744.83(-9.180) 67.876.24(-11.01)

Insert 50.750.67(-23.66) 36.441.60(-37.47) 57.612.52(-21.31) 49.294.57(-29.59)

Replace 52.041.58(-22.37) 39.483.59(-34.43) 57.252.21(-21.67) 48.893.93(-29.99)

Average 59.81 (-14.60) 52.02 (-21.89) 65.47 (-13.45) 60.78 (-18.10)

Table 3: Model robustness to four perturbations.

not using mask-filling texts for training.432

Ablation on Contrastive Learning. It primarily433

investigates the impact of CE and contrastive loss.434

(i) w/o. CLw refers to the model larking weighted435

contrastive learning; (ii) w/o. w refers to the model436

including contrastive learning but larking weight.437

As demonstrated in Table 2, in scenarios employ-438

ing only the CE loss, the Selective Strategy Per-439

turbation method contributes to significant perfor-440

mance improvement. Moreover, the introduction441

of weighting further enhances accuracy when com-442

pared to the direct use of margin loss. It reveals the443

validation of bridging the metric-based and model-444

based detectors, i.e., employing the Selective Strat-445

egy Perturbation method to evaluate the token im-446

portance for the multi-pairwise contrastive learning447

method. Furthermore, within the overall frame-448

work, the removal of the select mask text results449

in a more rapid decrease in accuracy compared to450

the removal of the mask-filling text. This finding451

substantiates that the Token-Level Weighted Multi-452

Pairwise Contrastive Learning method can better453

focus on the alterations in the rephrased space fol-454

lowing the application of Selective Strategy Pertur-455

bation to the text.456

4.5 Discussion and Analysis457

4.5.1 Model Qualities458

We analyze the model qualities, including robust-459

ness and affinity in this section. Here, we test on460

the 10,000-example GPT-2 test dataset, and the461

perturbation scale is set to 15%.462

Analysis on Robustness. To validate the robust-463

ness of PECOLA in the few-shot learning settings,464

we apply four post hoc perturbation operations for465

each token in the test dataset randomly, i.e., dele-466

tion, replacement, insertion, and repetition. As467

indicated in Table 3, for each perturbation method468

employed, our decline rate is consistently lower469

compared to the baseline RoBERTa. On average,470

PECOLA maintains a 5.66% higher accuracy and471

an 8.77% superior F1-score. Specifically, in the472

Model RoBERTa PECOLA

Random Mask DetectGPT -2.64 -1.64
Selective Mask PECOLA -0.72 -1.15
Mask-Filling DetectGPT -4.72 -2.66
Mask-Filling PECOLA -1.34 -1.34

Table 4: Affinity of DetectGPT’s and PECOLA’s mask-
ing strategy on RoBERTa and PECOLA.

deletion method, where we introduce a 15% ran- 473

dom perturbation, it is noteworthy that the accuracy 474

of PECOLA utilizing the Selective Strategy Pertur- 475

bation method experiences a mere 1.64% decrease, 476

underscoring its remarkable robustness. 477

Analysis on Affinity. Affinity pertains to alter- 478

ations in data distribution resulting from perturba- 479

tions, quantified by observing the fluctuations in 480

accuracy. We demonstrate the superiority of the 481

selective masking method over the random mask- 482

ing method using the Affinity metric, following the 483

setting of DetectGPT. We applied a 15% mask pro- 484

portion with a span of 2 tokens on the test dataset 485

and simultaneously employed T5-Large (Raffel 486

et al., 2020) as the mask-filling model. We trained 487

RoBERTa-base and PECOLA on the 64-example 488

GPT2 dataset. As shown in Table 4, in comparison 489

to the random masking perturbation method uti- 490

lized in DetectGPT, we observe a 1.92% and 0.49% 491

increase in Affinity when employing the selective 492

masking method. Additionally, the mask-filling 493

method yields affinity improvements of 3.38% and 494

1.32% for RoBERTa and PECOLA models, respec- 495

tively. These results illustrate that the Selective 496

Multi-Strategy Perturbation method introduced in 497

this paper effectively preserves more distinguish- 498

able features between MGTs and HWTs. 499

4.5.2 Analysis on Selective Strategies 500

Our method is a neat perturbation strategy that is 501

mainly for the MGT detection task and empirically 502

shows great performance. Beyond the PECOLA 503

and random perturbation method, we experiment 504

with two other perturbation strategies: rank-based 505

perturbation and keyword-based perturbation. In 506

rank-based perturbation, we use the rescaled rank 507

of next-token probability on GPT2-medium as 508

the weight for perturbation position selection. In 509

keyword-based perturbation, we prevent changes 510

in the keywords extracted by the VLT-5 language 511

model (Pęzik et al., 2022) during perturbation. As 512

shown in Table 5, the experimental results of se- 513

lective perturbation outperform the random pertur- 514
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Method Random Prob. Rank Keyword Importance

Yake 76.051.83 77.350.73 78.551.65 78.921.14

Perplexity 75.531.14 76.631.03 77.111.80 77.631.30

Table 5: Different strategies for perturbation and token-
Level weighting, namely Random (DetectGPT), Prob.
Rank (GPT2-medium), Keyword (VLT-5), Importance
(PECOLA).

Method Random Prob. Rank Keyword Importance

Ratio (%) 9.20 7.83 7.80 5.56

Table 6: Mask-filling failure ratio.

bation method by 1.20%, 2.04%, and 2.49% in515

average accuracy on the 64-example GPT2 dataset.516

The Importance-based strategy of PECOLA is the517

highest. We further find that the random strategies518

of DetectGPT lead to more masking-filling fail-519

ures than selective ones, which cause execution er-520

rors. Mask-filling failure ratio in Table 6 indicates521

that selective strategy based on token importance522

greatly decreases the failure ratio by 3.64%.523

4.5.3 Generalization on Mask-Filling Models524

We study the influence of various mask-filling mod-525

els on the performance of PECOLA, including Bert526

(110M; Devlin et al. 2019), Bart (139M; Mike527

et al. 2020), GPT-2 (380M; Radford et al. 2019),528

Twhin-bert (279M; Zhang et al. 2023), XLM529

(279M; Alexis et al. 2020), XLNet (110M; Yang530

et al. 2019), RoBERTa(135M; Liu et al. 2019), and531

LLaMa-2(7B; Touvron et al. 2023). As depicted532

in Fig. 3, the results of all mask-filling models, in533

accuracy, surpass the baseline. Furthermore, the534

fluctuation of PECOLA’s performance across dif-535

ferent mask-filling models is relatively slight. It536

confirms that PECOLA is not reliant on a specific537

filling model, showing great generalization capa-538

bility. The experiment details and results are in539

Appendix D.1.540

4.5.4 Generalization on Data541

Cross-domain. We evaluate PECOLA on the HC3542

dataset, the meta-information details are in Ap-543

pendix A.2. For the three domains of data, we544

use one of them as training data (64-shot), and the545

remaining domains of data as testing data. The re-546

sults in Table 7 show that PECOLA is more effective547

than the best baseline and SOTA method on aver-548

age. For example, compared to Roberta, PECOLA549

outperforms by 4.61% in three domains on average.550

And PECOLA maintains a 1.63% higher accuracy551

on average than SOTA DetectGPT.552
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Figure 3: Result of using various mask-filling models.

Domain Medicine Finance Computer Sci. Average

RoBERTa 62.974.09 86.083.63 90.645.07 79.90
DetectGPT 80.48 85.17 82.98 82.88
PECOLA 70.867.83 89.342.93 93.323.64 84.51

Table 7: Results of cross-domain in terms of accuracy.

Cross-genre. We generalize PECOLA between 553

News articles (GPT3.5 dataset) and QA answers 554

(HC3 dataset) on the 64-shot settings. As shown in 555

Table 8, when the GPT-3.5 dataset is the training 556

set, PECOLA outperforms by 10.21%; and when 557

the HC3 dataset is the training set, PECOLA outper- 558

forms by 6.98% to the best competitor.

Dataset GPT3.5→HC3 HC3→GPT3.5 Average

RoBERTa 64.601.96 62.672.41 63.64
DetectGPT 77.11 72.66 74.89
PECOLA 78.798.19 72.876.06 75.83

Table 8: Results of cross-genre in terms of accuracy. 559

5 Conclusion 560

In this paper, we introduce PECOLA, a novel 561

machine-generated text detection method that ef- 562

fectively bridges and integrates metric-based and 563

fine-tuned detectors for MGT detection. To relieve 564

the information loss caused by the random mask- 565

ing used in DetectGPT, we present a token-level 566

selective strategy perturbation method. To more 567

fully distinguish meaningful recombination spaces 568

and reduce reliance on the mask-filling models, we 569

present a token-level weighted multi-pairwise con- 570

trastive learning method. In few-shot settings, ex- 571

perimental results show that PECOLA significantly 572

enhances the performance of PLMs in MGT de- 573

tection. Subsequent analytical experiments vali- 574

date PECOLA’s effectiveness, robustness, general- 575

ization, and capability in detecting short texts. 576
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Limitations577

In this work, we focus on MGT detection in few-578

shot learning settings. The next phase will involve579

a more comprehensive performance comparison580

based on full datasets. Secondly, our method men-581

tions the score threshold, if the threshold is too582

high or too low, it will not serve the purpose of583

perturbation. How to automate and flexibly design584

a strict threshold is also a direction for our next585

phase of improvement. Thirdly, for short texts, our586

perturbation method faces similar limitations, as it587

is difficult to extract the most relevant keywords.588

Thus, perturbation introduces more uncontrollable589

noise, which poses a challenge for us to address590

in the future. Fourth, We hope that the present591

work can inspire future applications in fields like592

machine-generated images and videos, creating a593

universal approach to apply in the direction of ma-594

chine generation.595

Ethics Statement596

PECOLA aims to help users use our method to more597

reasonably and accurately identify MGT. Our goal598

is to develop a universal method applicable to other599

fields such as images and audio, and inspire the600

advancement of the stronger detector of MGTs and601

prevent all potential negative uses of language mod-602

els. We do not wish our work to be maliciously603

used to counter detectors. The datasets mentioned604

in this paper are all public.605
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A Implementation Details867

This part mentions the hyperparameter settings and868

meta-information of the HC3 dataset.869

A.1 Hyperparameter Details870

Experiments evaluating competitors and PECOLA871

follow the setting of CoCo (Liu et al., 2023). The872

hyperparameter settings of all the methods in the873

experiment as shown in Table 9. We randomly874

select 10 different seeds for experiments, and report875

average test accuracy and F1-score.876

Parameter Value

Training Epochs 30
Optimizer AdamW
Learning rate 1e-5
Weight Decay 0.01
Batch Size 16
Mask Gap 2
Mask Proportion 10%
Score threshold 0.4
Pre-trained model RoBERTa-base

Table 9: Implementation details of hyperparameters.

A.2 Meta-information877

We evaluate PECOLA effectiveness from domains878

and genres on the HC3 dataset, which primarily879

includes Medicine, Finance, and Computer Science880

domain QA, as shown in Table 10.

Domain Medicine Finance Computer Science

Size 2585 8436 1684

Table 10: Meta-information of the HC3 dataset.
881

B Effect of Hyperparameters882

In PECOLA, the primary hyperparameters include883

the mask proportion, mask gap of perturbation, and884

score threshold. The perturbation proportion refers885

to the mask rate in the texts. The perturbation mask886

gap ensures that several tokens following a masked887

token remain unmasked, and score threshold to888

control the number of Most Relevant Keywords.889

B.1 Perturbation Proportion and Mask Gap890

We evaluate the impact of different perturbation891

ratios and mask gap on accuracy, and perform a892

minor scan in a few-shot learning settings with a 893

set of mask proportions {5, 8, 10, 15, 17, 20} and 894

mask gap {0, 1, 2, 3, 4, 5}, average the results for 895

each combination of parameters. And a mask gap 896

of 2 and a perturbation ratio of 10% achieve the 897

maximum average values. As shown in Fig. 4, it is 898

found that the combination of a mask gap of 2 and 899

a mask proportion of 10% yielded the best results, 900

on the 64-example GPT-2 dataset. 901
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Figure 4: Impact of varying the number of perturbations
and mask gap in PECOLA, we use T5-large (Raffel et al.,
2020) as the mask-filling model. For each combination,
we conduct tests on ten randomly select seeds.

B.2 Score Threshold 902

In the main experiment, all datasets use a com- 903

mon score threshold of 0.4, and it may not be the 904

best choice for different datasets, because with the 905

change in data type and text length, the gold key- 906

words often vary. Therefore, as shown in Fig. 5, we 907

discuss the performance changes of four datasets 908

with different score threshold in few-shot learning 909

settings. An excessively high score threshold re- 910

sults in too many most relevant keywords, failing 911

to effectively perturb the data, hence not signifi- 912

cantly improving accuracy. Similarly, a too low 913

score threshold can lead to more random perturba- 914

tions. Therefore, the selection of the score thresh- 915

old should be stringent. 916

C Efficiency and Scalability of PECOLA 917

We adopt Pythia (Biderman et al., 2023) as the 918

base model of PECOLA with different scales, i.e., 919

70M, 160M, 410M, 1B, and 1.4B. We train and do 920

experiments on one NVIDIA A100 GPU, and the 921

performance and time consumption are in Table 11. 922
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Figure 5: Effect of score threshold on model perfor-
mance. In the GPT3.5 and HC3 datasets, accuracy and
F1-score coincide.

With the increase in model size, both accuracy and923

F1-score show upward trends, while the time in-924

crease is linear, which is reasonable.

Model 70M 160M 410M 1B 1.4B

Acc 58.420.70 63.660.17 71.071.63 72.131.63 74.051.77

F1 58.030.79 63.540.28 70.87 1.92 71.752.67 73.851.55

Per epoch 16s 34s 85s 97s 113s
Single data 2.2ms 7.0ms 13.8ms 14.1ms 16.6ms

Table 11: Results of fine-tuning PECOLA with Pythia
models of various scales, on the 64-example GPT2
dataset. We also demonstrate the training time per epoch
and the single data test time.

925

D Further Clarification on Perturbation926

Conversely, diversity assesses the range and vari-927

ability of perturbed data, utilizing metrics Dist-1928

and Dist-2 (Celikyilmaz et al., 2020). Here, we use929

three common perturbation methods to demonstrate930

the importance of not arbitrarily changing impor-931

tant tokens and the significance of select masks. (1)932

Token Substitution (Zhang et al., 2015), replaces to-933

kens with synonyms from WordNet (Miller, 1992);934

(2) SwitchOut (Wang et al., 2018), uniformly sam-935

ples and randomly substitutes from the vocabulary936

of test samples; and (3) Two-stage (Wei et al., 2021)937

trains the mask-filling model on the original data.938

The ideal perturbation result is to have high939

Affinity scores while ensuring high Diversity scores940

(Celikyilmaz et al., 2020). As shown in Table 12,941

through Selective Strategy Perturbation, models942

achieve better diversity with high distribution shifts.943

And the overall improvement in Affinity by over944

20% also shows greater diversity than the original945

data. The above results demonstrate the superiority946

of our perturbation method.947

Method Affinity Diversity
Dist-1 Dist-2

Original - 8.70 50.32

Token Substitution -20.00 3.38 43.43
SwitchOut -22.06 6.81 53.61
Two-stage -21.13 3.24 41.85

PECOLA Mask-Filling -1.34 15.59 57.01

Table 12: Affinity and Diversity on GPT-2 datasets.
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Figure 6: Performance of PECOLA and RoBERTa to
detect shorter texts. The average token number of the
original GPT-2 and HC3 datasets are 445 and 260.

D.1 Impact of the Chosen Mask-filling Models 948

This section shows the full experimental results of 949

different mask-filling models, as shown in Table 13, 950

the experimental results confirm the same out- 951

comes as in the few-shot learning settings, where 952

the T5 filling model does not perform the best 953

across all datasets. All the above models are ob- 954

tained from huggingface transformers (Wolf et al., 955

2020). And we do not intervene in the temperature 956

sampling of the mask-filling model, setting it all to 957

1. 958

E Detecting Shorter Texts 959

To examine the efficiency of PECOLA to detect the 960

short MGTs, we chunk the samples of GPT-2 and 961

HC3 datasets into segments of 50, 100, and 200 962

tokens. As shown in Fig. 6, PECOLA consistently 963

outperforms RoBERTa, with an average accuracy 964

outperformance of 4.16% and 2.13% on the GPT-2 965

and HC3 datasets. And the relative performance 966

decrease of PECOLA while the length shrinking is 967

much less than RoBERTa. 968
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Dataset Method Shot BART Bert GPT-2 Twhin Bert XLM XLNet RoBERTa T5

G
ro

ve
r

Acc
128 62.042.51 61.551.74 62.821.24 61.002.20 61.820.82 60.160.43 63.101.76 63.601.71

512 72.241.54 71.671.04 72.621.12 72.781.14 72.130.64 72.721.03 73.250.84 73.120.84

F1
128 57.801.28 57.601.93 58.550.80 56.740.48 57.600.92 56.620.64 58.291.12 58.981.58

512 66.252.34 65.561.76 66.722.00 68.491.04 66.382.21 67.502.61 67.491.68 68.241.64

Recall
128 58.030.99 57.912.08 58.720.87 57.180.86 57.781.04 57.000.80 58.310.99 57.891.44

512 65.852.66 64.871.71 66.012.06 68.111.16 65.872.46 67.053.04 66.731.68 66.511.64

G
PT

-2

Acc
128 82.161.04 80.770.48 82.421.05 82.170.40 81.150.31 81.260.36 81.271.20 82.580.49

512 85.410.66 85.430.53 85.520.57 85.720.39 85.100.27 85.130.60 85.750.55 85.750.69

F1
128 82.121.07 80.670.54 82.381.08 82.120.38 81.110.34 81.240.37 81.161.27 82.540.51

512 85.400.67 85.410.53 85.720.70 85.720.39 85.100.27 85.130.60 85.750.55 85.720.70

Recall
128 82.151.05 80.750.48 82.010.68 82.170.40 81.150.31 81.260.36 81.251.20 82.570.49

512 85.410.66 85.430.53 85.800.27 85.720.39 85.100.27 85.130.60 85.750.55 85.520.57

G
PT

-3
.5

Acc
128 98.240.16 98.090.25 98.090.10 98.110.11 97.980.14 98.130.08 98.010.18 98.630.32

512 99.190.13 99.050.15 99.130.17 98.890.21 98.880.21 99.230.26 99.160.14 99.150.11

F1
128 98.240.16 98.090.25 98.090.10 98.110.11 97.980.14 98.130.08 98.010.18 98.630.32

512 99.190.13 99.050.15 99.130.17 98.890.21 98.880.21 99.230.26 99.160.14 99.150.11

Recall
128 98.240.16 98.090.25 98.090.10 98.110.11 97.980.14 98.130.08 98.010.18 98.630.32

512 99.190.13 99.050.15 99.130.17 98.890.21 98.880.21 99.230.26 99.160.14 99.150.11

H
C

3

Acc
128 98.630.18 98.030.40 98.590.16 98.580.22 98.240.09 98.350.12 98.790.32 98.060.12

512 98.820.35 98.450.21 98.960.25 98.830.24 98.800.38 98.800.30 99.020.23 99.140.15

F1
128 98.630.18 98.030.40 98.590.16 98.580.22 98.240.09 98.350.12 98.790.32 98.060.12

512 98.820.35 98.450.21 98.960.25 98.830.24 98.800.38 98.800.30 99.020.23 99.140.15

Reacall
128 98.630.18 98.030.40 98.590.16 98.580.22 98.240.09 98.350.12 98.790.32 98.630.32

512 98.820.35 98.450.21 98.960.25 98.830.24 98.800.38 98.800.30 99.020.23 99.150.11

Table 13: The full MGT detection performance of different mask-filling models on four datasets.Comparison results
between T5-large and other mask-filling models are almost model-base, except for the GPT-2 medium model.
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