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Abstract— In this work we present a reinforcement learning
(RL) based approach for enabling a robot to safely perform
assembly-type tasks. The proposed strategy involves both grasp-
ing and assembly, although our main focus is on the latter.
Instead of a pure visual approach, we opt for a combination
of force feedback and visual feedback to perceive the shape
and direction of the holes. To ensure safe operation, a force-
based dynamic safety lock (DSL) is introduced, which limits
the pressing force of the robot and prevents emergency stops
from being triggered due to excessive force output. Finally, we
train and test the strategy with a simulator and build ablation
experiments to illustrate the effectiveness of our method. The
strategies are independently tested 500 times in the simulator,
and we get an 88.57% success rate with a 4mm gap. These
models are transferred to the real world and deployed on a
real robot. We conducted independent tests and obtained a
79.63% success rate with a 4mm gap. Simulation environments:
https://github.com/0707yiliu/peg-in-hole-with-RL

I. INTRODUCTION

In some assembly-type tasks such as key insertion, humans
complete the task through a combination of visual and
contact force perception. However, it is challenging to endow
robots with such capabilities, which require precise and rich
graphical recognition algorithms and force perception-based
algorithms.

Visual feedback provides overall information about the
object geometry and its surroundings used for pre-capturing
and insertion. A purely vision-based model can be deployed
on the robot to complete the partial assembly task [1], but
these models cannot make robots determine how much force
is required.

Force sensing is a way for robots to determine physical
parameters. Using it to provide partial feedback during
collision or contact, the assembly process can be controlled
accurately and safely [2]. Therefore, the robot can obtain
many environmental details by referring to multiple infor-
mation such as vision and force sensing.

The application of RL [3] provides a policy for robots
to complete assembly-type tasks. The challenge of RL is
that the complete state of the environment cannot be im-
mediately observed without observing the geometry of the
object through the camera, but is perceived through contact
feedback. Thus, the insertion policy not only tries to align
the mismatch between targets but also needs to adjust the
insertion direction [4]. Furthermore, the exploration of RL
causes the robot to collide with the environment, hence, the
safety of robot interaction deserves consideration.

In this paper, as shown in Fig. 1, we propose a strategy
that can utilize multiple types of sensors with different char-
acteristics. The proposed strategy is constructed by RL and
can be generalized across similar manipulation tasks (e.g.,
similar geometries, configurations, and object sizes). The
approach is to learn the joint representation of force/torque
(F/T) sensors, robot proprioceptive information, and vision
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Fig. 1: The overview of the robotic platform.

sensors through a fully connected neural network to obtain
the necessary action and set the DSL for the robot.

We summarize the key contributions as follows.
1) The DSL is set for the robot’s motion trajectory to

ensure safety interaction during the insertion process.
2) Simplifying the vision function by using F/T sensors

to determine the precise position and direction of the
hole instead of the camera.

3) Demonstrating how to effectively use F/T sensors and
visual feedback for hole searching, alignment and
insertion on real robot.

II. METHODOLOGY

A. Assembly Task Setting in Simulation
As shown in Fig. 2. Firstly, the training environment

includes a 6-DoF robotic arm with a gripper, a workspace
with a table, holes, and objects. Then, since this paper mainly
focuses on the insertion action rather than the grasping
action, the initial position of the robot end-effector (EEF) is
fixed. The initial robot joint configuration is calculated via
inverse kinematics. The target (hole) location is randomized
within a defined domain that the EEF can reach.

Finally, to encourage the robot to learn the policy ef-
fectively, we set the size of the object in the training
environment to be constant and change the size of the hole,
i.e., changed the gap between the hole and the object. Since
the trajectory of the robot in this work is continuous, it is
considered to use the standard PPO algorithm [5]. Since we
mainly consider the policy of insertion action as described
above, the policy of grasping action is ignored in this policy
and the object is fixed to the EEF in a way that it has 1-DoF.

B. Observation, Action, and Reward
The RL state st consists of the robot state sr

t , the assembly
task state sa

t . The robot state sr
t contains the robotic EEF po-

sition pee
t = [xee

t ,yee
t ,zee

t ], the EEF force and torque obtained
with the F/T sensor fee

t , angular value of the last joint q6
t

at the end of the robot. The task state sa
t contains the hole

position ph
t = [xh

t ,y
h
t ,z

h
t ].

The action at consists of a three-dimensional displacement
increment of the robot EEF [∆x,∆y,∆z] and a rotation per-
pendicular to the insertion direction ∆θz. For the [∆x,∆y,∆z],
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Fig. 2: Model training schematic. The simulation part contains the
state of the robot and the environment that we need, and the motion
trajectories from the simulation can be transferred to the real robot.

Fig. 3: Network structure of robot assembly models. The entire
network is divided into three parts, the environment, the agent
network, and the dynamic safety lock (II-C).

the movement of the end is considered to compose the action
set in order to satisfy the relative position ree

h needed for the
observation.

For the reward function rt required for the RL model, we
choose the Euclidean distance as the basic function, i.e., the
distance between the hole and the object. The observation
st does not include the position of the object, but fixes the
object to the EEF (in II-A), therefore, the Euclidean distance
between the hole and the EEF de

h is calculated.

rt =

√
α1 ∗ (xee

t − xh
t )

2 +α2(yee
t − yh

t )
2 +α3(zee

t − zh
t )

2

+α4[d(pee
t ,ph

t )< δ1]

+α5zdist,

(1)

where [α1,α2,α3] is the important weight vector of the
different direction, d(·) expresses the Euclidean distance
between pee

t and ph
t , this part could be activated when

the distance less than the threshold δ1. zdist represents the
distance in the insertion direction. The cost is defined as:

zdist =

{
zh

t − zee
t , d(pee

t ,ph
t )< δ2

0, otherwise, (2)

where δ2, similar to δ1, is also the judgment threshold for
distance d(·), but the value of δ2 is greater than the δ1 one,
which means the reward can be activated when the object is
inserted into the hole.

C. DSL for Robot
To ensure that the robot does not collide with the en-

vironment violently and thus has problems such as system
crashes, as shown in Fig. 3, we suggest a DSL method
in each control loop. The vector consisting of these two
sets of signals is used as the input to the DSL. When the
EEF touches around the hole, the change in the value of
the F/T sensor becomes larger and the recorded position

Fig. 4: Schematic diagram of the detection points. Each line is a
detection behavior, respectively, simulation, real-world and geome-
try schematic. Each contact point represents a small contact zone,
and the contact forces, where Fz = Fz1+Fz2+Fz3, τy represents the
torque in the y-direction, are represented by the F/T sensor.

Rp = [xee
ti ,y

ee
ti ,z

ee
ti ](i= 1,2,3, ...) at this moment is used as the

limited contact position zc
t for the next time of exploration.

To speed up the exploration to find the initial first limit, we
artificially add a tiny increment δ zee

t in the direction of the
insertion of the output increment, which does not affect the
overall trajectory of the RL model exploration. Finally, to
more concretely represent the function of the DSL, we list
the pseudo-algorithm as shown in Algorithm 1.

Since exploring the edge of the hole or not has a relatively
large effect on the F/T sensor as shown in Fig. 4, we set
threshold δ f, which is activated when the edge of the hole is
explored on the first exploration, to be used to broaden the
limit zc

t . The specific calculation is as follows.

δxee
t = β11 · (Fx(t)−Fx(t−1)+ τx(t)− τx(t−1))

δyee
t = β12 · (Fy(t)−Fy(t−1)+ τy(t)− τy(t−1))

δ zee
t = β13 · (Fz(t)−Fz(t−1)+ τz(t)− τz(t−1)),

(3)

where F·(t), F·(t−1), τ·(t) and τ·(t−1) denote the last two values
of the R f record. β1 = [β11,β12,β13] represents the F/T
variation gain vector. The tiny increments δxee

t , δyee
t and

δ zee
t obtained are used as leverage to raise the limit zc

t .

zc
t = zee

t +δxee
t +δyee

t +δ zee
t , (4)

where zee
t denotes the last value of the Rp record. On the

other hand, if the threshold R is not activated, i.e., it is
considered that the edge of the hole is not touched, but
the strength of the last position change δRp reflects the
intensity of the downward exploration, so δRp is used as
a tiny increment to regulate the limit zc

t .

δRp = ∥Rp(t)−Rp(t−1)∥, (5)

zc
t = zee

t +β2 ·δRp, (6)

where Rp(t) and Rp(t−1) denote the last value it record. β2
represents the gain vector of δRp.

III. EXPERIMENTS AND RESULTS
A. Simulation Experiments

1) Experimental Setup Details: All training and testing
in the simulation part are on the Intel(R) Core(TM) i7-
1185G7 CPU. The hyper-parameters mentioned in this work
were manually optimized. For the reward function (Equa-
tion (1)), α1 = α2 = 2.30, α3 = 1.23, α4 = 2, α5 = 0.5,
δ1 = 1e−04, δ2 = 0.01 (Equation (2)). For the DSL, β1 =



Algorithm 1: DSL.
Input:
• F/T sensor: [Fx,Fy,Fz,τx,τy,τz]
• Position of the EEF: [xee

t ,yee
t ,zee

t ]

Output: Contact position zc
t from the recorder.

// the observation can be provided for this algorithm.
Initialize ph

t , pee
t randomly

Define tiny increment δ zee
t

Define the six-dimensional force threshold δ f
Normalized the F/T sensor data
while not contact (Fz < 0.5) do

Record F/T sensor’s data [Fx,Fy,Fz,τx,τy,τz] and
position [xee

t ,yee
t ,zee

t ] as R f , Rp
Add tiny increment δ zee

t into zee
t in the direction

of insertion to gradually explore downward.
if R f (t)−R f (t −1)> δ f then

Utilize changes in F/T sensor to obtain the tiny
increments δxee

t ,δyee
t ,δ zee

t (Equation (3))
Tiny increments act as gains on zc

t (Equation (4))
else

Calculate the intensity of the position δRp
change at the last moment (Equation (5))

Tiny increments δRp act as gains on zc
t (Equation

(6))

[1e−03,1e−03,5e−04], β2 = [1e−07,1e−07,1e−03], δ f =
[0.15,0.15,0.45,0.1,0.1,0.2]. For the observation, Gaussian
noise is added to the observations of the holes. The obser-
vation of the robot sr

t has the noise of the simulator, so no
additional noise is added to it. The total number of training
steps is 2e06, and the maximum number of steps per episode
is 110. For the task, we randomize the configuration of the
hole position and orientation at the beginning of each episode
to enhance the robustness and generalization of the model.
All models are set with checkpoints and estimated models
are generated every 1e04 steps. The estimated models are set
up to test the success rate of the trained models, which is
judged by the bottom of the object being more than 2.5mm
below the surface of the hole.

2) Vision and F/T Model: We set up three sets of ex-
periments with different data inputs, which constitute three
models with DSL, the vision-based model (VM), the vision-
F/T-based model (VFTM), and the F/T-based model (FTM).
For VM, the observation space contains pee

t and ph
t , the

VFTM one contains all of the state in II-B, the last one
contains pee

t and fee
t .

We set a single fixed assembly gap with a size of 4.0mm
and a fixed size of the grasped object. As shown in Fig. 5,
firstly, for the VM, we set the β2 = 0 to disable the DSL.
Then, we can see that VFTM has the highest reward with
the fixed gap and has a high success rate. The success rate
performance of FTM is better than VM one. A reason is that
we do not use a camera-based shape recognition algorithm
that requires a large amount of data to identify the shape and
orientation of the hole, but rather randomize the position and
orientation of the hole, while FTM is able to learn the skill of
alignment through the encoding of F/T sensor data. However,
as this model has no visual support, FTM does not know
where the hole is. Thus, FTM can only get the position of

Fig. 5: Training performance of three assembly models (VFTM,
FTM and VM) based on vision and F/T sensor with the 4mm gap.

Fig. 6: Performance of training method (DSL vs. Sliding).

the hole by constantly exploring, which leads to sometimes
when the entire episode is over did not explore the position
of the hole so that the success rate is not remarkable.

Finally, we take the best result of each model as the best
model for testing and get the results as shown in Table
I, where each model is tested 500 times independently to
obtain the reward and success rate. In this subpart, we focus
on the 4mm gap and we can see that the success rates of
VFTM, FTM and VM are 88.57%, 56.42% and 25.59%,
respectively, which are consistent with the results analyzed
from Fig. 5 in the above. For the reward, FTM has the
largest variance, which is reasonable because of its need for
continuous exploration.

It can be proven that the model with rich data is more
effective, the F/T sensor can replace the shape recognition
function of the visual sensor to accomplish the task.

TABLE I: Model testing results in simulation. (r: reward, sr:
success rate)

4mm 1mm

VFTM-DSL r 5.73±0.51 -0.32±0.44
sr 88.57% 41.95%

VFTM-Sliding r -4.29±0.03 -4.29± 0.48
sr 25.03% 0.64%

FTM-DSL r -4.56±0.69 -
sr 56.42% -

VM r -5.31±0.23 -
sr 25.59% -

3) DSL Experiment: This part, at last, establishes ablation
experiments about the proposed DSL method. As mentioned
in II-C, the DSL method differs from the traditional sliding
one by having a repetitive pressing action. Therefore, this
experiment only distinguishes the effects of different action
styles (DSL vs. Sliding). From the above experimental re-
sults, it is obtained that VFTM is the most effective, so this
experiment is conducted with VFTM at different sizes of
gaps (4mm and 1mm).

As shown in Fig. 6, qualitatively, for the reward, the
obtained score by the DSL method is higher than the sliding



TABLE II: Insertion experiment results in real world.

tr rtr trm cir b-trm b-rtr
proportion 26.3% 7.8% 24.7% 30.65% 9.33% 13.78% 20.50% 5.8% 5.5%

success rate 79.63% 18.64% 68.52% 83.67% 15.43% 20.00% 41.37% 13.95% 22.81%

method one for each size of the gap. For the success rate,
The performance of both sliding methods is low, while the
performance of the DSL method is remarkable. Quantita-
tively, as shown in Table I, the data corresponding to Fig. 6
in this subpart are VFTM with DSL method and VFTM with
sliding method. The success rate of the sliding method with
the 4mm gap is 25.03% but the DSL method has 88.57%, for
the 1mm gap, the DSL method has 41.95% success rate and
the sliding method cannot complete the task, which indicates
that the sliding method does not match the hole well at the
smaller gap. For the fluctuation of the data, i.e., the variance,
the fluctuation of the sliding method is smaller compared to
the DSL method, which indicates that the method repeatedly
explores around the hole location after exploring it and does
not find the insertion direction.

B. Real-World Robotics Experiments
The experiments are completed on the device UR3e

equipped with Robotiq2F. The hole position with the marker
is captured by a ZED2i camera. Since the effectiveness of
the DSL method has been demonstrated in the simulation, we
no longer compare the DSL method and the sliding method
in the real world. According to the characteristics of the F/T
sensor, we designed an exploratory experiment to generalize
the model based on the triangle training in Fig. 4 to other
shapes or other sizes as shown in Fig.7.

Based on Fig.7, we also changed the size of the hole and
used the area proportion of the object to the hole instead
of the gap size (4mm) to describe the gap. The smaller
the proportion, the smaller the gap. As shown in Fig. 8,
we conduct experiments with the objects shown in Fig. 7
and holes of different sizes. Note that all experiments are
performed with the same model (VFTM-DSL), the purpose
is to test the generalization effect of the model by using the
perceptual ability of the F/T sensor.

We tested different situations about 50 times, each time
artificially changing the orientation and position of the hole
randomly, and got the results shown in Table II. It can be
seen that the success rate of tr (original model) is 79.63%,
which is similar to the test results in simulation, and it
has a success rate of 28.64% when the gap is 1mm (7.8%
proportion). Objects of similar shape (rtr, trm) can have a
higher success rate under similar size conditions (68.52%,
83.67% and 25.43%). In particular, the proportion of trm is
larger than the tr one, and its success rate is higher than
the original model one. For the object (cir) with a large
difference in shape, the success rate is reduced to 20%. This
is because the force sensor failed to find a suitable pose to
insert during the pressing process due to the mismatch of
the object shape. For objects of different sizes (b-trm, b-
rtr), the success rates (31.37%, 13.95% and 22.81%) are
reduced compared to the original model. This is because
when the object is larger, the change of the F/T sensor’s value
is reduced during the pressing process, thereby reducing the
probability of exploring the hole. However, there is still
a success rate (31.37%) when the gap proportion is large
(20.50%).

In short, we use the F/T sensor to replace some of the
functions of the camera and use the changing characteristics

Fig. 7: Objects of different shapes and sizes, from left to right are
triangle (tr), circle (cir), big size Reuleaux triangle (b-rtr), Reuleaux
triangle (rtr) and triangle with missing corner (trm) and the big size
one (b-trm).

Fig. 8: Insertion experiment, from top to bottom, from left to
right are tr with 7.8% and 26.3% proportion, cir with 13.78%
proportion, rtr with 24.7% proportion, b-rtr with 5.5% proportion,
b-trm with 20.50% and 5.8% proportion, trm with 9.33% and
30.65% proportion.

of the sensor’s feedback during the exploration process, so
that the proposed model can be applied to objects of similar
shape and size.

IV. CONCLUSION AND FUTURE WORKS
In this work, a reinforcement learning based approach

with the dynamic security lock (DSL) is proposed. This can
improve the robustness and safety of the robot in the real
world, and improve the ability of the robot to make compliant
contact with the environment. Moreover, this work replaces
the visual shape recognition ability with the F/T sensor. For
future work, we can be extended to build a more complete
model to work in situations where the data of the camera is
corrupted, for example.
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