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ABSTRACT

The Transformer neural network architecture has seen success on a wide vari-
ety of tasks that appear to require executive function – the ability to represent,
coordinate, and manage multiple subtasks. In cognitive neuroscience, executive
function is thought to rely on sophisticated frontostriatal mechanisms for selec-
tive gating, which enable role-addressable updating– and later readout– of in-
formation to and from distinct “addresses” of memory, in the form of clusters
of neurons. However, Transformer models have no such mechanisms intention-
ally built-in. It is thus an open question how Transformers solve such tasks, and
whether the mechanisms that emerge to help them to do so resemble the gat-
ing mechanisms in the human brain. In this work, we analyze the mechanisms
that emerge within a vanilla attention-only Transformer when trained on a task
from computational cognitive neuroscience explicitly designed to place demands
on working memory gating. We find that the self-attention mechanism within
the Transformer develops input and output gating mechanisms, particularly when
task demands require them. These gating mechanisms mirror those incorporated
into earlier biologically-inspired architectures and mimic those in human studies.
When learned effectively, these gating strategies support enhanced generalization
and increase the models’ effective capacity to store and access multiple items in
memory. Despite not having memory limits, we also find that storing and access-
ing multiple items requires an efficient gating policy, resembling the constraints
found in frontostriatal models. These results suggest opportunities for future re-
search on computational similarities between modern AI architectures and models
of the human brain.

1 INTRODUCTION

The Transformer architecture Vaswani et al. (2017) has recently become the dominant neural net-
work model in artificial intelligence. Unlike some earlier AI architectures, which were inspired (al-
beit loosely) from human processing of language (Hochreiter, 1997) or vision (LeCun et al., 2015),
Transformers have no mechanisms designed overtly to resemble the human brain. It thus remains
an open question what, if any, similarities exist, and whether there are opportunities for theory or
insights from AI and neuroscience to mutually inform one another (McGrath et al., 2024).

In this work, we focus specifically on working memory management via gating mechanisms. Gating
mechanisms are responsible for multiple distinct aspects of working memory management, includ-
ing determining which items to store and retrieve, when, and from where. In humans, there is strong
evidence that such mechanisms are essential for tasks that require executive function, i.e., the ability
to manage competing demands from multiple tasks, stimuli, and responses and to coordinate their
execution (Frank & Badre, 2012; Badre & Frank, 2012; Chatham et al., 2014; Rac-Lubashevsky &
Kessler, 2016; Rac-Lubashevsky & Frank, 2021). Although some Transformer variants have ad-
ditional built-in structure for memory (Dai et al., 2019; Burtsev et al., 2020; Wang et al., 2019),
the architectures which currently dominate modern AI systems are “vanilla” (Brown et al., 2020;
Touvron et al., 2023), lacking specialized components to support this type of control.
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We thus investigate whether, and under what conditions, such structure can emerge as a result of
training. We train vanilla Transformer models on a task from cognitive neuroscience that was de-
signed designed to investigate selective gating and working memory in humans (O’Reilly & Frank,
2006; Rac-Lubashevsky & Frank, 2021). We use recent techniques from mechanistic interpretability
(Olah, 2022; Nanda & Bloom, 2022) to expose the mechanism that the Transformer uses to perform
the task. We find that, as a result of training, the self-attention mechanism specializes in a way that
resembles existing models of input-output gating (§4.1), but that these mechanisms only arise when
the training task places specific demands on gating that mimics biological networks (§4.2). We fur-
ther find that when such mechanisms do arise, they are predictive of better task performance and
of generalization to changes in the input distribution and task demands (§4.3), improving effective
working memory capacity (§4.4). Our findings highlight the importance of considering the emer-
gent mechanisms that result from training in addition to the innate architectural mechanisms when
drawing comparisons between AI systems and human cognitive processes.

2 BACKGROUND AND HYPOTHESES

There is strong evidence that working memory in human brains makes use of a gating mechanism
to read, write, and maintain information required to carry out complex tasks (Rac-Lubashevsky &
Kessler, 2016; Rac-Lubashevsky & Frank, 2021; Bhandari & Badre, 2018; Badre & Frank, 2012;
Chatham et al., 2014). Sophisticated gating mechanisms of the type implemented in biological
neural networks contain at least three important components. First, input gating controls whether
or not given information is stored in memory, and if stored, determines the “address” (population of
neurons) to which it should be written. Second, output gating determines when and what information
to read out of memory to inform a subsequent decision, such as to produce a response to a task.
Finally, working memory is role addressable, meaning that items can be bound to a learned task-
dependent context (i.e. role) when stored and accessed in working memory. For example, in listening
to a story for the first time, people will not just remember individual entities (“Andrea”, “Chicago”)
but rather can associate them with specific roles such as lives in(“Andrea”, “Chicago”).

In humans and other animals, these operations are supported by corticostriatal circuits in which
isolated clusters of prefrontal neurons (or stripes) are used to represent distinct addresses in memory
that can be updated or read out from via selective gating actions triggered by basal ganglia and
thalamus (O’Reilly & Frank, 2006; Frank & Badre, 2012; Kriete et al., 2013; Calderon et al., 2022;
Soni & Frank, 2024). These stripes can also serve as latent roles that condition how to interpret
content within them. When learning effective gating policies, these models afford functions such
as variable binding and indirection that support rapid generalization to new situations (O’Reilly &
Frank, 2006; Frank & Badre, 2012; Collins & Frank, 2013; Kriete et al., 2013; Bhandari & Badre,
2018).

In principle, Transformers are good candidates for learning such gating behavior. Transformers’ na-
tive self-attention mechanism consists of attention heads which are arguably functionally analogous
to frontostriatal stripes. The decomposition of these heads into distinct keys, queries, and values
(see Appendix A.1) means that the Transformer can in principle learn to differentiate reading and
writing operations in a role- and context-dependent way across its multiple heads. However, whether
Transformers will use their self-attention to implement such a mechanism is an open question, espe-
cially in cases when it is possible to fit the training data using more heuristic and less generalizable
solutions.

We thus consider two hypotheses. First, we investigate whether, and under which data distributions,
the Transformers use their attention heads to learn effective gating strategies. We find that the
key vectors form addresses analogous to the PFC “stripes” (neural populations that support variable
binding in memory). The learned key construction determines the address to store an item and is thus
analogous to input gating. Conversely, the query vectors determine which addresses are accessed,
and are thus analogous to output gating.

Second, we investigate whether adopting such strategies will facilitate rapid learning and general-
ization in working memory tasks the way it has been show to in humans. Specifically, human studies
have shown that working memory capacity is not limited by the number of items one can maintain
but rather by their effective gating strategies in frontostriatal circuits (Vogel et al., 2005; McNab &
Klingberg, 2008; Baier et al., 2010). Theoretical work has shown that capacity limits in these circuits
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do not stem from a limitation in the number of available neural populations, but rather result from a
credit assignment problem that arises when learning to manage multiple items in memory (Soni &
Frank, 2024; Todd et al., 2009). These limitations can thus be partially mitigated by learning to reuse
effective gating policies (Soni & Frank, 2024). Because these limitations are computational rather
than anatomical (i.e., not driven by the number of neurons/populations available), we hypothesize
that they would also manifest in Transformers, even though they have no inherent memory demands
at all (since all information is available in the context window).

3 EXPERIMENTAL DESIGN

3.1 TASKS

Reference-Back 2 Task: We use a variant of a task from cognitive neuroscience known as the
“reference-back 2” task (Rac-Lubashevsky & Frank, 2021). This is one among a number of task
designs inspired by frontostriatal modeling work (O’Reilly & Frank, 2006; Soni & Frank, 2024)
which requires selective updating and accessing of information in a role-addressable manner. In the
reference-back paradigm, symbols are viewed one at a time with associated roles, and the participant
must determine whether the current symbol is the same or different as that stored in memory for a
given role. For example, a sequence might contain letters (role 1) and numbers (role 2), each of
which occurs along side an update instruction which is either Store or Ignore. For each symbol
in the sequence, the participant must do two things: 1) make a same/different judgment based on
whether the current symbol matches the previously-stored symbol for that role, and 2) if the update
instruction is Store, update the symbol associated with the associated role. See Figure 1 for an
example. We create a modified text-based version of the reference-back 2 task. In our design, roles
are denoted explicitly using special tokens (i.e., either Reg0 or Reg1 for the two-role version)
indicating the role (or “register”) to which the symbol should be bound. See Appendix A.2 for more
details about our task implementation.

C
Store

L
Store

R
Ignore

K
Store

RCRC LCLC LK

Same Different Different Different

Figure 1: Task The reference-back-2 task requires making same vs. different judgments for each
symbol in a sequence by comparing against a previously-shown symbol. See text for description of
the task. In the above example, there are two roles, blue and red. The register state (shown along
the top and connected by dotted lines) is assumed to be latent in the model; i.e., it is not provided as
input.

Split-Set Control: The computational advantages of role-addressable gating in frontostriatal net-
works (relative to other recurrent neural networks) are particularly evident when any symbol can
be assigned to any register, so that the networks have to learn to assign them separable addresses
(O’Reilly & Frank, 2006). To test the hypothesis that gating mechanisms only emerge in response to
such task demands, we create a control condition in which the registers are associated with disjoint
sets of symbols. In this task, it is possible to succeed without role-addressable gating, since symbols
never need to be decoupled from their associated registers.

Ignore-Integrated and Ignore-Separated Controls (a.k.a Split-Set Control): In the same vein,
we include a further simplified task variant which is designed to require selective input gating but not
output gating. This condition, along with the split-set control, have been previously used to show
that the advantage of frontostriatal gating networks relative to other recurrent networks is largely
reduced in such scenarios (O’Reilly & Frank, 2006).
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Specifically, in the ignore separated condition (referred to as split-set control earlier), each register
sees a disjoint set of symbols. Additionally, symbols falling under the Ignore update instruction
are disjoint from those that are stored, meaning the model does not need to learn to differentiate
Store and Ignore in a meaningful way. In contrast, in the ignore integrated condition, symbols
under an Ignore instruction will be in distribution with the chosen register. In other words, the
model must distinguish between a Store and Ignore instruction and thus learn input gating,
but does not have to learn an output gating policy because both registers have mutually exclusive
symbols.

3.2 MODELS

We train small, attention-only, decoder-only Transformer models from scratch on our task. Our
models contain two decoder-only layers, each with two heads, and no multilayer perceptrons or
layer normalization, followed by a linear “unembed” layer. The models are trained on 100k training
data points for 60 epochs. See Appendix A.3 for additional details.

3.3 METRICS

Performance on Refback2 Task: We evaluated how well the model performs on the task on
which it was trained using standard accuracy on the same vs. different prediction for each symbol
in the sequence.

Input and Output Gating: The refback2 task is assumed to benefit from gating mechanisms,
but success on the task is not in and of itself diagnostic of having learned the gating mechanisms.
To develop an intrinsic measure of the input and output gating mechanisms, we use path-patching
(Wang et al., 2022; Goldowsky-Dill et al., 2023), a generalization of causal mediation analysis
(Pearl, 2001) that allows us to determine which components of a neural model (e.g., attention heads)
work together in order to produce observed behavior on a task. Path patching involves designing
a minimal pair of inputs, a “clean” input and a “corrupted” and then finding specific components
of a model which fully account for the difference in the model’s output between the two cases. By
“patching in” only these components, the model can be made to behave as though it is seeing the
corrupted input even when it is in fact seeing the clean input. See Appendix A.4 for more details.

We use path patching as a measure of input gating in the following way. For input gating, we design
a minimal pair of inputs in which the corrupted copy includes Ignore in a place where the clean
copy contained a Store, or vice-versa. We then use path patching to identify an incisive edit that
can be made to the weights of the model in order to prevent the model from storing (“gating in”) a
given symbol. We report the accuracy of the input gating mechanism as the percentage of inputs on
which this edit to the weights changes the models behavior in the expected way.

Analogously for output gating, we design minimal pairs which we expect to yield differences in an
output gating mechanism, assuming one exists and is functioning correctly. Specifically, our clean
and corrupted sequences differ in the register associated with one of the symbols, which should trig-
ger a difference in what information is read (“gated out”) in order to make a final same vs. difference
judgment. Again, we report the accuracy of the output gating mechanism as the percentage of cases
on which it is possible to make such an edit and produce the desired effect.

Our description of results in Section 4 elaborates on both this and the input gating metrics and their
interpretation.

4 RESULTS

4.1 KEY AND QUERY VECTORS SPECIALIZE FOR INPUT AND OUTPUT GATING

We find that Transformers implement a role-addressable gating mechanism in which key vectors
control input gating and query vectors control output gating (see Appendix A.1 for summary of key,
query, value attention). Specifically, after training, the key for Symi (e.g., at tokens 2, 6, 10, and 14
in Fig. 2a) represents the combination of the update instruction, register, and symbol for position i.
A query’s ability to address this position depends on whether the represented tuple contains a Store
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Clean sequence Attention heatmap Prediction

(idx 15) 

same

Corrupted sequence (with minimal pair patched to target indices) Attention heatmap after patch

different

different

same

different

same

c) 0 1 2 3 4 5 6 7 8 12 13 14
Sym4 diff
10 11

Reg0
9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 1 2 3 4 6 7 8 12 13 14
Sym4 diff
10 11

Reg0
95

0 1 2 3 4 5 6 7 9 12 13 14
ignore Sym4 diffb) 8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1410 11

a) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 9 12
Sym4e) 8 10 11 14

Reg0
13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 3 4 5 6 7 9 12
Sym4f) 8 10 11 14

Reg0
13

Sym4
2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2: Path Patching Examples. Model behavior across different path patching conditions.
Attention is visualized as a shade of purple, with deeper shade corresponding to higher attention to
that token. We create “corrupted” minimal pairs in which changing a token in the input (light blue)
either changes the correct label at index 15 (examples b, c, e) or does not (d, f). We make small
path-patching edits with the minimal pair to targeted network components (layer 1 keys for b, c, d, f;
queries for e,f, see text). In all test examples, making the small patch successfully alters the model’s
prediction to align with the “corrupted” example, as expected.

or an Ignore. That is, key vectors representing an Ignore tuple receive very little attention (0.4%
of layer 1 attention averaged over test set), whereas those representing a Store tuple receive the
bulk of the attention (86.8%). We demonstrate the above narrative using path patching, described
in Section 3.3), and further below. Figure 2 shows a summary of the path patching experiments and
results. Our task is simple and does not contain noise, so in all cases, the intervention (i.e., patching
to the keys or queries) results in a 100% change in the model prediction in the expected direction.
Thus, for compactness, Figure 2 depicts the conditions but does not include quantitative results.

First, to investigate input gating, we create clean sequences sampled from our test set, and then
corrupt these sequences by switching a Storewithin tuple i to an Ignore. We path-patch only the
key vectors of i. We expect, if the key controls input gating, that patching these key vectors should
“block” attention to all of tuple i. An example attention pattern is in Fig. 2, examples a and b. We
find that the model’s attention shifts away from the tuple accordingly in 100% of patched instances.
The presence of an Ignore or a Store within a tuple controls whether the key construction acts
as an open input gate or a closed input gate.

Key construction also depends on the role of the represented content; within our task, that means
whether Regi is Register 0 or Register 1. When making a same/different prediction, key vectors
representing a tuple that matches the target register receive most of the model’s attention (92.5% of
total attention), while those that do not match are not attended to (3.3% of total attention). Again, we
use path-patching to determine that key construction encodes roles, this time perturbing the target
register rather than the update instruction (see Fig. 2, row c). The model’s attention shifts away
accordingly across every example in the test set. Note that the stored tuple must be modified; if the
same corruption is made earlier (as in row d), attention does not shift. This behavior shows that the
gating within self-attention is role-addressable; the registers within the task function as roles, and
are embedded within the key vectors as part of the representation.

Given that key vectors serve the role of addresses, query vectors in turn control which key vectors are
accessed, through the final Q*K dot product in attention. Query construction thus performs the role
of output gating within Transformers. The query composition controls which addressable Symbol i
representations are attended to based on the identity of the target register. We again determine this
through a set of path-patching experiments in which we perturb the target register (Fig. 2, row e).

We find that patching to the query vector in such cases indeed causes the attention to shift from
the original stored tuple (74.1% of attention) to the stored tuple that matches the edited register,
resulting in a corresponding change in the final same/different judgment. Editing aspects of the
target tuple other than target register has minimal effect on the query construction. No edits to the
query cause the model to attend to an Ignore tuple, further evidencing of output gating behavior–
only content that has been made “addressable” can be accessed for a response. Furthermore, we
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find that the target instruction and symbol do not factor into the query composition– changing them
through path-patching to the query does not affect attention. This is notable because the model
could employ other strategies for determining which tuples are eligible to be the stored tuple; e.g.
attending to all symbols to match if any of them are the same as the target symbol.

4.2 EMERGENCE OF GATING POLICIES DEPENDS ON TASK DEMANDS

Under which conditions to gating computations arise? One possibility is that they are a trivial con-
sequence of the Transformer’s architecture. After all, gating is sometimes expressed as a simple
multiplicative operation, as in LSTMs (Hochreiter, 1997). And indeed, the key, query, and value
vectors underlying the attention heads are combined via matrix multiplications. However, this alone
does not ensure that the networks learn effective, role-addressable gating policies. We thus inves-
tigate whether the training task demands induce such gating policies by running several control
experiments (§3.1) which simplify the task, removing the role addressability of gating requirements.
We thus hypothesized that since this task is much easier to learn, the Transformer will learn an
overly memorized, brittle solution and will not develop effective input and output gating strategies.

Figure 3: Split Set Control a) Ignore Symbols are not mutually exclusive with the registers. The
models must learn to respond appropriately to store/ignore instructions (input gating). This control
task separates the symbols shown to each register, reducing the need for the model to learn output
gating. b) Both registers and the Ignore instruction have mutually exclusive symbols.

As shown in Figure 3, networks trained on the split set control task do not perform well at either
the input or the output gating subtasks (see §3.3 for gating metrics). Moreover, models trained on
the ignore-integrated task perform well at the Store vs Ignore input gating tasks, but not the output
gating task, as expected, while models trained on the ignore-separated task perform poorly on both
input and output gating (3b). These results strongly support the intuition that while Transformers
have good inductive biases for learning role-addressable gating, it does not come “for free”, and
emerges only when demanded by the training task – the same contrast in demands that demonstrated
advantages of frontostriatal gating (O’Reilly & Frank, 2006).

4.3 EMERGENCE OF GATING PREDICTS TASK PERFORMANCE

Is learning this gating policy useful for succeeding on the task? To answer this question, we first
compare models with the same hyperparameters across different random seeds. We train 20 new
models, each with a different random initialization, and measure both training loss and test set
accuracy. 5 of the models succeed 100% of the time, and the other 15 models succeed between
94%-99.99% of the time, with a mean of 97.72% and a standard deviation of 2.03. We measure the
intrinsic quality of the input and output gating subtasks using the path patching metrics described in
Section 3.3.

Figure 4 shows the 5 runs that reach 100% accuracy on the test data as well as 5 randomly selected
runs that do not. Two trends stand out. First, models which score a perfect test accuracy appear to
succeed at the gating subtasks more readily than models which do not. Of the former, 3 of 5 models
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Figure 4: Model Performance over training on patching subtasks. Each graph contains an individ-
ual model’s training loss (solid line) and subtask accuracy (dashed line, between 0 and 1) over time;
the line’s color corresponds to whether the model reaches 100% accuracy on the general test set.

reach 100% accuracy on both subtasks readily, plateauing less than halfway through training. In
contrast, models that make errors in the test set also do not reach such immediate success at the
subtasks (including the 10 not pictured in this graph); in fact, many categorically fail, scoring as low
as 49% accuracy. These results do not indicate that this class of models’ representations are useless
for the task– they all score between 94% and 99.99%, well above chance performance.

The second trend is that many models across both classes have a sharp decline in training loss, which
correlates with a similarly steep increase in accuracy on both subtasks. We interpret this phase
transition as suddenly learning a gating mechanism. Models that do not exhibit phase transitions to
the same degree take longer to fit the task, and do not reach high subtask accuracy.

While the above results suggest it is possible for a model to achieve fine accuracy in distribution
without learning a gating policy, we hypothesize that models which do learn a more general gating
strategy will better generalize to out of distribution examples. To assess this, we held out a subset
of symbols from each register (randomized which symbol would be held out from which register).
We tested these models on a challenge dataset which included examples of in-distribution pair-
ings (register-symbol pairings that were seen in training) and out-of-distribution pairings (register-
symbol pairings that were not seen during training). When holding out 5% of the symbols, the
models learn a robust input and output gating strategy, and notably, perform on average at 99.7% for
out-of-distribution symbol-register pairings. In contrast, the models trained on the split set controls
do not learn robust gating strategies (despite performing perfectly at the trained task) and accord-
ingly perform more poorly on the out of distribution examples: 77.2% (ignore integrated) and 88.6%
(ignore separated).1

Note that the Split Set (Ignore Separated) task depends least on learning an effective gating strategy.
These models learn the task very quickly and show no ability to perform on the gating subtask, and
instead likely learn heuristic solutions. Interestingly, when tested on the challenge dataset (which
includes examples of both in distribution and out of distribution register-symbol pairs), these mod-
els show a large disruption in their ability to perform on in-distribution sequences (80.8%). This
insinuates that the strategy learned by these models is highly dependent on memorization and by
adding in new elements, the strategy fails. The out-of- distribution accuracy is slightly higher than
the in-distribution accuracy and future work could try to better understand the effects of perturbing
a brittle model.

1One concern is that in the 5% held out, each register is trained on 49 symbols while in the split set (ignore
integrated), each register is trained on 25 symbols. While all other parameters are held constant, this difference
might be big enough to account for the large difference in generalization. To account for this, we ran another set
of simulations holding out 60% of the symbols (each register is trained on 35 symbols). These models robustly
learn a gating policy. Even with a drastic increase in the number of held out symbols from 5% to 60%, the
out-of-distribution accuracy is still very high compared to either of the split set controls.
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Experiment Out of Distribution In Distribution
5% Held Out 99.7% 99.8%

60% Held Out 95.3% 99.3%
Split Set (Ignore Integrated) 77.2% 94.6%
Split Set (Ignore Separated) 88.6% 80.8%

Table 1: Accuracy for In Distribution and Out of Distribution Symbol-Register Pairings in
Challenge Dataset Experiments and their associated performance on the challenge data set. The
challenge dataset includes a mix of in-distribution and out-of-distribution symbol-register pairings.
This table breaks down the accuracy based on if the symbol-register pairing was in the training (In-
Distribution) or not seen during training (out-of-Distribution).

4.4 GATING POLICY TRANSFERS TO INCREASED TASK DEMANDS

Thus far, the experiments have focused on tasks with two registers, mimicking that used in the ref-
erence back-2 task (Rac-Lubashevsky & Frank, 2021). However, human working memory has a
capacity of about 3-4 items (Cowan, 2008), albeit with vigorous debates questioning whether this
limit is discrete or continuous (Zhang & Luck, 2008; Wei et al., 2012; Luck & Vogel, 2013). More
recent models and data suggest a “chunking” hybrid between the two, whereby multiple memo-
randa can compete for shared continuous resources within discrete slots (Nassar et al., 2018; Soni
& Frank, 2024). Chunking increases effective capacity, allowing more items to be remembered at
the cost of precision of some of the items. Notably, in frontostriatal gating models, when the num-
ber of registers to manage was larger than two, networks given limited memory allocation but with
chunking capabilities performed better than those that were allocated as many PFC populations as
items to store (Soni & Frank, 2024). The reason for this seeming paradox is credit assignment: as
the number of PFC populations (stripes) increases, the gating management problem becomes more
challenging – the network has to learn to route each item to distinct populations and to also learn to
read out from the corresponding population for a given probe. Moreover, these learning problems
are interdependent.

These limitations are computational rather than anatomical and stem from the learning process.
We hypothesize that they would also manifest in Transformers, even though Transformers have no
inherent memory demands (since all information is available in the context window). Specifically
because of the flexibility and expressivity of Transformers, we predicted that by increasing task
demand, the network would learn the task, but struggle to do so. We further predict that models that
learn mechanistic solutions will generalize better to new tasks.

To test this hypothesis, we increased the number of registers from 2 to 3. First, we confirmed that
asymptotic accuracy dropped to 95.4%. This result is qualitatively the same even when training
for twice the number of epochs. This is non-trivial given that we are just adding one register. We
predicted that the degree to which the transformer solves the task is related to heuristics and mem-
orization rather than gating in these cases. We predicted that if we first pretrained the model to
effectively manage two registers, the network will be able to scaffold the learned gating strategy to
learn the three register task more robustly. We further predicted that this pretraining would only be
useful if pretraining encouraged gating strategies. Our results in Figure 5 support both of these con-
clusions. Not only do pretrained networks on the original reference back-2 task exhibit higher gating
sub-task accuracy 5, but networks that were pretrained with the original two register task showed
very rapid learning in the three register task in the first few epochs. Moreover, this pretraining was
far less effective when it did not encourage gating (the split symbol control from above).

5 SUMMARY AND DISCUSSION

In this work, we investigate Transformer models for emergence of a learned gating mechanism; a
network component performing role-addressable gating, similar to that in working memory of hu-
mans. We observe that the model learns a gating policy and find that task performance is correlated
with gating ability. Our results show how learning gating mechanisms is one way Transformers can
excel at tasks that require executive function.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: 3 Register Task and Pretraining a)At the end of training on the 3 Register Task, models
with 2 Register Task pretraining perform the best on output gating tasks, insinuating learning of a
mechanistic solution. b) Accuracy curves through training (after the pretraining) show a stark dif-
ference between pretraining on the normal 2 register task and the control task. Models pretrained on
the 2 register task, generalize quickly (first few epochs) and with high accuracy (above 95%) on this
new task. At the end of training, no pretraining models are below 95% accuracy - which is below
the accuracy that 2 register task pretraining models showed at the beginning of training. Control
pretraining models show some generalization (due to learning of basic elements e.g. symbols) but
do not generalize to the same degree. Models pretrained with the 2 register tasks, which should
encourage a mechanistic solution, perform well at the new 3 register task, showing a superior ability
to generalize. 22 random seeds were run for each experimental condition and the results here an
average of those models. See Appendix A.5) for comparison on input and output gating task accu-
racies.

The Transformer models are capable of making use of key composition for input gating and query
composition for output gating on the task. We find that making precise corruptions to specific ar-
chitectural elements of the network causes the model’s prediction to change from Same to Different
or vice versa, indicating that those components are causally responsible for the gating mechanism.
The architectural biases of attention within the vanilla Transformer model lend themselves well to
representing role-addressable content. The learnable nature of keys, queries, and values allows the
model to learn to create internal representations. These representations can be learned to signify
roles and addresses, mimicking the variable binding and input / output gating mechanisms in bi-
ological neural networks (O’Reilly & Frank, 2006; Frank & Badre, 2012; Collins & Frank, 2013;
Kriete et al., 2013).

When we trained more models on the task, we found that the models which perform best on the
task correlate with the markers of gating we observed in our circuit analysis, and that the learn-
ing trajectory shows a steep decrease in training loss and a steep rise in patched subtask accuracy
simultaneously, suggesting that the model has learned a gating policy at that time. Both findings
are analogous to those of Frank & Badre (2012), in which they find that networks which learned
a hierarchical gating policy performed better at a hierarchical learning task, and humans that learn
this policy also show a sharp decrease in loss when they discover it. There is still more work to
be done to better understand the models that don’t learn the gating policy: what types of solutions
do they learn? How do we push models towards a mechanistic solution by hyperparameter tuning?
Understanding grokking phase planes in a similar manner as Liu et al. could be informative.

Nevertheless, we show that a critical factor controlling the learned gating policy is the task demands.
We found that experimental conditions in which biological networks exhibit gating advantages were
similarly needed to give rise to learned gating policies in Transformers. Conversely, when the task
places less demands on role-addressable gating (our split symbol control conditions), the models 1)
did not learn gating policies, 2) were less able to generalize to out-of-distribution pairs, and 3) were
less able to rapidly acquire tasks with higher gating demands (three registers).

We show that models that learn and solve the tasks using gating mechanisms are better at generaliza-
tion. Further we show how learning brittle and memorized solutions causes some models to falter at

9
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even in-distribution pairings when they are mixed with out-of-distribution examples. These results
can be used to inform larger models that are needed for better and faster generalization. Future work
can characterize what kinds of mistakes are common within the mechanistic and heuristic models to
further characterize these models and promote better generalizability.

Ultimately, finding connections between emergent behavior of Transformer models and human
working memory serves to benefit both computational cognitive neuroscience and artificial intel-
ligence. Although Transformer models themselves are limited in their biological plausibility, in this
setting they learned behavior mimicking the functionality of working memory, and their application
within computational models of the brain should be further explored. From the perspective of arti-
ficial intelligence, understanding the strengths and limitations of Transformer models on executive
function tasks may inform model analysis across the many diverse settings in which these models
are applied.

6 LIMITATIONS

While this paper draws parallels between the Transformer architecture and the brain, it is important
to emphasize that there are some significant differences between how Transformers and humans
solve tasks. In particular, because Transformers can attend to any part of the sequence when cre-
ating a representation, they are not limited by memory constraints. Transformers can solve tasks
that would push the limits of human working memory (but it should be noted that Transformers
require disproportionately large amounts of training data to do so). Nevertheless, we hypothesized
that Transformers might still learn effective gating policies that mimic those in frontostriatal net-
works. Moreover, as briefly reviewed in the introduction, working memory capacity in humans and
biological computational models is not limited primarily by the memory demand per se, but rather
by the difficulty of the credit assignment problem for learning how to manage role-addressable stor-
age and access of multiple items in memory. A fundamental bridge between Transformers and other
models of WM (and humans themselves) would be if Transformers also needed to overcome the
credit assignment learning problem, despite an unlimited memory capacity.
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A APPENDIX

A.1 SELF-ATTENTION IN TRANSFORMERS

Transformers are powerful language models which create contextualized representations of the input
sequences. They learn to predict the next token one at a time using an “attention” mechanism that
scans other tokens in the sequence for relevant information (Bahdanau et al., 2014). A common
practice (that is used here) is to mask any future tokens and so predictions and representations must
be made by the current token and any previously seen tokens. These models are able to learn and
represent complex sequence modelling tasks.

For a given prediction, Transformer attention generates three separate vectors for each token in
the sequence: a query, key, and value (q, k, v). The key vector is a set of tokens that the model
has learned are most relevant to the token at hand. The query vector scans the tokens in the key
vectors and calculates how much the current prediction should “attend” to each of those tokens.
Then, the value vectors at those positions are multiplied by the corresponding weights, summed
up, and added to the next representation: for token i at layer j, the contextual representation is∑

k q
j
i ·k

j
k∗v

j
k. Thus, the next token prediction includes earlier sequential information by combining

the value vectors from previous tokens. In other words, Transformer attention can be viewed as a
read/write mechanism: for a given token, the queries and keys dictate which tokens to read from, the
values are the content that is read (proportional to the attention calculated by the keys and queries),
and the summed content is written to a new representation at the given token. As we shall see below,
the comparison to role-addressable input and output gating operations is evident. The key vectors
form addresses analogous to the PFC “stripes” (neural populations that support variable binding in
memory). The learned key construction determines the address to store an item and is thus analogous
to input gating. Conversely, the query vectors determine which addresses are accessed, and are thus
analogous to output gating.
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A.2 TEXTUAL REFERENCE-BACK-2 TASK

The textual reference-back task requires making same/different judgments between incoming sym-
bols assigned to a particular “register” in memory, with respect to those seen previously and linked
to those same registers. Like the original tasks, the textual reference-back task is sequential, and
requires independent updating and maintenance of two memory registers, each containing one of
S arbitrary symbols at a time. At the beginning of each sequence, each register is initialized indi-
vidually to one s ∈ S (the pool of symbols is shared between registers, which was shown to more
substantively tax gating mechanisms in (?).) Each sequence is composed of L tuples, each contain-
ing register address Regi, symbol Symi, same/different label Ansi, and update instruction Insi. For
a tuple i ∈ L, the answer Ansi is a binary value that is either Same if symbol Symi is currently
stored in the register with address Regi, or Different otherwise. The update instruction Insi also
takes one of two values (ignore or store), evenly distributed. If the instruction is ignore, then
the model still needs to make the same/different determination with respect to the stored reference,
but the new symbol should not update the register content (i.e., the reference remains unperturbed).
If it is store, then from that point on in the sequence, Symi is stored in the register with address
Regi until otherwise updated. An example is shown in Fig. 1.

We implement each reference-back task example in our data as a single sequence, and measure
models’ ability to predict Same versus Different for each Ansi. Each sequence has 10 same/different
answers, and we generate 100,000 train, 1,000 validation, and 1,000 held-out test sequences.

The class balance of same to different answer labels in the train/test datasets is roughly 1:2,
making a “maximum class” heuristic solution 0.66 accuracy, 0.33 precision, and 0.5 recall. We test
several other heuristics, the strongest of which is predicting same if another tuple including Store
and the target register and target symbol exists in the sequence, which scores 0.80 accuracy, 0.82
precision, and 0.85 recall.

A.3 MODELS AND TRAINING

We train small, attention-only Transformer models from scratch on our task. Our models contain
two decoder-only layers, each with two heads, and no multilayer perceptrons or layer normalization,
followed by a linear “unembed” layer to project the output of the last decoder into the space of the
entire vocabulary at each timestep In practice, only ‘same’ and ‘different’ are ever predicted. Our
network uses absolute positional embeddings (Vaswani et al., 2017). The vocabulary contains all
possible tokens, represented individually with embedding size E. Models are trained to predict the
next token with the language modelling objective: if the model is predicting Ansc, it will have access
to all (Insi, Regi, Symi, Ansi) tuples where i < c, as well as Insc, Regc, and Symc. However, the
models only receive loss at positions where a same/different token must be predicted (this is similar
to the reward function applied in frontostriatal gating networks; (O’Reilly & Frank, 2006; Soni &
Frank, 2024)). Furthermore, each layer gets a causal attention mask– when constructing each token
representation, it cannot look ahead at tokens further down the sequence.

The models are trained over 60 epochs of the 100k training data points, learning from 6 million
examples in total. Models are evaluated on their accuracy (whether the correct Ansi is predicted for
each tuple i), measured in precision and recall, as well as the same versus different token logit
difference.

A.4 PATH PATCHING

Path-patching involves making a incisive edit to the representations of a trained model and ob-
serving how the model’s behavior is affected, allowing one to infer the computations implemented
within individual attentional heads (see Fig. 6). Path-patching requires a minimal pair of examples:
the “clean” example and the “corrupted” example, in which one token from the clean example is
changed, as well as the correct label. Given representations from the model for both the clean and
the corrupted examples (the blue and orange components in the figure), we can chose a specific
component anywhere in the model (referred to as the “sender”), and replace the clean representation
with the corrupted one at that specific component. These embeddings will be received by the next
layer (”receiver”), thereby ”patching” the path. From there, the patched model will compute the new
prediction.
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Figure 6: Graphical Path Patching Graphical diagram of the path-patching process. Attention
heads are represented as circles (layer,head index), and contextual representations of each token (as
well as the next token prediction) are represented as rectangles.

In the figure, we send from layer 0, head 0 and 1 to layer 1, both heads 0 and 1. All clean repre-
sentations that are not along this path are not modified and are unaffected by the patch. The model
then recomputes all representations after the receiver (the “patched” representations), and arrives at
a new prediction. If the model output matches the corrupt prediction rather than the clean one, that
prediction is causally dependent on the path from sender to receiver. See (Wang et al., 2022) and
(Goldowsky-Dill et al., 2023) for a more comprehensive review of path-patching methods.

We perform a small hyperparameter search and select a model that reaches 100% accuracy on the
held-out test data for further analysis. We determine the circuit that the model uses through an array
of path-patching experiments with a simple minimal pairs paradigm. Our “sender” within path-
patching is always both attention heads at layer 0, and our “receiver” is always both attention heads
at layer 1.

We first establish that a Transformer model is able to succeed on the reference-back-2 task.

At layer 0, the model learns to condense the task-critical information from each tuple into one
embedding, at the position for Symi

2. At this layer, the model pays 85.8% of total attention to the
task-critical information to that tuple, and just 14.2% of attention to other tuples.

At layer 1, the attention heads learn to attend to the Symi key vector representing the tuple where
information was last stored in the target register. The heads pay 70.2% of total attention to this tuple
(the “stored” tuple), and only 29.8% of attention to all other tokens. This behavior is tied to the
target register matching the register in the stored tuple, which is analogous to gating of the relevant
role-addressable PFC stripe (O’Reilly & Frank, 2006; Soni & Frank, 2024). We focus our analysis
on the Layer 1 representations which exhibit this learned gating policy, shown in Fig. 2.

A.5 INPUT VS. OUPUT GATING ACCURACIES, PRETRAINING

2Redundantly, the model does the same at the position for Ansi. Through additional experimentation, we
determine that this is a quirk of Transformer learning, and does not impact our analysis.
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Figure 7: Input and Output Gating Task Accuracy Pretraining on the 2 register task leads to the
highest accuracy on input and output gating subtasks - insinuating that these models learn the most
mechansitic solutions. In general the input gating accuracy is lower, indidcating a differential role
for each gating. There is human experimental evidence to suggest that output gating is harder to
learn and is more crucial for better performance
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