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ABSTRACT

The versatility of large language models (LLMs) led to the creation of diverse
benchmarks that thoroughly test a variety of language models’ abilities. These
benchmarks consist of tens of thousands of examples making evaluation of LLMs
very expensive. In this paper, we investigate strategies to reduce the number of
evaluations needed to assess the performance of an LLM on several key benchmarks.
For example, we show that to accurately estimate the performance of an LLM on
MMLU, a popular multiple-choice QA benchmark consisting of 14K examples, it
is sufficient to evaluate this LLM on 100 curated examples. We release evaluation
tools and tiny versions of popular benchmarks: Open LLM Leaderboard, MMLU,
HELM, and AlpacaEval 2.0. Our empirical analysis demonstrates that these tools
and tiny benchmarks are sufficient to reliably and efficiently reproduce the original
evaluation results. Please check the complete and updated version of this work in
https://arxiv.org/abs/2402.14992.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable abilities to solve a diverse
range of tasks [7]. Quantifying these abilities and comparing different LLMs became a
challenge that led to the development of several key benchmarks, e.g., MMLU [15], Open
LLM Leaderboard [4], HELM [23], and AlpacaEval [22]. These benchmarks are com-
prised of hundreds or thousands of examples, making the evaluation of modern LLMs
with billions of parameters computationally, environmentally, and financially very costly.

Figure 1: Estimating accuracy on MMLU (true
accuracy) using 100 curated examples (predicted
accuracy). IRT++, our best-performing evaluation
strategy, predicts the accuracy of recent LLMs re-
leased between December 30th and January 18th
within 1.6% of their true accuracy on all of MMLU
(14K examples).

Our work presents different ways of making bench-
mark evaluation more efficient by selecting small sets
of curated examples. In Figure 1 we demonstrate the
efficacy of an evaluation strategy on MMLU, where
we compare accuracy estimates obtained from eval-
uating LLMs on a curated subset of 100 examples
(< 1% of the examples) to accuracy on all of MMLU,
achieving average estimation error under 2%.

We consider a range of evaluation strategies (§3) such
as stratified random sampling, selecting a small but
representative set of examples using clustering al-
gorithms, and applying item response theory (IRT)
methods for performance estimation. We present an
extensive evaluation of these strategies on four pop-
ular benchmarks (§5): Open LLM Leaderboard [4],
MMLU [15], HELM [23], and AlpacaEval 2.0 [22].
Our goal is to assess the effectiveness of estimating
the performance of LLMs on these benchmarks using
a limited number of examples for evaluation. Overall,
we conclude that 100 curated examples per scenario
are enough to reliably estimate the performance of various LLMs, within about 2% error on average.
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Based on our findings we release tiny (100 examples per scenario) versions of every considered
benchmark and IRT-based tools for further improving the performance estimation. In Appendix A,
we talk in detail about related work.

2 PROBLEM STATEMENT
In this section, we describe in detail the setup we work on and what are our objectives. Consider
that a benchmark is composed of scenarios and possibly sub-scenarios. For example, MMLU and
HellaSwag are examples of scenarios1 of both the Open LLM Leaderboard and HELM, while MMLU
has different sub-scenarios like “marketing”, “elementary mathematical”, and so on. Furthermore,
each scenario (or sub-scenario) is composed of examples (analogous to “items” in the IRT literature)
that are small tests to be solved by the LLMs–these examples range from multiple-choice questions
to text summarization tasks. Our final objective is to estimate the performance of LLMs in the
full benchmark, which is given by the average of the performances in individual scenarios (Open
LLM Leaderboard, MMLU, AlpacaEval 2.0) or mean-win-rate (HELM). We achieve this objective
by first estimating the performance of LLMs in individual scenarios and then aggregating scores.
When scenarios have sub-scenarios, it is usually the case that the scenario performance is given by a
simple average of sub-scenarios performances. The main concern is that each scenario/sub-scenario
is composed of hundreds or thousands of examples, making model evaluation costly.

In this work, for a fixed benchmark, we denote the set of examples of each scenario j as Ij , implying
that the totality of examples in the benchmark is given by I = ∪jIj . When an LLM l interacts with
an example i ∈ Ij , the system behind the benchmarks generates a score that we call “correctness”
and denote as Yil. In all the benchmarks we consider in this work, the correctness is either binary, i.e.,
Yil ∈ {0, 1} (incorrect/correct), or bounded, i.e., Yil ∈ [0, 1], denoting a degree of correctness. The
second case is applied in situations in which, for instance, there might not be just one correct answer
for example i. To simplify the exposition in the text, we assume that the score for LLM l in scenario j
is just the simple average of the correctness of all items in that scenario, that is, 1

|Ij |
∑

i∈Ij
Yil. That

is not true when different sub-scenarios have different numbers of examples; in that case, one would
just have to use a weighted average instead, to make sure every sub-scenario is equally important
(in the experiments, we consider this case). Our objective when evaluating a model l is to choose
a small fraction of examples Îj ⊂ Ij , compute the correctness of model l in every example of Îj ,
and then use the available data to estimate what would be the average score of that model in Ij , i.e.,
1

|Ij |
∑

i∈Ij
Yil. In the next section, we describe strategies on how Îj can be chosen and how the

overall score can be estimated.

3 SELECTING EVALUATION EXAMPLES
In this section, we describe strategies on how to select examples from a fixed scenario j, i.e.,
Ij , obtaining Îj ⊂ Ij described in Section 2. Ideally, the set of selected examples should be
representative of the whole set of items in scenario j, that is,∑

i∈Îj
wiYil ≈ 1

|Ij |
∑

i∈Ij
Yil, (3.1)

for nonnegative weights {wi}i∈Îj
such that

∑
i∈Îj

wi = 1. In the next paragraphs, we describe two

possible ways of obtaining Îj and {wi}i∈Îj
.

Stratified random sampling. In some settings [e.g., classifiers 16], it is useful to perform stratified
random sampling – subsample examples, but ensure representation of certain groups of data. Using
sub-scenarios as the strata for stratified random sampling was proposed by Perlitz et al. [32] when
sub-sampling examples from HELM scenarios. The authors showed that this is an effective way of
sampling examples without too much loss on the ability to rank LLMs by performance. Examples
should be randomly selected from sub-scenarios (with uniform probability) in a way such that the
difference in number of examples sampled for two distinct subscenarios is minimal (≤ 1). The
rationale behind this method is that, for an effective evaluation, sub-scenarios should be equally
represented. Overall, the weights are wi = 1/|Îj | for all i ∈ Îj .

Clustering. Assessing the performance of LLMs on a randomly sampled subset of examples suffers
from extra uncertainty in the sampling process, especially when the number of sampled examples
is small. Instead, we consider selecting a subset of representative examples using clustering. Vivek

1We consider MMLU and AlpacaEval as a single scenario each.
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et al. [42] proposed to cluster examples based on the confidence of models in the correct class
corresponding to these examples. Representative examples, from these clusters, which they call
“anchor points”, can then be used to evaluate models on classification tasks more efficiently. We adapt
their clustering approach to a more general setting, allowing us to extract such anchor points for
MMLU, AlpacaEval 2.0, and all scenarios of the Open LLM Leaderboard and HELM.

To refine the selection of anchor points, two main strategies are proposed. The first strategy employs
K-Means clustering based on the correctness scores of models in the training set across examples,
aiming to identify a small number of examples (anchor points) that are predictive of model perfor-
mance on a larger set. This approach, while straightforward and effective, is noted for potential
vulnerabilities to distribution shifts and the curse of dimensionality in large training sets. The second
strategy introduces a more nuanced approach using item response theory (IRT) parameter estimates,
detailed in Section 4, to represent examples. This method addresses the limitations of the first by
reducing dimensionality and potentially improving robustness against distribution shifts when the
IRT model is reasonable in describing reality.

4 BETTER PERFORMANCE ESTIMATION WITH IRT
In this section, we propose ways of enhancing performance estimates by using IRT models. We start
by discussing the case where Yil ∈ {0, 1}, that is, the l responds to the example i ∈ I correctly or
not. We discuss the case where Yil ∈ [0, 1] in Appendix B.

The IRT model. The two-parameter multidimensional IRT model assumes that the probability of the
LLM j getting example i correctly is given by

pil ≜ P(Yil = 1 | θl, αi, βi) =
1

1+exp(−α⊤
i θl+βi)

, (4.1)

where θl ∈ Rd denotes the unobserved abilities of LLM l, while αi ∈ Rd dictates which dimensions
of θl are required from model l to respond to example i correctly. In this formulation, βi ∈ R can be
viewed as a bias term that regulates the probability of correctness when θl = 0. We use IRT parameter
estimates as example representations referred to in Section 3. Specifically, we take Ei = (α̂i, β̂i),
where α̂i and β̂i are point estimates for the parameters of example i. We introduce two estimators for
the performance of an LLM and describe model fitting in Appendix B.

IRT-based LLM performance estimation. Assume that we are interested in estimating the perfor-
mance of a model l ̸∈ Ltr on scenario j and that point estimates of example parameters, (α̂i, β̂i),
have been computed for all examples in all scenarios, including examples i ∈ Ij . Formally, we are
interested in approximating

Zjl ≜ 1
|Ij |

∑
i∈Ij

Yil (4.2)

Now, assume that we have run model l on a subset of examples from scenario j, obtaining responses
{Yi0l, · · · , Yikl} for the examples Îj = {i0, · · · , ik}. Let θ̂l denote the estimate for θl after observing
Îj and possibly a bigger set of examples coming from different scenarios. To obtain the estimate,
we maximize the log-likelihood of the freshly observed data with respect to θl, fixing examples’
parameters. This procedure is equivalent to fitting a logistic regression model.

Because Zjl is a random variable, we approximate it by estimating the conditional expectation

E[Zjl | Yi0l, · · · , Yikl] =
λ̂

|Îj |

∑
i∈Îj

Yil +
1−λ̂

|Ij\Îj |

∑
i∈Ij\Îj

pil

where λ̂ = |Îj |/|Ij | ∈ [0, 1] is a weight that gives more or less importance to the observed set Îj in
the performance computation depending on how big that set is. The probability pil = P(Yil = 1 |
θl, αi, βi) is given by the IRT model in Equation 4.1. The estimator for the conditional expectation is
then given by

Ẑp-IRT
jl ≜ λ̂

|Îj |

∑
i∈Îj

Yil +
1−λ̂

|Ij\Îj |

∑
i∈Ij\Îj

p̂il (4.3)

where p̂il ≜ P(Yil = 1 | θ̂l, α̂i, β̂i). We call the estimator in 4.3 by Performance-IRT (p-IRT)
estimator. The idea behind p-IRT is that we can estimate the performance of a model on unseen
data making use of the IRT model. This is especially useful if we can fit θ̂l using data from many
scenarios: even though we observe just a few samples per scenario, p-IRT will leverage the whole
available data, permitting better estimates for the performance of the LLM for all scenarios. The
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Figure 2: Performance estimation error per benchmark (columns) tested on recent LLMs for increasing
number of evaluation examples. 100 examples per scenario are sufficient to achieve ≈2% average
performance estimation error across benchmarks and evaluated LLMs. This corresponds to 600 out
of 29K examples for Open LLM Leaderboard, 100 out of 14K examples for MMLU, 1500 out of
20K examples for HELM, and 100 out of 800 examples for AlpacaEval 2.0.

estimator p-IRT has low variance when θ̂l is obtained from a large dataset and a small bias if the IRT
model is reasonably specified.

We note two limitations of p-IRT that can hinder its effectiveness in practice. First, it does not promptly
allow sample weighting, limiting its use of anchor points; second, if the predicted probabilities p̂il’s
are inaccurate, e.g., because of model misspecification, then the performance of p-IRT will deteriorate.
In Appendix B, we introduce our final performance estimator, the Generalized p-IRT (also referenced
as gp-IRT or IRT++ in the experiments) which is given by a convex combination of p-IRT and the
estimator in equation 3.1.

5 ASSESSING EVALUATION STRATEGIES
We assess the ability of the considered evaluation strategies to estimate the performance of LLMs
on four popular benchmarks: HuggingFace’s Open LLM Leaderboard [4], MMLU [15], For HELM
[23], AlpacaEval 2.0 [22]. In Appendix C, we describe all benchmarks and their data in detail. For a
given LLM and a benchmark, each evaluation strategy estimates the performance using the evaluation
results of this LLM on a given number of examples. We then compare this estimate to the true value,
i.e., the performance of this LLM on the complete benchmark. We use publicly available evaluation
data for which we split the models into “train” and “test”. Evaluation of the train models is used to
find the anchor points and fit the IRT model. The ability to predict performance is measured on the
test set of models. We consider two train-test split scenarios: (i) random split and (ii) by date, i.e.
using the most recent models for testing. The latter split better represents practical use cases.

Evaluation strategies. We consider 3 strategies presented in §3 for selecting a subset of examples for
efficient evaluation: “random” for stratified random sampling, “correctness” for clustering correctness
of models in the train set, and “IRT” for clustering the example representations obtained from the
IRT model fit on the train set. For each strategy, we evaluate the vanilla variation, i.e., simply using
the performance of a test LLM on the (weighted) set of selected examples to estimate its performance
on the full benchmark, and “++” variation that adjusts this estimate using the IRT model as described
in equation B.1. In total, we assess six evaluation strategies. Results are averaged over 5 restarts.

Key findings. We investigate the effectiveness of strategies as we increase the number of examples
available for evaluating test LLMs. Results for non-random splits are presented in Figure 2 (full results
in Figure 4 and Figure 9 for Spearman’s rank correlations). Our approach to reducing evaluation costs
is effective. The best-performing strategies achieve estimation error within 2% on all benchmarks
with 100 examples or less per dataset or scenario. For example, for MMLU this reduces the evaluation
cost by a factor of 140 (from 14k to 100). For Open LLM Leaderboard even 30 examples per scenario
is enough, reducing the evaluation cost by a factor of 160 (from 29K to 180). The IRT-based methods
(“IRT” and “IRT++”) perform consistently well across benchmarks and train-test splits. Thus we
use the IRT-based anchor examples to construct tiny versions (100 examples per scenario) of each of
the benchmarks and release them along with the gp-IRT tool (code and pre-trained IRT model) for
efficient evaluation of future LLMs. See demonstration2.

2https://colab.research.google.com/drive/1txjUVWVFNEVue70thf8mlWVmB400gApk?
usp=sharing

4

https://colab.research.google.com/drive/1txjUVWVFNEVue70thf8mlWVmB400gApk?usp=sharing
https://colab.research.google.com/drive/1txjUVWVFNEVue70thf8mlWVmB400gApk?usp=sharing


Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

In Appendix E we conduct an exploratory analysis of the examples comprising tinyMMLU.
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A RELATED WORK

Efficient benchmarking of LLMs Multi-dataset benchmarks were introduced to the field of NLP
with the advent of pre-trained models [e.g. 43], and constantly evolved in lockstep with language
model capabilities [37]. The ever-increasing size of models and datasets consequently led to high
evaluation costs, triggering changes in reported evaluation to accommodate the costs [5]. Ye et al. [44]
considered reducing the number of tasks in Big-bench [37]. Perlitz et al. [32] found that evaluation
on HELM [23] relies on diversity across datasets, but the number of examples currently used is
excessive. We adopt their stratified sampling approach as one of the efficient evaluation strategies.
Vivek et al. [42] proposed clustering evaluation examples based on models’ confidence in the correct
class for faster evaluation on classification tasks. One of the approaches we consider is based on an
adaptation of their method to popular LLM benchmarks with more diverse tasks.

Item response theory (IRT) IRT [9, 40, 8, 25] is a well-established set of statistical models used
in psychometrics to measure the latent abilities of individuals through standardized testing [3, 17, 33]
(GRE, SAT, etc.). Even though IRT methods have been traditionally used in psychometrics, they are
becoming increasingly popular among researchers in the fields of artificial intelligence and natural
language processing (NLP). For instance, Lalor et al. [20] propose using IRT’s latent variables to
measure language model abilities, Vania et al. [41] employs IRT models in the context of language
models benchmarking to study saturation (un-discriminability) of commonly used benchmarks, and
Rodriguez et al. [34] study several applications of IRT in the context of language models, suggesting
that IRT models can be reliably used to: predict responses of LLMs in unseen items, categorize
items (e.g., according to their difficulty/discriminability), and rank models. However, to the best
of our knowledge, IRT has not been used for performance estimation in the context of efficient
benchmarking of LLMs. We explore this new path.

B MORE DETAILS ABOUT IRT AND ESTIMATORS

The generalized p-IRT (gp-IRT) estimator. Our final estimator builds upon p-IRT to overcome
its limitations. Assume that the estimators in equations 3.1 and 4.3 are obtained as a first step after
the collection of examples in Îj . The idea is to compute a third estimator Ẑgp-IRT

jl given by a convex
combination of the first two

Ẑgp-IRT
jl ≜ λ

∑
i∈Îj

wiYil + (1− λ)Ẑp-IRT
jl (B.1)

where λ is a number in [0, 1] that is chosen to optimize the performance of that estimator. To choose
λ, we first note that using random sampling (or anchor points) implies low bias but potentially high
variance (when Îj is small) for

∑
i∈Îj

wiYil. As Îj grows, its variance decreases. On the other hand,

the variance of Ẑp-IRT
jl is small, especially when θ̂l is fitted with data from many scenarios, but its bias

can be high when the IRT model is misspecified and does not vanish with the growing sample size.
Thus, good choice of λ increases with Îj .

We choose λ based on a heuristic derived from Song [36]’s Corollary 2. It tells us that the optimal
linear combination of any two estimators T̂1 and T̂2 (when the sum of the weights is one) depends on
the biases, variances, and covariance of the two estimators. If the first estimator is unbiased and the
variance of the second is zero, we can show that the optimal estimator is λT̂1 + (1− λ)T̂2, where
λ = b22/(b

2
2+ v1), b2 denotes T̂2’s bias, and v1 denotes T̂1’s variance. To apply this result, we assume

that the main factors that might prevent gp-IRT from being a good estimator are the variance of the
first estimator and the bias of the second one. Then we approximate the first estimator’s bias and the
second estimator’s variance by zero. When our first estimator is obtained by random sampling we
take

λ =
b̂2

σ̂2/|Îj |+ b̂2

for two constants σ̂2 and b̂2. The first constant, σ̂2, is obtained by computing the average sample
variance of Yil, i ∈ Ij , across LLMs in the training set. The second constant, b̂2, is obtained by
approximating the IRT bias. We (i) split the training set into two subsets of LLMs; (ii) fit an IRT
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model in the first part using data from all scenarios; (iii) fit the ability parameter for all the LLMs
in the second part using half of the examples of all scenarios; (iv) use that IRT model to predict the
correctness (using predicted probabilities) of the unseen examples of scenario j for the models in the
second split; (v) average predictions and actual correctness within models, obtaining predicted/actual
scenarios scores; (vi) compute their absolute differences, obtaining individual error estimates for
models; (vii) average between models, obtaining a final bias estimate, and then square the final
number. To give some intuition on how λ is assigned, Figure 3 depicts λ as a function of b̂ and |Îj |
when σ̂2 = .01. From that figure, we see that if the IRT model bias is small, more weight will be
given to p-IRT. The curves are steeper when |Îj | is small because the variance of the first estimator
decreases faster when |Îj | is small. When the first estimator is obtained by a method that implies an
estimator with smaller variance, e.g., anchor points, we apply the same formula but divide σ̂2 by a
constant > 1. By default, we divide σ̂2 by 4 which is equivalent to halving the standard deviation of
the first estimator.

Figure 3: Understanding the effect of IRT bias and sample size |Îj | in the gp-IRT construction: both
quantities are positively related to the weight we give to the raw data in performance estimation.

B.1 USING IRT WHEN Yil IS NOT BINARY

There are situations in which Yil /∈ {0, 1} but Yil ∈ [0, 1]. For example, in AlpacaEval 2.0, the
response variable is bounded and can be translated to the interval [0, 1]. Also, some scenarios of
HELM and the Open LLM Leaderboard have scores in [0, 1]. We propose a simple and effective fix.
The idea behind our method is to binarize Yil by defining a second variable Ỹil = 1[Yil ≥ c], for a
scenario-dependent constant c. More concretely, for each scenario j, we choose c such that∑

i∈Ij ,l∈Ltr
Yil ≈

∑
i∈Ij ,l∈Ltr

1[Yil ≥ c].

In that way, approximating the average of Ỹil and Yil should be more or less equivalent. Given that
Ỹil ∈ {0, 1}, we can use the standard IRT tools to model it.

B.2 FITTING THE IRT MODEL

For the estimation procedure, we resort to variational inference. In particular, we assume that
θl ∼ N(µθ1d, 1/uθId), αi ∼ N(µα1d, 1/uαId), and βi ∼ N(µβ , 1/uβ). To take advantage of
software for fitting hierarchical Bayesian models [21], we introduce (hyper)priors for the prior
parameters µθ ∼ N(0, 10), uθ ∼ Γ(1, 1), µα ∼ N(0, 10), uα ∼ Γ(1, 1), µβ ∼ N(0, 10), and
uβ ∼ Γ(1, 1). Finally, to obtain point estimates for the model and example-specific parameters θl, αi,
and βi, we use the means of their variational distributions. To select the dimension of the IRT model
during the fitting procedure, we run a simple validation strategy in the training set and choose the
dimension that maximizes the prediction power of the IRT model in the validation split–we consider
the dimensions in {2, 5, 10, 15, 20}.

C DETAILS ABOUT BENCHMARKS

We describe the size and composition of the four benchmarks, as well as the corresponding LLMs
(see Appendix C for additional details):

9
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• HuggingFace’s Open LLM Leaderboard [4] consists of 6 scenarios, 29K examples in total. Perfor-
mance on each of the scenarios is measured with accuracy and the overall benchmark performance
is equal to the average of scenario accuracies. We collect evaluation results for 395 LLMs from the
Leaderboard’s website and use 75% for training and 25% for testing (split either randomly or by
date as described above). To extract data from those models, we filter all models from the platform
that have an MMLU score over .3, order them according to their average performance, and equally
spaced selected models. Then, we kept all models that had scores for all six scenarios: ARC [12],
HellaSwag [45], MMLU [15], TruthfulQA [24], Winogrande [35], and GSM8K [13]. In a second
round of data collection, we collected data for 40 “specialized models” by recognizing which
models were fine-tuned to do the math, coding, etc.. The two sets of models have an intersection,
and in total, we have collected data from 428 LLMs.

• MMLU [15] is a multiple choice QA scenario consisting of 57 subjects (subscenarios) comprising
14K examples. Performance on MMLU is measured by averaging the accuracies on each of the
categories. MMLU is one of the 6 scenarios of the Open LLM Leaderboard and we consider the
same set of 395 LLMs and train-test splits. The reason to consider it separately is its immense
popularity when comparing LLMs [39, 1, 38] and inclusion into several other benchmarks.

• For HELM [23] we consider the 15 core scenarios (total of 20K examples) and 28 models that have
their performances registered for all scenarios as in Perlitz et al. [32]. Performance metrics for
each scenario vary and can be non-binary (e.g., ROUGE score), and the overall performance on the
benchmark is measured with mean win rate across scenarios. For this benchmark, the dates models
were added are not available. Instead, we split models based on the organizations that trained them
to create more challenging train-test splits, e.g., all OpenAI models are either in train or in test.
For the random train-test split we use 5-fold cross-validation. We average correctness over all
repetitions over all trials. The scenarios are BoolQ [11], Civil Comments [6], HellaSwag [45],
OpenbookQA [28], IMDB [26], MMLU [15], MS MARCO (Regular track) [31], NarrativeQA
[18], NaturalQuestions (closed-book) [19], NaturalQuestions (open-book) [19], QuAC [10], RAFT
[2], CNN/DM [29], and XSUM [30].

• AlpacaEval 2.0 [22] consists of 100 LLMs evaluated on 805 examples. Although it is a fairly small
benchmark, evaluation is expensive as it requires GPT-4 as a judge. For each input, GPT-4 compares
the responses of a candidate LLM and a baseline LLM (currently also GPT-4) and declares a winner.
The average win rate3 is used to measure the overall performance. When splitting the data by date,
we pick 25% most recent models for testing and the rest for training. For the random split, we
employ 4-fold cross-validation.

D EXTRA RESULTS

D.1 EXPANDING RESULTS IN SECTION 5

Figure 4 is an extension of Figure 2, including random splits in the top row.

3AlpacaEval 2.0 considered in the experiments uses continuous preferences instead of binary.
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Figure 4: Performance estimation error per benchmark (columns) tested on random (top row) and
recent (bottom row) LLMs for increasing number of evaluation examples. 100 examples per scenario
is sufficient to achieve ≈2% average performance estimation error across benchmarks and evaluated
LLMs. This corresponds to 600 out of 29K examples for Open LLM Leaderboard, 100 out of 14K
examples for MMLU, 1500 out of 20K examples for HELM, and 100 out of 800 examples for
AlpacaEval 2.0.

Figure ?? is an extension of Figure 1 for more benchmarks and methods.

D.2 SPECIALIZED LLMS.

In our previous experiments, the test set of LLMs consisted of either a random subset of models or
the most recent ones. Both of these test sets are dominated by base and instruction-tuned LLMs.
Here we assess the ability of the considered strategies to predict the performance of specialized
LLMs, i.e., models fine-tuned for specific domains such as code, biology, or finance. We consider
MMLU benchmark and collect a new hand-picked test set of 40 specialized models. Such models
are likely to have unique strengths and perform well in specific MMLU categories while relatively
underperforming on others. Thus, their correctness patterns might be different from those in the train
set, posing a challenge for our evaluation strategies. We present results in Figure 6.

As we anticipated, the correctness-based anchor strategy deteriorates when tested on specialized
LLMs. In contrast to the IRT-based anchors that are only slightly affected, demonstrating their
robustness and supporting our choice to use them for tinyBenchmarks construction.

Figure 6: Estimation error on specialized LLMs (right) compared to error on random LLMs (left) on
MMLU. Correctness-based example selection is affected the most by this distribution shift.
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D.3 ESTIMATION ERROR ANALYSIS

We present a more detailed view of the estimation error of the best performing “IRT++” evaluation
strategy on MMLU with 100 examples. In Figure 7 we plot estimation error against the actual
accuracy of 99 test LLMs for a random train-test split. Our strategy can estimate the performance
of more capable LLMs slightly better, although there is no strong dependency. We also note that
the estimation error never exceeds 4% (recall that the average error is 2% as shown in Figure 4),
supporting the reliability of our evaluation approach.

Figure 7: Spread of estimation errors across a random subset of LLMs with varying capabilities on
MMLU. Error tends to be slightly lower for more capable models. Worst case error across all models
is ≤ 4%.

D.4 RUNNING TIME

We record the running time of IRT inference (ability parameter fitting) when running our experiments.
Below, we show the average running time depending on the size of used examples (from all scenarios).

Figure 8: Average running time by the amount of test examples: IRT inference.

D.5 RANK CORRELATION RESULTS

In this section, we explore versions of Figures 4 and 6 when we look at rank correlation (correlation
between true and predicted ranking) instead of performance. It is clear from the plots below that our
method can be used to rank models efficiently with tiny samples.
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Figure 9: Rank correlation for true performance and predicted performance among LLMs.

Figure 10: Rank correlation for true performance and predicted performance among LLMs in MMLU.
The plot on the left represents a random split of the data while the plot on the right considers
specialized models as the test set.

D.6 ADAPTIVE TESTING

In this section, we complement the results shown in Figure ?? for all benchmarks.
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Figure 11: Results of adaptive testing for different benchmarks.

E TINYMMLU

To construct tinyMMLU we chose 100 examples and weights identified by the IRT anchor point
approach (“IRT”) corresponding to the best test performance (across random seeds) in the experiment
presented in the top part of Figure 4 on MMLU. For comparison, we analogously selected 100
examples with the correctness anchor point method.

To better understand the composition of tinyMMLU, in Figure 12 we visualize the distribution of the
weights of the selected examples and compare it to the weights of the correctness anchors. Recall
that weights are non-negative and sum to 1. If an item has a weight 0.1, for example, that item has
a contribution of 10% in the final estimated score. From Figure 12, we can see that tinyMMLU
has more uniform weights compared to its correctness-based counterpart. We measure uniformity
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through the effective sample size (ESS) of the example weights. ESS, traditionally used in the
Monte Carlo and domain adaptation [14, 27] literature, measures weight inequality in a way such that
ESS = 0.50, for example, informally means that the corresponding weighted average is influenced by
only 50% of (uniformly weighted) examples. In the context of our problem, more uniform weights
of tinyMMLU contribute to its robustness when evaluating LLMs with varying correctness patterns,
such as specialized LLMs in Figure 6.

We also investigate the total weight of the tinyMMLU examples within each of the 57 subjects in
Figure 13. The highest weighted are “high school psychology”, “elementary mathematics”, and
“professional law”. Interestingly the weight of the subjects is fairly different from its correctness-based
counterpart.

Figure 12: Comparing the spread of examples weights using both the IRT and correctness approaches
to find anchor points. We see that weights inequality is much higher when we cluster examples using
correctness.

Figure 13: Weights given to MMLU subscenarios by the two anchoring methods.

F INDIVIDUAL PERFORMANCES PER SCENARIO

In this section, we explore what is behind Figure 4 by looking in detail at results for individual
scenarios for the Open LLM Leaderboard and HELM. It is clear from the following plots that there
are scenarios in which our methods shine more than others.
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F.1 OPEN LLM LEADERBOARD

Figure 14: ARC

Figure 15: GSM8K

Figure 16: TruthfulQA

Figure 17: HellaSwag
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Figure 18: MMLU

Figure 19: Winogrande

F.2 HELM

Figure 20: BoolQ

Figure 21: Civil Comments
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Figure 22: CNN/DM

Figure 23: HellaSwag

Figure 24: OpenbookQA

Figure 25: IMDB
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Figure 26: MMLU

Figure 27: MS MARCO (Regular Track)

Figure 28: NarrativeQA

Figure 29: NaturalQA (closed book)
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Figure 30: NaturalQA (closed book)

Figure 31: NaturalQA (closed book)

Figure 32: QuAC

Figure 33: RAFT
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Figure 34: TruthfulQA

Figure 35: XSUM
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