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ABSTRACT

Tensor program optimization (TPO) based on pre-trained models can effectively
reduce the computing time of deep neural networks. However, training of such
models is prohibitively expensive, which highly depends on a large-scale dataset
and thus requires tremendous time-consuming performance measurements (more
than 1 million) on target platforms. In this paper, we propose BALTO, a fast
TPO approach with biased-diversity-based active learning, aiming at significantly
reducing training costs under similar program performance optimization ability.
The key insight is that random sampling of existing approaches suffers from a
heavy redundancy of low-performance programs, which incurs tremendous time-
consuming measurements. Inspired by this, BALTO removes such redundancy by
introducing active learning (AL) to TPO for a much lower training cost. However,
applying AL with a brute-force way in BALTO can lead to an overestimation
problem. To address this, we further propose a biased-diversity-based diversity
scheme specially designed for BALTO. We compare BALTO against TenSet on
6 typical hardware platforms over 2 learning models. Experimental results show
that, on average, BALTO only requires 5% of the total measurements of TenSet
to achieve the same or higher model accuracy. Moreover, the optimized tensor
programs even outperform that of TenSet by 1.07% due to higher model accuracy.

1 INTRODUCTION

Tensor program optimization (TPO) can effectively reduce the computing time of neural networks
by searching for high-performance programs in a designed search space (Chen et al., 2018; Zheng
et al., 2020a;b). In TPO, neural networks are first represented as tensor programs that describe the
computation of multi-dimensional data arrays. Then performances of these tensor programs are
measured on a target hardware platform. Such measurements are time-consuming and thus optimiz-
ing a given network can cost several days or even weeks, which greatly hinders the wide application
of TPO (Zhu et al., 2022). To accelerate TPO, pre-trained machine learning models (Adams et al.,
2019; Haj-Ali et al., 2020; Anderson et al., 2020; Zheng et al., 2021) are introduced to replace a
substantial part of the hardware measurements with performance predictions of a pre-trained model.
For example, as the state-of-the-art approach, TenSet (Zheng et al., 2021) can significantly reduce
the optimization time by up to 10× through training on a large-scale and well-established dataset.

However, training the models is prohibitively expensive. The main reason is that these models highly
depend on a large-scale training dataset. Unfortunately, collecting such a dataset involves massive
performance measurements on hardware platforms, suffering from excessively long execution time.
For example, for each hardware platform, around 8 million different tensor programs are required
to be measured (Adams et al., 2019; Zheng et al., 2021). Even on a high-end GPU like V100, such
measurements still can consume about 4000 GPU hours. This burden could be much worse in those
capability-limited systems, e.g., mobile devices such as NVIDIA Jetson TX2, most of which often
require more than 5000 GPU hours to conduct the measurements. More importantly, a much larger
dataset is required in real-world optimization tasks, so as to achieve better model generalization
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on different tensor programs. Consequently, as the size of the dataset increases, the number of the
measurements can be significantly increased correspondingly. This can lead to great consumption
of time and energy, and thus hinders wide deployment of ML-based TPO in industrial practice.
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Figure 1: The ratio of high-performance programs
is much smaller than low-performance programs. (a)
NVIDIA T4. (b) Platinum 8272CL.

To look more closely at the inside of the large-
scale datasets sampled randomly by existing
approaches, we conduct a deep exploration
of the distribution of these datasets. We ob-
serve that random sampling adopted in exist-
ing approaches can result in imbalanced train-
ing datasets, where the high-performance pro-
grams are excessively less than that of the
low-performance ones. We randomly sample
90,000 tensor programs of TenSet (as shown in
Figure 1) and find that high-performance pro-
grams only account for 19% and 8% of the to-
tal dataset on Platinum 8272CL CPU and T4 GPU respectively. In contrast, the low-performance
programs take the bulk of the total dataset (81% and 92% respectively). Such imbalance can fur-
ther lead to a heavy redundancy of the low-performance programs that incurs tremendous time-
consuming measurements. The main reason behind the redundancy is that the importance of gener-
ated tensor programs is highly different. In fact, program optimization pays more attention to those
high-performance programs. Excessively more low-performance programs cannot offer additional
benefit of predicting high-performance programs, thus being a heavy redundancy.

To this end, we propose BALTO, a fast TPO approach with biased-diversity-based diversity active
learning, aiming at significantly reducing training costs under similar optimization ability. The key
insight is that random sampling of existing approaches suffers from a heavy redundancy of low-
performance programs, which incurs tremendous time-consuming measurements. Inspired by this,
BALTO removes such redundancy by introducing active learning (AL) to TPO for a much lower
training cost. In this way, the measurements can be significantly lowered, thus greatly reducing
the training cost of building pre-trained model. However, applying AL in a brute-force way in
BALTO can lead to an overestimation problem, where the relative performance of the estimated
accuracy is much better than that of the ground truth. To address this problem, we further propose
a biased-diversity-based scheme specifically designed for BALTO, which can efficiently reduce the
distribution imbalance of the sampled programs caused by overestimation.

Finally, we integrate BALTO into TenSet, and compare BALTO with state-of-the-art baseline TenSet
on 6 typical hardware platforms (i.e., two GPU platforms and four CPU platforms) over two learn-
ing models (i.e., XGBoost, MLP). The experimental results show that BALTO achieves same or
higher model accuracy while only requiring 5% of TenSet’s hardware measurements. Moreover, the
optimized tensor programs even outperform that of TenSet by 1.07% due to higher model accuracy.

To the best of our knowledge, BALTO is the first work to reduce the training cost of pre-trained-
model-based TPO by introducing AL. Summarily, our key contributions are three-fold:

• We conduct a deep exploration on the distribution of large-scale datasets sampled randomly
by existing approaches, and observe that the random sampling results in an imbalanced
dataset, and thus suffers from heavy redundancy in the training dataset.

• We propose BALTO, a fast TPO approach with active learning, aiming at significantly re-
ducing training cost under similar optimization ability. To address the overestimation prob-
lem, we further propose a biased-diversity-based scheme specially deigned for BALTO.

• We conduct a comprehensive performance evaluation on six typical hardware platforms,
indicating that BALTO achieves same or higher model accuracy with 20× reduction in
performance measurements. Moreover, the optimized programs even outperform that of
TenSet by 1.07% on NVIDIA T4.

2 BACKGROUND

2.1 TENSOR PROGRAM OPTIMIZATION.

2



Published as a conference paper at ICLR 2023

Update

Input Tensor 
Program

Optimization
Space 

Exploration 

Cost Model

Optimized Tensor 
Program 

Candidate Tensor 
Programs

Program 
Performance 

Evaluation 

Program 
Performance 
Estimation 

Figure 2: Workflow of TPO.

TPO is a process of transforming an input tensor program
into another tensor program with optimal or near-optimal
performance. Figure 2 demonstrates a workflow of a typi-
cal TPO. As shown in Figure 2, it mainly consists of three
modules, including program performance estimation, op-
timization space exploration, and program performance
evaluation. The program performance estimation module
is used for predicting the performance of input programs,
which is usually composed of machine learning models
or expert-designed models. The optimization space ex-
ploration module searches for high-performance program
transformations in a pre-defined search space and outputs
a batch of programs with high scores on predicted per-
formance. The program performance evaluation module
compiles the batch of programs and measures their execu-
tion times on the hardware platform. The measured performance can be used for further fine-tuning
the models. Finally, the program with the highest measured performance is output as the optimiza-
tion result.

2.2 PRE-TRAINING OF PERFORMANCE MODEL.

Pre-training of the performance model has two key stages typically: the sampling stage and the
training stage. In the sampling stage, model pre-training usually depends on a large-scale dataset
based on program performance, which is generated by performance measurements on target hard-
ware platforms. Concretely, the sampling process mainly consists of three steps. First, a set of
program optimization tasks are generated by the compiler, such as conv2d operator with different
shapes. Second, for each generated task, random sampling is conducted in the optimization search
space to produce a set of tensor programs without performance measurement. Third, these tensor
programs are delivered to the module of performance evaluation for performance measurement, and
finally, the measured performance and the features of tensor programs are kept in the dataset.

In the training stage, generally, the performance model aims at fitting the relative performance of the
programs, which can be denoted as y = T

Tmax
. Concretely, T denotes the throughput of the program,

and Tmax denotes the maximum throughput that can be reached by the corresponding optimization
task of that program. Since the maximum throughput Tmax of the task is unknown, Tmax usually can
be estimated by the maximum throughput of the sampled programs. Importantly, such estimation
can be quite accurate if given a large number of samples. The commonly-used training models
include XGBoost, MLP, and LSTM, etc, and the goal of model training is to minimize rmse or
lambdarankloss. The evaluation criteria of the model is greatly critical. Compared with rmse
or R2, the Top-k performance predicted by the model on each optimization task is more related to
the optimization quality of the compiler (Zheng et al., 2021). For a given set of tensor programs,
the Top-k performance can be calculated as the division of the predicted Top-k programs’ average
performance and the optimal programs’ performance.

2.3 DIVERSITY-BASED ACTIVE LEARNING

Algorithm 1 Core-set Greedy Selection
Require: Dl, Du, Bt

Output: St is a set of samples to be labeled
1: St ← ϕ
2: while |St| < Bt do
3: u = argmaxxi∈Du

minxj∈Dl∪S d(xi, xj)

4: St ← St ∪ {u}
5: return St

The training of machine learning, especially
deep learning, highly depends on a large num-
ber of labeled samples whose generation can be
prohibitively expensive. Active learning (AL)
is a popular training framework, aiming at ef-
fectively reducing the requirement of expensive
labels. In each iteration of an AL process, un-
labeled samples are firstly selected from a pool
with a fixed size, then the selected samples are
delivered to be labeled, and finally these labeled
samples are used for model training. The core of AL is the selection method which can effectively
reduce the labeling redundancy while achieving similar model accuracy. A commonly used ap-
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proach for selection is diversity-based selection, which selects representative samples for labeling to
increase diversity.

The Core-set selection (Sener & Savarese, 2018), one of the state-of-the-art diversity-based
approaches, formulates sample selection as solving the k-center optimization problem of
min

St⊆Du

max
xi∈St

min
xj∈Dl∪St

d(xi, xj) s.t. |St| ≤ Bt, where St is the samples selected at time step

t, d(xi, xj) is a measure of the distance between sample xi and xj , and Bt is the total budget of
samples at step t. Since the problem is NP-Hard, a common approach leverages the greedy strategy
shown in Algorithm 1 to obtain a 2-OPT solution.

3 ACTIVE LEARNING BASED MODEL TRAINING

3.1 OVERVIEW OF BALTO

BALTO is a pre-trained-model-based TPO approach that mainly consists of two parts, including
AL-based model pre-training and pre-trained-model-based program optimization, shown in Fig-
ure 3. The model pre-training part is an active learning process that consists of four steps including
program sampling, model training, program selection, and performance evaluation. Regarding step-
1, BALTO samples programs randomly to form a large unlabeled dataset Du and a small labeled
dataset Dl. Programs in labeled data set are measured on the hardware to obtain the labels. Then
BALTO iterates step-2, step-3, and step-4 to train the model based on active learning. Regarding
step-2, BALTO trains the model based on Dl. Regarding step-3, BALTO leverages the trained model
and the labeled data set to select a batch of programs from Du for evaluation. Regarding step-4, the
performance of programs are measured for updating Dl. Finally, the model training part outputs a
trained model for later program optimization tasks once the total measurement budget is exhausted.
The program optimization part takes the commonly used workflow as described in Section 2.1.
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Figure 3: Overview of BALTO.

3.2 PROGRAM SAMPLING

BALTO generates unlabeled program data sets by randomly sampling transformed tensor programs
from pre-defined optimization tasks. An optimization task corresponds to a machine learning op-
erator (e.g., MatMul) with a specific shape, e.g., (1024, 1024, 1024). For a given task, programs
can be randomly generated either by performing random transformations on program sketches(e.g.,
TenSet (Zheng et al., 2021) and Ansor (Zheng et al., 2020a)) or by sampling from probabilistic-
language-defined stochastic search spaces (e.g., MetaSchedule (Shao et al., 2022)).

Random sampling can result in unbalanced distribution of the program performance. In such an
unbalanced distribution, the number of low-performance programs accounts for a large part of the
total samples, which makes the model easily fit to these low-performance programs instead of the
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high-performance ones given a relatively small number of total samples. As a result, the prediction
of the model for those high-performance programs falls into a very low accuracy, and thus cannot
effectively guide the compiler to identify high-performance programs. Therefore, it is essential to
balance the distribution of the samples by an appropriate program selection strategy that can increase
the proportion of high-performance programs reasonably.

3.3 PROGRAM SELECTION

To balance the performance distribution of selected programs, BALTO leverages diversity-based
selection to increase the diversity of selected programs’ performance. We first propose an output-
diversity-based selection scheme that maximizes the diversity of the predicted performance of se-
lected programs based on core-set selection. However, the selection scheme suffers from a perfor-
mance overestimation problem which make the distribution unbalanced even under the proposed
selection scheme. Thus we further propose a biased-diversity-based selection to solve the problem.

Output-diversity-based selection. This selection scheme is based on the greedy selection scheme
shown in Algorithm 1 with dout(xi, xj) = |f(xi)−f(xj)| where f(xi) is the predicted performance
of program xi. The main advantage of the distance function is that it can ensure a much more
balanced distribution of the sampling. This is because the diversity of the predicted performance
makes the predicted performance of the sampled programs more decentralized into the range [0,1],
rather than centralized around 0, thus greatly reducing the proportion of low-performance programs.

Performance overestimation. For a given task, the maximal program throughput Tmax can be
underestimated to a large extent under a small number of performance measurements. Correspond-
ingly, the underestimated Tmax further incurs overestimated relative performances of most programs
at the early stage of AL process. As a result, even with the diversity-based selection, such overes-
timation can still make the sampled programs imbalanced and mainly gathered at low-performance
regions.

Biased-diversity-based selection. To solve the overestimation problem, we propose a biased selec-
tion process that can effectively select the high-performance programs in case of that the sampled
programs are gathered at low-performance regions. Concretely, we assign a weight (i.e., f(xi))
for program xi to encourage the algorithm to select programs with high scores on predicted per-
formance, so as to accelerate the exploration of programs in high-performance regions. Thus the
distance function becomes dbiased(xi, xj) = f(xi)dout(xi, xj). Compared to the core-set selection
that selects samples by solving the k-center problem, we formulate the biased selection as solving
following weighted k-center problem:

min
St⊆Du

max
xi∈St

f(xi) min
xj∈Dl∪St

dout(xi, xj) s.t. |St| ≤ Bt (1)

Since the problem is NP-hard, we solve it via a greedy strategy as in Algorithm 2.

Algorithm 2 Biased-diversity-based Selection
Require: Dl, Du, Bt

Output: St is a set of samples to be labeled at iteration t
1: St ← ϕ
2: while |St| < Bt do
3: u = argmaxxi∈Du

f(xi)minxj∈Dl∪S |f(xi)−f(xj)|
4: St ← St ∪ {u}
5: return St

For each task, BALTO performs
biased-diversity-based selection when
the measured performances are gath-
ered in the low-performance regions
and performs output-diversity-based
selection when the distributions are
well balanced. Although the biased
selection scheme can alleviate the
imbalance of performance distribution
caused by overestimation, it scarifies
the diversity of high-performance programs to a certain extent. To increase the diversity, BALTO
leverages the KL-divergence DKL(P |Q) = −E[log(yi)], where yi represents the relative per-
formance of measured programs of the task, as a criterion for choosing the selection scheme.
P (z) with p(1) = 1 is a binomial distribution that describes a distribution of selected programs
where all programs are high-performance. Q(xi) with q({xi is high-performance}) = yi is a
binomial distribution where a program with a relative performance of yi has a possibility of yi to
be high-performance. DKL can effectively estimate how close the distribution of the currently
sampled programs to P . As such, the lower DKL is, the closer the relative performance of the
sampled programs is to 1 and the lower the diversity is. If DKL is greater than a constant threshold
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(i.e., C), BALTO enables the biased-diversity-based selection scheme to select programs since the
measured programs are gathered in the low-performance region. Otherwise, BALTO enables the
output-diversity-based selection scheme since the overestimation problem is alleviated.

Selection complexity. BALTO trains the model for T iterations. In each iteration, BALTO iterates
over all of the N tasks to select programs for measurement. For each task, the algorithm can select
at most Bt samples from Du that consists of M programs of the given task. For a single selection of
programs, the algorithm performs either the output-diversity-based selection or the biased-diversity-
based selection according to DKL. Both of the two selection schemes have a complexity of O(M2),
thus the total selection complexity is O(TNBtM

2) or O(BM2) where B is the total measurement
budget. Take TenSet for example, the B is 429,810, the M is 4,000, and the total selection time is
10.6 minutes. Thus, the adopted selection strategy in BALTO does not bring additional overhead to
the training process.

4 PERFORMANCE EVALUATION

We integrate BALTO into TenSet to evaluate the performance comprehensively. The experimental
methodology is five-fold. First, we show that BALTO achieves comparable accuracy while with
much less hardware measurements on 6 platforms. Second, we demonstrate that the models trained
with much less performance measurements have comparable optimization ability on a real-world
hardware platform. Third, we demonstrate that BALTO is a generic optimization approach by inte-
grating it to MetaScheduler. Fourth, we perform ablation study to verify the effectiveness of the core
components of BALTO. Fifth, we visualize the performance distribution of our proposed sampling
strategy to illustrate that the proposed strategy helps balancing the distribution of programs.

Baselines. To demonstrate the effectiveness of BALTO, we compare BALTO with five baselines
including: 1) TenSet trains the model by measuring all the randomly sampled programs; 2) GSx (Yu
& Kim, 2010) selects programs by maximizing the feature diversity greedily; 3) GSy (Wu et al.,
2019) selects programs by maximizing the label diversity greedily; 4) iGS (Wu et al., 2019) selects
programs by maximizing the label and feature diversity greedily; 5) ALT (Zeng et al., 2020) selects
programs by the uncertainty of the model prediction. The proposed output-diversity-based selection
is represented as Ours1 and the biased-diversity-based selection is presented as Ours2.

4.1 COMPARISON OF BALTO AND TENSET FOR MODEL PRECISION

Dataset. We evaluate BALTO’s effectiveness on the dataset provided by TenSet. The dataset
consists of program performance measurement records from 6 different hardware platforms. Each
platform includes a total number of 8,596,208 tensor program measurement records that are sampled
from 2307 different types of tasks. We use 10% of the records as the test dataset and the remaining
90% records as the train dataset for the baselines. We further select at most 5% of the training dataset
for training BALTO and other active learning approaches (i.e., GSx, GSy, iGS, and ALT). We report
the Top-1 score on the test dataset based on 5 independent experiments.

Results. We compare BALTO with baselines on two ML models including XGBoost and MLP.
All the models adopt the same hyperparamenters with TenSet. As shown in Table 1, BALTO out-
performs all other active learning baselines and achieves the same or even higher accuracy com-
pared with TenSet. Compared to TenSet, BALTO reduces the hardware measurements by 20×.
Take T4 for example, BALTO achieves an accuracy improvement of 4.1% on XGBoost model and
achieves the same accuracy on MLP model respectively. The reason that TenSet achieves a relatively
lower accuracy is that TenSet trains on a randomly sampled program dataset where the ratios of
low-performance programs and high-performance programs are extremely imbalanced. Differently,
such imbalance can be greatly alleviated by the proposed biased-diversity-based active learning of
BALTO, thus delivering much lower training cost but similar or even higher accuracy.

4.2 OPTIMIZATION PERFORMANCE ON A REAL-WORLD PLATFORM

To verify that cost models trained on much fewer programs can still effectively guide the TPO
process, we evaluate BALTO on NVIDIA T4 and report the optimized execution time of 5 commonly
used neural networks of BALTO and the baselines.
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Table 1: Comparison between BALTO and TenSet on 6 hardware platforms with 2 learning models. GPU-
1 and GPU-2 represents NVIDIA T4 and NVIDIA K80, respectively. CPU-1, CPU-2, CPU-3, and CPU-4
represents Intel Platinum 8272CL, Intel E5-2673 v4, AMD EPYC 7452, and ARM Graviton2, respectively.

XGBoost GPU-1 GPU-2 CPU-1 CPU-2 CPU-3 CPU-4

TenSet 84.7± 0.4 84.9± 0.1 82.7± 0 83.0± 0 83.9± 0 79.2± 0
GSx 81± 0 80.9± 0 78.1± 0.27 78± 0 79.6± 1.01 75.6± 0
GSy 81.3± 0 79.8± 0 78.8± 0 80± 0 81.4± 0 76.5± 0
iGS 82.3± 0 80.9± 0 79± 0 80.1± 0.2 81.4± 0.3 76.8± 0.7
ALT 85.3± 0 85.2± 0 81.5± 0 83.7± 0 84.6± 0 78.8± 0

Ours1 87.3± 0.5 87.6± 0 86.2± 0 85.6± 0 87.3± 0.1 80.6± 0
Ours2 88.8± 0.2 88.9± 0.1 87.3± 0.3 86.4± 0.5 87.9± 0.2 81.6± 0.1

MLP GPU-1 GPU-2 CPU-1 CPU-2 CPU-3 CPU-4

TenSet 90.5± 0.3 90.2± 0.5 86.5± 0.8 86.1± 0.4 88.1± 0.5 80.8± 0.8
GSx 83.5± 1.6 83.3± 0.9 76.2± 0.2 74.8± 0.3 77.6± 1.7 69.5± 0.7
GSy 82.9± 1.9 82.2± 0.3 75.1± 1.1 72.9± 1.6 74.7± 0.4 68.9± 1.5
iGS 82.3± 0.4 81.4± 0.2 74.1± 2.2 73.9± 2 75.3± 0.9 69.2± 2.4
ALT 86± 0.4 84.3± 0.2 77.3± 1.2 79.2± 1.2 75.3± 0.9 69.2± 2.4

Ours1 89.6± 0.9 89.8± 0.7 86± 0.4 86.4± 0.8 88.1± 0.6 79± 1.1
Ours2 90.4± 0.6 90.3± 0.6 86.9± 1.0 87.2± 1.1 89.1± 1.3 81.1± 1.1

Benchmarks. We evaluate the optimization results on 5 commonly used neural networks including
ResNet-50 (He et al., 2016), MobileNet-v2 (Sandler et al., 2018), ResNext-50 (Xie et al., 2017),
BERT-tiny and BERT-base (Devlin et al., 2018). For the three CNN models, we set the batch size
to 1 and the input shape to 224 × 224. For BERT models, we set the sequence length to be equal
to 128. We assign at most 1,000 trials of hardware measurements for each network and report the
average execution time based on 5 independent experiments of program optimization.

Table 2: Evaluations of BALTO and TenSet on 5 commonly used neural networks.
XGBoost ResNet-50 MobileNet-v2 ResNext-50 BERT-tiny BERT-base

TenSet 3.89± 0.4 ms 0.60± 0.04 ms 3.41± 0.31 ms 3.06± 0.30 ms 10.8± 0.2 ms
GSx 3.92± 0.1 ms 0.62± 0.08 ms 3.62± 0.09 ms 3.11± 0.05 ms 12.2± 0.7 ms
GSy 4.39± 0.4 ms 0.63± 0.05 ms 3.65± 0.56 ms 3.03± 1.10 ms 11.1± 1.1 ms
iGS 3.81± 0.1 ms 0.65± 0.03 ms 3.71± 0.73 ms 3.26± 0.21 ms 11.0± 1.0 ms
ALT 3.62± 0.1 ms 0.59± 0.02 ms 3.30± 0.04 ms 2.81± 0.13 ms 11.1± 1.6 ms

Ours1 3.68± 0.5 ms 0.59± 0.06 ms 3.27± 0.1 ms 2.84± 0.09 ms 10.9± 0.3 ms
Ours2 3.30± 0.2 ms 0.58± 0.04 ms 3.23± 0.17 ms 2.76± 0.05 ms 10.8± 0.4 ms

MLP ResNet-50 MobileNet-v2 ResNext-50 BERT-tiny BERT-base

TenSet 3.28± 0.15 ms 0.57± 0.03 ms 3.26± 0.32 ms 2.80± 0.09ms 10.0± 0.4 ms
GSx 4.13± 0.17 ms 0.64± 0.08 ms 3.50± 0.32 ms 3.16± 0.13 ms 11.5± 0.8 ms
GSy 3.79± 0.58 ms 0.62± 0.07 ms 3.40± 0.24 ms 2.92± 0.15 ms 11.5± 0.5 ms
iGS 3.58± 0.09 ms 0.62± 0.06 ms 3.43± 0.13 ms 2.91± 0.01 ms 11.3± 1.1 ms
ALT 4.04± 0.25 ms 0.75± 0.19 ms 3.30± 0.16 ms 3.06± 0.16 ms 11.6± 0.9 ms

Ours1 3.43± 0.42 ms 0.60± 0.02 ms 3.30± 0.33 ms 2.79± 0.07 ms 10.8± 0.5 ms
Ours2 3.33± 0.17 ms 0.58± 0.00 ms 3.14± 0.17 ms 2.71± 0.13 ms 9.9± 0.4 ms

Results. As shown in Table 2, BALTO achieves the same or better optimization performance com-
pared to the baselines. Specially, when using the XGBoost cost model, BALTO achieves an average
of 1.07× performance improvement over TenSet. The improvement comes from a more accurate
performance model that helps the compiler to identify the high-performance programs efficiently.
When using the MLP cost model, the performance of BALTO is the same as that of TenSet since the
two approaches’ models have the same accuracy on T4. The experiments’ results show that models
trained on much fewer measured programs can still guide the optimization efficiently. Thus, we do
not need to measure as much of programs as existing optimization frameworks do.

4.3 COMPATIBILITY OF BALTO
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Figure 4: Comparison of optimized performance and
tuning time. (a) Optimized performances of GEMM op-
erators with shape (N,N,N ). (b) Total tuning time.

BALTO is a generic pre-trained-model-based
tensor program optimization approach that is
compatible with other TPO frameworks. To
demonstrate this, we integrate BALTO into
MetaScheduler (Shao et al., 2022) to perform
auto-tensorization using TensorIR (Feng et al.,
2022). Take the GEMM operator for exam-
ple, we randomly sample 800,000 unmeasured
programs at first. To train the model, we then
use BALTO to measure at most 5% of the to-
tal programs on an Intel Xeon Gold 6226R
CPU. To verify the optimization ability of the
trained model, we generate 80 tasks with dif-
ferent problem sizes (i.e., N = 512+64∗ i, i ∈
0, 1, .., 79). We experiment on two baselines including MetaScheduler and pre-trained-model-based
MetaScheduler (i.e., the Pretrained). The MetaScheduler guides the search with a model trained
from scratch and the Pretrained trains the model by measuring all the 800,000 programs. For a
given task, we limit the total trials of MetaScheduler to 1000 and the Pretrained as well as BALTO
to 100. Regarding the optimization ability, we compare the relative performance which is normalized
to MetaScheduler. As shown in Figure 4(a), the relative performance of BALTO to MetaScheduler
is between 0.93× and 1.08× with 0.992× on average, which demonstrates that BALTO achieves
similar optimization ability. Regarding the tuning time, BALTO reduces the pre-training overhead
by 20× and the single task optimization time by 10×. As shown in Figure 4(b), the total tuning time
of MetaScheduler grows rapidly with the number of optimization tasks while our tuning time grows
much slower.

4.4 ABLATION STUDY

Effectiveness of biased selection. As shown in Figure 5, biased selection with a proper C (e.g.,
C = 1) can outperform the output-diversity-based approach and the random selection approach.
At the early stage of the training, the accuracy score of the biased selection approach grows much
faster than that of the output-diversity-based approach, since the bias for high-performance programs
effectively reduces the distribution imbalance caused by the overestimation problem. Meanwhile,
after the early stage of the training, the estimation of the relative performance becomes more accurate
as well as the distribution becomes more balanced. Therefore, the biased selection switches to the
output-diversity-based selection and finally achieves a higher precision score under the same budget.

Optimization ability on sub-graphs. As shown in Figure 6 and Figure 7, BALTO achieves compa-
rable optimization ability with TenSet on two representative sub-graphs including batched matmul
and 2D convolution. Both BALTO and TenSet converge faster than Ansor since the pre-trained mod-
els are accurate enough to guide the search without massive hardware measurements. For sub-graphs
(i.e., batched matmul) with large search spaces, Ansor requires more trials (i.e., greater than 1000)
to converge since it searches with an inaccurate model that is trained from scratch. Meanwhile, the
pre-trained-model-based approaches can search such spaces more quickly and efficiently under the
guidance of an accurate model.
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Figure 5: Comparison of differ-
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Figure 6: Batched matmul.
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Figure 7: 2D convolution.
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4.5 VISUALIZATION
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Figure 8: Performance distributions.

Visualization of the performance distributions. Figure 8
is a histogram of program performance distributions at two
different time steps (e.g., the first time step and the last time
step). The y-axis represents the percentage of programs and
the x-axis represents the relative performance. As shown in
Figure 8, the program distribution of the first time step is ex-
tremely unbalanced since the programs are sampled randomly.
After 15 steps of program sampling based on active learning,
the program distribution of the last time step becomes more
balanced, which clearly demonstrates the effectiveness of our
biased-diversity-based AL approach.

5 RELATED WORK

Tensor optimization frameworks. Commonly used TPO frameworks include online-trained-
model-guided program optimization (Chen et al., 2018; Zheng et al., 2020a; 2022; Ahn et al., 2020;
Zeng et al., 2020), and predefined-model-guided program optimization (Zhu et al., 2022; Dave et al.,
2019; Adams et al., 2019; Haj-Ali et al., 2020; Anderson et al., 2020; Zheng et al., 2021). Predefined-
model-guided program optimization can optimize the given tensor programs in a short time and its
predefined model can be either designed manually by domain experts (Zhu et al., 2022; Dave et al.,
2019) or pre-trained using randomly generated programs (Adams et al., 2019; Haj-Ali et al., 2020;
Anderson et al., 2020; Zheng et al., 2021). The manually designed model are usually designed
for specific hardware platforms and thus hard to adapt to new platforms. The pre-trained-model
based approaches can effectively adapt to the new platforms but require a large number of hardware
measurements of randomly sampled programs. The online-trained-model-guided approaches relies
training the model with data collected online. Thus this kind of optimization approaches is time con-
suming for each input optimization task. Although BALTO is a fast tensor optimization approach
designed for the pre-trained-model-based approaches, the optimization schemes in BALTO can also
be applied to the online-trained-model-guided approaches, which is our future work.

Active learning. AL is widely used for reducing the expensive annotation cost for model training
(Aghdam et al., 2019; Joshi et al., 2009; Culotta & McCallum, 2005). The acquisition function
can reduce the redundancy in sampling by only anotating informative or representative samples and
thus is the core to AL. Typically, the most frequently used acquisition strategies can be divided into
uncertainty-based approaches (Yoo & Kweon, 2019; Roth & Small, 2006) and diversity-based ap-
proaches (Sener & Savarese, 2018; Hasan & Roy-Chowdhury, 2015). Uncertainty-based approaches
tend to query samples that are most uncertain (Lewis & Catlett, 1994). MC Dropout (Gal & Ghahra-
mani, 2016)adopts random dropout for obtaining CNN’s prediction uncertainty. (Beluch et al.,
2018) uses an ensemble of classifiers for obtaining the uncertainty. Diversity-based acquisition em-
phasizes on the diversity of selected samples. GSx (Yu & Kim, 2010) maximizes the diversity in the
feature space, while iGS (Wu et al., 2019) maximizes the diversity in both feature space and label
space. Our active learning approach is based on the Core-Set framework and explores the diversity
of predicted programs’ performance.

6 CONCLUSION

In this paper, we propose BALTO, a fast TPO approach with biased-diversity-based active learning to
reduce the training cost of the pre-trained model while with the same or higher prediction accuracy.
The key insight is that there exists a heavy redundancy of low-performance programs when sampling
randomly with existing approaches. To remove such redundancy and for a much lower training cost,
active learning is introduced in BALTO. Moreover, we further propose a biased-diversity-based
scheme specially designed for BALTO to address the overestimation problem. The empirical results
demonstrate that BALTO consistently shows superior training performance (i.e., 20× reduction in
required hardware measurements.) on a wide range of environment configurations (i.e., 6 hardware
platforms and 2 learning models) and even better optimization performance on T4.
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A APPENDIX

You may include other additional sections here.
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